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Abstract

Many computer vision applications such as image segmentation can be formu-

lated in a “variational” way as energy minimization problems. Unfortunately,

the computational task of minimizing these energies is usually difficult as it gen-

erally involves non convex functions in a space with thousands of dimensions and

often the associated combinatorial problems are NP-hard to solve. Furthermore,

they are ill-posed inverse problems and therefore are extremely sensitive to per-

turbations (e.g. noise). For this reason in order to compute a physically reliable

approximation from given noisy data, it is necessary to incorporate into the math-

ematical model appropriate regularizations that require complex computations.

The main aim of this work is to describe variational segmentation methods

that are particularly effective for curvilinear structures. Due to their complex ge-

ometry, classical regularization techniques cannot be adopted because they lead

to the loss of most of low contrasted details. In contrast, the proposed method

not only better preserves curvilinear structures, but also reconnects some parts

that may have been disconnected by noise. Moreover, it can be easily extensi-

ble to graphs and successfully applied to different types of data such as medical

imagery (i.e. vessels, hearth coronaries etc), material samples (i.e. concrete)

and satellite signals (i.e. streets, rivers etc.). In particular, we will show results

and performances about an implementation targeting new generation of High

Performance Computing (HPC) architectures where different types of coproces-

sors cooperate. The involved dataset consists of approximately 200 images of

cracks, captured in three different tunnels by a robotic machine designed for the

European ROBO-SPECT project.
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Chapter 1

Introduction

Infrastructures can be exposed to different loading conditions, recurrent ones

due to vehicular traffic and extraordinary ones caused by earthquakes, wind and

strong rain. The consequently induced stresses may determine structural deteri-

oration and damage, which can even cause catastrophic collapses [255]. Several

authors have pointed out that increasing the level of automation for inspection

and maintenance can play a crucial role in avoiding disasters, decreasing costs and

increasing speed, accuracy and safety [174]. Recent works address the problem of

monitoring tasks performed by robotic systems [199]. Existing ground or aerial

solutions have been proposed for inspection of dangerous sites or those difficult to

access, but at the present state-of-the-art, human-based procedures are not yet

completely substituted. Examples of ground systems are wheeled robots [163],

legged robots [119]. In case of inspection of vertical surfaces, wall-climbing robots

were developed using magnetic devices [157] or using vacuum suction techniques

[283]. Recently, unmanned aerial vehicles (UAVs) have shown a great potential

in inspection applications due to their ability of collecting high-quality photo and

video data [159].

Nowadays damages in buildings and bridges can be easily captured using a

commercial digital camera and consequently analyzed by image processing algo-

rithms. In this work data were provided by the European project ROBO-SPECT,

whose objective is to design and implement an automated, faster and reliable tun-

nel inspection robotic system that detects cracks and other defects of the tunnel

lining. The detection of cracks on a given Red Green Blue (RGB) image can be

seen as an image segmentation problem: each pixel in the image is classified into
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two classes; cracks and non-cracks. In the ROBO-SPECT machine vision mod-

ule this classification process is conducted by a Convolutional Neural Network

(CNN). However, the network annotation does not provide an accurate crack de-

tection [260]. This is due to the fact that a deep learning classifier decides whether

a pixel belongs to a crack region or not, based on the pixel intensity values of

a restricted area centred around the candidate pixel. Tunnel images, however,

are deeply affected by noise. These structures suffer from low lighting conditions,

severe watering and from artificial structures that resembles crack lines. As a re-

sult, it is quite probable for the algorithm to confuse some of the candidate pixels

from being cracks or not, especially if they belong to those “difficult” regions

(see figure 1.1). In order to eliminate these “noisy areas” the aim of this work

is to propose a variational method particularly effective in segmenting cracks in

images (see section 2.1.2.5 and chapter 4).

Figure 1.1: Classification errors

Cracks are particular type of curvilinear or thin structures. These types of

objects play a main role in several fields as, for example, civil engineering, medical

data analysis and computer assisted surgery:

• Cracks in concrete: Cracking is obtained by fast drying. Such cracks are

sometimes smooth as they follow the contours of inclusions and sometimes

very irregular, showing tunnels and disconnections. As a result, segmen-

tation of such structures is particularly challenging as a result (see figure

1.2).

• Neurites: Neurites are a generic term to describe projections from cell

bodies of neurons, i.e. axons and dendrites. Dendrites and axons in 2D mi-

croscopy tend to be quite tortuous. The individual neurites can generally
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Figure 1.2: Crack on a concrete wall ROBO-SPECT project

assume a tree structure, although this is not strict. In addition, neurites sel-

dom appear in isolation, leading to overlapping structures. In fluorescence

modalities, disconnections are also common (see figure 1.3).

Figure 1.3: Neurites. (a) thinness and tortuosity. (b) overlapping

• Retina blood vessels: Images of the retina are useful for the diagnosis of

many diseases. These include obviously eye-related conditions, such as mac-

ular degeneration, but also others that have circulatory implications such as

diabetes. One reason for this is that the eye fundus shows the capillary net-

work very well. Such images exhibit a very thin tree-like vascular structure

over an uneven background. Segmenting this network of blood vessels is an

important problem, particularly when looking for micro-aneurism, which

are blockages in this network (see figure 1.4).

It does not exist an unambiguous definition of what constitutes a thin object,
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Figure 1.4: a image of the eye fundus showing the blood vessels

but we will say that an object is thin if it is semantically coherent and at least

has one dimension smaller than the others. In other words, a thin object can be

well-approximated by a submanifold of Rn, where n is 2 or 3 typically, of lower

dimension than n. Contrariwise, we will say that an object is “isotropic” if it is

not-thin, i.e. all of its dimensions are comparable (see 1.5). Many image analysis

applications involve the segmentation of these structures: cracks in material sci-

ence images, vessels in medical images and roads in remote sensing images. In the

general literature on image processing and analysis, thin objects are not usually

mentioned as deserving special treatment. However, because they possess this

dimension that is much smaller than the others, they are indeed often harder to

acquire, process, segment and analyse than more “isotropic” objects. For image

filtering, for instance, one often uses masks or windows of some fixed dimension.

Usually, one makes the assumption that these masks entirely fits into most of

the objects of interest. This may not be true for thin object. In segmentation,

many popular methods assume that one can start from some starting point in an

object and propagate information around until object contours are found. For

thin objects, one may not be able to perform this propagation and moreover,

one may not even be able to define their contours. Moreover, a single object in

an image is assumed to be connected, but due to noise and discretization issues,

often thin objects might be locally disconnected. Whereas a human observer
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might still recognize semantically a crack, a fibre or a vessel, at the local pixel

level, the information is often lost in the noise. How then is it possible to connect

high-level information to low-level vision operators ? This is a prevalent problem

in computer vision and image analysis, but it is particularly difficult to solve for

thin objects. These structures require specific segmentation procedures because

they are prone to extra problems when compared with more “compact objects”.

First of all, they are very sparse, which means that the ratio of pixels containing

information is very small. This obviously complicates the task, in particular for

statistical methods and learning approaches. Moreover, this sparsity makes the

evaluation of segmentation algorithms very difficult. This is a frequently underes-

timated, but crucial, consequence. Indeed, without good performance measures,

comparing and improving curvilinear structure segmentation is not straightfor-

ward.

Figure 1.5: An image including several thin objects in a scanning electron mi-
croscopy image

Secondly, due to their low thickness, these structures are also more sensitive to

noise and artifacts (see figure ??). Even a small amount of noise may be sufficient

to disrupt their contours, leading to disconnections which make the segmentation

task even more challenging. Once again, classical quality scores do not measure

the preservation connectivity. Finally, curvilinear structures in real applications

generally present complex geometries and topology. They can be more or less

tortuous, present different orientations and scales inside the same image, and

also form a network (possibly with cycles), making geometric priors very difficult

to use.
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Figure 1.6: Even careful thresholding does not allow both fibres to be included
without noise coming from the background

The chapter Mathematical Framework is mainly concerned with varia-

tional methods. In computer vision the variational approach provides a way to

return an approximation of an image which is a composition of several pieces

on which the image values are homogeneous in term of derivatives. Two well-

known variational models due to Mumford and Shah (MS) [229] and Blake and

Zisserman (BZ) [35] are investigated because they are promising towards thin

structures. Segmentation can be intuitively defined as the process of partition-

ing a domain into disjoint and homogeneous regions while detecting the regions

boundaries. From the mathematical and engineering point of view a signal, either

in one or in two dimensions, can be considered as a function g(x), where x is a

point of the domain Ω and the value g(x) is the signal value at the point x. In

image analysis, segmentation is useful as a pre-classification process producing

a smooth image, with preserved regions boundaries, which is somehow easier to

classify than the original image. More generally, in signal analysis the process of

segmentation does allow to identify the main signal features by smoothing the

input data g(x), i.e. reducing its noise level and preserving, i.e. not smoothing,

the data discontinuities so that the signal meaningful structure is preserved and

more easily observable. Back to mathematics, the segmentation process can be

formalised, among others, in a variational framework. Within the framework of

the Calculus of Variations it is possible to state the segmentation concept as a

minimum problem, that is to find a solution minimising a defined quantity that

is a summation of penalty terms associated to the required solution features. The

variational nature of the Mumford and Shah model and the Blake and Zisserman
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model can be basically understood considering that the penalty terms involved

in both models take care of different requirements. In fact, the segmentation

criteria require: a) the solution to be as close as possible to the input data; b)

the solution to be as smooth as possible within each homogeneous region, that is

the solution has to be less noisy than the original data and the smoothing must

not be imposed on the regions boundaries since they contain relevant informa-

tion that must not be lost; c) the length of the regions boundaries to be as short

as possible, that is the regions boundaries have to be as smooth as possible as

well. The concept as · aspossible is strictly related to the choice of approach the

segmentation problem in a variational framework, i.e. as a minimum problem,

where the concepts of close, smooth and short have to find a proper mathemat-

ical formalisation. In particular, the Mumford and Shah model is defined by a

functional where three penalty terms are considered: the first term penalises the

distance between the approximating solution and the data, the second term pe-

nalises the wiggle of the approximating solution and the third term penalises the

length of the region boundaries. The Blake and Zisserman model is defined by

a functional where a term still penalises the distance between the approximating

solution and the data, a term still penalises the length of the region boundaries

and the smoothness of the solution is controlled by an higher order term with re-

spect to the one in Mumford and Shah model. Moreover, the wiggle of the regions

boundaries is also penalised by an ad hoc term. Each penalty term is associated

with a weight, represented by a real parameter, controlling the relative influence

of the penalty terms and their overall effects on the solution. It is important to

notice that the dimension of the term controlling the regions’ boundaries is one

order less than the order of the penalty term controlling the distance between

the approximating solution and the data and of the penalty term controlling the

smoothness of the approximating solution. Moreover, since both the Mumford

and Shah functional and the Blake and Zisserman functional segment the data

into homogeneous regions and detect the region boundaries explicitly and directly,

the solution is made of two elements: one is properly the approximating solution,

u and the other is the set K of closed curves representing the region boundaries.

This kind of problems, where the unknown is a pair (u,K), with K varying in a

class of closed subset of a fixed open set Ω ⊂ Rn, and u : Ω\K → Rn is a function

in some function space, are generally denoted by “Free Discontinuity Problems”.

