
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Mutation Testing Cost Reduction
Techniques for Java Applications

David Roberto Cravo da Mata

Mestrado em Engenharia de Software

Supervisor: Prof. Ana Paiva, PhD

Supervisor: Prof. João Bispo, PhD

July 20, 2023

Mutation Testing Cost Reduction Techniques for Java
Applications

David Roberto Cravo da Mata

Mestrado em Engenharia de Software

July 20, 2023

Abstract

Software systems have increased in size and complexity over the years and are now an integral
part of our lives, being present everywhere. This rapid expansion has brought some drawbacks, as
nearly all people have encountered software that works differently than intended. This is especially
noticed in mobile applications due to the latest increase in mobile devices like smartphones and
tablets, which has dramatically changed how people interact with each other. This creates a huge
need for software testing to ensure the quality of the application and the detection of defects before
the application reaches the end user.

Exhaustive software testing is well known to be impossible to achieve, as testing all the possi-
ble combinations of inputs is not feasible due to the time and resources needed. Normally, a test
suit is created in the testing phase, combining several unit tests. In this context, mutation testing
was conceived by DeMillo et al. [9] as a means to evaluate the effectiveness of a test suite. By
introducing small artificial mutations into the code, mutation testing evaluates if the test suit de-
tects or not those mutations. Each mutation represents a slight modification of the original code,
simulating a potential fault. A mutant is said to be killed if it leads to the failure of at least one
test. Typically, there is a high computational cost associated with mutation testing that is related
to the high number of mutants that are generated that result in a high number of test executions.

For a long number of years, new techniques to reduce the cost of mutation testing have been
proposed by researchers. However, mutation testing is still not widely used in the software indus-
try. The main value this research adds is the proposal of two new methodologies that reduce the
cost of mutation testing.

The first proposal intends to improve Mutant Schemata by allowing the mutation operator to be
agnostic to whatever is being applied in the traditional or schemata format. This approach enables
the application of mutation operators that have not been implemented in schemata format. Addi-
tionally, different implementations for Java projects that use Maven and Gradle as build system
are proposed and analysed. The performance degradation of the mutant schemata is also analysed
against the original program.

The second proposal tackles the fact that mutation testing does not consider this evaluation of
the software projects. Software, throughout its life, undergoes continuous updates and improve-
ments. Usually, different versions are produced when introducing new features, security updates
and optimisations. Each change represents a new version of the application that must be tested.
Our proposal uses Git versioning to identify what files to mutate, reducing the number of mutants
generated up to 87%.

Keywords: Mutation Testing, Mutant Schemata, Android Testing

i

ii

Resumo

Os sistemas de software têm aumentado de tamanho e complexidade ao longo dos anos e agora
são parte integral de nossas vidas, estando presentes em todos os lugares. Esta rápida expansão
trouxe algumas desvantagens, pois a maioria das pessoas encontra ou já encontrou software que
funciona de maneira diferente ao pretendido. Isto é notado especialmente em aplicações móveis
devido ao aumento mais recente de dispositivos móveis, como smartphones e tablets, que mudou
drasticamente a forma como as pessoas interagem umas com as outras. Isto cria uma enorme
necessidade de testar para garantir a qualidade do aplicativo e a deteção de defeitos antes que o
mesmo chegue ao utilizador final.

É conhecido que o teste exaustivo de software é impossível de ser alcançado, pois testar todas
as combinações possíveis de entradas não é viável devido ao tempo e recursos necessários. Nor-
malmente, um test suit é criado na fase de testes, contendo vários testes unitários. Nesse contexto,
mutation testing foi concebido por DeMillo et al. [9] como um meio de avaliar a eficácia de um
conjunto de testes. Ao introduzir pequenas mutações artificiais no código, mutation testing avalia
se o test suit detecta ou não essas mutações. Cada mutação representa uma pequena modificação
do código original, simulando uma potencial falha. Diz-se que um mutante foi morto se levar à
falha de pelo menos um teste. Normalmente, há um alto custo computacional associado a mutation
testing que está relacionado com o alto número de mutantes gerados que resultam num elevado
número de execuções de teste.

Por um longo período de anos, novas técnicas para reduzir o custo de mutation testing foram
propostas pelos investigadores. No entanto, mutation testing ainda não é amplamente utilizado
na indústria de software. O principal valor que esta pesquisa introduz é a proposta de duas novas
metodologias que reduzem o custo de mutation testing.

A primeira proposta pretende melhorar Mutant Schemata permitindo que o operador de mu-
tação seja agnóstico ao formato que está sendo aplicado. Esta abordagem permite a aplicação
de operadores de mutação em Mutant Schemata que não tinha sido possível até ao momento.
Adicionalmente, diferentes implementações para projetos que usam Maven e Gradle como build
systems são propostas e analisadas. A degradação do desempenho dos Mutant Schemata é também
analisada em relação ao programa original.

A segunda proposta aborda o fato de mutation testing não considerar a evolução dos projetos
de software. O software, ao longo de sua vida, passa por atualizações e melhorias contínuas.
Normalmente, diferentes versões são produzidas ao introduzir novas funcionalidade, atualizações
de segurança e otimizações. Cada alteração representa uma nova versão do aplicativo que deve
ser testada. A nossa proposta utiliza o versionamento do Git para identificar quais os ficheiros que
devem ser mutados. Desta forma foi possível reduzir o número de mutantes gerados até 87%.

Keywords: Mutation Testing, Mutant Schemata, Android Testing

iii

iv

Acknowledgements

I want to express my deepest gratitude to my dissertation advisers, Ph.D. Ana Paiva and Ph.D.
João Bispo, for their continuous expertise, guidance and motivation throughout all the stages of
this research work. Their support and knowledge has encouraged me throughout this process and
has immensely contributed to my education and knowledge.

I also want to acknowledge my appreciation for the Faculty of Engineering of the University
of Porto, as well as all my professors who accompanied me. Thank you for your warm welcome
to Porto, providing unique challenges, learning opportunities, and encouragement to students.

Finally, I also want to acknowledge my family and friends, especially my girlfriend Raquel
Faria, who has been a constant source of support, care and encouragement throughout this journey.

David Mata

v

vi

“In the middle of every difficulty
lies opportunity.”

Albert Einstein

vii

viii

Contents

1 Introduction 1
1.1 Context . 1
1.2 Problem Statement and Research Goals . 2
1.3 Outline . 3

2 State of the Art 5
2.1 Mutation Testing . 5
2.2 Mutant Generation . 6
2.3 Approaches to Cost Reduction . 7

2.3.1 Mutant Reduction Techniques . 8
2.3.2 Equivalent Mutant detection techniques 12
2.3.3 Execution Cost Reduction Techniques 13

3 Mutation Testing Tools 17
3.1 Java Mutation Testing Tools . 17

3.1.1 MuJava . 17
3.1.2 JavaLanche . 18
3.1.3 Judy . 18
3.1.4 Jumble . 18
3.1.5 Major . 18
3.1.6 PIT . 19

3.2 Android Mutation Testing Tools . 19
3.2.1 MuDroid . 19
3.2.2 µDroid . 19
3.2.3 MDroid+ . 20
3.2.4 Edroid . 20
3.2.5 DroidMutator . 20
3.2.6 BacterioWeb V2 . 20

3.3 Summary . 21

4 Mutation Testing Methodology 23
4.1 Traditional Methodology . 23
4.2 Proposed Methodology . 24

4.2.1 Mutant Schemata . 25
4.2.2 Application of Mutations Only to the Changed Part of the Code 25

ix

x CONTENTS

5 Framework Proposal 27
5.1 Introduction . 27

5.1.1 LARA Framework . 27
5.1.2 Mutator API . 29

5.2 Tool Design . 29
5.2.1 Data Model . 32

5.3 Git Integration . 33
5.4 Mutant Generation . 34

5.4.1 Classpath Configuration . 37
5.4.2 Mutation Process . 38

5.5 Mutation Operators . 42
5.6 Test Execution . 43
5.7 Application Interaction . 46

6 Empirical Evaluation 47
6.1 Impact of Mutation Operators . 48

6.1.1 Impact of Mutation Operators On Java Projects 48
6.1.2 Impact of Mutation Operators On Android Projects 51
6.1.3 Summary . 52

6.2 Impact of Mutant Schemata . 53
6.2.1 Impact of Mutant Schemata on a Java Application 54
6.2.2 Impact of Mutant Schemata on an Android Application 55
6.2.3 Summary . 57

6.3 Impact of Git Versioning Reduction . 57

7 Conclusions and Future Work 59
7.1 Results . 60
7.2 Further Work . 60

A Lara Environments Code 63
A.1 Main Lara Environment Code . 63
A.2 Traditional Mutation Lara Environment Code 66
A.3 Java Mutant Schemata Lara Environment Code 69
A.4 Android Mutant Schemata Lara Environment Code 72

References 79

List of Figures

2.1 Basic idea of mutation testing . 6
2.2 Example of a mutation on the AST . 7
2.3 Number of mutants per operator . 9
2.4 Exponential growth of the number of kth-order mutants [36] 11
2.5 Polo et al. mutation process approach [36] . 11

4.1 Conventional Mutation Process described by Pradeep Singh et. all[3] 24

5.1 LARA Framework Architecture [34] . 28
5.2 Mutation Algorithm from LARA Mutator API 30
5.3 Tool Developed Architecture . 31
5.4 Data Model of the developed tool . 32
5.5 Parallel execution of the different LARA Environments 35
5.6 File Structure of Result Mutant Schemata Project 36
5.7 File Structure of Result Traditional Mutation Project 36
5.8 Tool API Description . 46

6.1 Generation Time For Each Java Mutation Operator 49
6.2 Total Size For Each Java Mutation Operator . 49
6.3 Average Time for each mutant execution using Traditional Mutation and Mutant

Schemata . 50
6.4 Execution Times for Java Traditional Mutation and Mutant Schemata 51
6.5 Generation Time For each Android Mutation Operator 52
6.6 Total Size For Each Android Mutation Operator 53
6.7 Execution Times for Android Traditional Mutation and Mutant Schemata 54
6.8 Total Execution and Elapsed Time for the Different Mutant Schemata Projects . . 55
6.9 Total Test Execution Times and Elapsed Times for the Different Mutant Schemata

Projects in Android . 56

xi

xii LIST OF FIGURES

List of Tables

2.1 An example of a mutation . 6
2.2 Mothra Mutant Operators. 10
2.3 Mutation operators analysed by Bluemke et al. [6] 11
2.4 An example of Equivalent Mutation . 13

5.1 List of Operators - General Specific [41] . 44
5.2 List of Operators - Java Specific [41] . 44
5.3 List of Operators - Android Specific [41] . 45

6.1 Generation Results for Java Operators . 48
6.2 Test Execution Results . 50
6.3 Generation Results for Android Specific Operators 52
6.4 Test Execution Results Android . 53
6.5 Schemata Performance Degradation in Java . 55
6.6 Schemata Performance Degradation in Android 55
6.7 File Metrics From Different Versions of Aegis 57
6.8 Generation Metrics of Mutant Schemata with Git Improvement 58
6.9 Generation Metrics of Mutant Schemata Without Git Improvement 58

xiii

xiv LIST OF TABLES

Abbreviations

API Application Programming Interface
APK Android Application Pack
AST Abstract Syntax Tree
CPH Competent Programmer Hypothesis
DSL Domain Specific Language
FOM First Order Mutant
HOM Higher Order Mutants
HTTP Hypertext Transfer Protocol
IDE Integrated Development Environment
IoT Internet of Things
JVM Java Virtual Machine
TCE Trivial Compiler Equivalence
TUMS Testing Using Mutant Schemata
UUID Universally Unique Identifier

xv

Chapter 1

Introduction

1.1 Context

The software industry is constantly growing and evolving, and software is now an integral part

of our lives. Software is everywhere, from public services (healthcare, education and justice)

to computer-controlled systems (transports and IoT). These systems have increased in size and

complexity over the years, making us increasingly dependent on them. This rapid expansion of

information technology systems has brought many benefits. It is easier than ever to travel, you can

call a driver with a click of a button and you can make a payment by taking a photo of a QR Code

with your phone. However, this rapid expansion has come with some drawbacks. Nearly all people

have already encountered software that did not work as intended causing inconvenience, loss of

time and money and even, in extreme cases, health injuries and death. This is especially noticed

in mobile applications due to the latest increase in the number of mobile devices like smartphones

and tablets, which has dramatically changed the way people interact with each other. As a matter

of fact, it is estimated that there are more connected mobile devices than people [33]. This creates

a huge need for software testing to ensure the quality of the application to the end-users and to

detect the majority of the defects before release.

Exhaustive software testing is well known to be impossible to achieve, as testing all the possi-

ble combinations of inputs is not feasible due to the time and resources needed. Also, the increas-

ingly faster time to market does not help the detection of defects before the application reaches

the production environment. To mitigate the presence of defects, testing is introduced in the early

stages of software development, sometimes even before the actual development of the product

(test-driven development). Normally, a test suit is created in the testing phase, combining several

unit tests. A unit test compares the result of a small code block against the expected one, failing

if different. But how do we know if a test suit is effective? Several metrics can briefly explain

how well-designed a test suite is. Decision coverage (also known as branch coverage) requires

testing each program’s decision outcome. Statement coverage requires that tests cover every code

1

2 Introduction

statement. These metrics, amongst others, only consider the percentage of code that is executed

and sometimes that does not show the true quality of the test suit.

Mutation testing is also a technique that can be used to evaluate the test suite. The underlying

principle of mutation testing is that faults present in software are due to small and simple syntactic

errors. Mutation testing creates several mutants, each one being a copy of the original code with a

small syntactic change that aims to generate an artificial defect. If the test suite detects the change

introduced by the mutation, we can have a higher confidence level in its quality.

1.2 Problem Statement and Research Goals

Although the benefits of mutation testing have already been shown, it is still not widely adopted

in the software industry. The biggest problem associated with mutation testing is the high compu-

tational cost. Depending on the size of the project, we can have a high amount of changes that can

be applied and, subsequently, a high quantity of tests that need to be run to detect those changes.

This is especially noticed in Android apps, where the tests are executed on devices with less com-

putational power. Also, the current mutation testing applications lack documentation and ways to

integrate into the software development process.

This dissertation aims to find relevant ways to reduce the cost of mutation testing and make

it more applicable in the software industry. Its objective is to study proposed techniques and see

the impact that each one has. With the intention of addressing mutation testing cost-reducing

techniques, the following questions that will be responded to in the following chapters were for-

mulated.

• RQ1 - Which techniques can reduce the cost of mutation testing?

• RQ2 - Which mutation tools exist, and how do they approach cost reduction in mutation

testing?

• RQ3 - Can different approaches (e.g. traditional, schemata) use the same implementation

of mutation operators?

• RQ4 - Which impact do mutation operators have on the cost of mutation testing?

• RQ5 - What is the impact of the number of mutations in the performance of the schemata?

• RQ6 - In the context of an evolving software project, do we maintain the effectiveness of

fault detection when we apply mutation testing only to the parts of the code that have been

recently changed?

1.3 Outline 3

1.3 Outline

Beyond this introductory chapter, this document is structured into additionally 6 chapters. Chapter

2, the literature review on mutation testing and the already implemented cost reduction techniques,

where relevant contributions on the area of mutation testing are analysed. Chapter 3 analyses and

compares mutation testing tools for Java and Android applications. In chapter 4, we present our

methodology that improves the schemata implementation by turning the operator implementation

agnostic to whatever is being applied in schemata format or traditional. We also present a second

methodology that only applies mutation to changed files on Git. In chapter 5 is presented the

developed mutation tool, with emphasis on the decisions taken that defined the architecture of the

tool. In chapter 6 we compared the results obtain with the developed tool, analysing the resulted

gains. Finally, chapter 7 presents an overview of the conclusions and future work.

4 Introduction

Chapter 2

State of the Art

This chapter presents a comprehensive overview of the current status of mutation testing. The goal

is to find and present relevant information, including recent search findings and methodologies on

cost reduction techniques.

2.1 Mutation Testing

Mutation testing as originally conceived by DeMillo et al. in 1978 [9] is based on two fundamen-

tals: the Competent Programmer Hypothesis (CPH) and the Coupling Effect. The CPH implies

that most software faults present in programs delivered by competent programmers are due to

small and simple syntactic errors. The CPH also alludes that these programs tend to be very sim-

ilar to the expected and are close to being correct. The Coupling Effect states that complex faults

are coupled with simple faults and test data that finds those simple faults can also find those com-

plex ones. Mutation testing is an alternative approach to test the quality of the test suit. Mutation

testing is defined by Jia and Harman [17] as a fault-based testing technique that provides a testing

criterion known as mutation adequacy (also known as mutation coverage or mutation score). In

the most basic form, a mutant is a program with a small syntactic change in the code that aims

to generate an artificial defect. For example, a possible change to the program p in the mutant

p’ could be a mutation from the arithmetic expression (a<b) to the arithmetic expression (a>b)

as seen in table 2.1. This syntactic change follows a certain rule that is called mutant operator.

Typically, mutant operators are designed to introduce defects in edge cases, creating faults in a

particular part of the code. In this case, when the mutant only differs from the original program by

one simple modification, it is called First Order Mutant (FOM). Mutants, however, don’t have to

be restricted to having only one mutation. That is the case of Higher Order Mutants (HOM). HOM

differ from FOM by having more than one mutation, typically creating more complex defects.

The goal of mutation testing is to infer the quality of the test suit based on if it detects devi-

ations in behaviour between mutants and the origin program 2.1. However, not all mutants are

5

6 State of the Art

Table 2.1: An example of a mutation

Program p Program p’

...
if (a<b)
return 1;
...

...
if (a>b)
return 1;
...

Figure 2.1: Basic idea of mutation testing

relevant, as there are mutants that are killed by all tests (trivial mutants), and mutants that suffered

changes that do not modify the meaning of the original program (equivalent mutants). Having in

mind all of the aforementioned, the testing criterion of mutation testing, mutation score (MS) can

be defined as the division of the number of killed mutants (K) and the subtraction of the equivalent

mutants (E) to the total number of generated mutants (M) as seen on equation 2.1.

