20,344 research outputs found

    Exploring Music Genre Classification: Algorithm Analysis and Deployment Architecture

    Full text link
    Music genre classification has become increasingly critical with the advent of various streaming applications. Nowadays, we find it impossible to imagine using the artist's name and song title to search for music in a sophisticated music app. It is always difficult to classify music correctly because the information linked to music, such as region, artist, album, or non-album, is so variable. This paper presents a study on music genre classification using a combination of Digital Signal Processing (DSP) and Deep Learning (DL) techniques. A novel algorithm is proposed that utilizes both DSP and DL methods to extract relevant features from audio signals and classify them into various genres. The algorithm was tested on the GTZAN dataset and achieved high accuracy. An end-to-end deployment architecture is also proposed for integration into music-related applications. The performance of the algorithm is analyzed and future directions for improvement are discussed. The proposed DSP and DL-based music genre classification algorithm and deployment architecture demonstrate a promising approach for music genre classification

    Using Generic Summarization to Improve Music Information Retrieval Tasks

    Get PDF
    In order to satisfy processing time constraints, many MIR tasks process only a segment of the whole music signal. This practice may lead to decreasing performance, since the most important information for the tasks may not be in those processed segments. In this paper, we leverage generic summarization algorithms, previously applied to text and speech summarization, to summarize items in music datasets. These algorithms build summaries, that are both concise and diverse, by selecting appropriate segments from the input signal which makes them good candidates to summarize music as well. We evaluate the summarization process on binary and multiclass music genre classification tasks, by comparing the performance obtained using summarized datasets against the performances obtained using continuous segments (which is the traditional method used for addressing the previously mentioned time constraints) and full songs of the same original dataset. We show that GRASSHOPPER, LexRank, LSA, MMR, and a Support Sets-based Centrality model improve classification performance when compared to selected 30-second baselines. We also show that summarized datasets lead to a classification performance whose difference is not statistically significant from using full songs. Furthermore, we make an argument stating the advantages of sharing summarized datasets for future MIR research.Comment: 24 pages, 10 tables; Submitted to IEEE/ACM Transactions on Audio, Speech and Language Processin

    Pre-Training Strategies Using Contrastive Learning and Playlist Information for Music Classification and Similarity

    Full text link
    In this work, we investigate an approach that relies on contrastive learning and music metadata as a weak source of supervision to train music representation models. Recent studies show that contrastive learning can be used with editorial metadata (e.g., artist or album name) to learn audio representations that are useful for different classification tasks. In this paper, we extend this idea to using playlist data as a source of music similarity information and investigate three approaches to generate anchor and positive track pairs. We evaluate these approaches by fine-tuning the pre-trained models for music multi-label classification tasks (genre, mood, and instrument tagging) and music similarity. We find that creating anchor and positive track pairs by relying on co-occurrences in playlists provides better music similarity and competitive classification results compared to choosing tracks from the same artist as in previous works. Additionally, our best pre-training approach based on playlists provides superior classification performance for most datasets.Comment: Accepted at the 2023 International Conference on Acoustics, Speech, and Signal Processing (ICASSP'23

    Beat histogram features for rhythm-based musical genre classification using multiple novelty functions

    Get PDF
    In this paper we present beat histogram features for multiple level rhythm description and evaluate them in a musical genre classification task. Audio features pertaining to various musical content categories and their related novelty functions are extracted as a basis for the creation of beat histograms. The proposed features capture not only amplitude, but also tonal and general spectral changes in the signal, aiming to represent as much rhythmic information as possible. The most and least informative features are identified through feature selection methods and are then tested using Support Vector Machines on five genre datasets concerning classification accuracy against a baseline feature set. Results show that the presented features provide comparable classification accuracy with respect to other genre classification approaches using periodicity histograms and display a performance close to that of much more elaborate up-to-date approaches for rhythm description. The use of bar boundary annotations for the texture frames has provided an improvement for the dance-oriented Ballroom dataset. The comparably small number of descriptors and the possibility of evaluating the influence of specific signal components to the general rhythmic content encourage the further use of the method in rhythm description tasks

    Music Similarity Estimation

    Get PDF
    Music is a complicated form of communication, where creators and culture communicate and expose their individuality. After music digitalization took place, recommendation systems and other online services have become indispensable in the field of Music Information Retrieval (MIR). To build these systems and recommend the right choice of song to the user, classification of songs is required. In this paper, we propose an approach for finding similarity between music based on mid-level attributes like pitch, midi value corresponding to pitch, interval, contour and duration and applying text based classification techniques. Our system predicts jazz, metal and ragtime for western music. The experiment to predict the genre of music is conducted based on 450 music files and maximum accuracy achieved is 95.8% across different n-grams. We have also analyzed the Indian classical Carnatic music and are classifying them based on its raga. Our system predicts Sankarabharam, Mohanam and Sindhubhairavi ragas. The experiment to predict the raga of the song is conducted based on 95 music files and the maximum accuracy achieved is 90.3% across different n-grams. Performance evaluation is done by using the accuracy score of scikit-learn
    • …
    corecore