Usually they are of the form:
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min{Ev(u,K) + Es(u,K)},

with Ev(u,K), Es(u,K) being interpreted as volume and surface energies,

where, in any case Ev(u,K) is defined in a dimension one order greater that the

dimension of Es(u,K). For instance, the Mumford and Shah model requires the

minimisation of a functional of the form:

MS(u,K) =

∫
Ω

|u− g|2 dx+

∫
Ω\K
|∇u|2 dx+Hn−1(K ∩ Ω) (1.1)

The first term penalises the distance between the approximating solution u

and the data g. The second term penalises the gradient of the approximating

solution strictly within the homogeneous regions, that is the solution is required

to be smooth within each homogeneous region and it is allowed to present strong

transitions along the regions’ boundaries. The third term penalises the length

of the regions’ boundaries being the length measured by the (n − 1)−Hausdorff

measure of the set K. The main result of this chapter is a parallel algorithm

for these minimization problems. This is of remarkable importance when huge

amount of data is considered.

The chapter Segmentation on Graphs shows several segmentation tech-

niques formulated on graphs with emphasis on variational models. Designing

formulations of variational methods on graphs [152] has numerous advantages

over schemes like finite difference or finite elements. Firstly, it removes the ne-

cessity to discretize the data again in a different form. Secondly, it is possible

to reuse existing efficient combinatorial optimization tools to minimize energies

(i.e. network flows, shortest paths, minimum spanning trees) and develop new

ones. Finally, the generality of these approaches makes it possible to extend

the developed techniques from images to a larger class of data (i.e. mesh filter-

ing and data classification). In Section 3.3.3 we proposed a graph model based

on the mathematical framework showed in Chapter 2 for denoising point cloud

data. Given a point cloud in a Euclidean space with (noisy) real-valued labels

or an undirected graph with labeled vertices, the model denoises the labels while

allowing for jumps (discontinuities) in label values.

The chapter Variational restoration of curvilinear structures describes

how to build a variational framework that would be particularly effective towards
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the segmentation of thin structures. Upon the notion of mathematical morphol-

ogy it is possible to define two curvilinear characteristics: an intensity feature,

that can be seen as a curvilinearity measure and a directional feature, that pro-

vides a local orientation estimation of the curvilinear structures. Both features

are low-level structure characteristics and are essential devoted to be embedded

in more sophisticated image processing methods for segmentation of thin struc-

tures. In Paragraph 4.2.2, we proposed a graph version of the traditional path

opening algorithm.

The chapter Computer Vision Techniques for Inspection of Large

Concrete Structures shows some useful applications to defect detection in large

concrete structures and point cloud clustering. In particular, a parallel numerical

procedure for crack detection is described. Performances on data provided by

a robotic machine have been collected on several HPC architectures aiming at

reducing the execution time in a significant way. These methods are described in

the following publications [247],[248],[249], [246], [250], [251].
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Chapter 2

Mathematical Framework

This Chapter presents a review of the main concepts and tools that are used to

study the Mumford and Shah and the Blake and Zisserman problems both from

the theoretical point of view, i.e. to prove that the functional involved admit a

minimum, and also from the practical point of view, i.e. to build a convenient

numerical approximation of these functionals. In particular, the main purpose of

this chapter is to analyse the proposed mathematical framework and to show the

connection between the originally stated problems and the approximation that

are eventually computed.

The classical and the direct method in the Calculus of Variations are

briefly reviewed as they are the main tools to explicitly compute the solution and

to study the existence of minima. The existence of the solution is guaranteed

by a generalisation of the Weierstrass Theorem, however, there are problems for

which the existence conditions are not satisfied and for which the direct methods

cannot be applied. In these cases a so-called relaxation is needed to associate

to the original problem a weak formulation, which is analytically tractable: Free

Discontinuity Problems belong to this category. For this reason is necessary to

develop mathematical tools that allow the definition of approximating formula-

tions that are numerically more tractable. It is important to notice that many

different types of approximations can be defined and that, for all of them, the

asymptotical equivalence to the original problem is guaranteed and proved by the

use of the Γ-convergence theory.
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2.1 Variational Problems

The problem of finding, among all functions with prescribed boundary conditions,

those which minimise a given integral functional is one of the main goal in the

Calculus of Variations. In general, the problem can be formalised as follows:

min{F(u) : u ∈ X} (2.1)

where X is a suitable Banach space and

F(u) =

∫
Ω

f(x, u(x),∇u(x))dx (2.2)

where Ω ⊂ Rn is a bounded open set with boundary ∂Ω, u : Ω ⊂ Rn → R,∇u ∈
Rn, f : Ω× R× Rn → R is a continuous function.

2.1.1 Classical and Direct Methods in the Calculus of

Variations

In general, classical methods allow to explicitly compute the solution of a min-

imum problem like 2.1 defined above by means of the derivation of the Euler

equation associated to F . Direct methods allow to formally prove the existence

of the minimum and are generalisation of the Weierstrass Theorem. This guar-

antees the existence of the solution under the conditions that the functional F
is lower semicontinuous and that the function space X is compact. Regarding

the classical methods in the Calculus of Variations, the solution of the min-

imisation problem can be obtained by finding the zeros of the “derivative” of

F ,F ′(u) = 0 known as the Euler equation associated to the functional F . If

u ∈ C2 the Euler equations are:

F ′(u) = −
n∑
i=1

∂

∂xi

(
∂f

∂ξij
(x, u,∇u)

)
+
∂f

∂uj
(x, u,∇u)

where f = f(x, u, ξ). As examples, the Euler equations associated to the problem

of minimising the Dirichlet integral and to the minimal surface problem are here
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reported. The Dirichlet problem is

min

{
F(u) =

∫
Ω

|∇u|2dx : u = u0 on ∂Ω

}
where n ≥ 1 and the associated Euler equation is:{

−∆u = 0 in Ω

u = u0 on ∂Ω

The minimum surface problem is:

min

{
F(u) =

∫
Ω

√
1 + |∇u|2dx : u = u0 on ∂Ω

}
where n ≥ 1 and the associated Euler equation is{

−
∑n

i=1
∂
∂xi

[
(1 + |∇u|2)

−1/2 ∂u
∂xi

]
= 0 in Ω

u = u0 on ∂Ω

A very strong link exists between Partial Differential Equations and Cal-

culus of Variations. In fact, variational problems produce, via their associated

Euler equation, differential equations and, on the other side, many differential

equations can be studied by variational methods. For a treatment on this topic,

specifically oriented to image processing problems we refer to [19] and to [7]

where a wider class of problems is presented. The direct methods in Calculus

of Variations deal directly with the functional F to prove the existence of a

minimum. The existence can be proved by defining a minimising sequence from

which, under specific conditions on the function space, it is possible to extract a

convergent subsequence which, under some other conditions on the continuity of

F , converges to a minimum of the functional F . In practice, the functional F has

to be lower semicontinuous with respect to the topology defined on the function

space X, the characteristics of the topology have to ensure the compactness of

the minimising sequences. In terms of functions, let X be a metric space, and let

R = R ∪ {−∞,∞}, a function F : X → R is said to be lower semicontinuous if:

F(x) ≤ lim
h→∞

inf F (xh)
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for every sequence (xh) converging to x and for all x ∈ X. A subset K of X is

compact if every sequence in K has a subsequence which converges to a point of

K i.e.

∀ (xh) ⊂ K ∃x ∈ X, ∃ (xhk) : xhk → x

A function F : X → R is coercive if the closure of {F ≤ t} is compact in X for

every t ∈ R.

The Weierstrass theorem guarantees that if F is coercive and lower semi-

continuous then:

i. F has a minimum point in X;

ii. If xh is a minimising sequence of F in X, and x is the limit of a subsequence

of xh then x is a minimum point of F in X;

iii. if F is not identically +∞, then every minimising sequence for F has a

converging subsequence.

The direct methods of the Calculus of Variations cannot always be applied

directly to approach a minimum problem. This may occur when the functional F
is not lower semicontinuous or the space X is not compact. When F is coercive,

but not lower semicontinuous a widely adopted strategy to solve the minimum

problem is to associate to the functional F another one, called RF (relaxed func-

tional). This new functional defines a new problem, (RP ), called relaxed problem.

In particular RF admits a minimum and has the following two properties:

• min{RF}= inf{F};

• the minimum points for RF are the limits of minimising sequences of F ,

and every minimising sequence of F has a subsequence converging to a

minimum point of RF .

The relaxed functional RF is defined as the greatest lower semicontinuous

functional less or equal to F .

2.1.2 Free Discontinuity Problems

2.1.2.1 A General Introduction

The terminology “Free Discontinuity Problems” has been introduced by De Giorgi

to indicate a class of variational problems characterised by a competition between
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volume energies, concentrated on a n-dimensional set, and surface energies, con-

centrated on a (n − 1)-dimensional set. A relevant feature of these problems

is that the support K of the surface energies is not fixed a priori and it is in

many cases a relevant unknown of the problem. Free discontinuity problems in-

volve functionals whose natural domains are sets of functions which admit a finite

number of discontinuities, being K the set of the discontinuities. Since the dis-

continuity set K is not necessarily made of closed curves, i.e. boundaries, the

class of free discontinuity problems presents only some analogies with the class of

the free boundary problems and requires a specific mathematical theory. Some

of the main examples where free discontinuity problems arise are:

• fracture mechanics;

• theory of plasticity;

• optimal partitions;

• signal and image reconstruction;

In particular, the segmentation model proposed by Mumford and Shah is one

of the best known free discontinuity problems. Approaching a free discontinuity

problem, and in particular the Mumford and Shah problem, following the direct

methods in the Calculus of Variations presents many difficulties mainly related

to the dependence of the involved energies on the surface K. The definition of

a relaxed problem associated to the original free discontinuity problem is hence

necessary to allow the proof of the existence of the solution. Again, even when the

existence of the solution is guaranteed, the exact computation of the solution can

be rarely performed. This motivates the need to approximate the relaxed problem

with a functional which solution can be computed practically. The effectiveness

of the approximation is formally proved through the use of the Γ-convergence

techniques. The value of the solution can be computed, for example, applying the

classical methods in the Calculus of Variations, i.e. deriving the Euler equation

associated to the approximating functional. Moreover, the approximation is in

general numerically tractable, i.e. solution can be computed automatically. The

approximation of free discontinuity problems can be achieved following many

different techniques. Some of the more relevant are:

• non-local approximation;
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• finite-difference approximation;

• finite-elements approximation;

• slicing method;

• second order singular pertubation approximation;

• elliptic approximation

For a review of these methods we refer to [48], [9] and [19]. Approximation tech-

niques include both discrete methods, (such as the finite elements approximation)

and methods in the realm of functional problems that must be further approxi-

mated by a discretization to obtain a numerical solution. In the following some

notions about the space of Special Functions of Bounded Variation (SBV) and

about the Γ-convergence theory are briefly sketched. The SBV space provides an

unified framework for the study of free discontinuity problems and it allows a weak

formulation of otherwise intractable problems. The Γ-convergence theory allows

to prove the approximation of a given functional by a new functional, defined on

different function spaces, which is more tractable from both the analytical and

the numerical viewpoint.

Regularization, Weak Derivatives and Discontinuity Sets Visual recon-

struction leads to inverse mathematical problems which are generally ill-posed.