MS =
K

M−E
,with 0 ≤ MS ≤ 1 (2.1)

2.2 Mutant Generation

Two main processes can be used for the creation of mutants, the first is through the Abstract

Syntax Tree (AST) and the second by the byte-code. The AST is a tree-like representation of the

code, where every entry of code creates a node on that tree. By applying mutation operators it is

possible to introduce changes in the AST (figure 2.2). That way, when converting from the AST to

the source code it is possible to achieve a semantic change. The other process of creating mutant

through the byte-code is similar to the one of using the AST, with the difference being that the

mutation operators are applied in the Byte-code. This brings the advantage of not being needed

the compilation of the mutated code. However, this approach brings two negative aspects [4]. The

first is that if a new version of the compiler is created, the byte-code structure can change, requiring

more maintenance for supporting those changes. The second is that working on the compiled code

is harder to design mutants than when using the AST.

2.3 Approaches to Cost Reduction 7

Figure 2.2: Example of a mutation on the AST

The mutation process is composed of four steps, (1) execution of the original program, (2)

generation of mutants, (3) execution of each mutant and finally, (4) analysis of the mutants [35].

Typically, there is a high cost associated with mutation testing that is related to the last two steps,

the execution and analysis. This high cost is related to the high number of mutants that are gener-

ated, especially if we considered that there is a huge number of mutations that can be applied in a

huge number of places of the program. Additionally, in many cases, it can be difficult to determine

if a mutant is laborious to kill or if it is an equivalent mutant that can not be killed.

2.3 Approaches to Cost Reduction

This section address RQ1 by presenting relevant Cost Reduction approaches to mutation testing.

For a long number of years, new techniques to reduce the cost of mutation testing have been

proposed by researchers. In the traditional classification proposed by Offutt and Untch [29], those

cost reduction techniques could be classified as “do fewer”, “do smarter”, and “do faster”.

"The ’do fewer’ approaches seek ways of running fewer mutant programs without

incurring intolerable information loss. The ’do smarter’ approaches seek to distribute

the computational expense over several machines or factor the expense over several

executions by retaining state information between runs or seek to avoid complete

execution. The ’do faster’ approaches focus on ways of generating and running each

mutant program as quickly as possible." [29]

This classification was created a long time ago and it is no longer representative of the recent

techniques for cost reduction. Some of them fit in more than one category and some don’t fit in any

at all. This was a problem noticed by Pizzoleto et. all. [35], who decided to create a classification

composed of six different types of techniques, namely:

• Reducing the number of mutants: the main goal is to reduce the quantity of mutants that

will be executed without decreasing effectiveness.

• Automatically detecting equivalent mutants: the main goal is to detect automatically equiv-

alent mutants and to remove them.

• Execution faster: the main goal is to reduce execution time.

8 State of the Art

• Reducing the number of test cases or the number of executions: the main goal is to detect

smaller test sets or identify groups of similar mutants to decrease test runs while keeping

effectiveness.

• Avoiding the creation of certain mutants: the main goal is to avoid the creation of certain

mutants by applying certain mutation operators that only create non-trivial mutants.

• Automatically generating test cases: the main goal is to automatically generate test cases,

to kill the majority of the mutants.

2.3.1 Mutant Reduction Techniques

As there is a big computational cost inherent to executing the test set against all mutants, one

popular research problem is how to reduce the number of mutants. For a given set of mutants

M, and a set of test data T, the mutation score is given by MSt(M). The problem of reducing the

number of mutants can be defined as finding a subset of mutants M’ from M that respects equation

2.2.

MST (M)≃ MST (M′) (2.2)

This section will introduce four techniques that reduce the number of mutants.

2.3.1.1 Mutant Sampling

Mutant Sampling reduces the number of mutants by randomly choosing a subset of mutants from

the entire set. This technique was introduced by Acree [1] and Budd [7]. The process for this

reduction is simple, firstly all mutants (M) are generated, then x per cent of those (M) mutants

are selected. There are many studies with the primary focus on the way that random mutants are

selected in different programming languages.

Anna Derezińska et al. evaluated six different sampling criteria in object-oriented mutation

[11], in particular fully random (x% of mutants are randomly selected), class random (x% of

mutants from each class are selected, keeping mutants equally distributed for each class), file

random (% of mutants from each file are selected, keeping mutants equally distributed for each

file), method random (% of mutants from each method are selected, keeping mutants equally dis-

tributed for each method), mutation operator random (% of mutants from each mutant operator are

selected, keeping mutants equally distributed for each mutant operator) and namespace random

(% of mutants from each namespace are selected, keeping mutants equally distributed for each

namespace). The conclusions reached were that in case of object-oriented the recommended sam-

pling method was class random sampling, although it brings a small decrease in mutation score

accuracy. Also, the authors noticed, that in practice, the overall time of mutation testing is strongly

influenced by the number of tests to be performed and not only the number of mutants.

2.3 Approaches to Cost Reduction 9

2.3.1.2 Mutant Clustering

Mutant Clustering uses clustering algorithms to group similar mutants into clusters and then

chooses a subset of each cluster. This technique was first proposed by Shamaila Hussain mas-

ter thesis [38]. The process starts with the creation of all mutants, followed by the application of

a clustering algorithm to group mutants into clusters. The idea is that mutants in the same cluster

are similar and are killed by the same test cases. Then, a subset of each cluster is used and the rest

of the mutants are discarded.

In Shamaila Hussain thesis, two clustering algorithms were used, the k-means clustering al-

gorithm and the agglomerative clustering algorithm. These two were applied to five different

programs, with different lengths and non-identical numbers of mutants and test cases. The results

revealed that even though there was a reduction in the number of mutants, the strength of the set

of mutants was not reduced [38].

2.3.1.3 Selective Mutation

Selective Mutation reduces the number of mutants by reducing the number of mutation operators

applied. The principle is that if mutants generated by a mutation operator A are killed by the same

tests that the mutants generated by a mutation operator B, then only one of the mutation operators

is needed (either A or B). The goal is to reduce the number of mutation operators, consequently

reducing the number of mutants, without reducing test efficiency. Selective mutation was first

introduced by Mathur as "constrained mutation" [25] and was later extended by Offutt [28], which

called it selective mutation.

In the work presented by Offutt, he analyses the Mothra mutant operators represented in table

2.2. These 22 mutation operators were defined to test FORTRAN-77 programs. Each mutation

operator was defined as a three-letter acronym. From the analysis of the mutants generated by

applying the Mothra mutation operators, Offutt verified that the number of mutants generated per

operator was not evenly distributed. Experimental results showed that removing all the mutants op-

erators except five created the same coverage as with all mutants. The only five sufficient mutants

were ABS, AOR, LCR, ROR and UOI. This results in a reduction of cost of fifty times with large

programs and 4 times with small programs, while achieving a mutation score of 99.5%[17][38].

Figure 2.3: Number of mutants per operator

Different mutation operators were proposed by different authors for different programming

languages. Another example is the work of Banzi et al. that uses a multi-objective approach to

10 State of the Art

Table 2.2: Mothra Mutant Operators.

Mutant Operator Description

AAR array reference for array reference replacement
ABS absolute value insertion
ACR array reference for constant replacement
AOR arithmetic operator replacement
ASR array reference for scalar variable replacement
CAR constant for array reference replacement
CNR comparable array name replacement
CRP constant replacement
CSR constant for scalar variable replacement
DER DO statement end replacement
DSA DATA statement alterations
GLR GOTO label replacement
LCR logical connector replacement
ROR relational operator replacement
RSR RETURN statement replacement
SAN statement analysis
SAR scalar variable for array reference replacement
SCR scalar for constant replacement
SDL statement deletion
SRC source constant replacement
SVR scalar variable replacement
UOI unary operator insertion

determine the essential operators [5]. The main difference was that Banzi et al. approach treated

the selection of mutation operators as a multi-objective optimization problem, where there is no

unique and single solution. The solution would depend on the different objectives, which could

be the reduction of the number of mutants, improving the mutation score, amongst others (as

different sets of operators exist to satisfy multiple objectives). The approach was tested with real

C programs and compared with other reduction techniques namely random selection, obtaining

better results.

Bluemke et al. also tried reducing the number of mutants generated by the mutation operators

in the Java programming language [6]. The analysed mutation operators can be seen in table 2.3.

From the reduction of the mutation operators, only the operator AOIS was unsatisfactory, as the

others didn’t affect the mutation score. This was due to the same test case being able to kill several

different mutants, with the omission of certain mutants not affecting results.

2.3 Approaches to Cost Reduction 11

Table 2.3: Mutation operators analysed by Bluemke et al. [6]

Mutant Operator Description

AOIS Arithmetic Operator Insertion, Short-cut
ROR Relational Operator Replacement
LOI Logical Operator Insertion

AORB Arithmetic Operator Replacement, Binary
COI Conditional Operator Insertion

AOIU Arithmetic Operator Insertion, Unary

2.3.1.4 High Order Mutation

High Order Mutation combines the typical n different mutants with only one mutation, also known

as first-order mutants (FOM), into one higher-order mutant (HOM). The idea was to create mutants

stronger and more difficult to kill but also reduce the number of mutants, as a test case that kills

a higher order mutant typically also kills the correspondent first order mutants. This approach for

creating mutants was first introduced by Jia et al. [16].

Mutants can be classified according to the number of mutations. There can exist a large number

of different higher-order mutants, however, not all are relevant. Higher order mutants can be

classified as interesting and uninteresting [15]. The uninteresting higher-order mutants don’t assist

in fault-based testing (i.e. if the program becomes more faulty than we expected). The interesting

mutants are the ones that are potentially able to assist the programmer in fault-based testing.

Figure 2.4: Exponential growth of the number of kth-order mutants [36]

Figure 2.5: Polo et al. mutation process approach [36]

12 State of the Art

One of the problems that also arise with higher order mutation testing is that the number of

generated mutants can be higher than when using only first order mutants. This is due to the

exponential growth of mutants with each generation, as shown in figure 2.4. In the approach used

by Polo et al., three strategies have been proposed to tackle this problem (Last To First, Different

Operators, and Random Mix)[36]. Also, the maximum number of first order mutants combined

was two, creating only second order mutants as seen in figure 2.5.

There are four main types of strategies to generate second-order mutants, First To Last, Ran-

dom Mix, Different-Operators, and Each-Choice [12]. These strategies choose mutants in pairs

from a list of all first-order mutants (sorted alphabetically). Mutants that apply the mutation in the

same line of code can only be combined into a higher-order mutant if the mutation is not in the

same sub-expression. For example, considering the expression A <B && B >C, two mutants can

be combined only if one applied the mutation to the sub-expression A <B and the other two to the

sub-expression B >C. The strategies are given in the description below.

• First To Last: prioritizes the selection of mutants in the extremities of the list by groping the

first and last unused mutants from a list into a higher order mutant.

• Random Mix: the higher-order mutant is selected randomly from the list of mutants.

• Different-Operators: selects the first unused mutant and then selects the next mutant that

applies a different operator.

• Each-Choice: It selects the first unused mutant followed by the next unused mutant from

the list.

Prado Lima et al. concluded that almost 49% of the works with higher order mutants apply

search-based algorithms and that the main study programming language is Java [12].

2.3.2 Equivalent Mutant detection techniques

An equivalent mutant is a mutant p’, which is semantically different from the original program

p, however, it has the same behaviour as p. Table 2.4 shows a mutant that changed the original

operator < in the for cycle to the operator !=. If the i value is not updated inside the cycle, the

program p will behave like the mutant p’. As the mutation score is based on nonequivalent mutants,

reaching a mutation score of 100% is impossible if there is no correct detection of equivalent

mutants. This may lead the tester to believe that the test suit is inadequate when it actually is [17].

Commonly, the detection of equivalent mutants must be carried out by testers. By removing these

“useless” mutants, we reduce the effort required to perform mutation as there are fewer mutants

to run and fewer mutants that testers need to classify as equivalent and improve the accuracy of

the mutation score [31]. This has generated interest in the community to find a way to reduce and

remove equivalent mutants automatically.

Papadakis et al. proposed Trivial Compiler Equivalence (TCE) technique that uses compiler

technology to detect equivalent mutants [30]. The idea is that TCE can detect when two different

2.3 Approaches to Cost Reduction 13

Table 2.4: An example of Equivalent Mutation

Program p Program p’

...
for (int i = 0; i<10; i++){

...
(value of i
is not changed)
...

}
...

...
for (int i = 0; i != 10; i++){

...
(value of i
is not changed)
...

}
...

versions of the same program when they have similar source codes. TCE compiles each mutant,

compares its machine code and detects those similarities. When this happens, it is safe to declare

both as functionally equivalent, and there is no point in differentiating them with test data. This

way, it is possible to reduce equivalent mutants and duplicate mutants. The empirical study showed

that TCE can detect from 7% to 30% of the equivalent mutants.

2.3.3 Execution Cost Reduction Techniques

Another way to reduce the cost of mutation testing is by optimizing the mutants execution process.

In this section, three different approaches will be presented and explained.

2.3.3.1 Strong, Weak, and Firm Mutation

Strong, Weak and Firm Mutation are three categories that we can classify the way that analyses if

a mutant is killed during the execution process. Strong mutation is the traditional way of mutation

testing, which considers that a given mutant p’ from an original program p is said to be killed

only if p’ has a different output from the original program [17]. Weak mutation was proposed by

Howden [13] to optimise mutation testing. The main difference of weak mutation compared with

strong mutation is that a mutant is said to be killed right after the execution of the mutation point

if the execution is different from the original program. In contrast, in strong mutation, a mutant

is only said to be killed after the execution of the entire program [17]. Weak mutation, however,

tends to be less effective than strong mutation. To overcome the disadvantages of weak mutation

Woodward and Halewood [42] proposed firm mutation. Firm mutation combines weak and strong

mutation, analysing mutants after the mutation point and after execution.

2.3.3.2 Run-time Optimization Techniques

There are several main techniques for run-time optimization, among which stand out the interpreter-

based technique, the compiler-based technique and the byte-code translation technique. The

interpreter-based technique was mainly used in the first generation of mutation testing tools [17].

14 State of the Art

In this technique, the result of the mutant is interpreted from its code directly, being this technique

influenced by the cost of the interpretation. The compiler-based technique is the traditional and

regular way to achieve program mutation [17]. In this technique, each mutant is first compiled and

then executed by the test cases. The byte-code translation technique differs from the others, as

mutants are generated by the compiled code instead of the source code, resulting in mutants that

can be executed directly without any additional compilation.

2.3.3.3 Mutant Schemata

Metamutans or Mutant Schemata create a parameterized program that groups all mutants into

only one mutant called Metamutant [35]. When running this Metamutant, a parameter needs to be

provided to tell it which version to run. This technique of creating a Metamutant was called the

MSG method [39].

Untch et al. first introduced a prototype system called TUMS (an acronym for Testing Using

Mutant Schemata). The goal was to create automated Metamutants and compare their performance

against the traditional way of creating mutants. Their empirical study concluded that the MSG-

generated mutant was much faster than traditionally creating all mutants, with speed increases as

high as an order of magnitude [39].

René Just implementation of mutant schemata uses an external driver class to gain access to

the mutant identifier M_NO [18]. The class is only resolved at runtime and triggers each mutant.

René Just was able to implement commonly used mutation operators to mutate Java applications.

An example of the resulting method can be seen on listing 2.1.

1 public int eval (int x) {

2 int a = 3 , b = 1 , y ;

3

4 y = (M_NO==1) ? a + x :

5 (M_NO==2) ? a / x :

6 (M_NO==3) ? a \% x :

7 a * x ; // original

8 y += b;

9 return y;

10 }

Listing 2.1: Example method of René implementation [18]

Mutant Schemata with Extra Code or MUSIC was also proposed by Pedro Mateo et al. as a

way to reduce the cost of mutation testing [24]. In their approach, they successfully reduce the cost

of mutation testing by reducing the number of required executions to detect infinite loops created

by the mutations. Including extra code that takes the form of a loop counter that tracks the number

of iterations, the execution environment can determine if a mutant is stuck in an infinite loop.

Even though the execution time of the original program increased significantly, their empirical

study demonstrated a reduction in the number of executions by 77%. An example of the resulting

code can be seen in listing 2.2.

2.3 Approaches to Cost Reduction 15

1 class ClassA{

2 public intinc(int a, int b){

3 for(b<10){

4 a++;

5 if(exec(m1)){

6 b = b-2;

7 }else if(exec(m2)){

8 b = b*2;

9 }else if(exec(m3)){

10 b = b/2;

11 }else {

12 mutantsGenerated(m1,m2,m3);

13 b = b+2;//original statement

14 }

15 increaseLoop();

16 }

17 return a;

18 }

19 }

Listing 2.2: Mutant Schemata implementation of Pedro Mateo et. all [24]

Francisco Azevedo [4] also implemented the mutant schemata resorting to system properties.

Each mutation would be surrounded by an if statement in his implementation. An example of the

resulting code can be seen in listing 2.3.

1 void move(int x, int y){

2 if(java.lang.System.getProperty("MUID").equals("com.mutation.testcase_20_0")){

3 setXPos(getYPos() - x);

4 }

5 if(java.lang.System.getProperty("MUID").equals("com.mutation.testcase_20_1")){

6 setXPos(getYPos() * x);

7 }

8 if(java.lang.System.getProperty("MUID").equals("com.mutation.testcase_20_2")){

9 setXPos(getYPos() / x);

10 }

11 if(java.lang.System.getProperty("MUID").equals("com.mutation.testcase_20_3")){

12 setXPos(getYPos() / x);

13 }

14 if(java.lang.System.getProperty("MUID").equals(null)){

15 setXPos(getYPos() + x);

16 }

17 }

Listing 2.3: Mutant Schemata implementation of Francisco Azevedo [4]

Diego Naveiras [27] implemented mutant schemata using Wrappers at a byte code level. The

idea is to replace the mutated class with a Wrapper class (also named controller class) with the

same methods as the original class. Then, a new class that extends the controller class is created

16 State of the Art

for each mutation. The wrapper class then controls what mutated class to load based on a property

saved on a file. This implementation allows an equal number of generated mutants as the tradi-

tional mutation process and allows the combination of other complex techniques like Higher Order

Mutation. However, using wrappers increases the processing required with inheritance, and it does

not preserve the original object-oriented characteristics of the original. Diego Naveiras also pro-

posed a mutant schemata implementation using MutantDriver and meta procedures. In the listing

2.4, it is possible to verify an implementation of the meta procedure PLUS on the MutantDriver.

