
This is an Accepted Manuscript of an article published by Taylor & Francis in International Journal of Computational Intelligence
Systems on 21 September 2015, available online: http://www.tandfonline.com/doi/abs/10.1080/18756891.2015.1084705

To cite this article: Mohanad Albayati & Biju Issac (2015) Analysis of Intelligent Classifiers and Enhancing the Detection Accuracy

for Intrusion Detection System, International Journal of Computational Intelligence Systems, 8:5, 841-853, DOI:
10.1080/18756891.2015.1084705

Analysis of Intelligent Classifiers and Enhancing the Detection Accuracy for Intrusion
Detection System

Mohanad Albayati and Biju Issac
School of Computing, Teesside University,

Middlesbrough, England, UK
E-mail: b.issac@tees.ac.uk

Received 27 October 2014

Accepted 12 June 2015

Abstract

In this paper we discuss and analyze some of the intelligent classifiers which allows for automatic detection and
classification of networks attacks for any intrusion detection system. We will proceed initially with their analysis
using the WEKA software to work with the classifiers on a well-known IDS (Intrusion Detection Systems) dataset
like NSL-KDD dataset. The NSL-KDD dataset of network attacks was created in a military network by MIT Lincoln
Labs. Then we will discuss and experiment some of the hybrid AI (Artificial Intelligence) classifiers that can be used
for IDS, and finally we developed a Java software with three most efficient classifiers and compared it with other
options. The outputs would show the detection accuracy and efficiency of the single and combined classifiers used.

Keywords: Intrusion Detection; Data Mining; Machine Learning; Detection accuracy

1. Introduction

The computer networks expand on a daily basis and the
users of Internet are increasing. The sharing of
information is turning the world into a small village. The
technology of exchanging information across networks
had improved the efficiency of data transfer, but it also
has made more opportunity for cyber-attacks. All of these
possible network attacks make users, organizations and
government agencies to want to protect their systems
from intrusions. The intrusion can be defined as the
ability to break through a system and trying to
compromise its integrity, availability, confidentiality or
quality of service (Abraham and Patra, 2012). There are
different defense measures employed by most
organizations to prevent the computer networks and

sensitive data from intrusion or attacks like
authentication, firewalls and physical security. All of
these measures are good but they do not protect against
sophisticated attacks - say like buffer overflow attacks
which makes use of the weakness in an application and
cause enormous security threat. That’s when the need for
an intrusion detection system (IDS) began to appear.
They are like a second line of security defense.
According to (Abraham and Patra, 2012) the IDS can be
defined as a system of observing suspicious actions that
happens on computer networks to detect users who are
not permitted access, trying to breach network devices.
There are two typical methods of IDS that can be
implemented on computer networks, namely - Signature
based and Anomaly based (Benferhat and Tabia, 2004),
and there are some that is a mix between those two (Elvis,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Teeside University's Research Repository

https://core.ac.uk/display/322328411?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.tandfonline.com/doi/abs/10.1080/18756891.2015.1084705

Mohanad Albayati and Biju Issac

2004). Signature based detection uses a signature
database to detect suspicious activity, where each
signature represent a print of known attack. These
systems are only as good as their database. Therefore the
database need to be updated continuously to ensure there
is information about the new intrusions. Anomaly based
intrusion detection system builds a profile of normal
system behaviour and detects any deviation from the
profile to identify possible attacks. The profile can be
constructed using machine learning techniques and data
mining and should be upgraded regularly. The advantage
of anomaly based over signature based is that it can
identify non-trivial attacks but it has a high tendency for
generating false alarms (Aydin, 2009). The main
problems with current IDS are efficiency and accuracy in
detecting intrusions (Hofmann and Sick, 2011). In this
paper we are planning to study and analyse the different
intelligence classifiers of IDS, test some of the hybrid
approaches, and design a hybrid software system that can
be accurate and efficient at the same time.

This paper is organised as follows. Section 2 is the
related works on intrusion detection done, section 3 is
introduction to IDS, section 4 is the discussion on dataset
used, section 5 is the analysis of IDS classifiers, section
6 is on the developed software system, section 7 is the
discussion and limitation of our work and section 8 is the
conclusion.

2. Related Works

The first concept of intrusion detection was introduced
through a paper by (James P. Anderson, 1980) where the
authors introduced a model that develops a security
monitoring surveillance to detect anomalies in user
behaviour.

(Lee and Stolfo, 1998) proposed a systematic framework
that employs data mining techniques to detect intrusions.
(Schultz, Zadok, Stolfo, 2001) proposed a framework
which uses data mining classifiers to train multiple
classifiers on a set of malicious and benign executables
to detect new examples. (Nadiammai and Hemalatha,
2012) presented a study of all ruled based classifiers to
predict their effectiveness based on accuracy, time,
specificity, sensitivity and error.

(Hwang, Lee, and Lee, 2007) proposed a three-tier
architecture of IDS which consist of three lists - black

list, white list and multi-class. The black list contain any
known attacks from the traffic, the white list contain the
rest of the normal traffic, and the third list called multi-
class contains anomalies that are detected in the normal
traffic. (Tavallaee, Bagheri, Wei, and Ghorbani, 2009)
presented a study of each feature in KDD ’99 intrusion
detection dataset. (Subramanian, Srinivasan, and
Ramasa, 2012) aimed to classify NSL-KDD dataset using
Random Tree classifier with respect to their metric data
and study their performance.