Regularization provides a method to make such problems well-posed. The basic

idea of regularization methods is to restrict the class of admissible solutions of an

ill-posed problem by imposing additional constraints. In the standard Tikhonov

theory, a problem is made well-posed by restricting the solutions to a space of

smooth functions. Through regularization, an ill-posed problem may be reformu-

lated as a problem of calculus of variations. A numerical solution can be computed

using finite difference or finite elements methods. However, the smoothness con-

straint is inadequate in the presence of visual discontinuities that are the most

significant locations in any image since they often indicate the boundaries of

objects. For this reason is necessary to extend the standard regularization meth-

ods in order to take discontinuities into account. Mumford and Shah and also

Blake and Zissermann proposed a variational approach to image segmentation.
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Standard regularization methods require the minimization of an elliptic func-

tional. Variational problems for regularization with discontinuities involve both

an analogous elliptic functional and a measure of the length of the discontinu-

ity contour. The discontinuity curves are themselves among the unknows of the

problem and this makes the minimization of the functional difficult. The concept

of variational convergence provides a solution for this problem. It proposes to

approximate a variational problem by a sequence of different problems. A par-

ticular concept of variational convergence for functionals, the Γ-convegence [90]

is suitable for problems of calculus of variations with free discontinuities. The

classical theorem proved by Ambrosio Tortorelli shows how a functional depend-

ing on discontinuities can be approximated by a sequence of elliptic functionals

which are more tractable. The Γ-convegence makes it possible to go to the limit

in the corresponding minimization problems: the minimizers of the functionals

of the sequence converge in a appropriate metric to the minimizer of the original

functional.

In the standard Tikhonov regularization theory, the class of admissible solu-

tions of an ill-posed problem is restricted to Sobolev space of smooth functions.

Regularization with discontinuities requires a more general space of the Bounded

Variation functions (BV). A function of two variable u(x, y) is called a function of

bounded variation in the domain Ω if it is summable and there exists a constant

K such that for any h1 and h2 the following inequality hold:∫∫
Ωh

|u(x+ h1, y + h2)− u(x, y)| dx dy ≤ K||h||

where ||h|| denotes the norm of the vector h with components (h1, h2) and Ωh is

the subset of points of Ω whose distance from the boundary of Ω is greater than

the norm of h. The functions of bounded variation form a Banach vectorial space.

Mumford and Shah [229] proposed a variational formulation for the problem of

image segmentation, which is referred to as the “weak membrane” model by

Blake and Zisserman. Their approach can be generalized to other reconstruction

problems. A variational method for the regularization of ill-posed vision problems

involving discontinuities looks for a BV function u(x, y) which minimizes the
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following functional:

E(u) =

∫∫
Ω

Φ(u, x, y) dx dy + λ

∫∫
Ω

||∇u||2 dx dy + αH1(Su)

where Su is the set of discontinuities points of u(x, y),H1(Su) is the one-dimensional

Hausdorff measure of Su, constants λ and α are positive weights and Φ(u, x, y)

is a non-negative function. If Su is the union of rectifiable curves, the Hausdorff

measure is simply the total length of the set of curves. If Φ(u, x, y) = (u − f)2,

with f(x, y) representing the data, the corresponding functional is called the

weak membrane functional by Blake and Zisserman. The first term measures the

discrepancy between the solution u(x, y) and the input data. The second term

obliges the solution to be smooth outside the discontinuity set Su. By minimiz-

ing the total length of the curves along which the solution is discontinuous the

third term prevents the formation of an incoherent discontinuity set. The contour

length has been chosen because it is the simplest reasonable measure of the set

of jump points. It should be noted that the gradient of a BV function has a

generalized meaning with respect to the one used in mathematical analysis. It

can be shown that the derivative (in the distributional sense) of a BV function

can be decomposed into a regular part, whose density is a summable function

called the approximate differential, and a singular part. Only the approximate

differential appears in the second integral in the expression of E(u). The weights

λ and α are the parameters of the problem. Blake and Zisserman found that

the weight λ is a scale parameter, while the square root of the ratio 2α/λ1/2 is

a threshold which determines the detection of an isolated step edge. The edge

is detected if the step height exceeds such a threshold. The parameter α is a

measure of the resistance to noise. The presence of noise in the data will gen-

erate the appearance of spurious discontinuities in the solution. As α increases

(for a given λ) the probability of spurious discontinuities decreases. The value

of α should be proportional to the variance of the noise. Blake and Zisserman

also found that the error in the localization of the discontinuities is negligible if

the signal-to-noise ratio is not too small. The parameter λ plays an important

role in the areas where the solution is smooth, preventing random disturbances

occasioned by the presence of noise. The value of this parameter should be set

in inverse proportion to the signal-to-noise ratio in the input data. The problem

of minimizing functional E(u) can be considered as an extension of the classical
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regularization method in the presence of discontinuities. It has not been proved if

this problem is well-posed, but it can be conjectured that this is true. Ambrosio

[5] proved that functionals of this type are lower semicontinuous, and hence have

minimizers, in a suitable subclass of the functions of bounded variations, denoted

by SBV (special functions of bounded variation). The SBV functions have the

property that the singular part of the distributional derivative is concentrated

along the discontinuty set (like a δ distribution). Unfortunately, the SBV space

also includes functions with highly irregular discontinuity sets, which may contain

non rectifiable curves (this fact justifies the Hausdorf measure in the definition

of the functional). The computation of the discontinuity contours makes the

minimization of the functional E(u) a difficult problem, both theoretically and

practically, because the set Su of the discontinuity curves is an unknown of the

problem. The concept of Γ -convergence proved by Ambrosio and Tortorelli, al-

lowing the approximation of functional E(u) by elliptic functionals, makes the

problem numerically more tractable.

2.1.2.2 The Space of Special Functions of Bounded Variation

One of the innovative contribution by De Giorgi to the study of the free discon-

tinuity problems indicates to interpret K as the set of discontinuity points of the

function u and to define u on a particular space of discontinuous functions. The

definition of such a function space fulfils the following requirements:

• it has to be possible to define K as a smooth set of discontinuity points of

the function u;

• u has to be “differentiable” almost everywhere outside K, so that the bulk

energy depending on ∇u can be defined;

• the possibility to apply the direct methods in the Calculus of Variations

has to be guaranteed;

The rigorous definition and the formalisation of such a space is due to the

efforts of De Giorgi and Ambrosio who defined the space of Special Functions of

Bounded Variation (SBV). Working in this space has proved to be particularly

fruitful allowing the definition of the so called “weak forms” of original problems

and providing the necessary tools to study the regularity of the solutions of relaxed
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problems. Various regularity results shown that a weak formulation, defined in the

SBV space, does provide a solution to a wide class of free discontinuity problems.

The SBV space is the function space that is commonly used in image analysis,

the main reason is that, as opposed to classical Sobolev spaces, functions in SBV

can be discontinuous across hypersurfaces. As for images this means that images

are discontinuous across edges. We report here a rough definition of the space

of Functions of Bounded Variation (BV) and of the space of Special Functions

of (SBV), we refer to [9] and [48] for the formal definitions and details on such

spaces.

Let Ω ⊆ Rn be an open set, let u : Ω → R be a measurable function and

x ∈ Ω. Let u+(x) and u−(x) denote, respectively, the approximate upper and the

lower limit of u at x, defined by:

u+(x) = inf

{
t ∈ R : lim

ρ→o+

|{y ∈ Ω : |x− y| < ρ, u(y) > t}|
ρn

= 0

}
u−(x) = sup

{
t ∈ R : lim

ρ→o+

|{y ∈ Ω : |x− y| < ρ, u(y) < t}|
ρn

= 0

}
If u+(x) = u−(x) ∈ R, then x is said to be a Lebesgue point of u and the common

value of u+(x) and u−(x) is called approximate limit of u at x. By definition u is a

function of bounded variation in Ω, if u ∈ L1(Ω) and its distributional derivative

is a vector-valued measure Du with total variation |Du(Ω)| defined by:

|Du(Ω)| = sup

{∫
Ω

u divΦ : Φ ∈ C1
0 (Ω,Rn) , |Φ| ≤ 1

}
The space of all functions of bounded variation on Ω will be denoted by BV(Ω).

If u ∈ BV(Ω), then Su is countable Hn−1, n− 1 rectifiable, i.e.

Su = N ∪
⋃
i∈N

Ki

whereHn−1(N) = 0, and each Ki is a compact set contained in a Ci hypersurface.

The distributional derivative Du of a function u ∈ BV(Ω) can be decomposed

as Du = Dau + Dsu where Da is absolutely continuous and Dsu is singular

with respect to the Lebesgue measure. The density of Dau with respect to the

Lebesgue measure is denoted by ∇u. Moreover, Dju denotes the restriction of

Dsu to Su and Dcu the restriction of Dsu to Ω \ Su. With these notations the

36



distributional derivative of u can be decomposed as

Du = Dau+Dju+Dcu

where Dju and Dcu are respectively called the jump part of Du and the Cantor

part of Du. Here it is important to note that the measure Dju is concentrated on

Su. A function u belongs to SBV when the Cantor part Dcu of its distributional

derivatives Du is null1. A generalisation of SBV spaces, namely the space of

Generalised Special functions of Bounded Variation (GSBV), is necessary when

dealing with functions u /∈ L1(Ω). The space GSBV is defined

GSBV = {u : Ω→ R : Borel function, − k ∨ u ∧ k ∈ SBVloc(Ω)∀k ∈ N}

where SBVloc(Ω) denotes the class of functions v ∈ SBV(Ω
′
) for every Ω

′ ⊂⊂ Ω.

This is the case, for example, of the space where a solution of the Blake and

Zisserman problem has to be searched. In particular, the existence of minimis-

ers of the Blake and Zisserman functional has been proved by [58] in the space

GSBV 2 ∩ L2(Ω) where

GSBV 2(Ω) = {u : Ω→ R : u ∈ GSBV (Ω),∇u ∈ [GSBV ]n}

2.1.2.3 Variational Convergence

A new concept of convergence for sequences of functionals has appeared in math-

ematical analysis in recent years. This concept is specially designed to approach

the limit in the sequences of the corresponding variational problems and is called

variational convergence. This notion of convergence can be used to approximate

one variational problem by another, which may have quite different computa-

tional properties. When applied to minimization problems, the convergence of

the sequence of functionals F k(u) to the limit functional F (u), in a variational

sense, requires that minimizers of F k(u) converge (in a suitable metric) to min-

imizers of F (u) as k tends to infinity. Furthermore, the minimal values of the

F k(u) must converge to the minimal value of F (u). Hence, a variational conver-

gence is a weak notion of convergence for sequences of functionals which makes

1 A function u ∈ SBV(Ω) can be represented as ua +uj ∈W 1,1(Ω) and uj ∈ X(Ω) the space
of SBV function whose derivative reduces to the jump part, i.e. in X(Ω), ∇u = 0 and Dj(u) is
purely atomic measure
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it possible to go to the limit in the corresponding minimization problems.

A particular theory of variational convergence, the Γ-convergence introduced

by De Giorgi [90], has an interesting computational application to problems of

calculus of variations with free discontinuity sets. A sequence of functionals F k(u)

defined on a metric space U is said to be Γ-convergent to the functional F (u) if

the following two conditions hold for all u0 ∈ U :

i. for every sequence uk converging to u0 (in the metric of the space U) one

has:

lim inf
k→∞

F k(uk) ≥ F (u0) (2.3)

ii. there exists a sequence uk converging to u0 such that:

lim sup
k→∞

F k(uk) ≤ F (u0) (2.4)

The limit functional F (u) is called the Γ− limit of the sequence F k(u). The Γ-

limit when it exists is unique. The meaning of the inequality 2.3 is the following:

if the limit of the numerical sequence F k(u) exists, it is greater than or equal to

F (u0); otherwise, the limit of every convergent subsequence F ki(uki) is greater

than or equal to F (u0). The inequality 2.4 likewise means that all limit values

of the numerical sequence F k(u)k are less than or equal to F (u0). It should be

noted that Γ − convergence is a different concept from pointwise convergence.

More in depth, Γ-convergence is not implied by and does not imply pointwise

convergence. They are two independent concepts, comparable in the sense that if

F (u) and F1(u) are, respectively, the Γ-limit and the pointwise limit of sequence

F k(u), then F (u) ≤ F1(u) for every u ∈ U .