When executing the test suite, the PLUS meta procedure reads the value of currentMutant from a

file. Then, depending on the value, the original or mutated versions can be returned.

1 public static int PLUS(int a, int b, int... indexes){

2 loadCurrentMutant();

3 int location = Arrays.binarySearch(indexes, currentMutant);

4

5 if (currentMutant == 0 || location < 0) return a + b;

6 if (currentMutant == 0) return a - b;

7 if (currentMutant == 1) return a * b;

8 if (currentMutant == 2) return a / b;

9 if (currentMutant == 3) return a % b;

10 return a + b;

11 }

Listing 2.4: Mutant Schemata implementation of Diego Naveiras using MutantDriver [27]

To conclude, the mutant schemata approach has some limitations. Depending on how the

control flow is implemented, it can be challenging to discern which specific section of code is being

executed at any given time. Also, mutation operators that change methods signature or access

specifiers and classes access specifiers can be challenging to implement in the mutant schemata

form. Another drawback is the impact on code readability, as the number of mutants can diminish

the clarity of the code. Additionally, supposing that the implementation of the Metamutant is not

correctly, new bugs or issues can be introduced into the code base, resulting in a program that

might have different behaviour than the original.

Chapter 3

Mutation Testing Tools

As showed by Domenico Amalfitano et al., different tools implement different features [2]. This

chapter focuses on address RQ2, by giving an overview of the different cost-reduction techniques

that are used by mutation tools. Firstly, all the Java-specific mutation tools will be presented,

and then they will be compared against the Android-specific ones. All the significant differences

and similarities will be described. Only relevant mutation testing tools that do have some type of

documentation available online are considered.

3.1 Java Mutation Testing Tools

3.1.1 MuJava

Mujava [22] is one of the earliest Java mutation tools and was released in 2005. At the time of

writing, it is not under active development, and it was last updated in August 2016. It was also

released under an open-source Apache License 2.0 1. The last version of Mujava was compatible

with Java 7 as its highest-supported Java version. Similarly, it supported JUnit 4 as the latest

version of the unit testing framework. Its original goal was to reduce the execution cost of mutation

testing in object-oriented programs. To do so, it implemented two strategies: mutations on a byte

code level and mutations using mutant schemata and reflection. Mujava implemented two types

of mutation operators, behavioural mutations and structural mutations. The behavioural mutations

are done using compile-time reflection and the mutant schemata. The structural mutants are done

using byte code translation. Even though the tool allows multiple Java classes to be loaded, each

test is executed manually one by one.

1https://github.com/jeffoffutt/muJava

17

https://github.com/jeffoffutt/muJava

18 Mutation Testing Tools

3.1.2 JavaLanche

Javalanche [37] was released in 2009 with the main goal of overcoming two main problems,

efficiency and equivalent mutants. It is publicly available 2 and has not been updated since 2012.

The last supported Java version was the 6, and it has support for JUnit 4 unit test framework.

As efficiency was prioritised, many cost-reduction techniques were applied. Only a small set of

mutation operators that were considered relevant was implemented (selective mutation). Mutant

schemata was also used on a byte code level, avoiding the need to recompile the mutated code.

Additionally, the mutation generation is executed in parallel, and the coverage data is used for the

test execution. Not all tests are executed against all mutants, only the ones that cover the mutated

line.

3.1.3 Judy

Judy [23] was originally conceived to outperform MuJava. The latest version stable version was

the 2.1.0 from January of 2014 3 . The last supported Java version was the 8, and it has support for

JUnit 4 unit test framework. It only offers a command line interface. Judy automatically generates

mutations on a byte code level. Additionally, it also takes advantage of parallel execution. Judy is

based on the FAMTA Light, a novel approach at the time. FAMTA Light takes advantage of the

pointcut and advice mechanism that identifies specific points in the program flow. In the empirical

study, it was shown that it had significant gains compared to MuJava [23].

3.1.4 Jumble

Jumble is a mutation tool that was originally conceived by a commercial company in New Zealand,

Reel Two 4. It was last updated in May of 2015, with version 1.3.0. It has support for integration

with Eclipse IDE and also has a command line interface. The last supported Java version was

the Java 8, and it has support for JUnit 4 unit test framework. Jumble only allows a single class

selection, and it only applies one mutation at a time on a byte code level. Multiple test cases can

be selected, and it prioritises test execution. It first executes all tests on the original code and stores

the time for each one. Then, it executes tests from the lowest time to the highest time. It does not

have any equivalent mutation detection to reduce the impact of equivalent mutants.

3.1.5 Major

Major [19] is a mutation framework that implements a large number of optimisations. This resulted

in Major being able to apply mutation testing to programs with more than 200k lines and a result

of 150k mutants. At the time of writing, the latest release was version 2.0.0 on January 2023 5.

The last supported Java version was the Java 8, and it has support for JUnit 4 unit test framework.

2https://github.com/david-schuler/javalanche
3http://mutationtesting.org/judy/documentation/
4https://jumble.sourceforge.net/index.html
5https://mutation-testing.org/index.html

https://github.com/david-schuler/javalanche
http://mutationtesting.org/judy/documentation/
https://jumble.sourceforge.net/index.html
https://mutation-testing.org/index.html

3.2 Android Mutation Testing Tools 19

Moreover, Major comes with a domain-specific language (DSL), which can be used to define and

extend mutant operators. Major adopts strategies of Strong and Weak mutation. Similar to other

tools, it also implements test suit prioritisation. Major is integrated with the Java compiler and

implements the mutations on the AST, alongside with the compilation of the original code.

3.1.6 PIT

PITest or PIT [8] is one of the few tools that continues to be developed, with the last version at the

time of writing being the 1.14.2, released on June 2023 6. It requires Java 8 or above, and either

JUnit or TestNG can be used. Pit aims to be easily integrated with Integrated Development Envi-

ronment (IDE), possessing extension support for Eclipse and IntelliJ, and can be integrated with

Ant, Maven and Gradle build tools. Similarly to other tools, it also employs multiple cost-cutting

measures, such as byte code manipulation and test execution prioritisation. PIT only applies muta-

tions to methods that are executed, as it generates mutants based on code coverage. The mutation

operators that are applied are also only the ones that do not produce a large number of mutations.

Additionally, the test execution is prioritised based on three factors, line coverage, text execution

speed and test naming convention. Only tests that exercise the mutated line of code are used order

by increasing execution time.

3.2 Android Mutation Testing Tools

3.2.1 MuDroid

Mudroid [10] is one of the earlier Android-specific mutation tools. It was originally released

in 2015. The last update at the time of writing was on May of 20167. It has a command line

interface. It applies mutation testing at the byte code level, and it only requires the APK to do so.

It has the capability of executing tests that use either JUnit, Robotium or Espresso. Mudroid does

not implement any cost reduction technique like mutant schemata, parallel execution or equivalent

mutant detection. Mudroid, however, has the capability to execute the test suit against each mutant

and compare the results again to the original code so that the mutation score is calculated.

3.2.2 µDroid

µDroid [14] is a mutation testing framework that was originally conceived in 2017. It mainly

targets the lack of tools that access the energy performance of applications, as it only applies

energy-related mutations. The mutations are applied to the AST, and both first-order and higher-

order mutation testing are available. The tool has integration with Eclipse IDE and supports only

Java 8. It is composed of two components, an Eclipse Plugin that implements the mutation oper-

ators and generates the mutated code and a Runner/Profiler component that executes the test suite

and profiles the power consumption of the device.

6https://github.com/hcoles/pitest
7https://github.com/Yuan-W/muDroid

https://github.com/hcoles/pitest
https://github.com/Yuan-W/muDroid

20 Mutation Testing Tools

3.2.3 MDroid+

MDroid+ [26] is a mutation testing framework for Android Applications that is open source 8. It

was originally conceived in 2018, with the release of version 1.0.0 with no recent development

at the time of writing for over four years. It only applies Android-specific operators, and all the

mutations are implemented on the AST or the resources files (like XML files). It has a command

line interface that allows the user to define which mutations to apply. It does not implement

any cost-reduction technique related to mutant schemata and equivalent mutant generation. Each

operator results in a copy of the original program, with only one difference the mutated Java file

or resource file.

3.2.4 Edroid

Edroid [21] is a graphical user-friendly Android mutation tool that was originally presented in

2018. It only allows mutation on XML files, even though the original goal was to be extended to

Android Java operators. It also does not have any cost reduction technique applied, as it does not

detect equivalent mutants. All the mutations are applied using a regex over the XML files, and

each operator results in a copy of the original program. Although it allows the generation of first-

order and high-order mutants, it does not provide any mutant schemata capabilities. Additionally,

it does not provide an automatic way to execute the test suit and calculate the mutation score.

3.2.5 DroidMutator

DroidMutator [20] is an Android Specific mutation tool that was originally presented in 2020.

The tool is public, and the last development at the time of writing was in November of 2020 9.

DroidMutator is composed of three separate components. The first is the mutator component that

uses a JavaParser to parse each source file into an AST. The mutations are applied only in feasible

mutation locations. The second component is a Builder that has the responsibility to compile

the mutant. The last component is the Launcher, which is responsible for executing the tests.

DroidMutator does not implement any cost-reduction technique besides trying to reduce stillborn

mutants.

3.2.6 BacterioWeb V2

BacterioWeb V2 [27] is one of the latest Android mutation tools that was proposed on June 2021.

It is originally based on BacterioWeb v.1 which was released in 2017 [40]. Its main focus is to

optimise mutation testing in Android applications. It was developed with distributed computing

in mind, as it supports multiple executions in different machines. It also implements selective

and sampling mutation, parallel generation of mutants and mutant schemata. Additionally, the

8https://gitlab.com/SEMERU-Code-Public/Android/Mutation/MDroidPlus
9https://github.com/SQS-JLiu/DroidMutator

https://gitlab.com/SEMERU-Code-Public/Android/Mutation/MDroidPlus
https://github.com/SQS-JLiu/DroidMutator

3.3 Summary 21

test execution can be executed on multiple devices at the same time, as the tool manages parallel

execution of tests.

3.3 Summary

Upon analysing the aforementioned mutation tools, it became evident that the Java specific tools

did incorporate more cost reduction techniques compared to the Android-specific tools. Most Java

specific tools did implement the mutation on a byte code level, while the majority of the Android-

specific ones focused on implementing the mutations on the AST. Additionally, multiple Java

specific tools did offer some sort of equivalent mutant detection, while no Android-specific tool

provided this feature. Furthermore, it was possible to verify that there are Java mutation tools like

PIT that do have daily updates with an open-source community, while the majority of Android-

specific tools lack updates, integration in the software development process, documentation and

support.

22 Mutation Testing Tools

Chapter 4

Mutation Testing Methodology

This chapter starts by presenting the traditional methodology commonly followed when executing

mutation testing. This methodology is considered the baseline for comparison. Building upon the

foundation of the traditional methodology, the chapter then proceeds to the presentation of the two

proposed methodologies that were developed in the scope of this research work. Both proposed

methodologies present alternative strategies to improve the efficiency of mutation testing.

4.1 Traditional Methodology

Mutation testing has generated interest in the scientific community for over two decades, and the

conventional mutation process as described by Pradeep Singh et. all[3] can be seen in figure 4.1.

The traditional process starts with the original program P. Through the application of the muta-

tion operators, the mutants P’ are generated. Subsequently, a test set T is executed on the original

program P, to evaluate its correctness. If P is incorrect or if issues are identified, the necessary

fixes are implemented, with the process starting all over again. If P is correct, the test set is then

executed against all the live mutants P’. If all mutants are killed by the test set, the execution con-

cludes. Otherwise, if any mutants survive, equivalent mutants should be analysed and the need

for additional tests should be evaluated before executing the test set against the remaining live

mutants.

This process can be time-consuming, especially when considering the time required for the

compilation and test execution of each mutant. To better illustrate this, let us consider a program

P that has a test suit that takes 5 minutes to execute, and let us assume that the program takes 1

minute to compile. Now, let us apply 500 mutations to program P. The total time in the traditional

way is given by the time to execute the test suit in all mutants, 500×5min = 2500min, plus the

time of the compilation of the 500 mutants, 500×1min. This results in a total time of 3000min, or

50 hours, which is highly undesirable. This, however, does not consider the generation time for

each mutant, which is also noticeable, as seen in chapter 6. Some tools try to tackle this problem

23

24 Mutation Testing Methodology

Figure 4.1: Conventional Mutation Process described by Pradeep Singh et. all[3]

by applying mutations to the compiled code, but as seen in 2.2 there are several drawback of this

approach.

The cost of mutation testing is even more noticeable in Android. The Android-specific build

process is more complex that the traditional Java applications, as all resources need to be pack-

aged in an Android Application Pack (APK). Additionally, Android applications include several

resources like XML files, images and layouts that need to be processed in order to build the APK.

Furthermore, android-specific libraries like the ones from the Android Software Development Kit

(SDK) need to be processed. All of these steps add up to the compilation time. The test execution

is different in Android compared to traditional Java projects. In Java, there are unit tests that are

responsible for testing small, specific parts of the code. Android has unit tests but also has Instru-

mented tests. These tests are specific to Android apps and require an emulator or an actual device

to be executed, as they test Android-specific features.

4.2 Proposed Methodology

This research work proposes two different approaches for mutation testing. The first approach

improves the application of mutant schemata to Java projects that use both Maven and Gradle as

build systems in a way that the mutation operator is independent of the schemata implementation.

This also includes Android applications written in java that use Gradle and Maven. The second

approach targets applying mutations only to the different parts of the code instead of the traditional

application to the entire project. Both proposed methodologies will be described in detail below.

4.2 Proposed Methodology 25

4.2.1 Mutant Schemata

The first proposed methodology suggests a novel approach to apply mutant schemata in a way that

is independent of the mutation operator used. In this approach, the mutation operator responsibil-

ity is to alter the AST, without being aware of whether traditional or schemata-based mutations

are being employed. This allows mutation operators to be applied as mutant schemata operators

that have not been done until this point. The process of creating the mutant schemata involves

consolidating all mutants into a single mutant. The execution is then controlled through a pa-

rameter as explained in 2.3.3.3. This way we aim to reduce the compilation time substantially in

Java projects that use Maven or Gradle. Additionally, it is expected that the implementation of the

Schemata is abstract from the mutant operator, meaning that this way, any operator could be easily

implemented, as it only needs to perform the code mutation and is not responsible for creating the

schemata.

It was decided that to achieve this, the mutations would have to be implemented on the AST.

This way, the implementation of the mutant schemata would be easier as byte-code transformations

were not necessary. The process would consist of the following steps:

1. Search the AST to store the points on where the mutations will be applied.

2. Apply each mutation to the origin code in the schemata form to the AST.

3. Convert from the AST to Java code.

4. Compile the created project.

5. Execute the tests n times for the n mutations generated.

Even though this proposed methodology does not apply the mutation on the byte code level,

we would have only to compile once, independently from the number of mutants generated, as all

mutants would be aggregated in a single project. Although the process consists on the same steps,

there are some differences between the implementation from the mutant schemata on Java projects

that use Maven or Gradle. All the differences will be detailed in section 5.4.

4.2.2 Application of Mutations Only to the Changed Part of the Code

The second proposed methodology uses Git versioning to identify what files to mutate. Currently,

many companies use Git in software development. Git is a distributed version control system for

tracking source code changes and it allows multiple developers to collaborate in the same code

base by providing different branches for independent development. It also provides mechanisms

for merging those branches and resolving the conflicts that arise when doing so. In general terms,

Git is used for code management, version control and collaboration between developers.

Software, throughout its life, undergoes continuous updates and improvements. Usually, dif-

ferent versions are produced when introducing new features, security updates and optimisations.

26 Mutation Testing Methodology

Each change represents a new version of the application or project that must also be tested. Until

this point, mutation testing does not consider this evaluation of the software projects.

Even though significant efforts have been made to reduce the cost of mutation testing, each

time that there is a new release, there would exist equal mutations to parts of the code that did not

change. This requires additional time to compile, test and analyse equivalent mutants. A simple

example of this would be a project with 500 Java files that generated 3000 mutants. If only a slight

change was made to a single file, all the mutations would have to be repeated to all files. Then, all

the tests would have to be made on all the generated mutants. This is a significant problem that is

correlated with mutation testing still not being widely adopted in the industry.

The proposed approach intends to remove duplicate mutants through the different versions of

the applications by only applying mutations to the changed files. We consider that only applying

mutation testing to the changed files would bring the benefit of reducing the number of mutants

without reducing the number of detected faults on the test suit. This will also significantly reduce

the cost of mutation testing, as only changed files will result in mutations instead of the entire

project. The detailed implementation is explained in further detail in section 5.3.

Chapter 5

Framework Proposal

This chapter starts by presenting a source-to-source compilation Framework called Lara and its

APIs. This framework facilitated the creation of the mutated projects. Then, we present the devel-

oped tool architecture and data models as well as all the decisions made during its development,

including the tool’s integration with Git. Moving forward, we present the step-by-step process of

applying mutations to both traditional Java projects and the Java Android project. Finlay, we em-

phasize the implementation of the automatic execution of the test suite on traditional Java projects

and on Java Android projects.

5.1 Introduction

The main goal of this research work is to develop a cost-reduction approach to mutation testing.

