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A Broader Interpretation of Logic in Logic Programming * 

Alan Bundy 

Abstract 

We argue that the restriction of logic programs to sets of Horn clauses, even with negation 
as failure, is an unacceptable inhibition to programmers' expressiveness and forces them to 
make premature procedural commitments. Programmers should be permitted to use the 
cull power of logic when specifying logic programs. In particular, we give examples of the 
need for functions, quantification, disjunction and predicate variables. Unfortunately, direct 
interpretation of programs written in such broader logics presents severe difficulties. One 
route to solving this problem is to treat the broader logic programs as specifications and 
to refine them into programs before executing them. Horn clauses might be the target 
programming language. Some refinement techniques can be borrowed from formal methods in 
software engineering. This suggests a modification of Kowaiski's famous slogan to eAl gorithm  
= Refined(Logic) + Control". We illustrate these ideas by describing the Nuprl system for 
program synthesis and the work we are doing to guide the process of synthesis by the use of 
proof plans. 

Key words and phrases. Logic programming, logic, non-Horn clauses, constructive logic, pro-
gram synthesis, Nuprl, proof plans. 

1 The Vision of Logic Programming 

In his missionary works introducing logic programming to the world, eg [Kowalski 79b,Kowalski 79a], 
Kowaiski used the slogan "Algorithm = Logic + Control". The normal interpretation of this slo-
gan is that people can describe their problems in the language of predicate logic, without regard 

to how this description might be used to solve their problem, and then a clever interpreter will run 
their logical description as an algorithm to solve their problem. 

This is a wonderful vision. It frees users from thinking in terms of their solution and permits 
them merely to describe their problem, thus making the power of computing available to the non-
programmer. The computer is left to construe the problem description as a computer program. 

Unfortunately, we all know that life is not as simple as this. 

1. The major embodiment of logic programSn, Prolog 1  , has a rather simple minded inter-
preter, which has to be given a version of the problem description which is readily interpreted 
as a procedure. In particular, the program must be written in what Lloyd, [Lloyd 871, calls 
normal programs, ie Horn clauses plus negation as failure. Some researchers are working on 
more intelligent interpreters which can cope with more than just normal programs, but 

am grateful to Paul Brnn, Bill Clocksin, John Lloyd, Richard O'Keefe, Bob Harper, Dale Miller, Jan New-
march, Lincoln Wallen and Alan Smaill, for feedback on and conversations about this paper. Some of the research 
reported here was supported by SERC grant GR/E/44598, Alvey/SERC grant GR/D/44270 and an SERC Senior 
Fellowship to the author. 

'Reference, to Prolog in this paper are to versions using the standard interpreter and built-in predicates, eg 
Quintu. Prolog or Micro-Prolog, but not to versions with non-standard features, eg IC-Prolog or NuProlog. 



2. .. for all of the interpreters proposed so fax there are certain predicate logic problem de- 
scriptions which cannot be interpreted efficiently. For some interpreters there are problem 	 - 
descriptions which cannot be interpreted at all. These problem descriptions must be trans- 

- - 	formed intoan algorithmic form -before- interpretation, eq from full.predicate logic into 	-- 	-- 

normal programs. 	 - 

3. Even full predicate logic may not be sufficiently expressive to allow the problem to be 
described in a natural way. Some researchers are working on alternative kinds of logic with 
greater expressive power. 

4. Users may not find it easy to express their problems in any logical formalism either because 
their ideas are not sufficiently worked out to allow precise description or because they find 
logic an unnatural medium for expressing their ideas. 

In this paper we will be concerned mainly with points 2 and 3 above. 

2 Formal Methods in Software Engineering 

Many of these issues also arise in formal methods in software engineering, but different tenninology 
is used to describe them. 

• The logical description of the problem is called a specification. There is some recent work 
on directly interpreting such specifications, called animation. But animation is not intended 
to replace programming; it is merely a technique for checking the correctness of the specifi-
cation. 

• The specification is turned into a program by refinement. Refinement can, for instance, be 
effected by the application of transformation rules or by a process of synthesis. Transfor-

mation rules can also be used to form a more efficient program from a less efficient one. 

• Traditionally the program produced was in an imperative language, but recently there has 
been a lot of interest in functional programming languages, which can be readily seen as a 
variety of logic programming languages. 

• There has been a lot of work in software engineering on designer logies to provide expressive 

power for particular applications, eg temporal logics to reason about the relative timing of 
different processes/hardware in parallel processing. 

