1,584 research outputs found

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial

    The Random Oracle Methodology, Revisited

    Get PDF
    We take a critical look at the relationship between the security of cryptographic schemes in the Random Oracle Model, and the security of the schemes that result from implementing the random oracle by so called "cryptographic hash functions". The main result of this paper is a negative one: There exist signature and encryption schemes that are secure in the Random Oracle Model, but for which any implementation of the random oracle results in insecure schemes. In the process of devising the above schemes, we consider possible definitions for the notion of a "good implementation" of a random oracle, pointing out limitations and challenges.Comment: 31 page

    The Second NASA Formal Methods Workshop 1992

    Get PDF
    The primary goal of the workshop was to bring together formal methods researchers and aerospace industry engineers to investigate new opportunities for applying formal methods to aerospace problems. The first part of the workshop was tutorial in nature. The second part of the workshop explored the potential of formal methods to address current aerospace design and verification problems. The third part of the workshop involved on-line demonstrations of state-of-the-art formal verification tools. Also, a detailed survey was filled in by the attendees; the results of the survey are compiled

    LCM and MCM: specification of a control system using dynamic logic and process algebra

    Get PDF
    LCM 3.0 is a specification language based on dynamic logic and process algebra, and can be used to specify systems of dynamic objects that communicate synchronously. LCM 3.0 was developed for the specification of object-oriented information systems, but contains sufficient facilities for the specification of control to apply it to the specification of control-intensive systems as well. In this paper, the results of such an application are reported. The paper concludes with a discussion of the need for theorem-proving support and of the extensions that would be needed to be able to specify real-time properties

    An automata-based automatic verification environment

    Get PDF
    With the continuing growth of computer systems including safety-critical computer control systems, the need for reliable tools to help construct, analyze, and verify such systems also continues to grow. The basic motivation of this work is to build such a formal verification environment for computer-based systems. An example of such a tool is the Design Oriented Verification and Evaluation (DOVE) created by Australian Defense Science and Technology Organization. One of the advantages of DOVE is that it combines ease of use provided by a graphical user interface for describing specifications in the form of extended state machines with the rigor of proving linear temporal logic properties in a robust theorem prover, Isabelle which was developed at Cambridge University, UK, and TU Munich, Germany. A different class of examples is that of model checkers, such as SPIN and SMV. In this work, we describe our technique to increase the utility of DOVE by extending it with the capability to build systems by specifying components. This added utility is demonstrated with a concrete example from a real project to study aspects of the control unit for an infusion pump being built at the Walter Reid Army Institute of Research. Secondly, we provide a formulation of linear temporal logic (LTL) in the theorem prover Isabelle. Next, we present a formalization of a variation of the algorithm for translating LTL into BĂźchi automata. The original translation algorithm is presented in Gerth et al and is the basis of model checkers such as SPIN. We also provide a formal proof of the termination and correctness of this algorithm. All definitions and proofs have been done fully formally within the generic theorem prover Isabelle, which guarantees the rigor of our work and the reliability of the results obtained. Finally, we introduce the automata theoretic framework for automatic verification as our future works
    • …
    corecore