(Lippmann, Haines, Fried, J. Korba, and Das, 2000)
presented a comparison study to the various data mining
classification techniques for intrusion detection.
(Srinivasulu, Nagaraju, Kumar, and Rao, 2009) presented
different data mining techniques named CART, Naive
Bayesian, and artificial neural network and evaluated the
performance of each techniques using a confusion
matrix. (Kalyani and Lakshmi, 2012) presented a
comparison study between the techniques such as Naive
Bayes, J48, OneR, PART, and RBF network classifier
using NSL-KDD dataset; They also discussed the
advantages of using NSL-KDD dataset over
KDDCUP’99. (Reddy, IAENG, Reddy, and Rajulu,
2011) presented a survey of various techniques and the
enhancement of IDS. (Neethu, 2012) explained about the
IDS framework that is a combination of Naïve Bayes and
Principal Component Analysis classifier that helped to
increase the speed of performance.

3. Introduction to IDS

Intrusion detection systems or IDS became very
important to office security now-a-days. However many
experts are still unsure about the function of these
systems, as to why we use them and how they perform.
The good number of security threats come from inside
the organization networks because of authorized
indignant employees. Or sometimes the attacks can be
through someone with stolen credentials of a valid
employee, which can be very difficult to trace. The other
attacks could come from outside users through denial of
service attacks or through hack attempts to penetrate the
network. Intrusion detection systems are the only means
to detect those attacks and respond to threats that occur
from both inside and outside the organizational network.
Intrusion detection systems are necessary for a complete
security infrastructure. (BAC, 1999) said that using IDS
allows you to completely supervise a network, regardless

 Enhancing IDS Detection Accuracy

of the action being taken, and that information will
always exist to determine the nature of the security threat
and its source. Today most medium size organizations
have installed some form of intrusion detection or
something similar. Network attacks and intrusion is
motivated by financial, political, military or personal
reasons and every network is a potential target. So
owners of any official network should consider some
form of IDS, the networks are always at risk of attacks.

In early 2014 the cyber-attacks had caused security
breach of eBay employee log-ins, allowing access to the
contact and log-in information of around 233 million
eBay users. The Yahoo e-mail service for 273 million
users was hacked in early 2014, although the exact
number of accounts affected was not disclosed. In 2013
the Facebook was attacked by hackers who exploited a
previously unknown loophole in its computer system. In
the same year the Facebook hackers attacked Apple
computers, though no data appeared to have been stolen
and Burger King's twitter account became victim to
hackers as well as it began sending out pro-McDonald's
message. In 2011 Sony was attacked and hackers stole
private details of more than a million users. In 2007, TJX,
the parent company of discount stores T.J. Maxx and
Marshalls, disclosed that thieves had stolen data of tens
of millions of credit and debit cards. There was a reported
denial of service attacks in 2000 against Amazon and E-
bay. These consistent and recent attacks shows the need
to have an intrusion detection system especially for
commercial network and websites.

Intrusion detection is the process of monitoring networks
and computers for unauthorized access, suspicious
activity or file modification. IDS can also monitor
network traffic to detect if the system is being targeted by
network attacks like the different types of denial of
service attacks. The two types of intrusion detection are
Host-Based (HIDS) and Network-Based (NIDS)
approaches. Each of these attacks has different ways to
monitor. HIDS examine the personal data held on
computers, while NIDS looks at the exchange of data
between computers.

3.1. IDS Approaches and Techniques

For each of the two types of intrusion techniques - HIDS
and NIDS, there are four basic techniques to detect the

attacks - Anomaly detection, Misuse detection, Target
monitoring and Stealth probes.

3.1.1. Anomaly Detection

Like the name suggest, anomaly detection is searching
for suspicious behaviour that the user doesn’t normally
perform. Example of suspicious behaviour can be as
follows: the user log in more than 20 times a day, or
accessing e-mail that they are not allowed to, or log in at
2 am or out of the office hours etc. This will be
considered as an unusual behaviour and will alert the
system administrator.

3.1.2. Misuse Detection

Misuse detection or signature detection is used to identify
a specific known pattern of unauthorized behaviour to
predict similar attempts. These patterns are called
signatures. For example an improper FTP, depending on
the seriousness of the signature and alarm could be
triggered or a notification could be sent to the admin to
handle it.

3.1.3. Target Monitoring

These systems do not monitor behaviour or look for
signatures; they only look for modification in specific
files and they are designed to undercover the
unauthorized modification after it occurs. They can be
checked by computer through cryptographic hash on files
beforehand and compare the old files with new files.
These systems can be easy implemented and doesn’t
require constant monitoring by the administrator.

3.1.4. Stealth probes

This approach attempts to detect any attacks that is
carried out for prolonged periods of time. For example
the attacks will check for system vulnerabilities and open
ports and collect data and information about the system
and then launch the attack say, after two months of the
original system infection. This method combines
anomaly detection and misuse detection to discover
suspicious behaviour.

4. Discussion on Dataset Used

We wanted to discuss on the details of dataset used for
our experiments. This would help to see what kind of
network attacks are addressed in our work.