-- - • ThWtoblemThfiorming thempecification-oftaprogram-ircalledrequirements-capture,-but -- 
this is a relatively neglected area of software engineering. 

We will be concerned to combine the best ideas from logic programming and software engi-
neering in the solution of the problems facing both communities. We will also bring in relevant 
ideas from artificial intelligence (Al). 

3 Comparing Logic Programming with Formal Methods 

Here are some of the ways in which I think that these three communities can benefit from each 
other. 

The use of logic both to specify a program and to encode it can simplify the task of re-
finement; factoring out the problem of translating between rival formalisms and allowing 
concentration on the problem of deriving better algorithms. The tasks of synthesis, trans-
formation and verification become intimately related, and tend to merge into-each other. 



• The work on animation could benefit from the clever interpreters that have been written 
for logic programs. These illustrate that specifications written with little regard from their 
algorithmic behaviour can still be run reasonably efficiently. 

• The work on transformation of logic programs could benefit from the refinement techniques 
developed in formal methods, which has taken this problem as central and done far more 
work on it. 

• The work on using more expressive logics has been largely orthogonal between the three 
communities. The logic programming community has concentrated on representing knowl-
edge within predicate logic, but has also extended predicate logic by the incorporation 
of meta-knowledge. The formal methods community has experimented with a variety of 
non-standard logics for describing programming situations and the Al community has ex-
perimented with non-standard logics for representing common-sense knowledge. These am 
proaches need to be combined to get the best of all worlds. 

• The formal methods techniques generate proof obligations, and these proofs need to be 
guided both to avoid the combinatorial explosion and to produce efficient programs. Al 
theorem proving research can inform this work. 

• The problem of requirements capture can benefit from Al research on knowledge elicitation 
and on intelligent front ends. 

We will be particularly concerned with the application of a program synthesis technique from 
formal methods to the derivation of logic programs. This program synthesis technique will require 
the use of Al search control techniques to guide the proving of the proof obligations that arise. 
We will outline a search control technique we are developing. 

4 The Need to Go Beyond Horn Clauses 

What is it about sets of Horn clauses that make them especially suitable for describing procedures? 

• In general, the interpreters of logic programE are automatic theorem provers. Most theorem 
provers have been designed to operate on sets of clauses. They tend to be particularly 
efficient on Horn clauses. 

• Horn clauses have a straightforward procedural interpretation. 

• Any sound and complete clausal theorem prover can be used to interpret any set of Horn 
clauses. This interpretation will terminate and can be viewed as a correct execution of the 
Horn clauses under the above procedural interpretation. 

• Under this procedural interpretation it can be shown that Horn clauses are sufficient to 
implement any algorithm, je Horn clauses are Turing complete, [Tarnlund 1• 

- - &o 
However, in practice, programmers have felt the need to go beyond Horn clauses in writing 

logic programs. Prolog has many non-Horn clause features built into it in order to meet these 
felt needs, for instance: negation as failure (not), set extension (setof), meta-level predicates 
(var, assert, call, = .., etc). We will call this language extended Horn clauses. Its non-predicate 
logic features extend even Lloyd's normal programs. However, even extended Horn clauses are 
not felt to be sufficient by Prolog programmers. Examination of practical Prolog programs reveals 

ki 



many apparently non-declarative, programming tricks which, in fact, have a declarative but non- 
Horn clause interpretation 2 . 

For instance, the failure driven loop is generally considered to be a programming hack which 
__violat 	 - 

An example of a failure driven loop is the following definition 3  of ha Lpioneers/O. 

lisLpioneers : - pioneer(X), write(X), rat, fail. 

iist..pioneers. 

Given a database like: 	 - 

pioneer(kowaiski). 

pioneer(coirnerauer). 

pioneer(ha yes). 

yioneer(cordeiLgreen). 

a call to hst_ptoneers will instantiate X by a call of pioneer/i, write the value of X and a newline 
and then faiL Since write/i and sal/U are not resatisfiable the failure will cause pioneer/i to be 
resatisfied. This cycle will be repeated until there are no more ways of satisfying pioneer/i, at 
which point the first clause will fail and the second will be called and succeed trivially. 