The focus is not only on traditional Java projects that use Maven or Gradle as build systems

but also on Java Android applications, where the mutation testing cost is much more noticeable.

The objective is to compare the efficiency of the proposed solutions that tackle cost reduction in

different environments. Furthermore, another challenge that is going to be addressed is the fact

that most tools have limited or no integration into the software development pipeline 3.3. This will

be overcome with the developed tool, which can integrate with GIT, a free, open-source distributed

version control system.

5.1.1 LARA Framework

LARA is a framework for source-to-source compilation developed in Faculdade de Engenharia

da Universidade do Porto (FEUP). It provides tools for building that apply source-code analyses

and transformations described as JavaScript scripts. Currently, there are several LARA compilers,

27

28 Framework Proposal

Clava1 for C/C++, MATISSE2 for Matlab and Kadabra3 for Java (that will be used in this research

work).

The architecture consists of three main Java components, the LARA Engine, the Weaving En-

gine and the source-to-source compiler 5.1. In the case of Kadabra, it uses Spoon as the source-to-

source compiler. Spoon is an open-source library that allows developers to write their own source

code analysis by generating a metamodel representative of the origin code [32]. The LARA En-

gine interprets and executes LARA scripts written in JavaScript. The Weaving Engine connects the

LARA scripts and the source-to-source compiler, which is responsible for parsing, transforming

and generating the target source code [34].

Figure 5.1: LARA Framework Architecture [34]

The LARA Framework represents each AST node as a joinpoint, which works as a common

interface wrapped around the particular node. Each LARA compiler uses different AST nodes

from different libraries but similar join points which share the same base interface. All types

from the original code, like classes, methods, statements or expressions, are encapsulated in this

representation. LARA offers a wide range of functions and APIs that allow analysing and changing

the AST. These capabilities include the insertion and deletion of code, among other functionalities.

The APIs used were the following:

• lara.Io: This API was used to handle operations of input and output on files. It encloses

functions like copyFolder(), writeFile(), getSeparator() and getFiles() that were used.

• lara.Strings: This API was used to handle operations with strings. It encloses functions

like uuid(), toJson(),

• lara.mutation.Mutator: This API was used to handle mutation operators. The detailed

implementation can be seen in 5.1.2.

• weaver.Query: This API was used to handle querying the AST, as it provides methods for

selecting joinpoints.

1https://specs.fe.up.pt/tools/clava/
2https://specs.fe.up.pt/tools/matisse/
3https://specs.fe.up.pt/tools/kadabra/

https://specs.fe.up.pt/tools/clava/
https://specs.fe.up.pt/tools/matisse/
https://specs.fe.up.pt/tools/kadabra/

5.2 Tool Design 29

• weaver.Weaver: This API was used to handle parallel instances of LARA environments. It

encloses functions like runParallel() and writeCode().

• weaver.Script: This API was used to handle parallel instances of LARA environments,

allowing one to combine the results of all instances into just one.

5.1.2 Mutator API

The Mutator API is based on the behaviour design pattern Template Method, which defines a

skeleton of an algorithm for applying a mutation. This strategy allows the subclasses to override

different steps without changing the actual structure of the algorithm. The algorithm for applying

the mutation is composed of the following functions:

• addJp(joinpoint): This function is responsible for adding the given joinpoint to the muta-

tion points list only if the operation can be applied for the given joinpoint. In simpler terms,

if the jointpoint respect the rules defined, it will be stored in the mutation points list.

• getMutationPoint(): This function returns the current list of joinpoints stored to apply the

mutation.

• hasMutations(): This function returns true or false depending on whether the list of muta-

tion points is empty.

• _mutatePrivate(): This function has the responsability of applying the mutation. Depend-

ing on the operator, it has the ability to remove, change or add new code.

• _restorePrivate(): This function is responsible for inverting the process made by the _mu-

tatePrivate(), meaning that it will restore the code to the original code.

With the aforementioned functions described, we can define the algorithm as follows 5.2.

The first is to pass all joinpoints from the AST through the addJp() function, and only the ones

compatible with the mutation operator are added to the mutation points list. Secondly, it is verified

the presence of any joinpoints in the list. If any is present, the call to the function that applies

the mutation can be made, consequently changing the AST to conform with the defined in the

_mutatePrivate() function. Also, the joinpoint where the mutation was applied will be removed

from the mutation points list. Finally, the restore function can be called to restore the AST to its

original format and move on to the next existing join point.

5.2 Tool Design

Having in mind that the LARA Framework already had a way of implementing mutations and

manipulating the AST, it became evident that the tool would have to be built with the integration

of LARA in mind. As the purpose of this research work is not to implement a source-to-source

compilation tool that is controlled by LARA, it was clear that the developed tool would have

30 Framework Proposal

Figure 5.2: Mutation Algorithm from LARA Mutator API

integration with Kadabra. Additionally, the tool needed to have Git integration with a web-hosting

service like GitHub or GitLab and a way to execute tests in the different Java projets that use

Maven or Gradle.

It was decided to create a backend application that could be easily deployed. To achieve this,

Java Spring Boot was used. Java Spring Boot is an open-source Java-based framework that allows

the creation of simple backend and front-end applications. It offers a dependency injection feature

that lets objects define their own dependencies. This allows the creation of modular applications.

This backend would have to use a database to store the information of the projects and from the

test executions. We choose PostgreSQL, an open-source object-relational database, due to its

simplicity of working with and deploying.

In figure 5.3, it is possible to verify the architecture of the build tool. It was created a backend

that uses HTTP requests that can be called by clients. As the purpose of this research work was

to focus on the cost reduction techniques, it was not developed a front-end that would integrate

with the tool. Instead, all the tests made to the tool were made by Postman, an API platform for

building and using APIs that allow to simulate a client making HTTP requests to the backend.

The tool was developed using a layered architecture composed of four elements, the presen-

tation layer, the business or service layer, the persistence layer and the database layer. Each layer

responsibility is as follows:

• Presentation Layer: This layer is constituted by all controller classes. They have the

5.2 Tool Design 31

Figure 5.3: Tool Developed Architecture

responsibility of handling HTTP requests and the translation of the JSON parameters to

objects.

• Business Layer or Service Layer: This layer is where all business logic is present. In our

case, all the logic of generating the mutations, compiling the projects and executing the tests

is present. Additionally, the integration with Kadabra and Git was made in this layer, as well

as the communication with the Android emulators.

• Persistence Layer: This layer is constituted by all the models and repository classes. This

layer contains all the storage logic and the capability of translating business objects from

and to the database layer.

• Database Layer: This layer is the actual database in which all the create, read, update and

delete (CRUD) operations are done.

This layered architecture brings isolation of responsibilities by dividing the application into

different layers, each with a well-defined responsibility. Also, promotes modularity between com-

ponents, makes easier the process of developing and modifying each layer.

32 Framework Proposal

5.2.1 Data Model

With the definition of the architecture of the application, the design of the data model took place.

First, all the main entities that were part of the system were identified. Then the attributes of each

one were defined. Finally, we established all the relationships and defined the constrains. The data

model can be seen in figure 5.4

Figure 5.4: Data Model of the developed tool

Starting with the Project entity that can represent a Java project that uses Maven or Gradle

build system, that can be a traditional java application or an Android application. It is composed

of nine attributes, an identification (id), a web-hosting URL (projectUrl), a local path on the disk

(projectPath), a project name (projectName), an identification of the type of build tool and type

of project (traditional or Android), two test folders (testFolder that contains the relative path for

the unit tests and androidTestFolder that contains the path for the Android instrumented tests) and

a relative path of the build folder (buildFoder). A project can also have different versions (Pro-

jectVersions). The ProjectVersions entity represents the different versions of an application that are

present in the Git version system. It has three attributes, an identification (id), a version that rep-

resents each release of a project (version) and the branch of that version to be used (branch). The

entity ProjectVersions can have multiple ProjectMutantGeneration entities. This entity represents

the generation of a mutated version of a certain ProjectVersion. A ProjectMutantGeneration has

four attributes, an identification (id), a mutation generation type (mutationGenerationType) that

5.3 Git Integration 33

represents the different strategies that are used to create the mutated project (e.g. traditional muta-

tion or mutant schemata), a mutation generation time (that represents the total time of creating the

copy of the project and applying the mutations) and a name that represents the mutant generation

(projectExecutionName). A ProjectMutantGeneration entity is related to the MutationOperator

(in a many-to-many relationship) and the ProjectTestExecution (in a one-to-many relationship).

The MutationOperator entity represents the mutation operators (e.g. Arithmetic Operator, Re-

lational Operator or Assignment Operator). Its only attributes are an identification (id) and a name

(operator). A MutantionOperator is also related to the MutationOperatorArgument entity by a

one-to-many relationship. MutationOperatorArgument also contains two attributes, an identifica-

tion (id) and an argument (mutationOperatorArgument). This way, we could represent operators

that receive arguments in order to perform the mutation (e.g. the Arithmetic operator needs two

arguments, the one that is the original operator "+" and the replacing operator "-", representing the

substitution of a sum of two elements for a subtraction).

The ProjectTestExecution entity represents a test execution from a ProjectMutantGeneration.

It has eight attributes, an identification (id), the test execution time (testExecutionTime) and the

total elapsed time (elapsedTime), two fields that represents if the result project compiles (failed-

Compilation) and if it has failed tests (failedTests), the original code line that was mutated (mu-

tationLine), the project file that was mutated (mutationFilePath) and the mutation identifier (mu-

tantId). The elapsed time represents all the time needed for test execution. It is the sum of the

test execution time plus the time to build, compile and deploy the project if needed. A ProjectTes-

tExecution is related to itself by a recursive one-to-many relationship. This decision was made as

when mutations are applied, several test executions need to be made. This way, we can aggregate

the test execution time and total elapsed time of each individual execution on a parent entity. A

more detailed description will be given in section 5.6.

Finally, three more entities, the TestPackage, TestClass and TestUnit, combined, represent

each unit test. The TestPackage contains only two attributes, an identification (id) and the package

name of the test (packageName). It is related to the TestClass by a one-to-many relationship.

The entity TestClass also has only two attributes, an identification (id) and the class name of the

test (className). It is related to the TestUnit by a one-to-many relationship. The entity TestUnit

contained five attributes, an identification (id), the unit test name (unitTestName), the particular

test execution time (testExecutionTime) and two more attributes that represent if a test was skipped

(skipped) or if it failed (failed).

5.3 Git Integration

The integration of Git into the application would be a complex task if started from scratch. This

integration was a critical part of the methodology proposed in 4.2.2, and requires the collection of

information like the different versions of an application and the changes made to each individual

34 Framework Proposal

file of each version. To simplify this integration, the decision to use Jgit was made. Jgit is an open-

source library developed by the Eclipse Foundation that provides several functions that simplify

the integration with Git. This integration simplified the creation of the following functions:

The code can be seen in our public repository 4

• cloneRepo(): This function allows to clone a repository. It is used when a new project is

added to the application.

• getVersionHistory(): This function collects all the versions from a repository. It is called

when there is a need to create or update the versions of a Project in our database.

• updateCurrentVersion(): This function updates the local copy of the repository to a given

version of the application.

• getChangedFiles(): This function returns all the different files between two different ver-

sions. It is used when the user chooses to use Git to apply mutations to only changed files.

5.4 Mutant Generation

The generation of the mutations plays a crucial role in the mutation testing process. It requires

the execution of each mutation operator at every relevant point within the AST. Depending on

the project complexity, this can be time-consuming, especially in projects with large code bases.

Recognising this, it was decided to optimise the generation process. We would only generate the

AST for each Java file instead of generating the complete AST for the entire project. This way,

we could parallelise the mutation execution process by executing multiple threads, each one with

an independent Lara environment, that would apply the mutation to the AST of the corresponding

file (figure 5.5). To achieve this, it was necessary to divide responsibilities. The application is

responsible for receiving the user-provided information, processing it and forwarding it to the main

LARA environment. Them depending on the information received, the main LARA environment

instantiates a new LARA environment, in a new thread, for each Java file. Each instantiated

environment then exclusively focuses on mutating its corresponding file.

The application receives its information from an HTTP request, which is then processed and

passed into the main Lara environment. This information that goes into the main LARA environ-

ment is passed as arguments using the JSON format. In this information, it is included what type

of mutation and what mutation operators are going to be applied, what project is to apply the mu-

tations and what is its path in the file system, and what paths of the project should not be applied

mutations (mutations should not be applied to test java files). In the main Lara environment, there

is a collection of all the Java files that are going through the process of mutation with all of this

information. A list is generated, with each position containing a Java file and the corresponding

arguments necessary for instantiating the new LARA environment. This list is then passed into

4https://github.com/specs-feup/mutation-testing-v2/blob/main/Mutation_Testing_
Backend/src/main/java/org/feup/Mutation_Testing_Backend_Final/Helper/Githelper.java

https://github.com/specs-feup/mutation-testing-v2/blob/main/Mutation_Testing_Backend/src/main/java/org/feup/Mutation_Testing_Backend_Final/Helper/Githelper.java
https://github.com/specs-feup/mutation-testing-v2/blob/main/Mutation_Testing_Backend/src/main/java/org/feup/Mutation_Testing_Backend_Final/Helper/Githelper.java

5.4 Mutant Generation 35

Figure 5.5: Parallel execution of the different LARA Environments

the function runParallel() from the Weaver API, which generates a thread pool, with each thread

being a separate Lara environment that can access only the AST for its corresponding Java file.

The code can be seen in appendix A.1.

The application is also responsible for generating a unique identifier for the mutation exe-

cution. This unique identifier is always the combination of the project name and a Universally

Unique Identifier (UUID). For example, for a project named java-jwt, the resulting unique identi-

fier will be similar to java-jwt817c563b_366a_4e80_b5ec_dd7ea62104a7. This unique identifier

is used to name the folder on the file system for the result of the mutation execution. This value is

passed into the main LARA environment, and depending on whether it is being applied to mutant

schemata or traditional mutation, it may or may not be responsible for generating code.

When using mutant schemata, the main LARA environment creates a copy of the entire project

into a folder with the generated identifier. Then, if any mutation is applied, each executing

LARA environment overrides its corresponding file (that will contain all the mutations using the

schemata format). Considering the example before, at the end of the execution, the folder java-

jwt817c563b_366a_4e80_b5ec_dd7ea62104a7 has only the resulting project files, and each file

has the corresponding mutations applied. The resulting structure can be seen in figure 5.6.

When using traditional mutation, the main LARA environment does not make any copy of the

original project. Instead, that responsibility is moved into each launched environment. When a

mutation point is detected, an entire copy of the project is made into a new folder inside the muta-

tion execution folder. That new folder is always the combination of the mutant operation name plus

the filename where the mutation was applied and a new UUID. Considering once again the above

example and considering that the mutation operator binary was applied to the Main.java file result-

36 Framework Proposal

Figure 5.6: File Structure of Result Mutant Schemata Project

ing in only one mutation. Inside the java-jwt817c563b_366a_4e80_b5ec_dd7ea62104a7 folder

would be created a new folder binaryMutator_Main_855c8349_4c65_4021_843a_5a4aa68cc8bb

where only one file would be different from the original project. That file would be, in this case,

the Main.java. The resulting structure can be seen in figure 5.7.

Figure 5.7: File Structure of Result Traditional Mutation Project

At the end of the execution, each thread has to return the mutations applied to the main LARA

environment. This information is composed by the mutation unique identifier, the line where

the mutation was applied, the mutation operator information and the complete file path. The main

LARA environment then groups all the information and sends it back to the developed application,

which stores it in the database. The information is also stored on a file called MutationInfo.json,

on the root of the folder with the resulting mutated code. An example of this code can be seen in

listing 5.1.

5.4 Mutant Generation 37

1 [

2 {

3 "mutantId": "/binaryMutator_Main_855c8349_4c65_4021_843a_5a4aa68cc8bb",

4 "mutantion": {

5 "mutationOperatorArgumentsList": ["+", "-"],

6 "operator": "BinaryMutator",

7 "isAndroidSpecific": false

8 },

9 "mutationLine": 383,

10 "filePath": "lib/src/main/java/com/auth0/jwt/algorithms/Algorithm.java"

11 },

12 {

13 "mutantId": "/binaryMutator_Main_id_6a2c9a9f_4320_49b6_967a_f6c0c617f7aa",

14 "mutantion": {

15 "mutationOperatorArgumentsList": ["+", "*"],

16 "operator": "BinaryMutator",

17 "isAndroidSpecific": false

18 },

19 "mutationLine": 383,

20 "filePath": "lib/src/main/java/com/auth0/jwt/algorithms/Algorithm.java"

21 }

22]

Listing 5.1: Example of the content on the MutationInfo.json file

5.4.1 Classpath Configuration

The division of each Java file of the project into different LARA environments posed a challenge.

Since each LARA environment created operates independently, it became necessary to find a

way to locate and load all the imports, dependencies and classes needed for creating the AST

within each individual thread. Without this loading mechanism, the AST would not be created

correctly, resulting in code that would not compile afterwards. Kadabra already supports setting

the classpath, an environment variable used by the Java Virtual Machine (JVM) that specifies the

location of all the necessary dependencies and classes. These dependencies are then loaded at

runtime.

In Java projects that use Maven, the external dependencies can be obtained by executing the

command mvn dependency:copy-dependencies that resolves all the dependencies. By adding the

following flag, -DoutputDirectory=/dependenciesDirectory, the dependencies would be copied to

the specified folder (in this example, it was chosen the folder dependenciesDirectory).

Gradle, contrary to Maven does not have any built-in function to obtain all the dependencies

into a folder. In Java projects that use Gradle the solution was to create a task named download-

Dependencies that would add this behaviour on the build.gradle file. This task uses the configura-

tions.compileClasspath configuration, which includes all the libraries and dependencies required

38 Framework Proposal

to build and compile the project. With the help of the Gradle wrapper and by executing the com-

mand ./gradlew downloadDependencies all the dependencies are copied to the specified folder in

the form of JAR files. The defined task can be seen below 5.2.

