1,552 research outputs found

    Survey on Mutation-based Test Data Generation

    Get PDF
    The critical activity of testing is the systematic selection of suitable test cases, which be able to reveal highly the faults. Therefore, mutation coverage is an effective criterion for generating test data. Since the test data generation process is very labor intensive, time-consuming and error-prone when done manually, the automation of this process is highly aspired. The researches about automatic test data generation contributed a set of tools, approaches, development and empirical results. In this paper, we will analyse and conduct a comprehensive survey on generating test data based on mutation. The paper also analyses the trends in this field

    Parallel mutation testing for large scale systems

    Get PDF
    Mutation testing is a valuable technique for measuring the quality of test suites in terms of detecting faults. However, one of its main drawbacks is its high computational cost. For this purpose, several approaches have been recently proposed to speed-up the mutation testing process by exploiting computational resources in distributed systems. However, bottlenecks have been detected when those techniques are applied in large-scale systems. This work improves the performance of mutation testing using large-scale systems by proposing a new load distribution algorithm, and parallelising different steps of the process. To demonstrate the benefits of our approach, we report on a thorough empirical evaluation, which analyses and compares our proposal with existing solutions executed in large-scale systems. The results show that our proposal outperforms the state-of-the-art distribution algorithms up to 35% in three different scenarios, reaching a reduction of the execution time of—at best—up to 99.66%This work was supported by the Spanish MINECO/FEDER project under Grants PID2021- 122270OB-I00, TED2021-129381B-C21 and PID2019-108528RBC22, the Comunidad de Madrid project FORTE-CM under Grant S2018/TCS-4314, Project S2018/TCS-4339 (BLOQUES-CM) cofunded by EIE Funds of the European Union and Comunidad de Madrid and the Project HPC-EUROPA3 (INFRAIA-2016-1-730897), with the support of the EC Research Innovation Action under the H2020 Programm
    • …
    corecore