Prolog programmers have found failure driven loops to be useful for performing an action for 
each way of satisfying some goal. Until the introduction of setof/3 as a system predicate 4 , they 
were a necessary evil. For instance, they were required to implement the early versions of setof13, 
which were common in users' personal utility files. The introduction of setof13 has made most 
uses of failure driven loops strictly speaking unnecessary. For instance, list ..pioneers above could 
be defined as: 

hist..ptoneers : - setof(X, pioraeer(X), XList), 

applyiist(write..nl, XList). 

writejral(X) : - write(X), ni. 

applyiist(P, []). 
applyJist(P,jHdTl]) : - appiy(P,Hd), appijjiist(P,Tl). 

apply(P, X) : - Coal = ..[P, X], call(Goai). 

where appl3iit(PTL)TallrP(Wd)for each ñei ibtTHdTofthClistLTaxidapplytPrX)calls 
P(X). Failure driven loops are still useful for avoiding the overhead of defining apply Jist/2, 
appiy/2, etc, and for avoiding formation of a possibly very long list of variable bindings. They 
are still essential if the list of variable bindings would be infinite. 

Howevez, failure driven loops are not as ugly as they seem. They can be seen as an attempt 
to extend the logic: 'faking' non-Horn clause features by exploiting the behaviour of the Prolog 
interpreter on Horn-clauses. The alternative is to provide these non-Horn clause features directly, 
so that users can have the procedural power they want without violating the declarative semantics. 

2 And, of course, many which do not. 

3 1n the example programs in this paper we follow the Edinburgh Prolog conventions, eq that atoms starting 

with capital letters are variables and those starting with lower case letters are constants. 

setof(X,P,XList) can, of course, be interpreted as a perfectly respectable mathematical object for forming 

the extensions of sets. In mathematics set extension is written as: 

XLiat = {X : P(X)} 

ado//S is equivalent to set extension when XList is non-empty and fails otherwise. 



The logical extension required in this case is universal quantification 5 . list_pioneers/a could then 
be defined as: 

list..pioneers 	- VX(pioneer(X) —.('write(X) A ni)) 	 (1) 

which has a declarative semantics provided that write(X) and ,'tl can be given one 6 . - 
Lloyd and Topor, ILloyd & Topor 841 have shown that logic programs like (1) above can be 

translated into normal programs. in fact, any logic program of the form A : —W, where W is 
an arbitrary predicate logic formula and A is a positive literal, can be put into clausal form, and 
the negative literais interpreted as negation as failure applied to a positive literal. So the only 
extension to Horn clauses that is strictly required is negation as failure. In the case of (1) this 
translation yields: 

hst4noneers : - not foo. 

foo : - pioneer(X), not write(X). 

foo : - pioneer(X), not nl. 

which is declaratively correct, but which will mess up the order of writing pioneers and newlines. 
100 would be better defined as: 

/00 : - pioneer(X), not write..nl(X). 

This grouping of write/i and nl/O together before the application of the Lloyd-Topor process is 
in line with a general principle of Lloyd's of separating the non-declarative parts of the program 
from the declarative parts. 

Unfortunately, the Lloyd-Topor translation process does not always produce executable pro- 
grams. Negation as failure is not always safe on non-ground literals, so goals containing only 
non-ground negative literals cannot always be safely executed. Such computations are said to 
flounder. Furthermore, the Lloyd-Topor process gives only an extensional interpretation of uni-
versal quantification, se VX.p(X) is unpacked into an exhaustive search for values of X for which 
p(X) is provable. Some problems call for an intensional interpretation of universal quantification 
in which VX.p(X) is proved in general, eq from VX.q(X) and VX(q(X) -. p(X)). Note that 
this requires universal quantification in the head of a clause, and not just the body. AProlog, 
tMiller & Nadathur 881, provides such an intensional interpretation of universal quantification. 

A further example of this phenomenon of extensions to the Horn clause logic being required to 
cure violations of the declarative semantics, can be seen in the procedure apply/2 defined above 
and repeated here. 

apply(P, X) : - Goal = ..P, X], call(Coal). 	 (2) 

The definition of apply/2 goes not only beyond Horn clauses, but also beyond predicate logic, on 
two counts: the use of the variable Goal to stand for both a term and a formula; and the use of 
the meta-predicate = ../2. Warren,tWarren  81], shows that apply/2 can be alternatively defined 
by an unbounded set of Horn clauses, eq 

apply(write..nl, X) : - write.xil(X). 

6 The logical connectives -. and A used in this example do not tnke us outside Horn clauses, and so do not, 
strictly speaking, constitute an extension. 

