6 research outputs found

    Mutual interferences and design principles for mechatronic devices in magnetic resonance imaging

    Get PDF
    Purpose: Robotic and mechatronic devices that work compatibly with magnetic resonance imaging (MRI) are applied in diagnostic MRI, image-guided surgery, neurorehabilitation and neuroscience. MRI-compatible mechatronic systems must address the challenges imposed by the scanner's electromagnetic fields. We have developed objective quantitative evaluation criteria for device characteristics needed to formulate design guidelines that ensure MRI-compatibility based on safety, device functionality and image quality. Methods: The mutual interferences between an MRI system and mechatronic devices working in its vicinity are modeled and tested. For each interference, the involved components are listed, and a numerical measure for "MRI-compatibility” is proposed. These interferences are categorized into an MRI-compatibility matrix, with each element representing possible interactions between one part of the mechatronic system and one component of the electromagnetic fields. Based on this formulation, design principles for MRI-compatible mechatronic systems are proposed. Furthermore, test methods are developed to examine whether a mechatronic device indeed works without interferences within an MRI system. Finally, the proposed MRI-compatibility criteria and design guidelines have been applied to an actual design process that has been validated by the test procedures. Results: Objective and quantitative MRI-compatibility measures for mechatronic and robotic devices have been established. Applying the proposed design principles, potential problems in safety, device functionality and image quality can be considered in the design phase to ensure that the mechatronic system will fulfill the MRI-compatibility criteria. Conclusion: New guidelines and test procedures for MRI instrument compatibility provide a rational basis for design and evaluation of mechatronic devices in various MRI applications. Designers can apply these criteria and use the tests, so that MRI-compatibility results can accrue to build an experiential databas

    Development of a Compact Piezoworm Actuator For Mr Guided Medical Procedures

    Get PDF
    In this research, a novel piezoelectric actuator was developed to operate safely inside the magnetic resonance imaging (MRI) machine. The actuator based on novel design that generates linear and rotary motion simultaneously for higher needle insertion accuracy. One of the research main objectives is to aid in the selection of suitable materials for actuators used in this challenging environment. Usually only nonmagnetic materials are used in this extremely high magnetic environment. These materials are classified as MRI compatible materials and are selected to avoid hazardous conditions and image quality degradation. But unfortunately many inert materials to the magnetic field do not possess desirable mechanical properties in terms of hardness, stiffness and strength and much of the available data for MRI compatible materials are scattered throughout the literature and often too device specific . Furthermore, the fact that significant heating is experienced by some of these devices due to the scanner’s variable magnetic fields makes it difficult to draw general conclusions to support the choice of suitable material and typically these choices are based on a trial-and-error with extensive time required for prototype development and MRI testing of such devices. This research provides a quantitative comparison of several engineering materials in the MRI environment and comparison to theoretical behavior which should aid designers/engineers to estimate the MRI compatible material performance before the expensive step of construction and testing. This work focuses specifically on the effects in the MRI due to the material susceptibility, namely forces, torques, image artifacts and induced heating

    Mutual interferences and design principles for mechatronic devices in magnetic resonance imaging

    Full text link
    PURPOSE: Robotic and mechatronic devices that work compatibly with magnetic resonance imaging (MRI) are applied in diagnostic MRI, image-guided surgery, neurorehabilitation and neuroscience. MRI-compatible mechatronic systems must address the challenges imposed by the scanner's electromagnetic fields. We have developed objective quantitative evaluation criteria for device characteristics needed to formulate design guidelines that ensure MRI-compatibility based on safety, device functionality and image quality. METHODS: The mutual interferences between an MRI system and mechatronic devices working in its vicinity are modeled and tested. For each interference, the involved components are listed, and a numerical measure for "MRI-compatibility" is proposed. These interferences are categorized into an MRI-compatibility matrix, with each element representing possible interactions between one part of the mechatronic system and one component of the electromagnetic fields. Based on this formulation, design principles for MRI-compatible mechatronic systems are proposed. Furthermore, test methods are developed to examine whether a mechatronic device indeed works without interferences within an MRI system. Finally, the proposed MRI-compatibility criteria and design guidelines have been applied to an actual design process that has been validated by the test procedures. RESULTS: Objective and quantitative MRI-compatibility measures for mechatronic and robotic devices have been established. Applying the proposed design principles, potential problems in safety, device functionality and image quality can be considered in the design phase to ensure that the mechatronic system will fulfill the MRI-compatibility criteria. CONCLUSION: New guidelines and test procedures for MRI instrument compatibility provide a rational basis for design and evaluation of mechatronic devices in various MRI applications. Designers can apply these criteria and use the tests, so that MRI-compatibility results can accrue to build an experiential database