1 task downloadDependencies(type: Copy) {

2 from configurations.compileClasspath

3 into ’/dependenciesDirectory’

4 }

Listing 5.2: Java Gradle downloadDependencies Task

Despite the fact that the majority of Android Applications use Gradle, the process of get-

ting all the dependencies has some differences. Instead of using the configuration configura-

tions.compileClasspath, it was necessary to use the configurations.implementation. This config-

uration is used during the build process to resolve the required libraries, classes, and resources

in the APK. The task is executed in the same way with the help of the Gradle wrapper. All the

dependencies are copied to the specified folder in the form of JAR and AAR files. The defined

task can be seen below 5.3.

1 android {

2 configurations {

3 resolvedImplementation.extendsFrom(implementation).canBeResolved = true

4 }

5

6 task downloadDependencies(type: Copy) {

7 from configurations.resolvedImplementation

8 into ’/dependenciesDirectory’

9 }

10 }

Listing 5.3: Android Gradle downloadDependencies Task

As Kadabra does not currently support AAR files, they must be uncompressed. Finally, the

classpath variable can be defined after having all the dependencies in one folder. All the paths

to all necessary JAR and class files are combined using a semicolon. Even though this process

can be automated, it has some failures, especially on Android applications, requiring resolving

dependencies manually. As the primary focus of this research was not to find all the dependencies

of all classes, the process was simplified as much as possible. It was decided that the user would

be responsible for defining the classpath and passing it to the application when making the request

to apply the mutations. Then the application passes this property into Kadabra.

5.4.2 Mutation Process

The mutation process followed by each individual LARA environment can vary based on the

specific mutation type (traditional or schemata) and the target project (if is a traditional Java ap-

plication that uses Gradle or Maven, or if is an Java Android application that uses Gradle). In the

below sections, all the differences are explained.

5.4 Mutant Generation 39

5.4.2.1 Traditional Mutation

The traditional mutation process remains independent of the build system being used, whether

it’s Maven or Gradle, and is also unaffected by the use of Android-specific Java code. The pro-

cess starts with the call to the method runTreeAndGetMutantsTraditionaly(). This method uses

the function Query.root().descendants from the weaver.Query API to iterate over all the joinpoints

from the AST. Then, for each joinpoint and for all mutant operators that were passed by the main

LARA environment, check if the mutation can be applied or not by calling the method addJp().

At the end of the iteration of the AST, each mutant operator will be storing the corresponding

joinpoints that they can mutate. The next step is the execution of method applyTraditionalMuta-

tion(), which iterates over each mutant operator and checks if it has any mutation points by calling

the method hasMutations(). If the mutant operator has any, the mutation is applied by calling the

method mutate(), which applies the mutation to the AST. Then, the method saveFile() is called to

create a new folder following the naming scheme stated above in figure 5.7. It then proceeds to

duplicate the entire project substituting the original file with the mutated version. At the end of the

copy, the method restore() is called to return the AST to its original form. The process is repeated

for all operators. The code can be seen in appendix A.2.

5.4.2.2 Java Mutant Schemata

The process of creating mutant schemata is similar to whether Java or Android-specific code is

being used and is unaffected by what build system is being used. Our process of implementing

mutant schemata on Java applications uses the if, else if and else control flow statements to differ-

entiate between mutants and the original project. These statements need a Boolean expression to

determine which flow is going to be executed, expressions that differ between on whether Java or

Android-specific code is being used and from the build system. The Java class System.getProperty

was utilised to manage each execution of native Java projects that use Maven or Gradle build sys-

tems. This class allows the storage of information like local system properties and configurations.

Then, we created a property called Mutation Unique Identifier or MUID to control the flow. This

property is then passed during runtime and serves as a control mechanism for each execution.

The mutation process starts with the call to the method runTreeAndApplyMetaMutant(). This

method also uses the function Query.root().descendants to iterate over all joinpoints from the AST.

Opposite to the traditional process, when applying mutant schemata, the mutations are applied

alongside the iteration. For each joinpoint, all mutant operators check if the mutation can be

applied or not by calling the method addJp(), and the number of mutations to be applied is stored in

a variable named mutationPoints. This variable is used to define how many control flow statements

are going to be needed. The first flow statement is always an if statement, and the last is always

an else. Additional else if statements can be added depending on the number of mutations. In a

joinpoint where three mutations are applied, four control statements are going to be needed, one if

statement for the first mutation, two else if for the remaining two mutations and an else statement

for the original code (as evidenced in listing 5.4). The next step is the execution of the method

40 Framework Proposal

hasMutations() for each mutation operator. If the mutant operator has any, the mutation is applied

by calling the method mutate(), and the corresponding control flow statement is inserted. For

each mutation, the control statement is generated with a unique identifier composed of the mutant

operation name plus the filename where the mutation was applied and a newly generated UUID.

Then, the restore() method is called to guarantee that the else statement is always the original

code. In the mutant execution folder generated by the main LARA environment, the mutated file

overrides the original one at the end of the execution. The code can be seen in appendix A.3.

1 if (System.getProperty("MUID") != null && System.getProperty("MUID").equals("

BinaryMutator_JsonNodeClaim_id_02632f92_c118_40c3_87d0_4f4b7de9a7a1"){

2 // Executes Mutant 1

3 }else if (System.getProperty("MUID") != null && System.getProperty("MUID").equals("

BinaryMutator_JsonNodeClaim_id_85c8e255_9340_4394_90b4_7dfb247ab6dc")){

4 // Executes Mutant 2

5 }else if (System.getProperty("MUID") != null && System.getProperty("MUID").equals("

BinaryMutator_JsonNodeClaim_id_ea4b4090_446d_4c4b_be12_c76d85ce7afb"){

6 // Executes Mutant 3

7 }else{

8 // Executes Original Code

9 }

Listing 5.4: Example of the control flow of mutant schemata in a Java Application

This mutant schemata implementation offers the advantage of facilitating code inspection. As

explained in detail in section 2.3.3.3, some implementations can make it challenging to identify

where a mutation was applied and what specific mutation was made. However, in this case, the

original code that was mutated will always reside within the else statement, while each mutation

of that statement will be on the preceding if and else if statements. This clear separation aids in

better understanding and analysis of the applied mutations.

5.4.2.3 Android Mutant Schemata

Two different ways of managing the execution were implemented in Android. The first is through

the use of a buildConfigField. This property is defined on the build.gradle file of the Android

project as evidenced in listing 5.5.When the Android application is built, a new MUID field is

generated in the BuildConfig class with the value obtained from the system.getProperty("MUID").

The APK is then generated and deployed to the Android device. This method improves the com-

pilation process, as only the BuildConfig class needs to be compiled between different mutants.

However, it still requires the newly created APK to be deployed to the device. The code can be

seen in appendix A.4. An example of the resulting expressions on the control flow can be seen in

listing 5.6.

5.4 Mutant Generation 41

1 android {

2 defaultConfig {

3 buildConfigField ’String’, ’MUID’, ’"’ + System.getProperty("MUID") + ’"’

4 }

5 }

Listing 5.5: build.gradle file with buildConfigField

1 if (BuildConfig.MUID != null && BuildConfig.MUID.equals("

FindViewByIdReturnsNullOperatorMutator_PreferencesActivity_id_64b0974"){

2 // Executes Mutant 1

3 }else{

4 // Executes Original Code

5 }

Listing 5.6: Example of the control flow of mutant schemata in an Android Application using the

buildConfigField

Due to the limitations in the implementation of mutant schemata using the buildConfigField

in Android compared to traditional Java applications, a decision was made to introduce a second

type of schemata for Android. The first challenge encountered was that recent Android versions

do not support direct modification of system properties out of the box due to security concerns.

To overcome this obstacle, our testing device was rooted, granting the necessary permissions to

access and modify system properties. The next step was to define a Java function that could get a

system property. That was done with the creation of a new process, which executes the command

getprop MUID. This command obtains the specific value associated with the MUID property. The

created function getMUID() can be seen in listing 5.7.

1 public class PreferencesActivity extends AegisActivity implements

PreferenceFragmentCompat.OnPreferenceStartFragmentCallback {

2 //... remaining code

3

4 @Override

5 protected void onCreate(Bundle savedInstanceState) {

6 if(getMUID().equals("FindViewByIdReturnsNullOperatorMutator_

PreferencesActivity_id_3c1339dd_a398_4204_97d7_e2d4f5933680")){

7 // Mutated Code

8 setSupportActionBar(null);

9 }else{

10 // Original Code

11 setSupportActionBar(findViewById(R.id.toolbar));

12 }

13 }

14

15 // New function getMUID()

16 public static String getMUID() {

17 String propertyValue = null;

18 try {

42 Framework Proposal

19 Process process = Runtime.getRuntime().exec("getprop MUID");

20 InputStream inputStream = process.getInputStream();

21 BufferedReader reader = new BufferedReader(new InputStreamReader(

inputStream));

22 propertyValue = reader.readLine();

23 reader.close();

24 inputStream.close();

25 } catch (IOException e) {

26 Log.e("ERROR", String.valueOf(e));

27 }

28 return propertyValue;

29 }

30 }

Listing 5.7: Example of the control flow of mutant schemata in an Android Application using the

getMUID() function

In order to incorporate this function into the control flow expression, it was required to create

a copy for each mutated file. This was an additional step that was done before overriding the

mutated file. While this implementation may not be considered optimal, it was chosen to ensure

automation. A possible improvement could involve creating a singleton class that encapsulates the

getMUID() function. This class could also serve as a cache, storing the retrieved value and only

executing the process when needed for the first time.

5.5 Mutation Operators

Our goal was to implement mutation operators that would be agnostic to wherever they are be-

ing applied in the mutant schemata format or the traditional. We encountered the problem that

mutation operators that did mutate variable declaration would create code that does not compile.

Considering the example of a binary mutation applied to a variable declaration int a = b + c.

Suppose the declaration of the variable a is inserted inside the control statement. In that case, the

scope is only inside it, and if the variable is used on another part of the program, it will result in a

failed compilation.

One possible solution to this problem is for the mutation operators to consider this case, result-

ing in the function addJp() ignoring joinpoints that included a variable declaration. This solution

would reduce the number of mutations applied when using the schemata, something that was not

wanted.

The solution was to transform the original code, separating the variable declaration from

the variable initialisation. A method implemented by Ana Veiga [41] iterates over the AST

and separates all the variable declarations from the variable initialisations. This method called

changeVarDeclarations() is always called when applying mutant schemata.

5.6 Test Execution 43

1 // Original code

2 int a = b + c

3

4 // Mutant Schemata withoud the changeVarDeclarations()

5 if (System.getProperty("MUID") != null && System.getProperty("MUID").equals("

BinaryMutator_JsonNodeClaim_id_02632f92_c118_40c3_87d0_4f4b7de9a7a1"){

6 int a = b - c; // Mutated code

7 }else{

8 int a = b + c; // Original code

9 }

10

11 // Mutant Schemata with changeVarDeclarations()

12 int a;

13 if (System.getProperty("MUID") != null && System.getProperty("MUID").equals("

BinaryMutator_JsonNodeClaim_id_02632f92_c118_40c3_87d0_4f4b7de9a7a1"){

14 a = b - c; // Mutated code

15 }else{

16 a = b + c; // Original code

17 }

Listing 5.8: Differences between the resulting code with and without the changeVarDeclarations()

method call

Ana Veiga also implemented 14 general-specific operators, 14 Java-specific operators and 25

Android-specific operators. A detailed specification of each mutation operator is available on

[41]. All mutation operators follow the same structure of the Mutator API, with the addition of

2 methods. The method isAndroidSpecific() defines whether the mutation operators are Android-

specific or not. The method toJson() is used to obtain information on the mutation operation

being applied. It returns information like mutator name, mutator arguments and if the mutator is

Android-specific or not.

At this point, implementing the mutation operator Not Serialisable only works in traditional

mutation. This operator selects a serialisable class and removes the "implements Serializable".

This mutation can only be done using traditional mutation, as our implementation of mutant

schemata does not generate syntax-correct code.

5.6 Test Execution

The test execution is an essential step in mutation testing. When done manually, it is a tedious

process, especially in projects that generate many mutants. Currently, our tool only supports the

automatic execution of all tests sequentially. This process followed can have some differences

depending on the type of project that is being used.

In Java Maven projects, a process executes the command mvn surefire-report:report on the

local folder of the mutated project. When mutant schemata is used, it is necessary to add the flag

-DMUID=BinaryMutator_JsonNodeClaim_id_02632f92_c118_40c3_87d0_4f4b7de9a7a1 to set

44 Framework Proposal

Table 5.1: List of Operators - General Specific [41]

Category Operators
General Specific Arithmetic Operator

Bitwise Operator
Comparison Operator
Logical Operator
Assignment Operator
Arithmetic Deletion Operator
Bitwise Deletion Operator
Comparison Deletion Operator
Logical Deletion Operator
Assignment Deletion Operator
Constant Operator
Unary Operators
Unary Logical Negation Operator
Unary Deletion Operators

Table 5.2: List of Operators - Java Specific [41]

Category Operators
Java Specific Constructor Call

Remove Conditional
Non Void Call
Nullify Input Variable
Nullify Return Value
Return Value Operator
Invalid Date
Invalid Method Call Argument
Null Method Call Argument
Not Serializable
Fail On Null
String Argument Replacement
String Call Replacement
Conditional Expression Replacement

the system property MUID with the corresponding mutant to execute. This is automatically done

by the tool, with the information that is already on the database from the generation process. The

surefire report is a Maven plugin that generates a report of the test execution in the project’s build

folder. That report is a combination of XML files with all information about the test execution (e.g.

failed tests, time executing each test, skipped tests). The elapsed time starts counting before the

execution of the command and only stops after the execution finishes. Then, the SurefireReport-

Parser, a XML parser for surefire-reports is used to parse the resulted report files to Java objects.

Finally, the test execution time and the mutation score are calculated, and each test’s information

is persisted in the database.

In Java Gradle projects, the process is similar. The process executes the command ./gradlew

5.6 Test Execution 45

Table 5.3: List of Operators - Android Specific [41]

Category Operators
Android Specific Buggy GUI Listener

Lengthy GUI Listener
Lengthy GUI Creation
Find View By Id Returns Null
View Component Not Visible
Invalid View Focus
Invalid ID FindView
Null Intent
Random Action Intent Definition
Intent Target Replacement
Invalid Key Intent
Null Value Intent PutExtra
Intent Payload Replacement
XML Edit TextWidget Invisible
XML ViewGroup Widget Invisible
XML Button Widget Invisible
XML EditText Widget Deletion
XML Button Widget Deletion
XML TextView Widget Deletion
XML Invalid Color
XML Button Widget Change Appearance
XML EditTex tWidget Change Appearance
XML ViewGroup Widget Change Type
Null Bluetooth Adapter
Null GPS Location

test on the local folder of the mutated project. When using mutant schemata, the flag -DMUID

also needs to be set with the unique identifier of the mutant to be executed. This result of executing

the command is the execution of the tests, with the creation of XML files in the build folder with

the results of the tests. Then, with the help of the package javax.xml all the files are parsed into

Java objects and stored in the database.

The process is more complex on Java Android projects compared to traditional Java projects

due to the two different test suits present. One test suit comprises instrumented tests that ver-

ify the correct behaviour of the UI, and the other comprises the unit tests. Mutations that only

change Android-specific code are only tested with the instrumented tests, and the mutations that

change Java-specific code are only tested with the unit tests. In traditional mutation, only the in-

strumented tests are executed when an Android-specific operator is used. These tests are initiated

by a new process that executes the command ./gradlew connectedAndroidTest on the folder of the

mutated project. When a Java-specific operation is used with traditional mutation, only the unit

tests are executed. To do so, the command ./gradlew test is executed on the folder of the mu-

tated project. On mutant schemata projects that use the buildConfigField, the instrumented tests

are executed with the command ./gradlew connectedAndroidTest and the unit tests are executed

46 Framework Proposal

with the command ./gradlew test, both with the addition of the flag -DMUID. On mutant schemata

using the function getMUID(), the instrumented tests are executed with the command ./gradlew

connectedAndroidTest. Between each execution is created a process that sets the Android device

system property MUID. This property is set with the execution of the command adb shell set-

prop MUID $value with $value being the mutation unique identifier. Finally, with the help of the

package javax.xml all the files from the execution are parsed into Java objects and stored in the

database.

5.7 Application Interaction

In the initial stage of this research work, we intended the implementation of a GUI for the users

to interact with the application. This was not the main focus of this research work, and due to

time constraints, the application in its current state can only be interactive through HTTP requests.

These requests can then be called by a front-end application or by an application like Postman, a

platform for building and using APIs.

It was used Swagger, an open-source framework that provides a set of specifications for build-

ing and documenting REST APIs. It was used the OpenAPI Specification to describe the API. The

API is composed of multiple requests that allow to add, get, update and delete projects, create, get

and delete mutated projects and finally, create, get and delete test executions from projects. All

the requests can be seen in figure 5.8.

Figure 5.8: Tool API Description

Chapter 6

Empirical Evaluation

To ensure a thorough and accurate comparison, we carried out several experiments, each isolating

the maximum number of variables possible. We believe this was the only way to measure the

performance benefit of our tool. Each experience was done using a traditional Java project (that

uses Gradle as its build tool) and an Android application. The criteria for selecting the projects

were the following:

• The project would need to have any development in the last six months and more than 40

versions publicly available.

• The project would need to have a minimum of 50 tests.

• The project would need to have at least 50 Java files.

• The project can not have any tests that fail.

As many applications fit the criteria, two applications were chosen randomly from the list of

possible applications that fit the criteria. The Java project used was java-jwt, which is currently

available on the GitHub1. The project contains 76 Java files totalising 10303 lines of code. The

total number of files is 106, and the original project size is 2696743 bytes (2.7 megabytes). The

number of tests is 676.