The fundamental variational property of Γ-convergence can now be formu-

lated: let F k(u) be a sequence of functionals defined on the metric space U which

is Γ-convergent to the limit functional F (u) as k tends to infinity. Assume also

that the functionals F k(u) have minimizers in U . It can then be shown that if

a sequence u∗k of minimizers of F k(u) converges, then the limit is a minimizer

of F (u), and F k(u∗k) converges to the minimal value of F (u). Hence, the Γ-

convegence is a notion of variational convergence. If k is sufficiently large, the

problem of minimizing F (u) can then be replaced by the problem of minimizing

F k(u).
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There is another property of Γ-convergence which is of relevance to the cal-

culus of variations. If F k(u) Γ-converges to F (u), it can then be proven that

F k(u) +G(u) Γ-converges to F (u) +G(u) for every continuous functional G(u).

This property means that Γ-convergence is stable under continuous perturbations.

This stability feature plays an important role in the application of the theorem

of Ambrosio and Tortorelli to the problem of the minimization of the functional

E(u).

In recent years, variational principles with a free discontinuity set have been

introduced to solve reconstruction problems in computer vision theory (see, for

instance [224, 132, 265]). The variational approach to the image segmentation

problem proposed by Mumford and Shah [229] consists of minimizing the func-

tional

E(u,K) =

∫
Ω\K

(
|∇u|2 + µ|u− g|2

)
dx+ αHn−1(K ∩ Ω)

where Ω ⊂ Rn is a bounded open set, Hn−1 is the Hausdorff (n−1)−dimensional

measure, g ∈ L∞, and α, µ > 0 are fixed positive parameters. The functional has

to be minimized over all closed sets K ⊂ Ω and all u ∈ C1(Ω \K). In the case

n = 2 the function g represents the image to be segmented. By minimizing the

functional one tries to detect the discontinuities of g due to noise and small ir-

regularities. The set K contains the jump points of u and represents the edges of

the objects. The functional penalizes large sets K, and outside K the function u

is required to be close to g and C1. The Mumford and Shah variational principle

can be extended to several reconstruction problems of computer vision: stereo

reconstruction [289], computation of optical flow [231], shape from shading [290].

Variational problems involving functionals of this form are usually free disconti-

nuity problems, after terminology introduced by De Giorgi [89]. The Mumford

and Shah model has some drawbacks: it is unable to reconstruct crease discon-

tinuities and yields the over-segmentation of steep gradients (the so-called ramp

effect). To overcome these defects of the first order model. Blake and Zisserman

[35] introduced a second order functional which can be written in the form:

F (u,K0, K1) =

∫
Ω\(K0∪K1)

(∣∣∇2u
∣∣2 + Φ(x, u)

)
dx

+ αHn−1 (K0 ∩ Ω) + βHn−1 ((K1\K0) ∩ Ω)

with α, β > 0 positive parameters. The functional has to be minimized over the
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unknown sets K0, K1 with K0∪K1 closed and u ∈ C2(Ω\(K0∪K1)) approximately

continuous on Ω\K0. If Φ(x, u) = µ|u−g|2 and n = 2 the functional 2.1.2.3 is just

that one introduced in [35] (the thin plate surface under tension). In the second

order model, K0 represents the set of jump points for u and K1 \ K0 is the set

of crease points, which is particularly relevant in those computer vision problems

that require the reconstruction of thin structures. If the conditions (see[35])

β ≤ α ≤ 2β

are satisfied, the existence of minimizers for the functional F (u,K0, K1) has been

proven, in the case n = 2 and Φ(x, u) = µ|u−g|2, by Carriero, Leaci and Tomarelli

[59] (notice that 2.1.2.3 are necessary and sufficient for the lower semicontinuity of

F with respect to the L1 convergence). The proof is based on a weak formulation

of the problem by setting

F̄ (u) =

∫
Ω

(∣∣∇2u
∣∣2 + Φ(x, u)

)
dx+ αHn−1 (Su) + βHn−1 (S∇u\Su) ,

where ∇u denotes an approximate differential, Su is the discontinuity set of u

in an approximate sense, and S∇u is the discontinuity set of ∇u. In [58] the

existence on minimizers for the functional F over the space

{
u : Ω→ R : u ∈ L2(Ω), u ∈ GSBV (Ω),∇u ∈ [GSBV (Ω)]n

}
has been proven in any space dimension n, GSBV (Ω) being the space of gen-

eralized special functions of bounded variation introduced in [94]. A regularity

theorem in [59] then shows that, for n = 2, any weak minimizer actually pro-

vides a minimizing triplet (u,K0, k1) of F by taking a suitable representative of

the function and the closure of Su and S∇. Ambrosio and Tortorelli [10] ap-

proximated the Mumford and Shah functional by a family of elliptic functionals

defined on Sobolev spaces. The approximation takes place in a variational sense,

the De Giorgi Γ-convergence. The approximating elliptic functionals proposed in

[11] are defined by

Eε(u, s) =

∫
Ω

(s2 + λε)|∇u|2 dx+ µ

∫
Ω

|u− g|2 dx+ αGε(s)
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where the approximation takes place as ε→ 0+, λε → 0+, and

Gε(s) =

∫
Ω

[
ε|∇s|2 +

(s− 1)2

4ε

]
dx

The variable s ∈ [0, 1] is related to the set of jumps K. The minimizing sε are near

to 0 in a neighbourhood of the set K, and far from the neighbourhood they are

close to 1. The neighbourhood shrinks as ε → 0. The Ambrosio and Tortorelli’s

approximation can be used to find an effective algorithm for computing the min-

imizers of E 2.1.2.3. The approximation has been applied to several computer

vision problems.

We now present a similar technique for the Blake and Zisserman functional.

We consider the following family of functionals

Fε(u, s, σ) =

∫
Ω

(σ2 + κε)|∇2u|2 dx+

∫
Ω

Φ(x, u) dx+ (α− β)Gε(s)

+βGε(σ) + ξε

∫
Ω

(s2 + ζε)|∇u|γ dx

for suitable infinitesimals κε, ξε, ζε. A slight variant of these functionals has been

proposed by Bellettini and Coscia [26] in the case n = 1 and in that case the

Γ-convergence of Fε to F has been proved. Their result can be extended in

the following way: the lower inequality of Γ-convergence is proven in any space

dimension n, and the upper inequality is proven when u is bounded and |∇u| ∈
Lγ(Ω), under a very mild regularity assumption on the sets Su and S∇u, which

is fulfilled in computer visions applications. In the particular case when α = β

and n = 2 the full Γ-convergence is proven.

The extension of the Ambrosio and Tortorelli’s approximation to the sec-

ond order problem presents several difficulties. The lower inequality cannot be

obtained by means of the slicing technique and consequent reduction to a one-

dimensional problem used in [26]. Such a reduction yields the operator norm of

the Hessian matrix in the Γ-limit instead of the Euclidean norm. The second

derivatives are then estimated by adapting a global technique proposed by Am-

brosio in [6] and relying on a compactness theorem in the space 2.1.2.5 due to

Carriero, Leaci and Tomarelli [58]. Conversely, the jump part of the functional is

estimated by using a slicing argument, taking into account that the space GSBV

is a vector space under a suitable energy condition.
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The major difficulty in the proof of the upper inequality consists in obtaining

a suitable estimate on
∫
|∇u|γ dx from the finiteness of 2.1.2.3. Such an estimate

would permit to adapt the constructive part of Ambrosio and Tortorelli’s proof

to the second order problem. In the case α = β, n = γ, γ = 2, an estimate which

yields a full Γ-convergence result is obtained by means of a suitable interpolation

inequality in the Sobolev space W 2,2. If α 6= β the upper inequality can be proved

under the assumption that u is bounded and |∇u| ∈ Lγ(Ω).

The discretization of the functional 2.1.2.3 is not straightforward and it is

difficult to apply gradient descent with respect to the unknown sets K0 and

K1. Conversely, the Γ-convergent approximation yields a sequence of functionals

2.1.2.3 which are numerically more tractable, so that discretization and gradient

descent may be applied in a straightforward way. In particular, a recent nu-

merical minimization technique of non-convex functional based on an especially

tailored version of a block-coordinate descent algorithm (BCDA) can be applied.

Although theoretical models such as Mumford and Shah and as Blake and Zisser-

man are global, the non-convexity of the objective functionals forces numerical

methods to provide sub-optimal solutions. The outcome of many numerical ex-

periments has highlighted that, although the theoretical model is global, the

solutions weakly depend on boundary conditions and they are energetically close

to initial data. This fact motivates the development of a tiling scheme in order

to address the segmentation of large images where a minimizer of the functional

is assembled by merging together local minimizers restricted to sub-portions of

the image. The notion of Γ-convergence is of particular interest in solving min-

imum problems since it can be used to describe the asymptotic behaviour of

this class of problems and it formalises a notion of variational convergence. The

theory of Γ-convergence allows to prove the equivalence between two minimum

problems, one characterised by a functional F and another characterised by a a

functional Fε. Some problems are in fact originally formulated through a func-

tional F and the Γ-convergence allows its approximation by means of a sequence

of a more tractable functional Fε. The free discontinuity problems are problems

of this kind. On the other hand, there are other problems originally formulated

by a functional Fε that is difficult to handle numerically when the parameter ε is

small. In this case the Γ-convergence is used to prove that the original functional

can approximated by a parameter-free functional. The homogenization problems

are classical examples of this kind. The usefulness of proving such an equivalence
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lies on the fact that, depending on particular cases under consideration, one of

the two functionals is more tractable that the other, both from an analytical and

a numerical viewpoint. It is worth to provide a brief list of some of the more rel-

evant problems that can be faced and solved by using Γ-convergence technique.

Examples includes:

• the gradient theory of phase transition;

• homogenization problems;

• dimension reduction,

• continuous limits of differences schemes;

• approximation of Free Discontinuity Problems;

We report in the following just the definition of Γ-convergence and a relevant

result related to the Γ-convergence, while for an introductory treatment on the

theory of Γ-convergence and for a parade of examples we refer to [49]. Let (X, d)

be a metric space and let f, fε : X → [0,∞] be functions. The sequence of

functions (fε) Γ-converges to f if the following two conditions are satisfied:

(i) for any sequence (xε) ⊂ X converging to x the following holds:

lim
ε→0

inf fε (xε) ≥ f(x)

(ii) for any x ∈ X there exists a sequence (xε) ⊂ X converging to x such that

lim
ε→0

sup fε (xε) ≤ f(x)

The function f is uniquely determined by (i), (ii) and is denoted by Γ− limε→0 fε,

moreover if f(xε) is a converging sequence to x so that

lim
ε→0

fε (xε) = lim
ε→0

fε (x)

then its limit is a minimum point for f .
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2.1.2.4 The Mumford and Shah Functional

One of the best known and studied free discontinuity problem is the model in-

troduced by Mumford and Shah ([229]) for image segmentation. The model is

presented here to review the main aspects related to the formulation of such a

problem in a variational framework. Segmentation is a typical and widely inves-

tigated topic in computer vision. It can be defined as the process of partitioning

an image into groups of pixels that represent objects. A class of segmentation

methods recognizes the objects as the regions delimited by edge-boundaries, i.e.,

sets of pixels presenting sharp variations of intensity. Mathematical methods for

segmentation are mainly divided into two categories: methods based on PDEs

and variational methods. PDE’s approaches originated in the early 80s with the

isotropic scale-space noise-reduction coarsing based on heat diffusion proposed

in [333]. Then, anisotropic diffusion has been introduced, which inhibits diffu-

sion according to local properties of the image [253]. Another approach, which

is a particular case of anisotropic diffusion, has the interesting property that the

related PDE represents the flow generated by the minimization of the Total Vari-

ation [270]. Principal issues of PDEs approaches are mainly due to the difficult

interpretation of the role that parameters play in the model and the physical

meaning of solutions [325]. In this perspective, the variational approach seems to

be more intuitive and allows for having a proper and explicit modelling of all the

components: noise-reduction, edge-detection, scale-space representation. By fully

exploiting a variational framework, Mumford and Shah [229] proposed a model

for image segmentation based on the minimization of the following functional

MS(u,K) =

∫
Ω\K
|∇u|2 dx+ αH1(K ∩ Ω) + µ

∫
Ω

|u− g|2 dx

Here Ω ⊂ R2 and g ∈ L∞(Ω) is the input image. The minimization is among all

the functions continuously differentiable outside K, i.e. u ∈ C1(Ω \ K), where

K ∈ Ω is compact. H1 is the 1−dimensional Hausdorff measure, and α, µ are

positive parameters. The minimization of the first term forces u to be smooth (a

piecewise constant behaviour is expected) outside K. Because of the term K∩Ω1,

K is a one-dimensional set with finite length. The last integral term is a distance

term that forces u to be close to the original image g. The set K can be easily

understood as the set of the discontinuities of u, indeed this is a typical problem
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belonging to a general class of problems called free discontinuities problems [89].