Civing these formulae a declarative semantic, does present a problem since they are called mainly for their 
side-effect and any declarative reading is nominal. But this is another well known problem which is independent 
of the failure driven loop problem. 



where the double use of the symbol write...nl can be seen as 'coincidental' overloading rather than 
as a violation of the syntactic rules of predicate logic 7 . However, Warren admits that a more 
congenial solution is to extend the logic of logic programming to second order and allow predicate 

- - -_variables,eg..P(X)._No..definition..ofapp1y/2is thenrequired,and_apply_list/2san be dirssiy___ 
defined as: 

applyjist(P, ifi. 
applyiist(P,jHdITi]) : - P(Ifd), applyiist(P,Tl). 

which is easier to read and more directly reflects the user's intentions. 
However, this definition of applyiist/2 suffers from one of the same problems that afflicted our 

original definition of apply/2,(2) above, namely it uses the variable P to stand for both a term and 
a predicate. To cure this problem we need to recognise that the recursion over lists in appty.Jist/2 
is really providing a form of bounded universal quantification. If this were provided directly by 
extending the logic then, not only would there be no overloading of P, but the readability and 
correspondence to the user's intentions would be even better. No definition of applyiist/2 would 

then be required, since lisLpioneers/O could be directly defined as: 

list..pionecrs : - setof(X, pioneer(X), XList), 

- VX E XList(write(X) A nfl. 

Several researchers are working on the extension of logic programming to provide features like 
those mentioned above. For instance, NJJ-Prolog, [Naish 861, allows arbitrary formulae in the 
body of a clause. It uses the Lloyd-Topor translation process, and stops with a warning message 
if the coulputation flounders. AProlog provides higher-order functions and A terms and extends 
Horn clauses to hereditary Harrop formulae. 

The argument of this section is that such extensions to the logic are not just the dream of 
mathematically inclined theoreticians, but are a genuinely felt need of practical Prolog program-
mers. This need has not usually been expressed by an explicit call for such logical extensions. It is 
frequently expressed by the use of non-declarative programming hacks, which on closer inspection 
turn out to express non-Horn clause or even non-first order logical concepts. 

5 Writing Non-Procedural Problem Descriptions 

ThneedAosxtendiheiogicieyond_Born clauses becomes even more acute if one takes seriously 
the logic programming vision of freeing users from procedural considerations when describing 
their problems, ie to borrow the terminology of formal methods, if one tries to write logical 
specifications rather than logic programs. 

Currently, logic programmers have to bear in mind how their specifications will be executed 
as programs. In Prolog, for instance, they are firstly constrained by the fact that the specification 
must be in extended Horn clauses and secondly constrained by the behaviour of the Prolog 
interpreter. Bearing these constraints in mind, a procedure, union/3, to form the union of two 
finite sets, might be 'specified' as: 

unionU], L, L). 

ttnion([HdITII, L, Rn) 	- rncrnber(Hd, L), union(Tl, L, Rca). 

unionUHdlTl], L, [HdIRcs]) : - not mcmber(Hd, L), union(Tl, L, Rca). 	(3) 

In writing this the programmer has been restricted in a number of ways. 

./2 can be defined within predicate logic by a similar trick. 



• The procedure has had to be expressed as a ternary predicate instead of a binary function. 
A binary function corresponds more closely to the way someone familiar with set theory 
might think about the procedure. 

• A representational commitment has had to be made to represent the sets as lists. 

• An algorithmic commitment has had to be made, namely that the procedure will work by 
standard list recursion on the first argument. 

• A commitment has had to made to the mode of use, namely union(+, +, 	- 

It is possible to write specifications without these restrictions. In the case of the union proce-
dure this might done by giving the crucial property of a function U/2 as: 

VS 1 ,YS 2 ,VEI(EIES 1 uS2 s—s E1ES 1 vE1ES2) 	 (4) 

which gives a non-Horn clause when put in clausal form. It also uses a function to name a 
procedure. 

If one applies the Lloyd-Topor process to translate this specification into extended Horn clauses 
then one gets the Prolog program: 

union(Si ,S2,S3) 	- not son(Sj ,52,Sa). 

ion(S i ,52 ,S3) :— EES3 ,notECSi ,notEES2. 

ion(Sj ,S2 ,S3 ) :— EES 1 , notEES3 . 

ion(Sl,52,S3) : - EES2, notEES3. 

Together with a standard definition of E /2 this will execute correctly provided union/3 is called 
with ground arguments. However, it will flounder if any of the arguments are non-ground. 