The Android project used was Aegis, which is currently available on the GitHub2. The project

contains 218 Java files totalising 19918 lines of code. The total number of files is 474, and the

original project size is 207352086 bytes (207.35 megabytes). The total number of Java-specific

tests is 56, and the total number of Android-specific tests is 23.

Each experiment was divided into two phases. The first phase was the generation of the mu-

tants. The measures taken were the total generation time (in seconds) and the total size (in bytes).

The second phase was the build and testing phase. Here two times were taken, the testing time

1https://github.com/auth0/java-jwt
2https://github.com/beemdevelopment/Aegis

47

https://github.com/auth0/java-jwt
https://github.com/beemdevelopment/Aegis

48 Empirical Evaluation

(time executing all tests in seconds) and the total elapsed time (total time in seconds of the test

execution time plus the time to build, compile and deploy the project if needed plus the time of

setting the system variable MUID if needed).

The experiments were conducted on a single machine with the following specifications: a

Ryzen 5 2600X CPU, 32GB of memory, and Crucial P1 1TB SSD. The operating system was

Ubuntu 22.04.2 LTS. To ensure a correct collection of data, all the background programs were

disabled during the execution, with only the application, the database and the emulator running.

The background programs were disable by executing the command ps to list all processes, and kill

[id] to kill each one.

6.1 Impact of Mutation Operators

To test the impact of different mutation operators, it was decided to isolate each one, and compare

the times of generation of the mutations, the test execution time and the elapsed time. The goal

was to assess how each mutation operator affected the performance.

6.1.1 Impact of Mutation Operators On Java Projects

It was chosen five random Java specific operators from the ones that were implemented, the Con-

structorCallOperatorMutator, the FailOnNullMutator, the RemoveConditionalMutator, the Re-

turnValueMutator and the BinaryMutator. Each operator was generated four times, with two in-

stances using the traditional approach and two using the mutant schemata approach. The average

values were calculated for each approach, and the results are present in the table 6.1.

Table 6.1: Generation Results for Java Operators

Mutation Operator Average
Generation

Time (s)

Average
Generation

Size (bytes)

Average
Number of

Mutants

Type of Gen-
eration

ConstructorCallOperatorMutator 2,038 2.591.517 27 Schemata
FailOnNullMutator 2,061 2.568.916 4 Schemata
RemoveConditionalMutator 2,185 2.633.216 59 Schemata
ReturnValueMutator 1,881 2.587.720 25 Schemata
BinaryMutator 2,022 2.589.327 27 Schemata
ConstructorCallOperatorMutator 6,892 65.049.738 27 Traditional
FailOnNullMutator 2,161 9.771.061 4 Traditional
RemoveConditionalMutator 14,561 245.249.025 59 Traditional
ReturnValueMutator 5,146 60.230.718 25 Traditional
BinaryMutator 8,041 65.039.141 27 Traditional

By analysing the generation time results, it becomes evident that both the average generation

time (figure 6.1) and the average generation size (figure 6.2) in the traditional approach are directly

proportional to the number of mutants created. With the mutant schemata, all generations did have

similar times. Furthermore, it was also observed that the mutation operator had no significant

6.1 Impact of Mutation Operators 49

impact on the generation time or the total size. This was evident as both approaches, using the

ConstructorCallOperatorMutator, ReturnValueMutator and BinaryMutator operators, each with

27, 25 and 27 mutations, respectively, exhibit similar generation times and generation sizes.

Figure 6.1: Generation Time For Each Java Mutation Operator

Figure 6.2: Total Size For Each Java Mutation Operator

At this point, the benefit of adopting the mutant schemata approach became evident. The

generation time was much higher in traditional due to the number of copies needed. Additionally,

it was evident that the speed of the disk played a significant role in the generation process of the

traditional approach. As the traditional approach, for n mutants n copies, are generated, the disk

speed is the bottleneck. The traditional mutation process would have been further prolonged if a

slower-speed disk had been used.

The next step of our experience was to execute the tests for each mutation operator. Each test

execution was done twice and the averages were calculated. The results are present in the table

6.2.

It is possible to verify that even with a limited number of mutations, the execution of tests took

longer when utilizing the mutant schemata (figure 6.3). This can be attributed to the increased

50 Empirical Evaluation

Table 6.2: Test Execution Results

Mutation Operator Average Test
Execution Time

(s)

Average Elapsed
Time (s)

Generation Type

BinaryMutator 6,943 9,806 Schemata
ConstructorCallOperatorMutator 7,041 9,931 Schemata
FailOnNullMutator 7,541 10,690 Schemata
RemoveConditionalMutator 7,257 10,136 Schemata
ReturnValueMutator 7,180 10,053 Schemata
BinaryMutator 6,573 10,859 Traditional
ConstructorCallOperatorMutator 6,951 11,320 Traditional
FailOnNullMutator 7,469 11,788 Traditional
RemoveConditionalMutator 7,018 10,812 Traditional
ReturnValueMutator 7,151 11,536 Traditional

complexity introduced by each control flow statement. However, the mutant schemata imple-

mentation successfully reduced the overall elapsed time, as it eliminated the need for continuous

compilations. It was evident that the execution time of the test suite varied depending on the mu-

tation operator used. The FailOnNullMutator consistently resulted in longer test suite execution

times, while the BinaryMutator proved to be one of the fastest. This difference is attributed to the

impact of the applied mutation on the code behaviour.

Figure 6.3: Average Time for each mutant execution using Traditional Mutation and Mutant
Schemata

It was also analysed the total test suit execution time and the total elapsed time (figure 6.4). In

all cases, an improvement of the total elapsed time was made when applying the mutant schemata

over the traditional mutation. The improvements vary from 6% on the RemoveConditionalMutator

6.1 Impact of Mutation Operators 51

to 12% on the ReturnValueMutator.

Figure 6.4: Execution Times for Java Traditional Mutation and Mutant Schemata

6.1.2 Impact of Mutation Operators On Android Projects

The same experience was also conducted for the Android-Specific mutations. It was chosen five

random operators from the ones that were implemented, the BuggyGUIListenerOperatorMutator,

the LengthyGUICreationOperatorMutator, the NullIntentOperatorMutator and the RandomAc-

tionIntentDefinitionOperatorMutator. Each operator was generated six times, with two instances

using the traditional approach, two instances using the mutant schemata with the buildConfigField

variable and two using the mutant schemata using the method getMUID(). The average values

were calculated for each approach, and the results are present in the table 6.3.

Once again, by analysing the generation time results, it becomes evident that both the average

generation time (figure 6.5) and the average generation size (figure 6.6) in the traditional approach

are directly proportional to the number of mutants created. Furthermore, it was also observed

that the different types of mutant schemata did not significantly impact the generation time or the

generation size.

The next step of our experience was to execute the tests for each mutation operator. The

findings revealed that the mutation operators did not significantly affect the generation time or

size of the generated mutants.

Each test execution was done twice and the averages were calculated. The results are present

in the table 6.4.

52 Empirical Evaluation

Table 6.3: Generation Results for Android Specific Operators

Mutation Operator Average
Genera-

tion Time
(s)

Average
Generation Size

(bytes)

Average
Number

of
Mutants

Type of Genera-
tion

BuggyGUIListenerMutator 172,492 829.415.046 4 Traditional
LengthyGUICreationMutator 132,833 414.708.217 2 Traditional
NullIntentMutator 147,549 829.415.810 4 Traditional
RandomActionIntentDefinitionMutator 232,636 2.280.893.958 11 Traditional
Mutator 128,646 207.431.292 4 getMUID()
LengthyGUICreationMutator 132,810 207.429.919 2 getMUID()
NullIntentMutator 131,875 207.430.645 4 getMUID()
RandomActionIntentDefinitionMutator 136,322 207.435.163 11 getMUID()
BuggyGUIListenerMutator 131,044 207.364.875 4 buildConfigField
LengthyGUICreationMutator 126,533 207.363.432 2 buildConfigField
NullIntentMutator 135,227 207.364.228 4 buildConfigField
RandomActionIntentDefinitionMutator 139,461 207.368.991 11 buildConfigField

Figure 6.5: Generation Time For each Android Mutation Operator

It was possible to verify that the mutant schemata implementation with the getMUID() method

was better than using the traditional mutation or schemata with the buildConfigField (figure 6.7).

It is also possible to verify that buildConfigField schemata is better than the traditional. The actual

test execution time is similar across all three generation types. it was observed that the advantage

of using mutant schemata was only during the deployment of the test execution. However, in all

cases, it was the test execution that did take most of the time.

6.1.3 Summary

This experiment provided insights to address RQ4. It was possible to verify that the mutation

operators do not impact the generation time or size but do impact the time executing the tests and

subsequently impact the elapsed time.

6.2 Impact of Mutant Schemata 53

Figure 6.6: Total Size For Each Android Mutation Operator

Table 6.4: Test Execution Results Android

Mutation Operator Test
Execution

Time (s)

Elapsed Time
(s)

Generation Type

BuggyGUIListenerMutator 650,578 836,995 getMUID()
LengthyGUICreationMutator 343,623 434,141 getMUID()
NullIntentMutator 643,442 809,210 getMUID()
RandomActionIntentDefinitionMutator 1.785,988 2196,501 getMUID()
BuggyGUIListenerMutator 649,545 856,374 buildConfigField
LengthyGUICreationMutator 446,573 540,191 buildConfigField
NullIntent 643,204 827,784 buildConfigField
RandomActionIntentDefinitionMutator 1.781,463 2272,726 buildConfigField
BuggyGUIListenerMutator 649,372 864,317 Traditional
LengthyGUICreationMutator 446,211 548,790 Traditional
NullIntentMutator 645,727 853,733 Traditional
RandomActionIntentDefinitionMutator 1.775,061 2323,165 Traditional

By analysing the experiment results, it became evident that some mutation operators intro-

duced code variations that required additional time to execute the tests. The execution time of the

tests varies due to the changes induced by the mutation operator.

As a result, the overall elapsed time was also influenced by the choice of mutation operators. It

was observed that certain mutation operators led to longer execution times for the tests compared

to others.

6.2 Impact of Mutant Schemata

A thorough examination was conducted to assess the benefits of mutant schemata to analyse how

the number of mutations applied would affect the performance. Different mutations were applied,

54 Empirical Evaluation

Figure 6.7: Execution Times for Android Traditional Mutation and Mutant Schemata

but only the original code was tested. This approach was chosen to assess the performance degra-

dation caused by each control flow statement of the mutant schemata. In the initial experiment, it

became evident that the mutation operators impacted the test execution times. Executing the mu-

tated code could result in different program flows compared to the original version, limiting the

ability to accurately evaluate the actual performance of the mutant schemata with the increasing

number of mutations. By simply testing the original code, it was possible to isolate the influence

of the mutation operators, providing a better assessment of the performance benefits of the mutant

schemata.

6.2.1 Impact of Mutant Schemata on a Java Application

It was chosen random operators to generate four mutant schemata projects with different number

of mutations. The tests were executed three time for each mutant schemata and the average values

were calculated for each one. The results are present in the table 6.5.

Through the analysis, it was possible to verify that the execution time of the tests increased

proportionally with the number of mutations applied (figure 6.8). This is an expected behavior, as

increasing the number of mutations introduces more control flow statements, resulting in a slower

test execution. In the particular case of the mutant schemata with 498 mutations, the tests executed

6.6% slower compared to with the original project.

6.2 Impact of Mutant Schemata 55

Table 6.5: Schemata Performance Degradation in Java

Number of Mutations Total Test Execution Time (s) Total Elapsed Time (s)
498 7.473 10.563
291 7.263 10.239
237 7.192 10.152
136 7.153 10.147

0 7.010 10.081

Figure 6.8: Total Execution and Elapsed Time for the Different Mutant Schemata Projects

6.2.2 Impact of Mutant Schemata on an Android Application

It was chosen random operators to generate six mutant schemata projects, three using the get-

MUID() and three using the buildConfigField with different number of mutations. Both the unit

tests and the instrumental tests were executed three time for each mutant schemata and the average

values were calculated. The results are present in the table 6.6.

Table 6.6: Schemata Performance Degradation in Android

Number of
Mutations

Generation Type Unit Test
Execution

Time (s)

Android Test
Execution Time

(s)

Total Elapsed
Time (s)

431 buildConfigField 200.130 201.04 463.258
238 buildConfigField 16.218 173.080 238.058
130 buildConfigField 15.315 167.420 227.087
431 getMUID() 199.660 200.910 455.468
238 getMUID() 15.550 162.400 231.245
130 getMUID() 14.778 162.470 221.488
0 Original 14.318 153.320 210.182

Contrary to the linear increase of time verified on the Java application 6.2.1, the time to exe-

cute unit tests on Android increased exponentially in both versions of mutant schemata (figure 6.9)

only on the unit tests. This was not expected and required a deeper analysis. The first step was to

detect where the mutations were being applied. To our surprise, the total number of mutations on

56 Empirical Evaluation

the file Salsa20Engine.java was 196. Inside the file is present a method salsaCore() that imple-

ments the algorithm Salsa20. All of the mutations were inside of the for loop. This resulted in a

significant reduction of performance on the algorithm and, subsequently, a considerable increase

in time to execute the unit tests. The only unit tests affected were the testTrailingNullCollision

and vectorsMatch that executed the method salsaCore(), taking a total of 187 seconds to execute.

Additionally, it was possible to verify that the test execution of Android Instrumented tests

also increased with the number of mutants present in the schemata.

Figure 6.9: Total Test Execution Times and Elapsed Times for the Different Mutant Schemata
Projects in Android

6.3 Impact of Git Versioning Reduction 57

6.2.3 Summary

This experiment provided insights to address RQ5. These insights provide empirical evidence of

the correlation between the number of mutations and the performance of tests, indicating that an

increased number of mutations within the same project leads to slower test execution time.

Consequently, a threshold exists beyond which mutant schemata is no longer the optimal

choice. This threshold is reached when the performance decrease caused by the high number

of mutations exceeds the time required to compile and deploy the test execution.

The point at which this threshold is crossed depends on various factors, including the project’s

complexity, the number of tests, the time taken to execute the tests, and the compilation time.

6.3 Impact of Git Versioning Reduction

We conducted an experiment to assess the advantages of applying mutations exclusively to the

changed files between Git versions. This experiment was conducted on the Aegis Android appli-

cation using six distinct releases. For each version, we collected the total number of files, the total

number of Java files, the total number of changed files compared to the previous versions, and the

total number of changed Java files compared to the previous versions. This information can be

seen in table 6.7.

Table 6.7: File Metrics From Different Versions of Aegis

Version Total Number
of Files

Total Number
of Java Files

Total Number
of Changed

Files

Total Number
of Changed

Java Files
v2.0.2 464 178 46 10
v2.0.3 466 178 7 2
v2.1 530 211 237 126

v2.1.1 535 215 107 50
v2.1.2 535 215 15 1
v2.1.3 538 216 51 5

By examining the collected metrics, we can observe the evolution of the Android project across

different versions. The variations in the number of changed files indicate the degree of modifica-

tion and potential focus areas for mutation testing. We verified that only version v2.1 of Aegis

introduced significant changes in files, with more than 50% of Java files changing. Then, we pro-

ceeded to apply the mutations to both the entire project and to only the changed files. In both cases,

it was used the mutant schemata with the getMUID() implementation. The mutations were applied

with 3 different operators, the RandomActionIntentDefinitionMutator, BuggyGUIListenerMutator

and the BinaryMutator. The results of applying the Git improvement are present in table 6.8 and

the results of appliying to the entire project are present in table 6.9.

One notable observation is the consistent number of mutants, which remains at 442 through-

out the traditional approach of applying mutations to the entire project. This occurrence can be

58 Empirical Evaluation

Table 6.8: Generation Metrics of Mutant Schemata with Git Improvement

Version Total Number
of Mutations

Total Generation
Time (s)

v2.0.2 3 26,212
v2.0.3 0 20,478
v2.1 336 50,911

v2.1.1 2 35,310
v2.1.2 0 20,940
v2.1.3 0 22,699

Table 6.9: Generation Metrics of Mutant Schemata Without Git Improvement

Version Total Number
of Mutations

Total Generation
Time (s)

v2.0.2 442 133,382
v2.0.3 442 118,919
v2.1 442 130,186

v2.1.1 442 118,179
v2.1.2 442 120,155
v2.1.3 442 119,739

attributed to the mutation operators employed, as they did not generate any additional mutations

in the modified code between versions. As a result, almost all of the 442 mutants are equal in

the different versions of Aegis. Our approach aims to reduce this number of duplicated mutants.

However, it does not eliminate them entirely. This limitation arises from applying mutations to all

changed files rather than solely focusing on the changed code. Only when applying mutations to

the changed code will ensure that each mutant is unique.

It is also possible to verify that the traditional way of applying mutations to the entire project

creates a much higher number of mutants than only applying to the changed files. If mutation

testing was applied to all versions of Aegis, a total number of 2652 mutants would be created.

When applying mutation to only the changed files, that number reduces to 341 mutants. This

represents a reduction of 87% in the number of mutants. Considering that the tests also would

need to be executed 2652 times, it would not be feasible the execution of mutation testing in the

context of an evolving software project.

To address RQ6, our findings suggest that we maintain the effectiveness of fault detection

when applying mutation testing exclusively to the changed parts of the code. This approach results

in a significant reduction of duplicated mutants between versions.

Chapter 7

Conclusions and Future Work

Even though the benefits of mutation testing have already been shown, it is still not widely adopted

in the software industry due to the high computational cost. A high number of changes that

simulate defects can be applied, and subsequently, many test executions need to be executed to

detect those changes. In the case of Android applications, the computational cost associated with

mutation testing is further magnified. In traditional mutation testing, every Android-specific code

change requires generating a new APK that needs to be deployed on a device to execute the tests.

This challenge highlights the need for efficient strategies that mitigate the computational cost

associated with mutation testing on Android applications.