Mohanad Albayati and Biju Issac

4.1. NSS-KDD Dataset

The DARPA Intrusion Detection Evaluation Program by
MIT Lincoln Labs in 1998 wanted to research into
intrusion detection. A wide variety of intrusions
simulated in a military network was generated and that
became the 1999 KDD intrusion detection dataset. This
data contained nine weeks of raw TCP dump data for a
simulated U.S. Air Force LAN with a number of network
attacks. The attacks fall into four main categories: (1)
DoS – Denial of service (2) U2R - Unauthorized access
from a remote machine (3) R2L - Unauthorized access to
local super-user privileges (4) Probe - Surveillance and
other probing. DoS attack are designed to consume all
network bandwidth and will look like normal traffic. The
user to root (U2R) attack happens on a local machine to
elevate the user privileges to that of the super user.
Remote to local (R2L) activity are attempts to login to a
computer or device from outside. Probe activity is done
over the network to collect the details of devices on the
network.

The KDD training dataset consisted of 494,019 records
where 97,277 (19.69%) were classified as 'normal',
391,458 (79.24%) as DoS, 4,107 (0.83%) as Probe, 1,126
(0.23%) as R2L and 52 (0.01%) as U2R attacks. Each
record has 41 attributes described different features and
a label was assigned to each either as an 'attack' type or
as 'normal' type. (Siddiqui and Naahid, 2013), (KDD Cup
1999 Data, 2014). Because of this labelling we did not
need to do any tuning to the dataset.

The basic features of individual TCP connections
contained the following features: length (number of
seconds) of the connection, type of the protocol like tcp
or udp, network service on the destination like http or
telnet, number of data bytes from source to destination,
number of data bytes from destination to source, normal
or error status of the connection, 1 if connection is
from/to the same host/port; 0 otherwise, number of
wrong fragments and number of urgent packets. The
content features within a connection suggested by
domain knowledge contained the following features:
number of 'hot' indicators, number of failed login
attempts, 1 if successfully logged in; 0 otherwise, number
of 'compromised' conditions, 1 if root shell is obtained
and 0 otherwise, 1 if 'su root' command attempted and 0
otherwise, number of 'root' accesses, number of file
creation operations, number of shell prompts, number of

operations on access control files, number of outbound
commands in an ftp session, 1 if the login belongs to the
'hot' list and 0 otherwise, 1 if the login is a 'guest' login
and 0 otherwise (KDD Cup 1999 Data, 2014). Table 1
shows the attack dataset showing the type of attacks
grouped as four categories.

Table 1. Type of attacks grouped as four categories.

Attacks in
Dataset

Attack Type

DoS

apache2, smurf, neptune, dosnuke, land, pod,
back, teardrop, tcpreset, syslogd, crashiis,
arppoison, mailbomb, selfping, processtable,
udpstorm, warezclient

Probe portsweep, ipsweep, queso, satan, msscan,
ntinfoscan, lsdomain, illegal-sniffer

R2L dict, netcat, sendmail, imap, ncftp, xlock,
xsnoop, sshtrojan, framespoof, ppmacro,
guest, netbus, snmpget, ftpwrite, httptunnel,
phf, named

U2R sechole, xterm, eject, ps, nukepw, secret, perl,
yaga, fdformat, ffbconfig, casesen, ntfsdos,
ppmacro, loadmodule, sqlattack

The NSL-KDD is a dataset for intrusion detections
systems and it is originally from KDD’99 dataset but it
fixes some of the inheritance problems that are
mentioned in (Tavallaee, Bagheri, Lu, and Ghorbani,
2009). Although the NSL-KDD dataset still have some
problems, it is still good for training the IDS and it has a
reasonable amount of records. This advantage will make
it perfect for running experiments and the evaluation of
records will be consistent and comparable.

The NSL-KDD dataset has the following advantages
over the original KDD dataset. As it avoids the duplicate
records in the training set and in test sets, there will be no
bias in the classifiers towards records that are more
frequent during training and the performance of the
learners are not biased by the classifiers that have better
detection rates on the frequent records during testing. The
number of selected records from each difficulty level
group is inversely proportional to the percentage of
records in the original KDD dataset. Thus there is a wiser
range in the classification rates of distinct machine
learning methods, which allows an accurate evaluation of
different learning classifiers (NSL-KDD, 2014).

 Enhancing IDS Detection Accuracy

4.2. WEKA Software Study

The WEKA (2003) software is a program written in Java
to test out the different available artificial intelligence
(AI) classifiers. After studying the software, we started to
test the different classifiers. This software is a really
helpful tool to decide which classifiers gives the best
results, after testing it on WEKA software using NSL-
KDD dataset. Like mentioned previously, the NSL-KDD
is a dataset which is better than the original KDD'99
dataset and is a good baseline dataset to compare
different intrusion detection methods. The best results
given was for Random Forest (RF) with 99.89%
accuracy, followed by Random Tree (RT) with 99.77%
accuracy and Naïve Bayes (NB) with 90.38% accuracy.