6 Non-Executable and Inefficient Specifications 

Of course, the original specification of u/2, (4) above, is not executable by the Prolog interpreter. 
The NU-Prolog interpreter can interpret it by applying the Lloyd-Topor translation as shown 
above, but this only works for mode union(+, -1-, -4-). I am not aware of any logic programming 
interpreter which can interpret it for the most useful mode of union(+, +, -), or better. If an 
interpreter cannot be provided, which adds control to the logic of (4) to produce an algorithm, 
then the Kowalski vision of 5 Algorithm = Logic + Control" cannot be realised. 

In general, the interpreter of a logic programming language is a theorem prover. A complete 
theorem prover for a logical theory applied to the set of formulae that totally and unambiguously 
specifies some procedure will be able to execute that procedure for any legal set of inputs. However, 
the result of this execution may be less than helpful; the algorithm simulated by the theorem prover 
may be very inefficient, or the execution may not even return an output. 

For an example of inefficient execution consider the following specification of a sorting algo-
rithm taken from [Kowalski 79b]. 

sorted(List, Result) : - perrnutation(List, Result), ordered(Result). 	(5) 

If this is executed by the Prolog interpreter with List instantiated to a particular list and Result 

to a variable, then permutation will generate permutations of List and pass these to ordered until 
an ordered permutation is found. This could entail n! calls of permutation and ordered before 

5 union(+, +, +) does not work unless the list elements are all in the same order. 



an ordered permutation is found - a very inefficient sorting algorithm. An even worse example 
- 

	

	 can be found by reversing the order of permutation and ordered. Then all possible ordered lists 
will be generated until one is found which is a permutation of List. This 'algorithm' may never 

• 	--- 	terminate:---.- - -- 	-- 	- 
The execution may not even return an output if a classical tlieoreprovir is used to interpret -  - - 

non-Horn clauses. The execution may then correspond to a pure existence proof, so that the 
theorem prover proves that a procedure has an output but does not produce it. Consider, for 
instance, the non-Horn clause: 

aEsVbEs. 

together with the goal clause: 
:—XEs. 

This will succeed without producing a value for X. 
I do not know of any theoretical results on this, but I would speculate that for any given 

specification there i3 a theorem prover which could simulate any algorithm which meets that 
specification. However, such a result would not guarantee the existence of a theorem prover which 
effectively and efficiently executed any specification. To illustrate the practical difficulties one faces 
in designing such theorem provers consider what would be involved in simulating the mergesort 
algorithm from the specification of sorted12 in (5) above. Kowaiski shows [Kowaiski 79b] how 
an intelligent theorem prover could co-routine between the subgoals of permutation and ordered 
to simulate a sensible sorting algorithm similar to selection sort. NU-Prolog can implement this 
co-routining. However, selection sort is not the most efficient sorting algorithm known and it is by 
no means clear how more efficient algorithms, eq mergesort, could be realised merely by changing 
the interpreter. 

A further illustration of these practical difficulties can be found in [McCarthy 821. McCarthy 
compares various efficient algorithms for map colouring with the best that has been achieved so 
far with intelligent meta-interpreters for Prolog. He finds a huge gull between them. 

What is suggested by consideration of these examples is that efficient execution of logical spec-
ifications entails that the specifications be first refined into a more executable form before being 
interpreted as procedures. One might adapt Kowalski's slogan to "Algorithm = Refined(Logic) 
+ Control" to reflect this. A classic example of this approach is the transformation of the spec-
ification of the sorted/2 procedure, (5) above, into the various standard sorting algorithms, see 
eq (Darlington 781. This problem of refining logical specifications into more executable form has 
a longer history in the field of formal methods than it has in logic programming. In the rest of 
this paper we consider what lessons logic programming might draw from the experience of formal 

-_____ methods. 