During this research, we conducted a comprehensive literature review on the significant tech-

niques that reduce the cost of mutation testing in both Java traditional projects and Java Android

projects. Some techniques try reducing the number of mutants while maintaining the same muta-

tion score. This is the case of mutant sampling, mutant clustering, selective mutation and high-

order mutation. Mutation testing also can create mutants that are semantically different from the

original program but maintain the same behaviour. This detection typically needs to be done man-

ually by the tester. It was also possible to verify strategies that tackle this problem. Finally, it was

observed that specific strategies aim to reduce the cost of mutation testing by optimising the mu-

tant execution process. This is the case of strong, weak, and firm mutation, run-time optimisation

techniques, and mutant schemata.

After the comprehensive literature review, we analysed existing mutation tools. It became

evident that Java-specific tools incorporated more cost-reduction techniques than Android-specific

tools. Java-specific tools primarily operated at the byte code level, while Android-specific tools

focused on the AST. Some Java tools offered equivalent mutant detection, while no Android tool

provided this feature. Most Android tools lacked updates, integration, documentation, and support.

Following the analysis of the tools, we present two innovative approaches to mutation testing.

The first approach suggests the independent application of mutation operators, where they alter

the AST without knowing whether traditional or schemata-based mutations are being employed.

59

60 Conclusions and Future Work

The second approach addresses the fact that software undergoes continuous updates and improve-

ments, resulting in different versions that require testing. Despite efforts to reduce the cost of

mutation testing, each new release generates equal mutations for unchanged code, requiring ad-

ditional compilation, testing, and analysis time. Our approach utilises Git versioning to identify

what files should be mutated.

Finally, we presented the developed tool, outlining the architectural decisions made. We dis-

cussed its integration with Kadabra and Git, highlighting the version control capabilities. The tool

incorporates various cost reduction techniques, including selective mutation, mutant schemata,

and parallelization aimed at improving the efficiency and effectiveness of mutation testing.

7.1 Results

To evaluate the performance improvements of our tool, multiple experiments were conducted.

First, the impact of mutation operators was analysed. It was discovered that with our implemen-

tation, mutation operators have no direct impact on generation time or size. Mutation operators

with similar number of generated mutants had similar generation times and sizes. However, mu-

tation operators significantly affect test execution time and overall elapsed time. Some mutation

operators introduced code variations that increased test execution time, resulting in longer overall

elapsed time.

Secondly, it was analysed the performance benefit of mutant schemata. On the generation

of the mutants, it was clear that using schemata brings enormous benefits in generation time and

size. However, the advantages of mutant schemata can be compromised by slower test execution

times. Depending on the project and the specific mutation operators employed, a mutant schemata

with high number of mutants can exhibit slower performance than the traditional approach. These

findings are in accordance with the findings of Diego Naveiras [27].

Finally, the Git optimization was analysed. In summary, applying mutations to the entire

project generates a significantly higher number of mutants compared to applying mutations only

to the changed files. The reduction from 2652 mutants (all versions) to 341 mutants (changed files

only) represents an 87% decrease. We concluded that our approach makes it feasible to perform

mutation testing on different versions of an evolving software project.

7.2 Further Work

Like any project developed within a limited timeframe, there is room for further improvement and

extension in this project. The developed tool is regarded as being in the early stages of its full

potential, leaving ample room for enhancements and advancements.

In the context of mutant generation, further experiments are required to validate the perfor-

mance benefit introduced by creating multiple LARA environments for each file. It would be

interesting to compare this approach against a single LARA environment that mutates the entire

project. Furthermore, the performance impact of applying the code transformation in the schemata

7.2 Further Work 61

format was not measured. It would be interesting to measure the overhead created by this trans-

formation. Also, the generation of the classpath automatically would be a welcome feature.

The tool can also be extended in the context of test execution. Currently, all the tests are

executed, but optimisations like executing until a first failed test can be implemented to reduce

the test execution time further. Additionally, as our tool stores all the information of each test

execution on a database, learning algorithms can be implemented to process that data and define

the order of each individual test. The ultimate goal would be executing tests most likely to kill the

mutant first. With sufficient data, these learning algorithms could determine what would be most

beneficial for each project if applying traditional or schemata mutation.

Finally, it would be an excellent addition to the tool the creation of a front-end application that

would make more accessible the interaction of users.

62 Conclusions and Future Work

Appendix A

Lara Environments Code

All LARA environments code can be found in this appendix. This code is also publicly available

on GitHub 1.

A.1 Main Lara Environment Code

1 laraImport("lara.Io");

2 laraImport("lara.Strings");

3 laraImport("weaver.Query");

4 laraImport("Arguments");

5

6 const outputPath = laraArgs.outputPath;

7 const traditionalMutation = laraArgs.traditionalMutation;

8 const projectPath = laraArgs.projectPath;

9 const debugMessages = laraArgs.debugMessages;

10 const folderToIgnore = laraArgs.folderToIgnore;

11 const folderToIgnoreAndroid = laraArgs.folderToIgnoreAndroid;

12 const operatorNameList = laraArgs.operatorNameList;

13 const operatorArgumentList = laraArgs.operatorArgumentList;

14 const projectExecutionName = laraArgs.projectExecutionName;

15 const includesFolder = laraArgs.includesFolder;

16 const isAndroid = laraArgs.isAndroid;

17 const classpath = laraArgs.classpath;

18 const useIncompleteClassPath = laraArgs.useIncompleteClassPath;

19 const mutationType = laraArgs.mutationType;

20 const useGitVersioning = laraArgs.useGitVersioning;

21 const gitFiles = laraArgs.gitFiles;

22

23 main();

24

25 function main() {

26 //Shows aditional prints

27 if (debugMessages) {

1https://github.com/specs-feup/mutation-testing-v2

63

https://github.com/specs-feup/mutation-testing-v2

64 Lara Environments Code

28 setDebug(true);

29 }

30

31 //makes the project copy if it’s not being used traditional mutation

32 if (!traditionalMutation) {

33 Io.copyFolder(

34 projectPath,

35 outputPath + Io.getSeparator() + projectExecutionName,

36 true

37);

38 }

39

40 let filesToUse = [];

41 // Get only java files without the test files

42 if (useGitVersioning){

43 filesToUse = gitFiles;

44 }else{

45 filesToUse = getFilesToUse();

46 println("Files to use: " + filesToUse);

47 }

48

49 //Creates the arguments for each kadabra parallel execution

50 args_final = [];

51 for (i in filesToUse) {

52 args = {

53 outputPath: outputPath.trim(),

54 filePath: filesToUse[i].toString(),

55 projectPath: projectPath,

56 debugMessages: debugMessages,

57 operatorNameList: operatorNameList,

58 operatorArgumentList: operatorArgumentList,

59 projectExecutionName: projectExecutionName,

60 isAndroid: laraArgs.isAndroid,

61 mutationType: laraArgs.mutationType,

62 };

63

64 let args_kadabra = new Arguments(

65 (outputPath + Io.getSeparator() + projectExecutionName).trim(),

66 JSON.stringify(args),

67 filesToUse[i],

68 traditionalMutation,

69 includesFolder,

70 classpath,

71 useIncompleteClassPath,

72 isAndroid

73).getList();

74

75 args_final.push(args_kadabra);

76 }

A.1 Main Lara Environment Code 65

77

78 //Kadabra Parallel execution

79 let result = Weaver.runParallel(args_final, args_final.length);

80

81 //Writes the output formated to a file

82 writeExecutionInfo(result);

83 }

84

85 function getFilesToUse() {

86 let filesToUse = [];

87

88 //Checks what files to use

89 let allJavaFiles = Io.getFiles(projectPath, "*.java", true);

90 let javaFilesToRemove = Io.getFiles(folderToIgnore, "*.java", true);

91 println("AllJavaFiles: " + allJavaFiles);

92 println("Folder yo Ignore: " + folderToIgnore);

93 println("javaFilesToRemove: " + javaFilesToRemove);

94

95 if (

96 folderToIgnore != null &&

97 folderToIgnore != "" &&

98 folderToIgnore.replace(projectPath, "") != ""

99) {

100 for (i in allJavaFiles) {

101 for (j in javaFilesToRemove) {

102 if (allJavaFiles[i].equals(javaFilesToRemove[j])) {

103 break;

104 }

105 if (j == javaFilesToRemove.length - 1 && !j.includes("build")) {

106 filesToUse.push(allJavaFiles[i]);

107 }

108 }

109 }

110 } else {

111 filesToUse = allJavaFiles;

112 }

113

114 if (folderToIgnoreAndroid != null && folderToIgnoreAndroid != "") {

115 let javaFilesToRemove = Io.getFiles(folderToIgnoreAndroid, "*.java", true);

116 let filesToUseFinal = [];

117

118 for (i in filesToUse) {

119 for (j in javaFilesToRemove) {

120 if (filesToUse[i].equals(javaFilesToRemove[j])) {

121 break;

122 }

123 if (j == javaFilesToRemove.length - 1 && !j.includes("build")) {

124 filesToUseFinal.push(filesToUse[i]);

125 }

66 Lara Environments Code

126 }

127 }

128

129 return filesToUseFinal;

130 }

131

132 return filesToUse;

133 }

134

135 function writeExecutionInfo(result) {

136 let fileData = [];

137

138 for (i in result) {

139 if (result[i]["output"] != "[]") {

140 try {

141 let listaAux = JSON.parse(result[i]["output"]);

142 for (j in listaAux) {

143 fileData.push(listaAux[j]);

144 }

145 } catch (error) {

146 println(result[i]);

147 println(error);

148 }

149 }

150 }

151

152 Io.writeFile(

153 outputPath +

154 Io.getSeparator() +

155 projectExecutionName +

156 Io.getSeparator() +

157 "MutationInfo.json",

158 JSON.stringify(fileData)

159);

160 }

A.2 Traditional Mutation Lara Environment Code

1 laraImport("lara.Io");

2 laraImport("lara.Strings");

3 laraImport("weaver.Query");

4 laraImport("weaver.Script");

5 laraImport("kadabra.KadabraNodes");

6 laraImport("MutationOperators.*");

7 laraImport("MutatorList");

8 laraImport("Decomposition");

A.2 Traditional Mutation Lara Environment Code 67

9

10 const outputPath = laraArgs.outputPath;

11 const filePath = laraArgs.filePath;

12 const projectPath = laraArgs.projectPath.trim();

13 const debugMessages = laraArgs.debugMessages;

14 const fileName = filePath.substring(

15 filePath.lastIndexOf(Io.getSeparator()) + 1

16);

17 const projectExecutionName = laraArgs.projectExecutionName;

18

19 main();

20

21 function main() {

22 //Shows aditional prints

23 if (debugMessages) {

24 setDebug(true);

25 }

26

27 //If no mutatans were selected

28 if (mutatorList.length === 0) {

29 println("No mutators selected");

30 return;

31 }

32

33 //changeVarDeclarations();

34 println("Traditional Mutation");

35

36 let output = {};

37

38 //Goes to each node and stores the mutatation point

39 println("Going through AST for file " + fileName);

40 runTreeAndGetMutantsTraditionaly();

41

42 //Goes to each stored mutation point and applies the mutation

43 println("Generating Mutants for file " + fileName);

44 output = applyTraditionalMutation();

45

46 Script.setOutput({ output });

47 }

48

49 function runTreeAndGetMutantsTraditionaly() {

50 for (var $jp of Query.root().descendants) {

51 var $call = $jp.ancestor("call");

52

53 // Ignore nodes that are children of $call with the name <init>

54 if ($call !== undefined && $call.name === "<init>") continue;

55

56 for (mutator of mutatorList) {

57 if (mutator.addJp($jp)) {

68 Lara Environments Code

58 debug(mutator);

59 }

60 }

61 }

62 }

63

64 function applyTraditionalMutation() {

65 let auxOutputStr = [];

66 for (mutator of mutatorList) {

67 while (mutator.hasMutations()) {

68 let auxLine = mutator.getMutationPoint().line;

69

70 //Aplies the mutation

71 mutator.mutate();

72

73 //Saves to a file

74 let path = saveFile(mutator.getName());

75

76 auxOutputStr.push({

77 mutantId: path,

78 mutantion: mutator.toJson(),

79 mutationLine: auxLine,

80 filePath: Io.getRelativePath(filePath, projectPath),

81 });

82 }

83 }

84

85 return JSON.stringify(auxOutputStr);

86 }

87

88 function saveFile(mutatorName) {

89 let relativePath = Io.getRelativePath(filePath, projectPath);

90

91 let aux =

92 Io.getSeparator() +

93 mutatorName +

94 "_" +

95 fileName.replace(".java", "") +

96 "_" +

97 Strings.uuid();

98

99 let newFolder = outputPath + Io.getSeparator() + projectExecutionName + aux;

100

101 Io.copyFolder(projectPath, newFolder, true);

102

103 Io.writeFile(

104 newFolder +

105 Io.getSeparator() +

106 relativePath.replace("/", Io.getSeparator()),

A.3 Java Mutant Schemata Lara Environment Code 69

107 Query.root().code

108);

109

110 return aux;

111 }

A.3 Java Mutant Schemata Lara Environment Code

1 laraImport("lara.Io");

2 laraImport("lara.Strings");

3 laraImport("weaver.Query");

4 laraImport("weaver.Script");

5 laraImport("kadabra.KadabraNodes");

6 laraImport("MutationOperators.*");

7 laraImport("MutatorList");

8 laraImport("Decomposition");

9

10 const outputPath = laraArgs.outputPath;

11 const filePath = laraArgs.filePath;

12 const projectPath = laraArgs.projectPath.trim();

13 const debugMessages = laraArgs.debugMessages;

14 const fileName = filePath.substring(

15 filePath.lastIndexOf(Io.getSeparator()) + 1

16);

17 const operatorNameList = laraArgs.operatorNameList;

18 const projectExecutionName = laraArgs.projectExecutionName;

19 const isAndroid = laraArgs.isAndroid;

20

21 main();

22

23 function main() {

24 //Shows aditional prints

25 if (debugMessages) {

26 setDebug(true);

27 }

28

29 //If no mutatans were selected

30 if (mutatorList.length === 0) {

31 println("No mutators selected");

32 return;

33 }

34

35 changeVarDeclarations();

36 println("Mutant Schemata");

37

38 let output = runTreeAndApplyMetaMutant();

70 Lara Environments Code

39

40 //print("Output" + output);

41 Script.setOutput({ output });

42 }

43

44 function runTreeAndApplyMetaMutant() {

45 var mutantList = [];

46 for (var $jp of Query.root().descendants) {

47 var $call = $jp.ancestor("call");

48

49 // Ignore nodes that are children of $call with the name <init>

50 if ($call !== undefined && $call.name === "<init>") continue;

51

52 let mutationPoints = 0;

53 let needElseIf = false;

54 let firstTime = true;

55 for (mutator of mutatorList) {

56 if (mutator.addJp($jp)) {

57 mutationPoints++;

58 debug(mutator);

59 }

60 }

61

62 if (mutationPoints >= 2) {

63 needElseIf = true;

64 }

65

66 for (mutator of mutatorList) {

67 while (mutator.hasMutations()) {

68 let mutantId =

69 mutator.getName() +

70 "_" +

71 fileName.replace(".java", "") +

72 "_" +

73 Strings.uuid();

74

75 mutantList.push({

76 mutantId: mutantId,

77 mutantion: mutator.toJson(),

78 mutationLine: mutator.getMutationPoint().line,

79 filePath: Io.getRelativePath(filePath, projectPath),

80 });

81

82 // Mutate

83 mutator.mutate();

84

85 if (

86 mutator.name === "NotSerializableOperatorMutator" ||

87 mutator.name === "NonVoidCallMutator"

A.3 Java Mutant Schemata Lara Environment Code 71

88) {

89 var mutated = mutator.getMutationPoint();

90 } else {

91 var mutated = mutator.getMutationPoint().isStatement

92 ? mutator.getMutationPoint()

93 : mutator.getMutationPoint().ancestor("statement");

94 }

95

96 //print(mutator.toJson());

97

98 if (needElseIf) {

99 if (mutationPoints > 1) {

100 if (firstTime) {

101 mutated.insertBefore(

102 ’if(System.getProperty("MUID") != null && System.getProperty("MUID

").equals("’ +

103 mutantId +

104 ’")){\n’ +

105 mutated.srcCode +

106 ";\n}"

107);

108

109 firstTime = false;

110 } else {

111 mutated.insertBefore(

112 ’else if(System.getProperty("MUID") != null && System.getProperty("

MUID").equals("’ +

113 mutantId +

114 ’")){\n’ +

115 mutated.srcCode +

116 ";\n}"

117);

118 }

119 mutationPoints--;

120 } else {

121 mutated.insertBefore(

122 ’else if (System.getProperty("MUID") != null && System.getProperty("

MUID").equals("’ +

123 mutantId +

124 ’")){\n’ +

125 mutated.srcCode +

126 ";\n}else{\n\t"

127);

128 mutated.insertAfter("}");

129 }

130 } else {

131 mutated.insertBefore(

132 ’if (System.getProperty("MUID") != null && System.getProperty("MUID").

equals("’ +

72 Lara Environments Code

133 mutantId +

134 ’")){\n’ +

135 mutated.srcCode +

136 ";\n}else{\n\t"

137);

138 mutated.insertAfter("}");

139 }

140 mutator.restore();

141 }

142 }

143 }

144

145 //Saves the file

146 let relativePath = Io.getRelativePath(filePath, projectPath);

147

148 let aux =

149 outputPath +

150 Io.getSeparator() +

151 projectExecutionName +

152 Io.getSeparator() +

153 relativePath.replace("/", Io.getSeparator());

154

155 Io.writeFile(aux, Query.root().srcCode);

156

157 return JSON.stringify(mutantList);

158 }

A.4 Android Mutant Schemata Lara Environment Code

1 laraImport("lara.Io");

2 laraImport("lara.Strings");

3 laraImport("weaver.Query");

4 laraImport("weaver.Script");

5 laraImport("kadabra.KadabraNodes");

6 laraImport("MutationOperators.*");