    New Technology and Techniques for Needle-Based Magnetic Resonance Image-Guided Prostate Focal Therapy

    Get PDF
    The most common diagnosis of prostate cancer is that of localized disease, and unfortunately the optimal type of treatment for these men is not yet certain. Magnetic resonance image (MRI)-guided focal laser ablation (FLA) therapy is a promising potential treatment option for select men with localized prostate cancer, and may result in fewer side effects than whole-gland therapies, while still achieving oncologic control. The objective of this thesis was to develop methods of accurately guiding needles to the prostate within the bore of a clinical MRI scanner for MRI-guided FLA therapy. To achieve this goal, a mechatronic needle guidance system was developed. The system enables precise targeting of prostate tumours through angulated trajectories and insertion of needles with the patient in the bore of a clinical MRI scanner. After confirming sufficient accuracy in phantoms, and good MRI-compatibility, the system was used to guide needles for MRI-guided FLA therapy in eight patients. Results from this case series demonstrated an improvement in needle guidance time and ease of needle delivery compared to conventional approaches. Methods of more reliable treatment planning were sought, leading to the development of a systematic treatment planning method, and Monte Carlo simulations of needle placement uncertainty. The result was an estimate of the maximum size of focal target that can be confidently ablated using the mechatronic needle guidance system, leading to better guidelines for patient eligibility. These results also quantified the benefit that could be gained with improved techniques for needle guidance

    Image-Guided Robot-Assisted Needle Intervention Devices and Methods to Improve Targeting Accuracy

    Get PDF
    This dissertation addresses the development of medical devices, image-guided robots, and their application in needle-based interventions, as well as methods to improve accuracy and safety in clinical procedures. Needle access is an essential component of minimally invasive diagnostic and therapeutic procedures. Image-guiding devices are often required to help physicians handle the needle based on the images. Integrating robotic accuracy and precision with digital medical imaging has the potential to improve the clinical outcomes. The dissertation presents two robotic devices for interventions under Magnetic Resonance Imaging (MRI) respectively Computed Tomography (CT) – Ultrasound(US) cross modality guidance. The MRI robot is a MR Safe Remote Center of Motion (RCM) robot for direct image-guided needle interventions such as brain surgery. The dissertation also presents the integration of the robot with an intraoperative MRI scanner, and preclinical tests for deep brain needle access. The CT-Ultrasound guidance uses a robotic manipulator to handle an US probe within a CT scanner. The dissertation presents methods related to the co-registration of multi-image spaces with an intermediary frame, experiments for needle targeting. The dissertation also presents method on using optical tracking measurements specifically for medical robots. The method was derived to test the robots presented above. With advanced image-guidance, such as the robotic approaches, needle targeting accuracy may still be deteriorated by errors related to needle defections. Methods and associated devices for needle steering on the straight path are presented. These are a robotic approach that uses real-time ultrasound guidance to steer the needle; Modeling and testing of a method to markedly reduce targeting errors with bevel-point needles; Dynamic design, manufacturing, and testing of a novel core biopsy needle with straighter path, power assistance, reduced noise, and safer operation. Overall, the dissertation presents several developments that contribute to the field of medical devices, image-guided robots, and needle interventions. These include robot testing methods that can be used by other researchers, needle steering methods that can be used directly by physicians or for robotic devices, as well as several methods to improve the accuracy in image-guided interventions. Collectively, these contribute to the field and may have a significant clinical impact
    corecore