7 A Technique for Program Synthesis 

In my research group we have been experimenting with the Nuprl program development system, 
(Constable et aI 86,13undy et a! 881. In Nuprl, programs are synthesised from their specifications 
by proving a theorem of the form: 

Vlnputs, BOut put. 3pec(Jnputs,Output) 

where spec(Jnputs, Output3) is a relationship between the inputs and the output of the desired 
program. For instance, the specification of U/2 could be written as 9 : 

YA:u, 3ASet3:u, V5 1 :ASets, V5 2 :ASets, 3S 3 :ASet3, VEI:A 

(El €53 .-. El E S1 V El €52) 

9 1n order to make these examples intelligible to an audience unfamiliar with Nuprl, I have taken some liberties 
with the notation using standard logical notation while preserving the spirit of Nuprl. 	- 



where X: T means X is an object of typeT, A is some type of objects, ASets is the type of finite 
sets of such objects and u is the type of all simple types 10 . This theorem is proved constructively 
and the resulting proof is analysed to extract the implicit algorithm it defines for calculating the 
required output given any combination of inputs. A constructive proof is required to avoid the 
possibility of a pure existence proof in which the existence of an output is proved without any 
implicit algorithm being defined. Nuprl provides an interactive proof editor, which allows the 
user to guide the process of proof construction. 

7.1 The Nupri System 

Nuprl is based on Martin-Lôf intuitionis4 Type Theory, [Martin-Lôf 79]. Not only does this 
provide a constructive logic, as required, but it greatly simplifies the task of extracting the program 
from the proof. This is because every rule of inference of the logic has an associated rule of program 
construction, so that the program is constructed as the proof progresses. This program is also in 
the Martin-Lôf logic, and can, therefore, be interpreted as a higher order, typed, logic/functional 
program. Because the logic is typed, the type of each variable, in the example specification of 
union above, has to be declared in the variable's quantification. Nupri uses these type declarations 
to do synthesis time type checking, rather than run time or compile time type checking. The typed 
logic also forces a restriction of the application of the union function to sets of objects of type A. 
We will indicate this by putting a subscript on the function name, it Ut. 

The procedural commitments that a Prolog programmer is forced to make within the specifi-
cation are made by the Nuprl user during the course of the proof". For instance, the choice of the 
data-structure to represent sets is made during the proof of the existence of ASets given A. This 
decision is represented below by the instantiation of ASets to sets(A), where sets is a function 

which takes any type and returns the type of finite sets of objects of that type. sets(A) might, 
for instance, be defined as the type of equivalence classes of lists of objects of type A, where two 
lists are in the same equivalence class if and only if they have the same members. A decision 
to define UA/2 by recursion on the structure of 5, is made by a decision to prove the theorem 
by induction on 5,. In general, inductive proofs give rise to recursive programs: the form of the 
induction determining the form of recursion and, hence, the efficiency of the program. We are, 
therefore, particularly interested in proofs by induction and in the type of induction used. 

7.2 AnExamp1e of Program Synthesis 

Before the decision to prove the theorem by induction the state of the proof might be: 

a:u 

31 :sets(a) 

sets(a) 

Fe 353 :sets(a), VEZ:a(El E S3l. El Es, V El C 3 2) 

where the program developed so far is: 

SIUAS2 = 

and S is the program to be generated by the rest of the proof. 
After the application of induction the state of the proof might be: 

a:tt 

10 u is not itself a simple type. If it were we would fall foul of Russell's paradox. 
"Except for the commitment to the mode which is made during the specification here too. 

- 	 / V 

a 	
x:a 

GUEr 6k C) 
L41 (Aupr(7' -'2: 



82: sets(a) 

F-, 3S3 :sets(a), VEI:a(El E Se .—' El e øvEl (= 3 2) 	 - 

a:u 	 -- 	- 

Si :sets(a) 

scts(a) 

3S3 :sets(a),VEI:a(EIES3 .—.E1Es 1 VEIE83) 	 - 

F 	353 :sets(a), VEI:a(El:53 -. El Eel' os j  V El E 3 2) 

where ci' o si is the set formed by adding a new member ci' to the set $i The new state of the 
program is: 

ØUAS2 = 

(El'oSi)uAS2 = 'I' 

where 0 and 'I' are the programs to be generated by the base and step cases of the proof, - 
respectively. 

The final program might be: 

0 UA S2 = S2 

Ei'€S2  -+ (E1'OSS)UAS2=S1UAS2 

-El'eS2 -+ (El'oS i )uAS2=EP0(SiuAS2) 

The program produced by Nupri is certainly a program in logic. Whether it is a logic program 
depends on whether the restriction to first order clauses is regarded as a defining feature of logic 
programs. In many cases the Nuprl program is readily translated into Prolog. For instance, it is 
fairly easy to see how to translate sets of first order, conditional equations, like those above, into 
Prolog, c/the recursive definition of union/3 in (3) above. 