4.3. Arguments for and against NSL-KDD dataset

Thomas and Sharma et al. (2008) states the usefulness of
DARPA dataset for IDS evaluation. The DARPA
evaluation dataset has been found to have the required
potential in modelling the attacks that appear commonly
on the network traffic. They affirm that the dataset can be
considered as the base line of any research. The paper
concludes that it can be used to evaluate the IDSs in the
present scenario, against the notion that it is a very
outdated dataset, unable to accommodate the latest trend
in attacks. Tavallaee and Bagheri et al. (2009) argue that
although the KDD Cup ’99 datasets suffer from various
problems, they are still an effective benchmark to
compare different intrusion detection methods. To
address some of the known issues a revised version of the
datasets called NSL-KDD was created. We felt that the
analysis of NSL-KDD will yield a predictable
performance results for the intrusion detection algorithms
we are using.

There are some arguments against using this dataset.
McHugh (2000) wrote a detailed critique identifying
shortcomings of KDD dataset evaluations where he
claimed that the evaluation failed to verify that the
network realistically simulated a real-world network.
Mahoney and Chan (2003) also found problems as they
looked at the content of the 1999 DARPA evaluation
tcpdump data. They found that the simulated traffic
contains irregularities where many of the network
attributes with large range in real-world traffic, have a
small and fixed range in the simulation.

5. Analysis of Intrusion Detection System
Classifiers

In this section we explain the details of experiments done
with different classifiers and the results achieved.

5.1. Experiments Performed

Several experiments were performed to test out the best
performance of each of the three selected classifiers –
Naïve Bayes, Random Tree and Random Forest. All
experiments were conducted on VAIO Laptop with
Intel(R) Core I (3), 2.53 GHz CPU and 4.00GB RAM
with 250GB HDD. There were a total of 10 experiments
for each of these classifiers as listed below.

5.1.1. Naive Bayes

Naive Bayes classifier is group of simple classifiers using
Bayes' probability theorem with strong independence
assumptions between the features of what is being binary
classified (with two states – yes or no). This experiment
was performed using WEKA software on NSL-KDD
dataset, the classifier used was Naïve Bayes and the test
option used was - cross validation of 10 cross folds. From
table 1 it is evident that the intrusion detection rate is
90.38% with alarm rate of 9.62%. It is error prone with
root mean square value of 0.3058 which means it
performs poorly compared to other classifiers.

5.1.2. Applying Discretize filter to Naïve Bayes

We tried applying discretize filter to Naïve Bayes.
Discretization uses a set of predefined intervals and
grouping the featured values according to those interval
values. Or in other words, discretization involves
dividing an attribute’s values into a number of intervals
so that each interval can be treated as one value of a
discrete attribute. Thus the learning complexity of the
Naïve Bayes classifier can be reduced. The experiment
was done as before. As in table 1, you can notice the
change in accuracy after applying the filter have gone
significantly up from 90% to over 97%, and the build
time took only 0.12 seconds while before it was 1.57
seconds. You can also notice a lower false detection rate
of 2.87% while it was 9.62% before, and that shows the
filter is getting much higher results than the normal Naive
Bayes classifier.

Mohanad Albayati and Biju Issac

5.1.3. Random Tree

The experiment was done as before, but with
Random Tree (RT). RT used a certain number of
randomly chosen attributes at each node of a
decision tree. It is a predictive model that uses a set
of binary rules and can be used for classification or
regression applications. It is quite easy to interpret
the decision rules. The classification is quick once
the rules are designed. From table 1 we can infer that
Random Tree intrusion detection is quite high with
99.77% accuracy with extremely low false alarm rate
of 0.11%, which is an excellent performance. It is
slower than Naïve Bayes where the model build took
2.59 seconds. A high F-Measure of 99% can also be
observed.

5.1.4. Random Forest

Again the experiment was done as before, but with
Random Forest (RF). RF is an ensemble classifier that
combines the results from different models using many
Random Tree models. Here there is no need to prune trees
and overfitting is not a problem. As seen from table 1, it
is evident that Random Forest intrusion detection rate is
high with 99.89% accuracy with extremely low false
alarm rate of 0.11%, which is a very high performance. It
is slower than Naïve Bayes with model build that took
22.33 seconds. But a high F-Measure of 99% can be
noted.

5.1.5. Comparing the classifiers performance using
ROC curve

The “Receiver Operating Characteristic” (ROC) curve is
an alternative to accuracy for the evaluation of learning
classifiers on natural datasets. The curve is plotted by
using the true positive rate against the false positive rate
at various threshold settings. We tried to compare the
three classifier’s performance that we worked on - Naïve
Bayes, Random Tree and Random Forest. The smaller
the ROC curve and the more close it is to value 1 on y-
axis the better the performance of the classifier. Refer to
Figure 1. Naïve Bayes performance was slightly less
good than Random Tree and Random Forest as we can
see there is some curve on the thick line. Random Tree
and Random Forest performance was excellent with the
lack of curve that indicates a high performance of the
classifiers.

