36 research outputs found

    Primal-dual active set methods for Allen-Cahn variational inequalities

    Get PDF
    This thesis aims to introduce and analyse a primal-dual active set strategy for solving Allen-Cahn variational inequalities. We consider the standard Allen-Cahn equation with non-local constraints and a vector-valued Allen-Cahn equation with and without non-local constraints. Existence and uniqueness results are derived in a formulation involving Lagrange multipliers for local and non-local constraints. Local Convergence is shown by interpreting the primal-dual active set approach as a semi-smooth Newton method. Properties of the method are discussed and several numerical simulations in two and three space dimensions demonstrate its efficiency. In the second part of the thesis various applications of the Allen-Cahn equation are discussed. The non-local Allen-Cahn equation can be coupled with an elasticity equation to solve problems in structural topology optimisation. The model can be extended to handle multiple structures by using the vector-valued Allen-Cahn variational inequality with non-local constraints. Since many applications of the Allen-Cahn equation involve evolution of interfaces in materials an important extension of the standard Allen-Cahn model is to allow materials to exhibit anisotropic behaviour. We introduce an anisotropic version of the Allen-Cahn variational inequality and we show that it is possible to apply the primal-dual active set strategy efficiently to this model. Finally, the Allen-Cahn model is applied to problems in image processing, such as segmentation, denoising and inpainting. The primal-dual active set method proves exible and reliable for all the applications considered in this thesis

    Nonlinear Spectral Geometry Processing via the TV Transform

    Full text link
    We introduce a novel computational framework for digital geometry processing, based upon the derivation of a nonlinear operator associated to the total variation functional. Such operator admits a generalized notion of spectral decomposition, yielding a sparse multiscale representation akin to Laplacian-based methods, while at the same time avoiding undesirable over-smoothing effects typical of such techniques. Our approach entails accurate, detail-preserving decomposition and manipulation of 3D shape geometry while taking an especially intuitive form: non-local semantic details are well separated into different bands, which can then be filtered and re-synthesized with a straightforward linear step. Our computational framework is flexible, can be applied to a variety of signals, and is easily adapted to different geometry representations, including triangle meshes and point clouds. We showcase our method throughout multiple applications in graphics, ranging from surface and signal denoising to detail transfer and cubic stylization.Comment: 16 pages, 20 figure

    Variational Discretization of Higher Order Geometric Gradient Flows Based on Phase Field Models

    Get PDF
    In this thesis a phase field based nested variational time discretization for Willmore flow is presented. The basic idea of our model is to approximate the mean curvature by a time-discrete, approximate speed of the mean curvature motion. This speed is computed by a fully implicit time step of mean curvature motion, which forms the inner problem of our model. It is set up as a minimization problem taking into account the concept of natural time discretization. The outer problem is a variational problem balancing between the L2-distance of the surface at two consecutive time steps and the decay of the Willmore energy. This is a typical ansatz in case of natural time discretization as it is used in the inner problem. Within the Willmore energy the mean curvature is approximated as mentioned above. Consequently our model is a nested variational and leads to a PDE constraint optimization problem to compute a single time step. It allows time steps up to the size of the spatial grid width. A corresponding parametric version of this model based on finite elements on a triangulation of the evolving geometry was investigated by Olischläger and Rumpf. In this work we derive the corresponding phase field version and prove the existence of a solution. Since biharmonic heat flow is a linear model problem for our nested time discretization of Willmore flow we transfer our model to the linear case. Moreover we present error estimates for the fully discrete biharmonic heat flow and validate them numerically. In addition we compare our model with the semi-implicit phase field scheme for Willmore flow introduced by Du et al. which leads to the result that our nested variational method is significantly more robust. An application of our nested time discretized Willmore model consists in reconstructing a hypersurface corresponding to a given lower-dimensional apparent contour or Huffman labeling. The apparent contour separates the regions where the number of intersections between the hypersurface and the projection ray is constant and the labeling which specifies these intersection numbers is called Huffman labeling. For reconstructing the hypersurface we minimize a regularization energy consisting of the scaled area and Willmore energy subject to the constraint that the Huffman labeling of the minimizing surface equals the given Huffman labeling almost everywhere. To solve the corresponding phase field problem we use an algorithm alternating the minimizes of the regularization and mismatch energy. Moreover we use a multigrid ansatz. In most parts of this work our nested variational problem is solved by setting up the corresponding Lagrange equation and solving the resulting saddle point problem. An alternative is presented in the last part of this work. It deals with the problem of solving the linear model problem as well as our nested variational problem with an Augmented Lagrange method