73 The Properties of Program Synthesis 

WhatarcthepropertieroUthe-Nuprl -technique-of_program-synthesisandhowAo_thes&comPrt 	- 
with the other techniques of program refinement that have been used within logic programming, 
eq (Clark & Sickel 77,Hogger 811? 

o The input to Nuprl is a logical specification. This specification does not need to be exe-
cutable and, hence, is not restricted to a subset of logic, eq Horn clauses. 

• Consequently, a Nuprl specification can specify a procedure either as a function or as a 
relation, as appropriate. 

• Another consequence is that a Nuprl specification need not include a commitment to how 
data is to be represented. 	 / 

• Nupri synthesis ceases when the synthesis proof is finished, whereas some forms of logic 
program transformation are open ended and require user guidance to determine when the 
transformation should stop. 

10 



• Any output of Nuprl,synthesis is guaranteed to be an executable program which meets the 
input specification, but there are no assurances as to how efficient that program is. 

These properties suggest that synthesis is most useful for extracting an executable procedure 
from a non-executable specification. An efficient program might be produced either by further 
refinement of the program output by synthesis or by careful guidance of the synthesis process 
so that it produces an efficient program in the first place. To refine an inefficient program into 
a more efficient one, the techniques of program transformation developed by Darlington, Clarke 
and Hogger might be used. 

Alternatively, Goad suggests the transformation of synthesis proofs rather than procedures, 
(Goad 801. Synthesis proofs provide a richer environment for transformation than procedures 
8ince the procedural decisions are represented explicitly in the synthesis proof and do not need to 
be unpicked from the procedure before they can be remade. In our group Madden, (Madden 88, 
has been implementing this idea within the Nuprl system. In his proposed system the user would 
first use Nuprl to develop a simple synthesis proof and hence produce a simple and probably inef-
ficient program. S/he would then use Madden's system to transform the synthesis proof into one 
producing a more efficient program. For instance, induction steps resulting in inefficient recur-
sions would be replaced with induction steps producing more efficient recursions. Simultaneously 
we are thinking about how Nuprl can be guided to use more efficient induction steps in the first 
place, and hence to output an efficient program not requiring further refinement. 

8 Guiding the Search of Inductive Proofs 

Our research with Nuprl has concentrated on improving the computer's contribution to the guid-
ance of the proof, so that the user receives the maximum assistance with the construction of the 
program. Not only do we want the user to avoid the combinatorial explosion inherent in any 
non-trivial theorem proving, but we also want to help the user make choices which will result in 
efficient programs. Since recursion plays such a dominant role in logic programs we are particu-
larly interested in which inductive rule of inference is chosen and applied to the problem. The best 
work to date on the guidance of inductive proofs is that by Boyer and Moore, [Boyer & Moore 791. 
Hence, we have been adapting the techniques embedded in the Boyer-Moore theorem prover to. 
the Nuprl environment, IStevens 88]. 

We are representing this search control knowledge using a logical formalism, which we call a 
meta-logc. The universe of the meta-logic consists of logic programs and specifications, and of 
heuristic strategies and tactics for generating synthesis proofs. The meta-logic is used to specify 
these strategies and tactics so that program synthesis and plan formation can be used to construct 
proof plans for guiding the theorem proving. 

These proof plazhould have the following properties: 

• Usefulness: The plan should control the search for a proof. 

• Expectancy: The use of the plan should carry some expectation of success. 

• Uncertainty: On the other hand, success cannot be guaranteed. (A proof plan which 
was always successful would amount to a decision procedure, and the problem of program 
synthesis is, in general, undecidable. We do not want to -limit proof plans to a collection of 
decision procedures.) 

• Patchability: If the plan should fail it should be possible to patch it by providing alterna-
tive steps as replacements for the failing ones. 

11 



if our representation of proof plans can capture the correct balance between 'expectancy' and 
'uncertainty', then we can provide a tool for predicting whether the synthesis proof will succeed 
in a reasonable time. Necessarily, such a tool would not be perfect, but it would give a reasonable 
prediction, and itcoul&be_used tolocalise. the possible.causes of failure. -- 

Following LCF, IGordon  et a! 791, a tactic is a meta-level procedure for generating a small part 
of the proof, e.g. unfolding a recursively defined function, [Burstall & Darlington 771 or applying 
mathematical induction. Tactics work by applying some object-level rules of inference to the 
current state of the proof. Tactics can be put together to form strategies, which might generate 

a large part of a proof - or the whole of it. 
Note that some tactics may fail, causing failure of the whole strategy. For instance, a tactic 

for unfolding recursive definitions might fail if there were no recursive definition available which 
matched the current expression. Consider trying to unfold the expression: 

even(s(a)) 

given only the recursive definition: 

even(0) 