Table 1. Performance of AI classifiers (Cross Validation
of 10 Cross Folds)

Parameters Naïve
Bayes

Naïve
Bayes with
Discretize
filter

Random
Forest

Random
Tree

Correctly
Classified
Instances

113858
(90.38%)

122353
(97.13%)

125835
(99.89%)

125678
(99.77%)

Incorrectly
Classified
Instances

12115
(9.62%)

3620
(2.87%)

138
(0.11%)

295
(0.11%)

Total Number
of Instances

125973 125973 125973 125973

Root mean
squared error

0.3058 0.1612 0.0313 0.0479

Model
Building Time

1.57
seconds

0.12
seconds

22.33
seconds

2.59
seconds

TP Rate 0.904 0.971 0.999 0.998

FP Rate 0.101 0.032 0.001 0.002

Recall 0.904 0.971 0.999 0.998

F-Measure 0.966 0.997 0.999 0.998

Fig. 1. ROC for - Naïve Bayes, Random Tree and
Random Forest (Singular versions)

5.1.6. Filter Method Naïve Bayes and Wrapper
Method Naïve Bayes

To explore some more options under Naïve Bayes as it
has lower model building times, we worked on the filter
and the wrapper methods. The Filter Method Naïve
Bayes uses an attribute evaluator and a ranker to rank the
entire features in the dataset. The number of features we
want to select from the vector can be defined. Then we

 Enhancing IDS Detection Accuracy

can omit the features one at a time that have the lower
rank and we can see a predictive accuracy of the
classifier. We can only omit a certain number of features
until we reach the global minimum –“the point where you
cannot omit features”. If we omit more than the number
of global minimum the dataset will start overfeeding and
we will get an increased number of incorrectly classified
instances. We ran the ranker with the global minimum of
41, which means we can omit the entire feature from
bottom until we reach 41. While omitting and retesting
we noticed an increase of accuracy each time as in table
3. The Naïve Bayes accuracy was initially 90.38%, but
with the filter the accuracy has gone up to 90.72%.

In the wrapper method we used a subset evaluator and
this created all possible subsets from the featured vector.
After using the classifier like Naïve Bayes to induce
classifiers from the features in each subset, it will then
consider the subset of features with which the
classification classifier perform the best. We ran the test
and the best featured subset was number (3, 4, 17). After
elimination of all except for these three, the results were
96.22 % accurate as in table 3. We observed that the
detection accuracy was still lower than the best ones so
far.

Table 3. Performance of Filter Method Naïve Bayes and
Wrapper Method Naïve Bayes (Cross Validation of 10

Cross Folds)

Parameters Naïve Bayes –
Filter Method

Naïve Bayes –
Wrapper Method

Correctly Classified
Instances

114283 (90.72%) 121216 (96.22%)

Incorrectly Classified
Instances

11690 (9.28%) 4757(3.78%)

Total Number of
Instances

125973 125973

Root mean squared
error

0.3007 0.193

Model Building Time 2.19 seconds 1.62 seconds

TP Rate 0.907 0.962

FP Rate 0.1 0.038

Recall 0.907 0.962

F-Measure 0.968 0.984

5.1.7. Combining Three Classifiers – The Best
Accuracy

After performing all of previous experiments we
combined the three classification classifiers - Naïve
Bayes (discretized), Random Tree, Random Forest on
Weka, and we compared their performance in ROC
curve. The result was high performance with 99.9%
accuracy. So we decided to use these three classifiers to
build a software system to detect intrusions. Refer to
figure 2 for ROC curve in comparison to figure 1. There
is no curve at all on the thick line. As stated before the
smaller the ROC curve and the more close it is to value 1
on y-axis the better the performance of the classifier.

Fig. 2. ROC for - Naïve Bayes, Random Tree and
Random Forest (Combined version)

6. Developed Software System

In order to test these classifiers and their performance we
developed a software in Java to detect intrusions on a
network or on a dataset. Using software libraries and Java
compiler, this system will function by first training
discretized Naïve Bayes classifier separately using K2
learning process. The reason we choose K2 is because it
shows high performance, and it can improve the intrusion
detection of Naïve Bayes classifier. After training the
Naïve Bayes the dataset will go through two other
training sessions using Random Tree and Random Forest.
These two classifiers will maximize the chance of
detecting more intrusions that can pass through Naïve
Bayes classifier. After that we will create a method called
Junction Tree inference. The idea of this procedure is to
construct a data structure called a junction tree which can
be used to calculate any query through the message

Mohanad Albayati and Biju Issac

passing on the tree (Jemili, Zaghdoud and Ben Ahmed,
2007).

6.1. K2 Learning Process

K2 classifier works by finding the best structure amounts
to pick the best parents for each node supposing we
already know a total ordering on the nodes (Cooper,
Herskovits, 1992). K2 is a greedy search classifier and it
works as follows. Suppose we already know the ordering
of each node, the classifier will incrementally add a set
of parents and that addition increases the score of the
resulting structure. When no addition of a single parent
can increase the score, the classifier will stop adding
parents to that node. Based on the assumption that we can
add a parent to each node independently, in our system
we used this classifier to train our classifier using
Bayesian Network which uses Naïve Bayes classifier.

6.2. Naive Bayes

A Naive Bayes classifier works on the principle that the
presence or absence of a specific feature of a class is
independent or unrelated to the presence or absence of
any other feature.