    Variational methods and its applications to computer vision

    Get PDF
    Many computer vision applications such as image segmentation can be formulated in a ''variational'' way as energy minimization problems. Unfortunately, the computational task of minimizing these energies is usually difficult as it generally involves non convex functions in a space with thousands of dimensions and often the associated combinatorial problems are NP-hard to solve. Furthermore, they are ill-posed inverse problems and therefore are extremely sensitive to perturbations (e.g. noise). For this reason in order to compute a physically reliable approximation from given noisy data, it is necessary to incorporate into the mathematical model appropriate regularizations that require complex computations. The main aim of this work is to describe variational segmentation methods that are particularly effective for curvilinear structures. Due to their complex geometry, classical regularization techniques cannot be adopted because they lead to the loss of most of low contrasted details. In contrast, the proposed method not only better preserves curvilinear structures, but also reconnects some parts that may have been disconnected by noise. Moreover, it can be easily extensible to graphs and successfully applied to different types of data such as medical imagery (i.e. vessels, hearth coronaries etc), material samples (i.e. concrete) and satellite signals (i.e. streets, rivers etc.). In particular, we will show results and performances about an implementation targeting new generation of High Performance Computing (HPC) architectures where different types of coprocessors cooperate. The involved dataset consists of approximately 200 images of cracks, captured in three different tunnels by a robotic machine designed for the European ROBO-SPECT project.Open Acces

    Etude mathématique et numérique de quelques généralisations de l'équation de Cahn-Hilliard : Applications a la retouche d'images et a la biologie.

    Get PDF
    This thesis is situated in the context of the theoretical and numerical analysis of some generalizations of the Cahn–Hilliard equation. We study the well-possedness of these models, as well as the asymptotic behavior in terms of the existence of finite-dimenstional (in the sense of the fractal dimension) attractors. The first part of this thesis is devoted to some models which, in particular, have applications in image inpainting. We start by the study of the dynamics of the Bertozzi–Esedoglu–Gillette–Cahn–Hilliard equation with Neumann boundary conditions and a regular nonlinearity. We give numerical simulations with a fast numerical scheme with threshold which is sufficient to obtain good inpainting results. Furthermore, we study this model with Neumann boundary conditions and a logarithmic nonlinearity and we also give numerical simulations which confirm that the results obtained with a logarithmic non- linearity are better than the ones obtained with a polynomial nonlinearity. Finally, we propose a model based on the Cahn–Hilliard system which has applications in color image inpainting. The second part of this thesis is devoted to some models which, in particular, have applications in biologie and chemistry. We study the convergence of the solution of a Cahn–Hilliard equation with a proliferation term and associated with Neumann boundary conditions and a regular nonlinearity. In that case, we prove that the solutions blow up in finite time or exist globally in time. Furthermore, we give numericial simulations which confirm the theoritical results. We end with the study of the Cahn–Hilliard equation with a mass source and a regular nonlinearity. In this study, we consider both Neumann and Dirichlet boundary conditions.Cette thèse se situe dans le cadre de l’analyse théorique et numérique de quelques généralisations de l’équation de Cahn–Hilliard. On étudie l’existence, l’unicité et la régularité de la solution de ces modèles ainsi que son comportement asymptotique en terme d’existence d’un attracteur global de dimension fractale finie. La première partie de la thèse concerne des modèles appliqués à la retouche d’images. D’abord, on étudie la dynamique de l’équation de Bertozzi–Esedoglu–Gillette–Cahn–Hilliard avec des conditions de type Neumann sur le bord et une nonlinéarité régulière de type polynomial et on propose un schéma numérique avec une méthode de seuil efficace pour le problème de la retouche et très rapide en terme de temps de convergence. Ensuite, on étudie ce modèle avec des conditions de type Neumann sur le bord et une nonlinéarité singulière de type logarithmique et on donne des simulations numériques avec seuil qui confirment que les résultats obtenus avec une nonlinéarité de type logarithmique sont meilleurs que ceux obtenus avec une nonlinéarité de type polynomial. Finalement, on propose un modèle basé sur le système de Cahn–Hilliard pour la retouche d’images colorées. La deuxième partie de la thèse est consacrée à des applications en biologie et en chimie. On étudie la convergence de la solution d’une généralisation de l’équation de Cahn–Hilliard avec un terme de prolifération, associée à des conditions aux limites de type Neumann et une nonlinéarité régulière. Dans ce cas, on démontre que soit la solution explose en temps fini soit elle existe globalement en temps. Par ailleurs, on donne des simulations numériques qui confirment les résultats théoriques obtenus. On termine par l’étude de l’équation de Cahn–Hilliard avec un terme source et une nonlinéarité régulière. Dans cette étude, on considère le modèle à la fois avec des conditions aux limites de type Neumann et de type Dirichlet

    A Second Order TV-type Approach for Inpainting and Denoising Higher Dimensional Combined Cyclic and Vector Space Data

    Full text link
    In this paper we consider denoising and inpainting problems for higher dimensional combined cyclic and linear space valued data. These kind of data appear when dealing with nonlinear color spaces such as HSV, and they can be obtained by changing the space domain of, e.g., an optical flow field to polar coordinates. For such nonlinear data spaces, we develop algorithms for the solution of the corresponding second order total variation (TV) type problems for denoising, inpainting as well as the combination of both. We provide a convergence analysis and we apply the algorithms to concrete problems.Comment: revised submitted versio