Kawohl found a strict relationship between the Mumford-Shah and Perona-Malik

approaches to segmentation [178]. In particular, he showed how the parameters of

the Mumford-Shah (MS) functional can be interpreted as parameters regulating

an anisotropic diffusion process applied to the image g.

From a practical point of view, the minimization of the MS functional 2.1.2.4

cannot be addressed because the measure term H1(K∩Ω) is not semi-continuous

with respect to any reasonable topology. As suggested in [89], by relaxing the

problem into the weaker space of Special Functions of Bouded Variation SBV (Ω),

the methods of Calculus of Variations can be used to prove the existence of min-

ima [88]. The advantage of this approach is that for every u ∈ SBV (Ω), the

discontinuity set Su is uniquely determined by geometrical properties of the func-

tions. This results in a functional formulation of the MS problem that uniquely

depends on the function u:

G(u) =

∫
Ω

|∇u|2 dx+ αH1(Su ∩ Ω) + µ

∫
Ω

|u− g|2 dx

where u ∈ SBV (Ω) and Su is the complement set of Lebesgue points of u. Using

compactness and lower semi-continuity theorems [132] it is showed that under

mild conditions, there exists a solution such that H1(Su) < ∞. Moreover, by

regularity results one has that H1(Su \ Su) = 0 and the pair (u, Su) can be iden-

tified with a minimizer of the strong formulation. Based on this relaxed formula-

tion, many techniques have been proposed to tackle the problem of numerically

computing a minimizer. The free discontinuity term poses a serious problem.

Ambrosio and Tortorelli [9], by exploiting a nice result of Modica and Mortola

[220], proposed a Γ-convergence approximation via integral functionals defined on

proper Sobolev spaces. In their approximation the discontinuity set is replaced

by an auxiliary function that plays the role of indicator function. Numerical solu-

tions based on the Ambrosio-Tortorelli approximation are given in the framework

of Finite Element Method (FEM) in [25], and via finite-difference discretization of

Euler-Lagrange equations in [104]. In [70], a Γ-convergence approximation using

local integral functionals defined on a discrete space is given. Numerical imple-

mentation of the method is presented in [40]. Another minimization technique

is based on a convex relaxation of the functional [256]. A level set approach to

minimization is presented in [73]. With no intent of being exhaustive, we refer
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the interested reader to the overview on the numerical approaches for solving the

MS functional given in [48].

Numerical Implementations The Mumford-Shah functional [229] is among

the most influential publications in the field of image processing. This and re-

lated publications by Blake and Zisserman [35] and others have sparked enor-

mous research activity on discontinuity-preserving smoothing, piecewise-smooth

approximations and minimal partition problems [224]. Yet, the computation of

the piecewise-smooth approximation has rarely made it into practical image and

video analysis methods because minimization of this non-convex functional is

difficult and existing algorithmic solutions are far from real-time capability.

The Mumford-Shah functional provides a prototypical form of all regulariz-

ers which aim at combining a smoothing of homogeneous regions with the en-

hancement of edges. Given a bounded open set Ω ⊂ Rd,d ≥ 1, the vectorial

Mumford-Shah problem is given by

min
u,K

{∫
Ω

|u− f |2dx+ α

∫
Ω\K
|∇u|2dx+ λ|K|

}
where f : Ω → Rk is a vector-valued input image with k ≥ 1 channels. This

model approximates f by a function u : Ω→ Rk which is smooth everywhere in Ω

except for a possible (d−1)-dimensional jump set K, at which u is discontinuous.

The weight λ ≥ 0 controls the length of the jump set K (less jumps for larger

λ) and α ≥ 0 penalizes the smoothness of u outside of K. The limiting case

α→∞ imposes zero gradient∇ outside K and is known as the piecewise constant

Mumford-Shah model or “cartoon” limit. The norm of the gradient |∇u| is the

Euclidean norm |∇u|2 =
∑

i |∇ui|2, and the norm in the term |u − f | is also

Euclidean.

The Mumford-Shah problem has been intensively studied in the applied math-

ematics community [224]. In practice its applicability is substantially limited be-

cause of its non-convexity. While it is often replaced by the convex total variation,

this is a poor substitute because of its tendency to reduce the contrast at edges

and oversmooth flat regions (staircasing). As a consequence, researchers have de-

veloped different optimization strategies to tackle the non-convex Mumford-Shah

problem.

Alternating Minimization Schemes One kind of methods consists of
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non-convex approximations of the original Mumford-Shah functional, where one

alternating minimizes for u and for K [10, 73].

Ambrosio-Tortorelli Approach. The non-convex phase-field model of Ambrosio

and Tortorelli [10], for example, is given by:

min
u,s

∫
Ω

|u− f |2dx+ α

∫
Ω

(1− s)2|∇u|2dx+ λ

∫
Ω

(
ε|∇s|2 +

1

4ε
s2

)
dx (2.5)

with a small parameter ε ≥ 0. The key idea is to introduce the additional variable

s : Ω→ R as an edge set indicator, in the sense that points x ∈ Ω are part of the

edge set K if s(x) ≈ 1 and part of the smooth region if s(x) ≈ 0. It was shown

in [10] that this approximation Γ-converges to the Mumford-Shah functional for

ε→ 0, i.e. minimizers of 2.5 approach the minimizer of 2.1.2.4. One finds u and s

by alternating minimization, computing s for fixed u and viceversa. Each of these

subproblems is elliptic and can be solved quickly, e.g. by the linearly converging

primal-dual method [71]. Extensions of this approximation to color images have

been proposed in [51]. One disadvantage of this model, beside its non-convexity,

is its dependency on an additional parameter ε. To obtain a good approximation

of minimizers of 2.1.2.4, ε must be chosen small for increasing α, and for large α

the dependency becomes sensitive and a good choice is unclear. This makes the

approach unfeasible for the piecewise constant case α =∞.

L0 Smoothing Approach of Xu et al. For the piecewise constant case, Xu et

al. [337] recently proposed a fast approximating method. Assuming the image

domain has been discretized into a finite rectangular grid, again denoted by Ω,

the piecewise constant Mumford-Shah limit corresponds to L0 penalization of the

gradient:

min
u

∑
x∈Ω

|u(x)− f(x)|2 +RMS0(∇u(x)) (2.6)

where

RMS0(g) =

{
λ if g 6= 0

0 else
(2.7)

and the gradient ∇u = (∇ui)1≤i≤k is discretized e.g. using forward differences.

Intuitively, the regularizer RMS0 summed up over all pixels counts how many

times u changes its value. This way, it prefers regions of constancy instead of

smooth variations. Xu et al. propose a quadratic decoupling strategy to solve
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2.6, introducing new variables g which approximate the gradient:

min
u,g

∑
x∈Ω

|u(x)− f(x)|2 + β|∇u(x)− g(x)|2 +RMS0(g(x)) (2.8)

with a parameter β ≥ 0 and the Euclidean norm for the coupling. This approxi-

mation is again solved via alternating minimization. After having computed the

next u and g, the parameter β is increased to kβ with a k ≥ 1 until a final βmax

is reached. Starting value for β is chosen automatically as β0 = 2λ. Multiplier

k is set either to 2 (fast but smooth result) or 1.05 (slow and more piecewise

constant). Because of the empirical nature of the coupling, it is not clear how the

computed solutions u mathematically relate to the original model 2.6, or even

to 2.1.2.4. In fact, the computed solutions are not piecewise constant, but vary

smoothly over large areas.

Convex Relaxation Methods In the recent past, several authors have over-

come the issue of non-convexity by suggesting convex relaxations for respective

functionals [138, 3]. Convex relaxations for the piecewise constant Mumford-Shah

functional were proposed in [194, 69, 341]. Convex relaxations for the piecewise

smooth Mumford-Shah model were proposed for the scalar and the vectorial case.

The key idea is to rewrite the multi-label problem as a binary labeling problem

in a higher-dimensional space. Relaxation of the binary constraint leads to a

convex problem which can be minimized optimally. Subsequent binarization pro-

vides an approximate solution of the original problem. Some of these approaches

were clearly inspired by the Markov Random Field (MRF) community, where

the discrete variant of the Mumford-Shah regularizer is typically referred to as a

truncated quadratic penalizer [46, 187, 315].

Unfortunately, these methods to compute approximate minimizers are cur-

rently far from real-time capability because the added label space dimension

drastically increases memory and run time. For the Mumford-Shah model the

run time even grows quadratically in the number of considered color values. Thus,

the problem of computing good approximate minimizers of the Mumford-Shah

energy in real-time remains an important challenge.
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2.1.2.5 The Blake and Zisserman Functional

The Mumford and Shah model has some drawbacks: it is unable to reconstruct

crease discontinuities and yields the over-segmentation of steep gradients (the

so-called ramp effect). To overcome these defects of the first order model, Blake

and Zisserman [35] introduced a second order functional which can be written in

the form:

F (u,K0, K1) =

∫
Ω\(K0∪K1)

(|∇2u|2 + Φ(x, u)) dx+ αHn−1(K0 ∩ Ω)+

βHn−1((K1 \K0) ∩ Ω)

with α, β ≥ 0 positive parameters. The functional has to be minimized over

the unknown sets K0, K1, with K0 ∪ K1 closed and u ∈ C2(Ω \ (K0 ∪ K1))

approximately continuous on Ω \ K0. If Φ(x, u) = µ|u − g|2 and n = 2, the

functional 2.1.2.5 is just that one introduced in [35] (the thin plate surface under

tension). In the second order model, K0 represents the set of jump points for

u and K1 \ K0 is the set of crease points. Since the reconstruction of crease

discontinuities is particularly relevant in computer vision problems which require

the reconstruction of visible surfaces from two-dimensional images, the function

Φ was introduced. A suitable choice of this function will allow to apply this

variational method to problems as for instance the computation of the depth

from pairs of stereo images. If the conditions β ≤ α ≤ 2β are satisfied, the

existence of minimizers for the functional F (u,K0, K1) has been proved, in the

case n = 2 and Φ(x, u) = µ|u − g|2 by Carriero, Leaci and Tomarelli [59]. The

proof is based on a weak formulation of the problem by setting

F (u) =

∫
Ω

(|∇2u|2 + Φ(x, u)) dx+ αHn−1(Su) + βHn−1(S∇u \ Su)

where ∇u denotes an approximate differential, Su is the discontinuity set of u

in an approximate sense, and S∇u is the discontinuity set of ∇u. In [58] the

existence of minimizers of the functional F over the space{
u : Ω→ R : u ∈ L2(Ω), u ∈ GSBV (Ω),∇u ∈ [GSBV (Ω)]n

}
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has been proved in any space dimension n, GSBV (Ω) being the space of gen-

eralized special functions of bounded variation introduced in [94]. A regularity

theorem in [59] shows that, for n = 2 , any weak minimizer actually provides

a minimizing triplet (u,K0, K1) of F by taking a suitable representative of the

function and the closure of Su and S∇u. The discretization of this functional is

difficult, but it is possible due to the Γ-convergence.