As per (Statsoft, 2014), be it continuous or categorical -
Naive Bayes classifiers can handle a random number of
independent variables. Given a set of variables, X = {x1,
x2, x..., xn}, we want to construct the posterior
probability for the event Cj among a set of possible
outcomes C = {c1, c2, c..., cn}. Thus X is the predictors
and C is the set of categorical levels present in the
dependent variable. As we use the Bayes' rule, we get the
following equation (1):

where p(Cj | x1,x2,x...,xn) is the posterior probability of
class membership, i.e., the probability that X belongs to
Cj. With the assumption that the conditional probabilities
of the independent variables are statistically independent
we can decompose the likelihood to a product of terms as
in equation (2):

6.3. Bayesian Network

The Bayesian network is a representation suited to
looking for relationships among a large number of
variables. With large set of variables, it is a graphical
model that efficiently models the joint probability
distribution. It is a graphical representation among a set
of random variables (Pearl, 1988). Consider this example
as given in Bayesnet.com: Consider the finite set
X={X1,…,Xn} of discrete random variables, were each
Xi may take the value from a finite set, denoted by
Val(Xi). Bayesian network is a graphical representation
that encodes joint probability distribution over X. The
nodes of the graph correspond to the random variables
X1,…,Xn. The graphical links correspond to the direct
influence from one variable to another. If there is a direct
link between the variable Xi and the Variable Xj then the
variable Xi will be a parent to the variable Xj. Figure 3 is
an example of Bayesian network (Cooper, 1999).

Fig. 3 Bayesian Network (Cooper, 1999).

6.4. Random Tree

The Decision tree consists of nodes that form a rooted
tree. It is a directed tree root node that has no incoming
edges but only outgoing ones. Like a binary tree, all other
nodes have exactly one incoming edge. A node with
outgoing edges is called an internal or test node. All other
nodes are called leaves (also known as terminal or
decision nodes). In a decision tree, based on a function
with input value of attributes, each test or internal node
splits the instance space into multiple sub-spaces (Oded,
and Lior. 2010) as in figure 4. A Random tree considers
K randomly chosen attributes at each node of a decision
tree.

 Enhancing IDS Detection Accuracy

Fig. 4. Decision Tree on Responses to Direct Mailing

(Oded, and Lior. 2010)

6.5. Random Forest

Random forest grows many classification trees. The ideas
is as follows. To classify new object from an input vector,
put the input vector of each tree in the forest. Each tree
will give a classification, and the tree vote for that class.
The forest chooses the classification having the most
votes. The reason we choose this classifier is because we
are using a large dataset, and the trees tend to give high
performance when using large datasets.

If the number of cases in the training set is N, sample ‘n’
cases at random from the original data, where n < N. This
sample will be the training set for growing the tree. If
there are R input variables, a number r < R is specified
at each node, r variables are selected at random out of the
R and the best split the node. The value of r will be held
constant during the period of tree growing. In random
forest there is no pruning, so each tree will grow the
largest extent possible. The Random forest as in figure 5
combines trees and though the trees are weak learners,
the Random forest is a strong learner. The Random Forest
error rate depends on two things: (1) the connections
between any two trees in the forest and excess
connections in the forest increase the error rate; (2) the
strength of each tree in a Forest and increasing the
strength of individual trees decreases the error rate.

Most important features of the Random forest are as
follows: The accuracy is unpredictable depending on the
training set. On large datasets the performance is
efficient. It can handle thousands of inputs without
having to delete any variables. It can give an estimation
of the most important variables to the classifier. It is the
most effective method for estimating missing data and
maintain accuracy when a large proportion of data is
missing. It can balance errors in class population for
unbalanced datasets. The generated forests can be saved
for future uses on other data. The computed prototypes

Fig. 5. Random Forest (CitizenNet and Blackwell, A., 2012).

Mohanad Albayati and Biju Issac

can give information about the relations between
variables. It can detect variables interactions.

6.6. Implemented Software Building Blocks

The software system that we developed in Java is shown
in figure 6 and will function as follows: First we train
NSL-KDD dataset that has two classes - normal and
anomaly, through K2 learning process. It will take the
data from the dataset and train it to detect certain patterns,
and then decide if it’s a normal behaviour or an anomaly.
The K2 training will consist of Bayesian Network
classifier which will help detecting anomalies in the
dataset. After the Bayesian Network detection is over, the
system will go through a second training using the
Random tree classifier to detect any threats that the
Bayesian Network might have missed. Then the dataset
will go through a third training using Random forest
classifier to detect any anomalies that might have been
missed by the previous classifiers. When the training is
complete we will open new connection to the junction
tree which will connect every node to a parent and predict
anomalies from the normal behaviour.

6.7. Overall Detection Accuracy Results

The testing was initially done on a smaller dataset (20%
on NSL-KDD dataset). The accuracy was 99.67% where
few instances were classified wrong. The overall results
were high with 83 instances classified wrong out of
25109 instances. 29 anomalies were classified normal
and 54 normal were classified anomalies. The reason we
got lower results from what we tested in Weka is because
we used 20% of the dataset, and trees perform better on

larger datasets. Refer to table 4. Then we performed the
test on the full NSL-KDD dataset. The results for the full
dataset was very high, i.e. 99.99%.