7 laraImport("MutatorList");

8 laraImport("Decomposition");

9

10 const outputPath = laraArgs.outputPath;

11 const filePath = laraArgs.filePath;

12 const projectPath = laraArgs.projectPath.trim();

13 const debugMessages = laraArgs.debugMessages;

14 const fileName = filePath.substring(

15 filePath.lastIndexOf(Io.getSeparator()) + 1

16);

17 const operatorNameList = laraArgs.operatorNameList;

A.4 Android Mutant Schemata Lara Environment Code 73

18 const projectExecutionName = laraArgs.projectExecutionName;

19 const isAndroid = laraArgs.isAndroid;

20 const mutationType = laraArgs.mutationType;

21

22 main();

23

24 function main() {

25 //Shows aditional prints

26 if (debugMessages) {

27 setDebug(true);

28 }

29

30 //If no mutatans were selected

31 if (mutatorList.length === 0) {

32 println("No mutators selected");

33 return;

34 }

35

36 changeVarDeclarations();

37 println("Mutant Schemata Android");

38

39 let output = runTreeAndApplyMetaMutant();

40

41 if (output.length > 0) {

42 //print("Output" + output);

43 Script.setOutput({ output });

44 } else {

45 Script.setOutput({});

46 }

47 }

48

49 function runTreeAndApplyMetaMutant() {

50 if (mutationType === "MUTANTSCHEMATA") {

51 const auxFunction = ‘

52 public static String getMUID(){ \

53 String propertyValue = null; \

54 try { \

55 Process process = Runtime.getRuntime().exec("getprop MUID"); \

56 InputStream inputStream = process.getInputStream(); \

57 BufferedReader reader = new BufferedReader(new InputStreamReader(inputStream));

\

58 propertyValue = reader.readLine();\

59 reader.close();\

60 inputStream.close();\

61 } catch (IOException e) {\

62 Log.e("ERROR", String.valueOf(e));\

63 }\

64 return propertyValue;\

65 }‘;

74 Lara Environments Code

66

67 const imports = ‘

68 import java.io.BufferedReader;\n

69 import java.io.IOException;\n

70 import java.io.InputStream;\n

71 import java.io.InputStreamReader;\n

72 import android.util.Log;

73 ‘;

74

75 for (var $jp of Query.search("class")) {

76 $jp.insertBefore(imports);

77 $jp.insertMethod(auxFunction);

78 break;

79 }

80 } else if (isAndroid) {

81 const imports = ‘

82 import com.beemdevelopment.aegis.BuildConfig;\n

83 ‘;

84

85 for (var $jp of Query.search("class")) {

86 $jp.insertBefore(imports);

87 break;

88 }

89 }

90

91 var mutantList = [];

92 for (var $jp of Query.root().descendants) {

93 var $call = $jp.ancestor("call");

94

95 // Ignore nodes that are children of $call with the name <init>

96 if ($call !== undefined && $call.name === "<init>") continue;

97

98 let mutationPoints = 0;

99 let needElseIf = false;

100 let firstTime = true;

101 for (mutator of mutatorList) {

102 if (mutator.addJp($jp)) {

103 mutationPoints++;

104 debug(mutator);

105 }

106 }

107

108 if (mutationPoints >= 2) {

109 needElseIf = true;

110 }

111

112 for (mutator of mutatorList) {

113 while (mutator.hasMutations()) {

114 let mutantId =

A.4 Android Mutant Schemata Lara Environment Code 75

115 mutator.getName() +

116 "_" +

117 fileName.replace(".java", "") +

118 "_" +

119 Strings.uuid();

120

121 mutantList.push({

122 mutantId: mutantId,

123 mutantion: mutator.toJson(),

124 mutationLine: mutator.getMutationPoint().line,

125 filePath: Io.getRelativePath(filePath, projectPath),

126 });

127

128 // Mutate

129 mutator.mutate();

130

131 if (

132 mutator.name === "NotSerializableOperatorMutator" ||

133 mutator.name === "NonVoidCallMutator"

134) {

135 var mutated = mutator.getMutationPoint();

136 } else {

137 var mutated = mutator.getMutationPoint().isStatement

138 ? mutator.getMutationPoint()

139 : mutator.getMutationPoint().ancestor("statement");

140 }

141

142 if (mutator.isAndroidSpecific() && mutationType === "MUTANTSCHEMATA") {

143 if (needElseIf) {

144 if (mutationPoints > 1) {

145 if (firstTime) {

146 mutated.insertBefore(

147 ’if(getMUID().equals("’ +

148 mutantId +

149 ’")){\n’ +

150 mutated.srcCode +

151 ";\n}"

152);

153

154 firstTime = false;

155 } else {

156 mutated.insertBefore(

157 ’else if(getMUID().equals("’ +

158 mutantId +

159 ’")){\n’ +

160 mutated.srcCode +

161 ";\n}"

162);

163 }

76 Lara Environments Code

164 mutationPoints--;

165 } else {

166 mutated.insertBefore(

167 ’else if (getMUID().equals("’ +

168 mutantId +

169 ’")){\n’ +

170 mutated.srcCode +

171 ";\n}else{\n\t"

172);

173 mutated.insertAfter("}");

174 }

175 } else {

176 mutated.insertBefore(

177 ’if (getMUID().equals("’ +

178 mutantId +

179 ’")){\n’ +

180 mutated.srcCode +

181 ";\n}else{\n\t"

182);

183 mutated.insertAfter("}");

184 }

185 } else {

186 if (needElseIf) {

187 if (mutationPoints > 1) {

188 if (firstTime) {

189 mutated.insertBefore(

190 ’if(BuildConfig.MUID != null && BuildConfig.MUID.equals("’ +

191 mutantId +

192 ’")){\n’ +

193 mutated.srcCode +

194 ";\n}"

195);

196

197 firstTime = false;

198 } else {

199 mutated.insertBefore(

200 ’else if(BuildConfig.MUID != null && BuildConfig.MUID.equals("’ +

201 mutantId +

202 ’")){\n’ +

203 mutated.srcCode +

204 ";\n}"

205);

206 }

207 mutationPoints--;

208 } else {

209 mutated.insertBefore(

210 ’else if (BuildConfig.MUID != null && BuildConfig.MUID.equals("’ +

211 mutantId +

212 ’")){\n’ +

A.4 Android Mutant Schemata Lara Environment Code 77

213 mutated.srcCode +

214 ";\n}else{\n\t"

215);

216 mutated.insertAfter("}");

217 }

218 } else {

219 mutated.insertBefore(

220 ’if (BuildConfig.MUID != null && BuildConfig.MUID.equals("’ +

221 mutantId +

222 ’")){\n’ +

223 mutated.srcCode +

224 ";\n}else{\n\t"

225);

226 mutated.insertAfter("}");

227 }

228 }

229 }

230

231 mutator.restore();

232 }

233 }

234

235 //Saves the file

236 let relativePath = Io.getRelativePath(filePath, projectPath);

237

238 let aux =

239 outputPath +

240 Io.getSeparator() +

241 projectExecutionName +

242 Io.getSeparator() +

243 relativePath.replace("/", Io.getSeparator());

244

245 Io.writeFile(aux, Query.root().srcCode);

246

247 return JSON.stringify(mutantList);

248 }

78 Lara Environments Code

References

[1] Allen Troy Acree. On Mutation. PhD thesis, USA, 1980. AAI8107280.

[2] Domenico Amalfitano, Ana C. R. Paiva, Alexis Inquel, Luís Pinto, Anna Rita Fasolino, and
René Just. How do java mutation tools differ? Commun. ACM, 65(12):74–89, nov 2022.

[3] and, , Pradeep Kumar Singh, Om Prakash Sangwan, and Arun Sharma. A Study and Review
on the Development of Mutation Testing Tools for Java and Aspect-J Programs. International
Journal of Modern Education and Computer Science, 6(11):1–10, 2014.

[4] Francisco Bernardo Azevedo. Cost Reduction Technique for Mutation Testing, 2020.

[5] Adam S. Banzi, Tiago Nobre, Gabriel B. Pinheiro, João Carlos G. Árias, Aurora Pozo, and
Silvia Regina Vergilio. Selecting mutation operators with a multiobjective approach. Expert
Systems with Applications: An International Journal, 39(15):12131–12142, nov 2012.

[6] Ilona Bluemke and Karol Kulesza. Reductions of operators in Java mutation testing. Ad-
vances in Intelligent Systems and Computing, 286:93–102, 2014.

[7] Timothy Alan Budd. Mutation Analysis of Program Test Data. PhD thesis, USA, 1980.
AAI8025191.

[8] Henry Coles, Thomas Laurent, Christopher Henard, Mike Papadakis, and Anthony Ven-
tresque. PIT: A practical mutation testing tool for Java (Demo). ISSTA 2016 - Proceedings
of the 25th International Symposium on Software Testing and Analysis, pages 449–452, jul
2016.

[9] R.A. DeMillo and F.G. Sayward. Hints on test data selection: Help for the practicing pro-
grammer. Computer, 11(4):34–41, 1978. cited By 1295.

[10] Lin Deng, Nariman Mirzaei, Paul Ammann, and Jeff Offutt. Towards mutation analysis of
android apps. 2015. Cited by: 31.

[11] Anna Derezinska and Marcin Rudnik. Evaluation of mutant sampling criteria in object-
oriented mutation testing. Proceedings of the 2017 Federated Conference on Computer Sci-
ence and Information Systems, FedCSIS 2017, pages 1315–1324, nov 2017.

[12] Jackson Antonio do Prado Lima and Silvia Regina Vergilio. A systematic mapping study on
higher order mutation testing. Journal of Systems and Software, 154:92–109, aug 2019.

[13] W.E. Howden. Weak mutation testing and completeness of test sets. IEEE Transactions on
Software Engineering, SE-8(4):371–379, 1982. cited By 307.

79

80 REFERENCES

[14] Reyhaneh Jabbarvand and Sam Malek. droid: An energy-aware mutation testing framework
for android. volume 2017-January, page 208 – 219, 2017. Cited by: 40; All Open Access,
Bronze Open Access.

[15] Y Jia and M Harman. Higher Order Mutation Testing (Dissertation). PhD thesis, 2013.

[16] Yue Jia and Mark Harman. Constructing subtle faults using Higher Order mutation testing.
Proceedings - 8th IEEE International Working Conference on Source Code Analysis and
Manipulation, SCAM 2008, pages 249–258, 2008.

[17] Yue Jia and Mark Harman. An analysis and survey of the development of mutation testing.
IEEE Transactions on Software Engineering, 37(5):649–678, 2011.

[18] René Just. On effective and efficient mutation analysis for unit and integration testing. Ph.D.,
Ulm University, 2013.

[19] René Just. The major mutation framework: Efficient and scalable mutation analysis for Java.
2014 International Symposium on Software Testing and Analysis, ISSTA 2014 - Proceedings,
pages 433–436, jul 2014.

[20] Jian Liu, Xusheng Xiao, Lihua Xu, Liang Dou, and Andy Podgurski. Droidmutator: An
effective mutation analysis tool for android applications. page 77 – 80, 2020. Cited by: 1.

[21] Eduardo Luna and Omar El Ariss. Edroid: A mutation tool for android apps. page 99 – 108,
2019. Cited by: 8.

[22] Yu Seung Ma, Jeff Offutt, and Yong Rae Kwon. MuJava: An automated class mutation
system. Software Testing Verification and Reliability, 15(2):97–133, jun 2005.

[23] Lech Madeyski and Norbert Radyk. Judy - a mutation testing tool for java. Software, IET,
4:32 – 42, 03 2010.

[24] Pedro Reales Mateo and Macario Polo Usaola. Mutant execution cost reduction: Through
music (mutant schema improved with extra code). In 2012 IEEE Fifth International Confer-
ence on Software Testing, Verification and Validation, pages 664–672, 2012.

[25] A.P. Mathur. Performance, effectiveness, and reliability issues in software testing. In [1991]
Proceedings The Fifteenth Annual International Computer Software Applications Confer-
ence, pages 604–605, 1991.

[26] Kevin Moran, Michele Tufano, Carlos Bernal-Cárdenas, Mario Linares-Vásquez, Gabriele
Bavota, Christopher Vendome, Massimiliano Di Penta, and Denys Poshyvanyk. Mdroid+: A
mutation testing framework for android. page 33 – 36, 2018. Cited by: 28; All Open Access,
Green Open Access.

[27] Diego Seco Naveiras. Mutation Testing Techniques for Mobile Applications. 2021.

[28] A. Jefferson Offutt, Ammei Lee, Gregg Rothermel, Roland H. Untch, and Christian Zapf.
An experimental determination of sufficient mutant operators. ACM Trans. Softw. Eng.
Methodol., 5(2):99–118, apr 1996.

[29] Jeff Offutt and Roland Untch. Mutation 2000: Uniting the orthogonal. pages 34–44, 05
2001.

REFERENCES 81

[30] Mike Papadakis, Yue Jia, Mark Harman, and Yves Le Traon. Trivial compiler equivalence:
A large scale empirical study of a simple, fast and effective equivalent mutant detection
technique. Proceedings - International Conference on Software Engineering, 1:936–946,
aug 2015.

[31] Mike Papadakis, Marinos Kintis, Jie Zhang, Yue Jia, Yves Le Traon, and Mark Harman.
Mutation Testing Advances: An Analysis and Survey. Advances in Computers, 112:275–
378, jan 2019.

[32] Renaud Pawlak, Martin Monperrus, Nicolas Petitprez, Carlos Noguera, and Lionel Sein-
turier. Spoon: A Library for Implementing Analyses and Transformations of Java Source
Code. Software: Practice and Experience, 46:1155–1179, 2015.

[33] Fabiano Pecorelli, Gemma Catolino, Filomena Ferrucci, Andrea De Lucia, and Fabio
Palomba. Software testing and Android applications: a large-scale empirical study. Em-
pirical Software Engineering, 27(2):31, mar 2022.

[34] Pedro Pinto, Tiago Carvalho, João Bispo, Miguel António Ramalho, and João M.P. Cardoso.
Aspect composition for multiple target languages using lara. Computer Languages, Systems
Structures, 53:1–26, 2018.

[35] Alessandro Viola Pizzoleto, Fabiano Cutigi Ferrari, Jeff Offutt, Leo Fernandes, and Már-
cio Ribeiro. A systematic literature review of techniques and metrics to reduce the cost of
mutation testing. Journal of Systems and Software, 157, nov 2019.

[36] Macario Polo, Mario Piattini, and Ignacio Garía-Rodríguez. Decreasing the cost of mutation
testing with second-order mutants. Software Testing Verification and Reliability, 19(2):111–
131, 2009.

[37] David Schuler and Andreas Zeller. Javalanche: Efficient mutation testing for java. page 297
– 298, 2009. Cited by: 139.

[38] S Hussain Ms. Th., Kings College London, Undefined Strand, Undefined London, and Un-
defined 2008. Mutation clustering. PhD thesis, 2007.

[39] Roland H. Untch, Mary Jean Harrold, and A. Jefferson Offutt. Tums: Testing using mutant
schemata. Proceedings - 35th Annual Southeast Regional Conference, ACM-SE 1997, pages
174–181, apr 1997.

[40] Macario Polo Usaola, Gonzalo Rojas, Isyed Rodriguez, and Suilen Hernandez. An architec-
ture for the development of mutation operators. page 143 – 148, 2017. Cited by: 7.

[41] Ana Rita Veiga. Mutation Operators for Android Apps - To be published. 2023.

[42] M.R. Woodward and K. Halewood. From weak to strong, dead or alive? an analysis of
some mutation testing issues. In [1988] Proceedings. Second Workshop on Software Testing,
Verification, and Analysis, pages 152–158, July 1988.

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Problem Statement and Research Goals
	1.3 Outline

	2 State of the Art
	2.1 Mutation Testing
	2.2 Mutant Generation
	2.3 Approaches to Cost Reduction
	2.3.1 Mutant Reduction Techniques
	2.3.2 Equivalent Mutant detection techniques
	2.3.3 Execution Cost Reduction Techniques

	3 Mutation Testing Tools
	3.1 Java Mutation Testing Tools
	3.1.1 MuJava
	3.1.2 JavaLanche
	3.1.3 Judy
	3.1.4 Jumble
	3.1.5 Major
	3.1.6 PIT

	3.2 Android Mutation Testing Tools
	3.2.1 MuDroid
	3.2.2 µDroid
	3.2.3 MDroid+
	3.2.4 Edroid
	3.2.5 DroidMutator
	3.2.6 BacterioWeb V2

	3.3 Summary

	4 Mutation Testing Methodology
	4.1 Traditional Methodology
	4.2 Proposed Methodology
	4.2.1 Mutant Schemata
	4.2.2 Application of Mutations Only to the Changed Part of the Code

	5 Framework Proposal
	5.1 Introduction
	5.1.1 LARA Framework
	5.1.2 Mutator API

	5.2 Tool Design
	5.2.1 Data Model

	5.3 Git Integration
	5.4 Mutant Generation
	5.4.1 Classpath Configuration
	5.4.2 Mutation Process

	5.5 Mutation Operators
	5.6 Test Execution
	5.7 Application Interaction

	6 Empirical Evaluation
	6.1 Impact of Mutation Operators
	6.1.1 Impact of Mutation Operators On Java Projects
	6.1.2 Impact of Mutation Operators On Android Projects
	6.1.3 Summary

	6.2 Impact of Mutant Schemata
	6.2.1 Impact of Mutant Schemata on a Java Application
	6.2.2 Impact of Mutant Schemata on an Android Application
	6.2.3 Summary

	6.3 Impact of Git Versioning Reduction

	7 Conclusions and Future Work
	7.1 Results
	7.2 Further Work

	A Lara Environments Code
	A.1 Main Lara Environment Code
	A.2 Traditional Mutation Lara Environment Code
	A.3 Java Mutant Schemata Lara Environment Code
	A.4 Android Mutant Schemata Lara Environment Code

	References