Second Order Models and Thin Structures Being a first-order model, the

MS variational segmentation suffers of some side effects [35]. The minimization

of the gradient norm forces the solution to be locally constant (zero gradient)

and to result in a step-wise function where the gradient of is too steep. This

phenomenon is well-known as over-segmentation of steep gradients. Moreover,

the minimization of the length term results in an approximation of complex edge

junctions by triple-junctions where edges meet at 2/3 wide angles. This may lead

to a degradation of the real geometry of boundaries. Lastly, properly because of

its first-order nature, the MS model is unable to detect second-order geometrical

features such as points of gradient discontinuity, see 2.1. Since very often such

points correspond to thin structures, the MS model has the limitation that is not

capable of detecting them. With the specific intent to overcome such problems,

Blake and Zisserman proposed a variational model based on second order deriva-

tives, free discontinuities and free gradient discontinuities [35]. In their original

formulation one has to minimize

BZ(u,K0, K1) =

∫
Ω\(K0∪K1)

(|∇2u|2 dx+ µ

∫
Ω

|u− g|2 dx+

αH1(K0 ∩ Ω) + βH1((K1 \K0) ∩ Ω)

among all functions u that are twice differentiable (with continuity) outside K0∪
K1 and at least differentiable (with continuity) outside K0. K0 and K1 vary

among all the compact sets such that K0∪K1 is closed in Ω . µ, α, β are positive

parameters. Here |∇2u|2 denotes the Hessian matrix of u. Notice that, for an

admissible solution u, discontinuities are allowed both on K0 ∪ K1 , whereas

discontinuities of the gradient are allowed only on K1 . α and β are contrast

parameters regulating the total length of the discontinuity sets. From practical

point of view, the minimization of the functional cannot be addressed because the

measure term H1(K0 ∩Ω) is not semi-continuous with respect to any reasonable
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topology. As suggested in [89], by relaxing the problem in to the weaker space of

Generalized Special functions of Bounded Variation GSBV (Ω), the methods of

Calculus of Variations can be used to prove the existence of minima [88, 58]. In

this space a relaxation of the functional 2.1.2.5 is given by:

F(u) =

∫
Ω

(|∇2u|2 + µ|u− g|2) dx+

(α− β)H1(Su) + βH1((S∇u ∩ Su)

where u ∈ GSBV 2(Ω) = {w ∈ GSBV (Ω) : ∇w ∈ [GSBV (Ω)]2}. In this weaker

space, a proper definition of ∇2u and S∇u (the theoretic discontinuity set of ∇u)

as geometrical property of the function u, is possible. By regularity arguments it

can be proved [59] that a minimizer of 2.1.2.5 can be identified with a minimizing

couple of the strong formulation, provided β ≤ α ≤ 2β. Thus, the original

optimal set K0 ∪ K1 is recovered via the discontinuity set Su and the gradient

discontinuity set S∇u.

A vivid research interest is devoted to the Blake-Zissermann functional as

it represents the generalization of the well-known a widely used Mumford-Shah.

From a theoretical point of view it is a challenging topic, since well-posedness

of the problem and uniqueness of the solution [37] as well as regularity proper-

ties of minimizers [57, 60, 61] are still under investigation. Segmentation based

on the Blake-Zisserman model, because of its second-order nature, is specifically

suitable for addressing problems such as image inpainting [62], where the func-

tional minimization allows for predicting partially occluded regions in an image

and their contours continuation. One of the scopes of this work is to propose

a novel variational method to detect thin structures such as cracks on surfaces.

If singularities related to edges are classically associated with a discontinuity of

gray level intensities across edges (and are thus detected using spatial gradient

information carried by the image), this characterization proves to be unsuitable

when dealing with points, cracks or filaments. Indeed, while for an edge the sin-

gularity is associated with a jump of the intensity across this edges, for filaments,

such a jump does not occur. A heuristic illustration of this fact is given by an

approximation of the 1D function defined by f(x) = 0 if x 6= 0 and f(0) = 1 as
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follows:
fη(x) = 0 if |x| ≥ η

fη(x) =
2

η3
|x|3 − 3

η2
|x|2 + 1 if |x| ≤ η

It is not difficult to see that fη(x)′ = 0 showing that the differential operator of

order 1 does not capture the singularity at 0. On the other hand, as fη(x)′′ = − 6
η2 ,

f ′′η clearly exhibits a singularity at 0 when η becomes small. This exemplifies the

fact that in order to detect fine structures or filaments, higher order differential

operators should be considered. This intuitive illustration can be then formalized

in 2D in the following way: assuming that a crack can be modelled by an indicator

function supported by a smooth curve Γ, it can be approximated by a sequence

of smooth functions whose Hessian matrices blow up in the perpendicular direc-

tion to Γ, while their gradient is null. Motivated by these observations showing

that a suitable model should involve higher order derivatives, the crack recovery

model we propose falls within second order variational models. It is based on the

Blake-Zisserman functional for computer vision problems that depends on free

discontinuities, free gradient discontinuities and second order derivatives, and

more precisely, on its approximation by elliptic functionals defined on Sobolev

spaces.

Figure 2.1: Limitation of the Mumford-Shah model of detecting second-order
geometrical features. (a,b) Gray-scale image with second-order edges. (c) Edge-
detection via Mumford-Shah functional compared to (d) a full theoretical exact
detection of 2nd-order features.

Numerical Implementations Implementing gradient descent of 2.1.2.5 with

respect to the unknown free discontinuity sets is extremely difficult. Γ-convergence

has shown to be fundamental to solve the problem of numerically computing a

minimizer. This notion of convergence, suitable for functionals, has been intro-

duced by De Giorgi and Franzoni [90]. For a deep treatment of this topic we

refer to [85, 49]. The key point in Γ-convergence is that a specific functional,

52



which may not have good properties for minimization, can be approximated by

a sequence of regular functionals all admitting minimizers. The sequence of the

approximate minimizers converges (in the classical sense) to a minimizer of the

original objective functional. Besides its importance as mathematical tool, Γ-

convergence is very attractive also from a numerical point of view as it allows for

the solution of several difficult numerical problems in Computer Vision, Physics

and many other fields. See for instance [49]. Following the idea of Ambrosio

and Tortorelli, in [26] a Γ-convergence result is proved for the BZ functional in

dimension 1. A full proof in dimension 2 and a partial result for any dimension

n is given by Ambrosio [8]. The authors, by properly adapting the techniques of

[26] and [10], have introduced two auxiliary functions s, z : Ω → [0, 1] (aimed at

approximating the indicator functions of the discontinuity sets) to the model and

proposed a Γ-convergence approximation of F via the family of uniformly elliptic

functionals

Fε(s, z, u) =δ

∫
Ω

z2
∣∣∇2u

∣∣2 dx+ ξε

∫
Ω

(
s2 + oε

)
|∇u|2dx+ (α− β)

∫
Ω

ε|∇s|2+

1

4ε
(s− 1)2dx+ β

∫
Ω

ε|∇z|2 +
1

4ε
(z − 1)2dx+ µ

∫
Ω

|u− g|2dx

where (s, z, u) ∈ [W 1,2(Ω, [0, 1])]
2 ×W 2,2(Ω) = D(Ω). Here ε is the convergence

continuous parameter, ξε,oε are infinitesimals and the convergence is intended for

ε→ 0. To prove Γ-convergence, one has to show that for any u ∈ GSBV 2(Ω), s ≡
1, z ≡ 1 the two following properties are verified:

Liminf inequality: for any sequence (sε, zε, uε)ε>0 ⊂ D(Ω) that [L1(Ω)]3-

converges to (s, z, u) it holds that F ≤ lim infε→0Fε(sε, zε, uε).
Limsup inequality: there exists a sequence (sε, zε, uε)ε>0 ⊂ D(Ω) that

[L1(Ω)]3-converges to (s, z, u) such that lim supε→0Fε(sε, zε, uε) ≤ F .

By standard arguments of functional analysis it is possible to prove that for

any ε > 0 the functional Fε always admits a minimizing triplet. Let us denote it

by (sε, zε, uε). By sending ε→ 0, thanks to the compactness properties of the Γ-

convergence, the sequence (sε, zε, uε)ε≥0 converges in the [L1(Ω)]3-norm to triplet

(s, z, u) where u is a minimizer of the limit functional F and s, z ≡ 1 almost

everywhere over Ω.

The constructive part of the Γ-convergence (Limsup inequality) provides us

the tremendous advantage of keeping trace of the discontinuity sets Su and
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Su ∪ S∇u via their regular function approximation. For a fixed ε > 0, the two

discontinuity sets, enjoying the regularity properties of GSBV 2(Ω) functions, are

approximated by sε and zε (respectively) using a slicing argument and a coarea-

formula for Lipschitz functions [8]. Let S be either Su or Su ∪ S∇u and let us

consider a 2-dimensional orthogonal slice of S. The idea is to build a function σε

that is 0 in a tubular neighborhood of radius bε of the set S and that tends to 1

smoothly elsewhere. The tubular neighborhood shrinks as ε → 0. Formally the

function σε is defined as:

σε :=


0, (S)bε

1− ηε, Ω\(S)bε+aε

hε ◦ τ, elsewhere

where aε, bε, ηε are infinitesimals as ε → 0, τ(y) := dist(y, S) and (S)r :=

y ∈ R2 : dist(y, S) < r. The function hε is obtained as the solution of the dif-

ferential problem h′ = (1−h)/2ε, h(bε = 0), where h(bε +aε) = 1− ηε. Exploiting

the Schwarz inequality a2 +b2 ≥ 2ab it is possible to prove that such hε is energet-

ically optimal in the class of the admissible functions (a general result is given in

[220] and used for the approximation of discontinuity sets in [10, 8]). Because of

the global minimization of Fε, the distance term µ|uε − g|2 keeps the function uε

close to g. High values of |∇uε| (associated to discontinuities of g) and high values

of |∇2uε| (associated to crease points of g) force the transition of the functions sε

and zε from 1 to 0. Elsewhere, the minimization of the two terms containing the

differential operators causes the smoothing of g. We remark here the importance

of the parameters δ, µ, α, β that control the ration at which the whole mechanism

described before takes place. From the discussion above it follows that, for small

values of ε the computation of minimizing triplet of 5.2.2 provides uε an approxi-

mation of a real minimizer u of F , and sε, ζε, the functions that map the tubular

neighborhoods of the discontinuity sets Su and S∇u ∪ Su, respectively. The price

to pay for having such nice outputs is computational complexity.