Fig. 6. System Design Classes and their relationship

From the table 4 it is clear that combining the three
classifiers gives the highest accuracy with intrusion
detection rate of 99.99% with an extremely low false
alarm rate of 0.01%. This is quite encouraging compared
with all other categories. Although it is slower to build
the model with 24.97 seconds than all other classifiers,
the classifier makes up for it in high detection rate.
Further, high F-value of 100% and high precision 100%
and recall 100%, makes it a very good result overall,
which is why we chose to combine and use the classifiers

Table 4. Detection Accuracy Comparison

 Naïve
Bayes

Random
Forest

Random
Tree

Discretize
Filter Naive
Bayes

Filter
Method
Naïve
Bayes

Wrapper
Method
Naïve
Bayes

Combined
Classifiers
20% NSL-
KDD

Combined
Classifiers
Full NSL-
KDD

Detection Rate (%) 90.38 99.89 99.77 97.13 90.72 96.22 99.67 99.99

False Positive Rate (%) 0.134 0.002 0.003 0.054 0.151 0.42 0.005 0.001

Model Building Time (Sec) 1.57 22.33 2.59 0.12 2.19 1.62 3.23 24.97

Precision (%) 0.89 0.999 0.998 0.954 0.88 0.964 0.996 1

Recall (%) 0.936 0.999 0.998 0.994 0.958 0.966 0.998 1

Root Mean Squared Error 0.3058 0.0313 0.0479 0.1612 0.3007 0.193 0.116 0.0086

 Enhancing IDS Detection Accuracy

instead of using it separately. The accuracy comparison
graph can be seen in figure 7.

7. Discussion and Limitations of our Work

The work done focuses mainly on the four attack types -
DOS, U2R, R2L and Probe in the dataset used. So the
attacks outside these could go unnoticed, as we have not
trained and tested them. Our focus was to show that a
hybrid version of classification algorithms can work
better on a given intrusion detection dataset rather than
individual ones. The use of an active or passive traffic
analyser in conjunction with our software will help to
monitor new attacks. So the use of network security
monitors like “bro” can only complement our findings.
Even though we have used NSL-KDD dataset which is
done in 1999, the kind of network attack types remain
quite similar even now, even though there are emerging
and new kinds of attacks. It is true that some new attacks
inside and outside of these categories will always evolve.
We are sure that if we train the software with newer
attack types, such attacks could as well be detected too,
as the software is intelligent and adaptable to changes.
The work we have done is only at a prototype level where
we have not tested the software with real-time traffic. It
may not be that easy to generate a similar dataset with
real time traffic with different kinds of attacks as in NSL-
KDD dataset as it was generated in an exhaustive manner
in a military network. We will try to address this in our
future work.

8. Conclusion

In this paper we have outlined the importance of intrusion
detection systems, and have analyzed the performance of
some of the detection classifiers in relation to NSL-KDD
dataset. Finally we developed a software system in Java
to detect intrusion on networks using the same dataset.
Bayesian network has the capabilities to provide auto
detection, and they learn from auditing data which can be
either normal or abnormal. This was combined with
Random tree and Random forest classifiers to get better
detection accuracy. The system demonstrated a high
performance in detecting intrusion with 99.67% accuracy
on 20% of the NSL-KDD dataset and 99.99% accuracy
on the full dataset with a model building time of 24
seconds. The higher accuracy was because we used trees
in the classifiers, and they tend to give a higher
performance when used on large datasets. It should also
be noted that for different datasets different individual
classifiers may work well or bad, but a combination of
best performing classifiers can behave more consistently
across different datasets.

References
1. Hofmann A. and Sick, B. (2011). "Online Intrusion Alert

Aggregation with Generative Data Stream Modeling,"
Dependable and Secure Computing, IEEE Transactions
on, vol. 8, pp. 282-294.

2. Neethu, B. (2012). "Classification of Intrusion Detection

Dataset using machine learning Approaches,"

Fig. 7. Detection accuracy comparison graph

Mohanad Albayati and Biju Issac

International Journal of Electronics and Computer
Science Engineering, vol. 1, pp. 1044-51, 2012.

3. Bace, R. (1999). An Introduction to Intrusion Detection

and Assessment: For System and Network Security
Management. ICSA White, 2, p.32.

4. Bayesnets.com, (2014). Bayes nets. [Online] Available at:

http://www.bayesnets.com/ [Accessed 25 May. 2014].

5. CitizenNet and Blackwell, A. (2012). A Gentle

Introduction to Random Forests, Ensembles, and
Performance Metrics in a Commercial System. Accessed
online on 21 August 2014. [Online] Available at:
http://citizennet.com/blog/2012/11/10/random-forests-
ensembles-and-performance-metrics/

6. Cooper, G. and Herskovits, E. (1992). A Bayesian method

for the induction of probabilistic networks from data,
Machine Learning. 9, pp.309-347.

7. Thomas, V. Sharma and N. Balakrishnan (2008),

"Usefulness of DARPA dataset for intrusion detection
system evaluation", Proceedings of SPIE 6973, Data
Mining, Intrusion Detection, Information Assurance, and
Data Networks Security.

8. K. Reddy, M. IAENG, V. N. Reddy, and P. G. Rajulu,

(2011). "A Study of Intrusion Detection in Data Mining,"
World Congress on Engineering, vol. III, July 6-8.

9. G. Kalyani and A. J. Lakshmi, (2012). "Performance

Assessment of Different Classification Techniques for
Intrusion Detection," IOSR Journal of Computer
Engineering (IOSRJCE), vol. 7, no. 5, pp. 25-29, 2012.

10. G. V. Nadiammai and M. Hemalatha, (2012). "Perspective

analysis of machine learning classifiers for detecting
network intrusions," IEEE Third International Conference
on Computing Communication & Networking
Technologies (ICCCNT), India, pp. 1-7.