-'evcn(s(0)) 

even(s(s(X))) —. cven(X) 

A proof method is a meta-level specification of a proof tactic or strategy 12  consisting of a set of 
slots with values. It contains a preconditions and an effects slot. Both contain descriptions in the 
meta-logic: the preconditions' value describes the expression that the tactic applies to, and the 
effects' value describes the expression that the tactic produces if it succeeds. Other slots contain: 
the name of the method, the declaration of the variable types, descriptions of the formula input 
to and the formula output from the tactic, and a program for the tactic itself. An example of the 
method for unfolding is given in table 1. 

Name unfold 
Declarations YEzp:ezprs, YF: furies, YX:vars, 

YB :terrns, YZ: van, VS : constr. 

Input Ezp[F(S(X))) 
- Output Ezp(B(X,.F(X))l 	---- - -- 	-- 

Preconditions F(S(Z)) = B(Z,F(Z)) 
Effects nil 
Tactic <a program that applies recursive rewrite rules> 

Table 1: Method for the Unfold Tactic 

A proof plan is a meta-level specification of a proof strategy, it it is a kind of super-method. It 
is so constructed that the preconditionU of each of its sub-methods are either implied by its own 
preconditioulor by the effects of earlier sub-methods. Similarly, its effect is implied by the effects 
of its sub-methods. The original conjecture should satisfy the preconditionof the plan; the effect 

13 For simplicity we wiiP7ttke word 'tactic' to include both 'tactic' and 'strategy' belat. 
"The precondition of a method is satisfied if the input to the tactic matches the Input slot and the Preconditions 

slot is true under this matching. Similarly, the effect of a method is realised if the output of the tactic matches 
the Output slot and the Effects slot is true under this matching. 
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of the plan should imply that the conjecture has been proved. Executing a proof plan consists 
of running each of its tactics according to the program it specifies. A proof plan can either be 
hand coded by the system builder, or the techniques of automatic program synthesis and plan 
formation can be used to construct it. 

This representation meets the requirements given above, point by point, as follows: 

• UsefulneBs: As the tactics run they will each perform a part of the object-level proof. 

• Expectancy: If the conjecture meets the preconditions of the plan and each tactic succeeds 
then the effects of the plan will be true and the conjecture will be proved. 	- 

• Uncertainty: However, a tactic may fail, causing failure of the plan. 

• Patchability: Since the preconditions and effects of a failing tactic are known, program 
synthesis and plan formation techniques may be (re)used to patch the gap in the plan with 
a subplan. 

9 Conclusion 

In this paper we have argued that the wonderful vision of logic.programming summed up in 
the slogan: "Algorithm = Logic + Control", can only be realized if the "Logic" in the slogan 
is interpreted in a much broader way than has been customary. In specifying a logic program 
the programmer must not be restricted to first order Horn clausç, but must be free to use 
quantification, disjunction, negation, varia&l3ii'edicatei  and functi set extension, tic, as 
required. Otherwise, it will not be possiblflfree the programmer from the need to think in 
procedural terms. 

Unfortunately, broadening the logic in this way brings a cost. It becomes possible to write 
program specifications that cannot be executed with standard logic programming interpreters; or 
that cannot be executed efficiently; or that do not return an output when executed. We need to 
extend the power of the interpreters to refine the logic before controlling its execution. The slogan 
is modified to: "Algorithm = Refined(Logic) + Control". Such logic refining interpreters can be 
borrowed from work in formal methods in software engineering. In particular, the technique of 
program synthesis, as embodied in systems like Nuprl, deserves close attention. It enables the 
programmer to go from a non-executable' 4  specification to an executable one. It separates the 
choosing of an algorithm and of the data-structures from the specifying of the program. 

These procedural choices are made during the course of the synthesis proof. In Nuprl most 
of the guidance of this proof must come from the user. To make the process a practical one for 
novice users it is necessary to provide more automatic guidance. We are currently exploring the 
potential of proof plans as a technique for providing .this guidance. Each proof plan generalizes 
the structure of previous successful proofs, and enables the flexible application of this structure 
to new proofs. A set of such proof plans can summarise the collected programming experience of 
many users over many years and put them at the disposal of the inexperienced logic programmer. 
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