The numerical approach for the minimization of Fε exploits a discrete version

of the functional. The rectangular domain Ω is discretized by a lattice of points

Λ = {(itx, jty); i = 1, . . . , N, j = 1, . . . ,M} with step size tx and ty on the x

y directions, respectively. In order to take into account boundary conditions,

this lattice can be viewed as a subset of an enlarged lattice Λ. We denote the
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set of points on the frame outside of Ω by B = Λ − Λ. By using the standard

representation of grey-scale images as matrices, the values gij of the given image

g are defined only on the grid points (itx,ity) of Λ. The approximate values of

the functions s, z, u at the grid points of Λ are denoted by sij, zij, uij assuming

zero boundary conditions on B (i.e. sij = zij = uij = 0, (i, j ∈ B)). By using

a column-wise ordering for the elements of these matrices, the image matrix is

denoted also by the NM vector g while the vectors sΛ, zΛ,uΛ, denote the entries

of the function s, z, u at the grid points of Λ; the discrete functional depends only

on the sub-vectors, denoted in the following with s, z,u, whose NM entries are

the approximate values of s, z, u at the points of Λ; the others entries of sΛ, zΛ,zΛ

are their boundary values which interleave the elements of s, z,u in sΛ, zΛ,zΛ

and form three other sub-vectors denoted with sB, zB,zB.

The first and second order differential operators appearing in the functional

can be approximated via finite difference schemes as follows

∂xvij :=
vi+1,j−vi,j

tx

∂yvij :=
vi,j+1−vi,j

ty

∂xxvij :=
vi+1,j−2vi,j+vi−1,j

t2x

∂yyvij :=
vi,j+1−2vi,j+vi,j−1

t2y

∂xyvij := 1
ty

(
vi+1,j+1−vi,j+1

tx
− vi+1,j−vi,j

tx

)
for i = 1, . . . , N and j = 1, . . . ,M . Moreover, by taking into account all contri-

butions affecting s, z,u from boundaries, by a simple 2−D composite rectangular

rule, we obtain the following discrete form of the functional (5.2.2).

Fε(s, z,u) :=txty

{
δ
N+1∑
i=0

M+1∑
j=0

z2
i,j

((
ui+1,j − 2ui,j + ui−1,j

t2x

)2

+

(
ui,j+1 − 2ui,j + ui,j−1

t2y

)2
)

+ 2δ
N∑
i=0

M∑
j=0

z2
i,j

(
ui+1,j+1 − ui,j+1

tytx
− ui+1,j − ui,j

tytx

)2

+ξε
∑N

i=0

∑M
j=0

(
s2
i,j + oε

)((ui+1,j−ui,j
tx

)2

+
(
ui,j+1−ui,j

ty

)2
)

+(α− β)

[
ε
∑N

i=0

∑M
j=0

((
si+1,j−si,j

tx

)2

+
(
si,j+1−si,j

ty

)2
)

+ 1
4ε

∑N
i=1

∑M
j=1 (si,j − 1)2

]
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+β

[
ε
∑N

i=0

∑M
j=0

((
zi+1,j−zi,j

tx

)2

+
(
zi,j+1−zi,j

ty

)2
)

+ 1
4ε

∑N
i=1

∑M
j=1 (zi,j − 1)2

]
+µ
∑N

i=1

∑M
j=1 (ui,j − gi,j)2}

with 2β ≥ α ≥ β > 0 and δ, µ, ε > 0.ξε, oε,≥ 0. In order to write in compact

matrix form the functional 2.1.2.5, we introduce the square matrices A1
k,A

2
k of

order K + 4, representing first and second order discrete operators respectively:

A1
K :=



0 0

−1 1
. . . . . .

−1 1

0 0

0


A2
K :=



0 0

1 −2 1
. . . . . . . . .

1 −2 1

1 −2 1

0 0


By denoting by IK and 0K the identity and the null matrices of order K respec-

tively and by ⊗ the Kronecker product, we can write the first and the second

order discrete operators in the following way:

Dx := 1
tx

WM ⊗A1
N ; Dy := 1

ty
A1
M ⊗WN

Dxx := 1
t2x

WM ⊗A2
N ; Dyy := 1

t2y
A2
M ⊗WN

Dxy := 1
txty

(A1
M ⊗ JN) (JM ⊗A1

N) = 1
txty

(JM ⊗A1
N) (A1

M ⊗ JN)

with WM = diag(02, IM ,02), WN = diag(02, IN ,02), JM = diag(01, IM+1,02)

and JN = diag(01, IN+1,02).

In the following, for any generic (N + 4)(M + 4) matrix operator D, let us

denote by D(:,Λ) and D(:,B) the sub-matrices of D given by the columns with

indices corresponding to points of Λ and B respectively, ordered in a column-wise

way. Furthermore, given a generic vector v, let us denote by Rv the diagonal

matrix with diagonal entries equal to the elements of v i.e. Rv = diag(v). We

also denote by v2 the vector of the squared entries of v, i.e. (v2)i = (vi)
2 and

1 = (1, 1, . . . , 1)T .

Using this notation, the discrete functional can be written as follows:
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Fε(s, z,u) := txty

{
δuT

Λ

(
DT
xxRz2

Λ
Dxx + DT

yyRz2
Λ
Dyy + 2DT

xyRz2
Λ
Dxy

)
uΛ

ξεu
T
Λ

(
DT
xRs2

Λ
+oεDx + DT

y Rs2
Λ

+oεDy

)
uΛ

(α− β)

[
εsT

Λ

(
DT
xDx + DT

y Dy

)
sΛ +

1

4ε
(s− 1)T (s− 1)

]

β

[
εzT

Λ

(
DT
xDx + DT

y Dy

)
zΛ +

1

4ε
(z− 1)T (z− 1)

]

+µ(u− g)T (u− g)}.

Globally this functional is not convex, but it is quadratic with respect to each

block of variables s, z,u when the others are fixed: the terms Fε containing s or

z depend only on u and, on the other hand, the terms containing u depend on s

and z. Indeed, by fixing the variable u or the other two variables s and z we can

write

Fε(s, z,u) = txty

{
1

2

(
sTzT

)( A1 0

0 A2

)(
s

z

)
−
(
sTzT

)( b1

b2

)
+ csz

}

Fε(s, z,u) = txty

{
1

2
uTA3u− uTb3 + cu

}
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where A1 = A1(u) A2 = A2(u) A3 = A3(s, z) and b1, b2, b3 are given by

A1 = 2ξεR|∇u|2 + 2ε(α− β)
(
Dx(:,Λ)TDx(:,Λ) + Dy(:,Λ)TDy(:,Λ)

)
+ α−β

2ε
INM

b1 = −2ε(α− β)
(
Dx(:,Λ)TDx(:,B) + Dy(:,Λ)TDy(:,B)

)
sB + α−β

2ε
1

A2 = 2δR|∇2u|2 + 2εβ
(
Dx(:,Λ)TDx(:,Λ) + Dy(:,Λ)TDy(:,Λ)

)
+ β

2ε
INM

b2 = −2εβ
(
Dx(:,Λ)TDx(:,B) + Dy(:,Λ)TDy(:,B)

)
zB + β

2ε
1

A3 = 2δ
(
Dxx(:,Λ)TRz2

Λ
Dxx(:,Λ) + Dyy(:,Λ)TRz2

Λ
Dyy(:,Λ)

+2Dxy(:,Λ)TRz2
Λ
Dxy(:,Λ) + 2ξεDx(:,Λ)TRs2

Λ
+oεDx(:,Λ)+

Dy(:,Λ)TRs2
Λ

+oεDy(:,Λ) + 2µINM ,

b3 = −2δ
(
Dxx(:,Λ)TRz2

Λ
Dxx(:,B) + Dyy(:,Λ)TRz2

Λ
Dyy(:,B

+2Dxy(:,Λ)TRz2
Λ
Dxy(:,B) + 2ξεDx(:,Λ)TRs2

Λ
+oεDx(:,B)+

Dy(:,Λ)TRs2
Λ

+oεDy(:,B)uB + 2µg.

Vectors csz and cu are constant, thus irrelevant for the minimization.

Remark1. We observe that if α = β and ξε = 0, the functional does not de-

pend any more on the block variable s. The features and the numerical treatment

of this reduced version of Fε are similar to the ones of the general case, with the

only difference that Fε is quadratic with respect to the block variable z when u is

fixed, since A1 = 0, b1 = 0. Thus, since the setting α = β and ζε = 0 is a special

case, in the following we address the general formulation, assuming α > β and

ζε > 0. The functional Fε 2.1.2.5 has the following properties:

P1. Fε(s, z,u) is continuously differentiable;

P2. The matrices Ai, i = 1, 2, 3 are sparse and structured: A1 and A2 are block

tridiagonal matrices, where the diagonal blocks are tridiagonal and the off-

diagonal blocks are diagonal; A3 is a block five matrix, with at most 13

nonzero entries for each row;

P3. In view of the terms α−β
2ε

I , β
ε
I and 2µI the matrices Ai, i = 1, 2, 3 are

symmetric and positive definite and their minimum eigenvalues λmin(Ai)

are below bounded by α−β
2ε

, β
2ε

and 2µ, respectively;

P4. In view of the positive definiteness of matrices Ai, i = 1, 2, 3 Fε(s, z, u) is a

quadratic and strongly convex with respect to each block component s, z,u

when the others are left fixed;
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P5. Fε is coercive in R3NM ; thus the level sets of Fε are compact;

P6. On a given level set, the matrices Ai, i = 1, 2, 3 have bounded positive

eigenvalues;

P7. On given level set, the gradient of Fε is Lipschitz continuous: given a level

set Lη = {(s, z,u) : Fε(s, z,u) ≤ η} there exists a constant M ≥ 0 such

that ||∇Fε(s1, z1,u1)−∇Fε(s2, z2,u2)|| ≤ M ||(s1, z1,u1)− (s2, z2,u2)|| for

any (s1, z1,u1), (s2, z2,u2) ∈ Lη

P8. The functional Fε is a polynomial in s, z,u and consequently, it is a semi-

algebraic function, that satisfies the Kurdyka-Lojasiewicz (KL) property on

its domain (see [18] and reference therein).

In the following, for notation convenience, a generic point (s, z,u) in R3NM

is represented either by y or x. When y is used, the variables are grouped in

blocks according the simple correspondence: y1 = s,y2 = z and y3 = u; on

the other hand, we refer to x when block decomposition is based on the spatial

subdivision of Λ. The functional restricted to a block variable vi is denoted by

fvi = Fε(. . . ,vi, . . .); the gradient of Fε at ṽ with respect to the block vi is

denoted by ∇viFε(ṽ) and ∇viFε(ṽ) = ∇fvi(ṽ)

Sequential Approach In view of the remark that the discrete approxi-

mation of 2.1.2.5 is a polynomial function, satisfying the Kurdyka-Lojasiewicz

property, we obtain the convergence of the sequence generated by BCDA to a

critical point. BCDA is a version of block coordinate descent algorithm [155],

especially tailored to exploit the features of the functional Fε(s, z,u). In 1
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Algorithm 1: BCDA

Step 0 Given
s0,z0,u0, 0 < ρi < 1, γi ∈ (0, 2(1−ρi)], i = 1, 2, 3 and an exit tolerance θouter;

Step 1 k=0

Step 2 Inexact minimization with respect to s and z:

1. compute the search directions dk1 and dk2;

2. compute αk1 = γ1
(b1−Ak

1sk)Tdk1

dk
T

1 Ak
1dk1

, αk2 = γ2
(b2−Ak

2zk)Tdk2

dk
T

2 Ak
2dk2

3. update sk+1 = sk + αk1d
k
1 ; zk+1 = zk + αk2d

k
2.