11. IDS, A. (2014). An Introduction to IDS | Symantec

Connect Community. [Online] Available at:
http://www.symantec.com/connect/articles/introduction-
ids [Accessed 25 May. 2014].

12. J. McHugh, “Testing intrusion detection systems: A

critique of the 1998 and 1999 DARPA intrusion detection
system evaluations as performed by Lincoln Laboratory”.
ACM Transactions on Information and System Security,
vol. 3, no. 4, pp. 262–294, 2000.

13. James P. Anderson, (1980). “Computer security threat

monitoring and surveillance,” Technical Report, Fort
Washington, Pennsylvania, USA.

14. Jemili, F., Zaghdoud, M. and Ben Ahmed, M. (2007). A

framework for an adaptive intrusion detection system
using Bayesian network. pp.66--70.

15. KDD Cup 1999 Data (2014), Data and Task description,
Online: http://kdd.ics.uci.edu/databases/kddcup99/
(accessed on May 2014).

16. M, Oded, and R, Lior. (2010). Random Trees in the "Data

Mining and Knowledge Discovery Handbook", Springer.

17. M. A. Aydin, et al., (2009). "A hybrid intrusion detection

system design for computer network security," Computers
& Electrical Engineering, vol.35, pp. 517-526.

18. M. K. Siddiqui and S. Naahid, (2013), Analysis of KDD

CUP 99 Dataset using Clustering based Data Mining,
International Journal of Database Theory and Application,
6(5), pp.23-34.

19. M. Tavallaee, E. Bagheri, L. Wei, and A. A. Ghorbani,

(2009). "A detailed analysis of the KDD CUP 99 dataset,"
in IEEE Symposium on Computational Intelligence for
Security and Defense Applications, CISDA . pp. 1-6.

20. M. Mahoney and P. Chan, “An analysis of the 1999

DARPA/Lincoln Laboratory evaluation data for network
anomaly detection”. In Recent Advances in Intrusion
Detection, vol. 2820 of Lecture Notes in Computer
Science, pp. 220–237. Springer Berlin / Heidelberg, 2003.

21. NSL-KDD. (2014). The NSL-KDD Dataset. [Online]

Available at: http://nsl.cs.unb.ca/NSL-KDD/ [Accessed: 4
Mar 2014]

22. P, A, M., Abraham, A. and Patra, M. R. (2012). A hybrid

intelligent approach for network intrusion detection.
Procedia Engineering, 30 pp. 1--9.

23. P. Srinivasulu, D. Nagaraju, P. R. Kumar, and K. N. Rao,

(2009). "Classifying the Network Intrusion Attacks using
Data Mining Classification Methods and their
Performance Comparison," IJCSNS International Journal
of Computer Science and Network Security, vol. 9, no.6,
pp. 11-18.

24. Pearl, J. (1988). Probabilistic Reasoning in Intelligent

Systems. Morgan Kaufmann, 0-934613, pp.73-7.

25. R. Lippmann, J. W. Haines, D. J. Fried, J. Korba, and K.

Das, (2000). "The 1999 DARPA off-line intrusion
detection evaluation," Computer Networks, vol. 34, no. 4,
pp. 579-595.

26. S. Benferhat and K. Tabia, "Integrating Anomaly-Based

Approach into Bayesian Network Classifiers," (2009). e-
Business and Telecommunications, pp. 127-139.

27. S. Subramanian, V. B. Srinivasan, and C. Ramasa, (2012).

"Study on Classification Classifiers for Network Intrusion
Systems," pp. 1242-1246.

28. Schultz, M. G., Eskin, E., Zadok, E., and Stolfo, S. J.

(2001). "Data Mining Methods for detection of New

 Enhancing IDS Detection Accuracy

Malicious Executables," IEEE Symposium on Security and
Privacy, Columbia University, pp.38-49.

29. Snort. (2014). The open Source network intrusion

detection system [Online]. Available:
http://www.snort.org.

30. Stat.berkeley.edu (2014). Random forests - classification
description. [Online]Available at:
http://www.stat.berkeley.edu/~breiman/RandomForests/cc
_home.htm [Accessed 25 May 2014]

31. StatSoft (2014). Naive Bayes Classifier. [Online]

Available at: http://www.statsoft.com/textbook/naive-
bayes-classifier [Accessed 25 August 2014]

32. T .Elvis, et al., (2004). “A serial combination of anomaly

and misuse IDSes applied to http traffic”, Proceedings of
the 20th Annual Computer Security Applications
Conference, pp.428-437.

33. T. Hwang, T.Lee, and Y. Lee, (2007). "A Three-tier IDS

via Data Mining Approach," 3rd annual ACM workshop
on Mining network data, pp. 1-6.

34. Tavallaee, M., Bagheri, E., Lu, W. and Ghorba ni, A.

(2009). A detailed analysis of the KDD CUP 99 dataset. In
IEEE Symposium on Computational Intelligence for
Security and Defense Applications, Cisda, pp. 1–6.

35. W. Lee and S. J. Stolfo, "Data mining approaches for

intrusion detection (1998).," 7th USENIX Security
Symposium, San Antonio, TX.

36. WEKA. (2014). Weka 3 - Data Mining with Open Source

Machine Learning Software in Java. [Online] Available
at: http://www.cs.waikato.ac.nz/ml/weka/ [Accessed: 4
Mar 2014].