    Discrete Optimization in Early Vision - Model Tractability Versus Fidelity

    Get PDF
    Early vision is the process occurring before any semantic interpretation of an image takes place. Motion estimation, object segmentation and detection are all parts of early vision, but recognition is not. Some models in early vision are easy to perform inference with---they are tractable. Others describe the reality well---they have high fidelity. This thesis improves the tractability-fidelity trade-off of the current state of the art by introducing new discrete methods for image segmentation and other problems of early vision. The first part studies pseudo-boolean optimization, both from a theoretical perspective as well as a practical one by introducing new algorithms. The main result is the generalization of the roof duality concept to polynomials of higher degree than two. Another focus is parallelization; discrete optimization methods for multi-core processors, computer clusters, and graphical processing units are presented. Remaining in an image segmentation context, the second part studies parametric problems where a set of model parameters and a segmentation are estimated simultaneously. For a small number of parameters these problems can still be optimally solved. One application is an optimal method for solving the two-phase Mumford-Shah functional. The third part shifts the focus to curvature regularization---where the commonly used length and area penalization is replaced by curvature in two and three dimensions. These problems can be discretized over a mesh and special attention is given to the mesh geometry. Specifically, hexagonal meshes in the plane are compared to square ones and a method for generating adaptive meshes is introduced and evaluated. The framework is then extended to curvature regularization of surfaces. Finally, the thesis is concluded by three applications to early vision problems: cardiac MRI segmentation, image registration, and cell classification

    Geometric Variational Models for Inverse Problems in Imaging

    Get PDF
    This dissertation develops geometric variational models for different inverse problems in imaging that are ill-posed, designing at the same time efficient numerical algorithms to compute their solutions. Variational methods solve inverse problems by the following two steps: formulation of a variational model as a minimization problem, and design of a minimization algorithm to solve it. This dissertation is organized in the same manner. It first formulates minimization problems associated with geometric models for different inverse problems in imaging, and it then designs efficient minimization algorithms to compute their solutions. The minimization problem summarizes both the data available from the measurements and the prior knowledge about the solution in its objective functional; this naturally leads to the combination of a measurement or data term and a prior term. Geometry can play a role in any of these terms, depending on the properties of the data acquisition system or the object being imaged. In this context, each chapter of this dissertation formulates a variational model that includes geometry in a different manner in the objective functional, depending on the inverse problem at hand. In the context of compressed sensing, the first chapter exploits the geometric properties of images to include an alignment term in the sparsity prior of compressed sensing; this additional prior term aligns the normal vectors of the level curves of the image with the reconstructed signal, and it improves the quality of reconstruction. A two-step recovery method is designed for that purpose: first, it estimates the normal vectors to the level curves of the image; second, it reconstructs an image matching the compressed sensing measurements, the geometric alignment of normals, and the sparsity constraint of compressed sensing. The proposed method is extended to non-local operators in graphs for the recovery of textures. The harmonic active contours of Chapter 2 make use of differential geometry to interpret the segmentation of an image as a minimal surface manifold. In this case, geometry is exploited in both the measurement term, by coupling the different image channels in a robust edge detector, and in the prior term, by imposing smoothness in the segmentation. The proposed technique generalizes existing active contours to higher dimensional spaces and non-flat images; in the plane, it improves the segmentation of images with inhomogeneities and weak edges. Shape-from-shading is investigated in Chapter 3 for the reconstruction of a silicon wafer from images of printed circuits taken with a scanning electron microscope. In this case, geometry plays a role in the image acquisition system, that is, in the measurement term of the objective functional. The prior term involves a smoothness constraint on the surface and a shape prior on the expected pattern in the circuit. The proposed reconstruction method also estimates a deformation field between the ideal pattern design and the reconstructed surface, substituting the model of shape variability necessary in shape priors with an elastic deformation field that quantifies deviations in the manufacturing process. Finally, the techniques used for the design of efficient numerical algorithms are explained with an example problem based on the level set method. To this purpose, Chapter 4 develops an efficient algorithm for the level set method when the level set function is constrained to remain a signed distance function. The distance function is preserved by the introduction of an explicit constraint in the minimization problem, the minimization algorithm is efficient by the adequate use of variable-splitting and augmented Lagrangian techniques. These techniques introduce additional variables, constraints, and Lagrange multipliers in the original minimization problem, and they decompose it into sub-optimization problems that are simple and can be efficiently solved. As a result, the proposed algorithm is five to six times faster than the original algorithm for the level set method

    Nonsmooth Convex Variational Approaches to Image Analysis

    Get PDF
    Variational models constitute a foundation for the formulation and understanding of models in many areas of image processing and analysis. In this work, we consider a generic variational framework for convex relaxations of multiclass labeling problems, formulated on continuous domains. We propose several relaxations for length-based regularizers, with varying expressiveness and computational cost. In contrast to graph-based, combinatorial approaches, we rely on a geometric measure theory-based formulation, which avoids artifacts caused by an early discretization in theory as well as in practice. We investigate and compare numerical first-order approaches for solving the associated nonsmooth discretized problem, based on controlled smoothing and operator splitting. In order to obtain integral solutions, we propose a randomized rounding technique formulated in the spatially continuous setting, and prove that it allows to obtain solutions with an a priori optimality bound. Furthermore, we present a method for introducing more advanced prior shape knowledge into labeling problems, based on the sparse representation framework
    corecore