Step 3 Inexact minimization with respect to u

1. compute the search directions dk3;

2. compute αk3 = γ3
(b3−Ak

3sk)Tdk3

dk
T

3 Ak
3dk3

3. update uk+1 = uk + αk3d
k
3

Step 4 if (Fε(y
k)− Fε(yk+1)) ≤ θouterFε(y

k+1) then stop; else k = k + 1 and go to
Step 2.

Starting from an initial vector y0 = (s0, z0,u0), the basic idea of the method

is to cyclically determine for each block variable yi a descent direction di by few

iterations of a preconditioned conjugate gradient (PCG) method applied to the

linear system Ak
idi = bi −Ak

i y
k
i = −∇yiFε(y

k), with Ak
i ≡ Ak

i (y
k). In view of

the property P4 of the objective function, the step-lengths along the computed

descent directions dki at the iteration k can be determined without having to use

an Armijo-type procedure to ensure a sufficient decrease of the objective function.

Indeed when the step size αki is given by the following rule

αki := γi

(
bi −Ak

i y
k
i

)T
dki

dkiA
k
id

k
i

= γi
−∇yiFε

(
yk
)T

dki
dkiA

k
id

k
i

,

with 0 ≤ γi ≤ 2(1− ρi), 0 ≤ ρi ≤ 1 a sufficient decrease for the objective function

restricted to the block variable yi is assured:

fyi

(
yki + αki d

k
i

)
≤ fyi

(
yki
)

+ ρiα
k
i∇fyi

(
yki
)T

dki .
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In particular, for γi = 1 we obtain the exact one-dimensional minimizer of the

strongly convex quadratic function along the direction dki (2.1.2.5 holds for ρi ≤
1
2
). In view of P5, the level set LF 0

ε
= {(s, z,u) : Fε(s, z,u) ≤ F 0

ε = Fε(s
0, z0,u0)}

is a compact subset of R3MN . Thus, for (s, z,u) ∈ LF 0
ε
, the eigenvalues λj(A

k
i )

of the matrices Ak
i , i = 1, 2, 3k ≥ 0 are bounded by positive constants (P6):

0 ≤ λm ≤ λj(A
k
i ) ≤ λM , k ≥ 0, j = 1, . . . , NM

where λm = min{2µ, α−β
2ε
, β

2ε
} and their condition numbers have above been

bounded by a positive constant L ≤ λM
λm

.

It is easy to prove that the directions dki , i = 1, 2, 3 computed at any k-

iteration of BCDA by PCG with a suitable stopping rule are gradient related

search directions. Consequently, since BCDA is a special version of the Algorithm

1 in [155], Theorem 7.1 in [155] states that ∇Fε(sk, zk, (uk) → 0 as k → ∞ and

there exists at least a limit point of {sk, zk, (uk} in LF 0
ε

that is a stationery point

of Fε. The following proposition resumes the features of dki , i = 1, 2, 3, k ≥ 0.

Theorem 1. Let assume that ∇yiFε(y
k) = Ak

i y
k
i −bi 6= 0 for k ≥ 0. Let consider

the PCG method applied to the symmetric positive definitive system bi−Ak
i y

k
i =

Ak
idi. Let dhi be the vector satisfying at the h-iteration of the PCG method the

stopping rule

||rh|| ≤ ηki ||Ak
i y

k
i − bi|| with ηki ≤

c√
K(Ak

i )
,

where bi − Ak
i y

k
i − Ak

id
h
i is the residual of the linear system, K(Ak

i ) is the

spectral condition number of Ak
i and 0 ≤ c ≤ 1. Thus the direction dki := dhi is a

gradient related search direction i.e.

∇yiFε
(
yk
)T

dki∥∥dki ∥∥ ≤ 1

2
(
1 + ηki

) ((ηki )2 − 1

K
(
Ak
i

))∥∥∇yiFε

(
yk
)∥∥

≤ c2 − 1

4L

∥∥∇yiFε
(
yk
)∥∥

with c2 − 1 < 0

since Fε is a KL function (P8), we can obtain also the convergence of the

sequence of iterates {yk} generated by BCDA to some critical point of Fε in LF 0
ε
.

Indeed, the analysis of an abstract descent algorithm for a KL function and the
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convergence results of Theorem 2.9 in [18] enables us to obtain similar results for

BCDA. In particular, in view of the continuity of Fε, we have that Theorem 2.9

in [18] assures that the sequence {yk} generated by BCDA method converges to

some critical point of Fε in LF 0
ε

if the following conditions hold for {yk} :

• sufficient decrease condition

Fε
(
yk+1

)
+ C1

∥∥yk+1 − yk
∥∥2 ≤ Fε

(
yk
)

• relative error condition

∥∥∇Fε(sk+1, zk+1,uk+1)
∥∥ ≤ C2

∥∥yk+1 − yk+1
∥∥

where C1 and C2 are fixed positive constants. The following two propositions

verify the validity of the two conditions 2.1.2.5 and 2.1.2.5 for a generic iteration

of BCDA.

Theorem 2. At any k-iteration of BCDA, k ≥ 0, while ∇Fε(yk) 6= 0 we have

that 2.1.2.5 holds with 0 < C1 ≤ λmmini
ρi
γi

In the proof of the following proposition, it is crucial to observe that∇sFε(y) =

∇sFε(s, u), while ∇zFε(y) = ∇zFε(z, u) and ∇uFε(y) = ∇uFε(s, z, u). Further-

more, we recall that the gradient of Fε on the level set LF 0
ε

is M-Lipschitz con-

tinuous (P7)

Theorem 3. At any k-iteration of BCDA, k ≥ 0, while ∇Fε(yk) 6= 0, we have

that 2.1.2.5 holds with C2 ≥
√

48λM
(1−c2) mini γi

+ 4M

Because of theorem 2.9 in [18], the two previous propositions enable to obtain

the following convergence result.

Theorem 4. Given a starting point y0, the sequence {yk} generated by BCDA

converges to some critical point of Fε in LF 0
ε
. Moreover the sequence {yk} has

finite length, i.e.
∑∞

k=0

∥∥yk+1 − yk
∥∥ <∞

Since BCDA has the same properties of an abstract descent method satisfying

2.1.2.5, 2.1.2.5 and the discrete BZ function is a polynomial (that is a real analytic

function), results about the rate convergence of BCDA are obtained in Theorem 4
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in [126]. Indeed, in this case, the desingularizing function related to the Kurdyka-

Lojasiewicz at a critical point of Fε is of the form φ(t) = c
σ
tσ, with C > 0 and

σ ∈ (0, 1]; the convergence can be obtained in a finite number of step for σ = 1,

while for σ ∈ (1
2
, 1) we have exponential convergence and for σ ∈ (0, 1

2
) polynomial

convergence. We conclude the section, by stating in the following proposition a

feature of BCDA method, useful for the next section.

Theorem 5. Let assume that K iterations of BCDA are executed, with K ≤ K,

thus we have

C1

K

∥∥yk − y0
∥∥2 ≤ C1

K

∥∥yk − y0
∥∥2 ≤ Fε(y

0)− Fε(yk)

Parallel Approach We are interested in parallel algorithms for solving the

unconstrained minimization problem

min
x∈Rn

f(x)

where f is a differentiable function from the n-dimensional real space Rn into

R. The basic idea behind our approach is to assign a portion of the gradient ∇f
of f to one of k processors, let each processor perform one or more steps of a se-

rial algorithm on its portion of the gradient, and then synchronize the processors

eventually. The synchronization consists of taking a strong convex combination

of the k points found by the k processors when f is convex. For non convex

f , the best point found by the k processors can be taken, or any other point

with a lower value of f will work. The algorithms typically consist of a direc-

tion choice followed by a stepsize choice. The combined direction-stepsize choice

generates a decrease in the objective function that forces the eventual satisfac-

tion of an optimality condition, namely, the vanishing of the gradient. Direction

choices include descent directions, Newton, quasi-Newton and conjugate direc-

tions. Stepsize choice along the chosen direction include minimization, finding

the first stationary point, interval stepsize, the Armijo stepsize and others. Re-

lated algorithms, wherein the objective function is sequentially minimized with

respect to certain variables, include the serial algorithm proposed by Warga for

a strictly convex function in each block of variables and in which the function

is sequentially minimized for each block of variables, and the coordinate descent

methods of Tseng and Luo and Tseng .
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In this section, we address the minimization problem of the discrete functional

Fε by subdiving the lattice Λ into p tiles T1, . . . , Tp with Ti ∩ Tj = ∅, i 6= j.

This subdivision leads a partition of the variable x = (s, z,u) into p blocks

xT1 ,xT2 , . . . ,xTp , with xTj ∈ Rnj , j = 1 . . . p,
∑p

j=1 nj = NM . Here each block of

variables xTj includes the approximations of the functions si,j, zi,j, ui,j related to

the points of Λ belonging to nj = Nj ×Mj tile Tj, denoted by sTj , zTj ,uTj , with∑p
j=1Nj = N,

∑p
j=1Mj = M . In addition to this partition of Λ, we consider a

further partition of Λ into partially overlapping p tiles Sj of size (Nj+ν)×(Mj+ν)

where Sj is the tile Tj with an outer frame of ν rows and columns of pixels, that

is ν is the number of rows/columns of overlapping pixels and Tj ⊂ Sj. Denoting

by xSj the variables related to Sj, we observe that the vector of variables x

can be considered as the union of xSj and xΛ\Sj for any j = 1 . . . p, and that

xSj is also the union of xTj = sTj , zTj ,uTj related to the tile Tj and xBj =

sBj , zBj ,uBj related to the frame Bj = Sj \ Tj. In the following we describe

a parallel version of the BCDA scheme, which exploits a decomposition of the

image domain in overlapping tiles and enables to address the segmentation of

large images by solving a sequence of independent smaller problems, without any

necessity of post-processing procedure. After the introduction of the method and

the analysis of its theoretical and converging properties, details of our practical

parallel implementation are given.

Inspired by [209] and [155] we proposed the parallel algorithm detailed in al-

gorithm 2. We consider the same tiling partitions (with and without overlapping)

already mentioned previously. In this scheme, starting from an initial point x0,

at any ` iteration, we compute for each tile Sj, j = 1, . . . , p, an inexact mini-

mum point of the objective function restricted to the variables related to Sj, with

boundary conditions given by the values of the previous iterate x` on the frame

of Sj.

Then, from the inexact computed solution, only the entries corresponding to

the tile Tj are extracted, neglecting the value on Bj. Then, the new iterate is

updated by a connection rule, ensuring that the value of Fε does not increase.

In particular, exploiting the local features of the functional, the value of Fε at

the point m̃ = (x1,x2, . . . ,xp) is computed and, if Fε(m̃) ≤ Fε(m
j) for all

j = 1, . . . , p we set x`+1 = m̃. Otherwise, the new iterate is given by the rule

x`+1 = argmin{Fε(m1), . . . , Fε(m
p)}. This connection rule and a suitable imple-

mentation of the BCDA method to obtain an inexact minimum for each inner
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Algorithm 2: Parallel BCDA

Step 0 : Given x0, the partitions {T1, . . . , Tp} and {S1, . . . , Sp} of Λ such that
Tj ⊂ Sj, Bj = Sj − Tj, j = 1, . . . , p and {θ`} such that θ < θ` ≤ θ, ` ≥ 0
and an exit tolerance θouter;

Step 1 : ` = 0; fix the parameters γi, ρi, i = 1, 2, 3 and K for BCDA.

Step 2 : for j = 1, . . . , p if ∇xTj
Fε(x

`) 6= 0 then compute

mj = (x`1, . . . ,x
`
j−1,xj,x

`
j+1, . . . ,x

`
p) as follows:

1. set x0
Sj

= (x`)|Sj , k=-1;

2. repeat

(a) k = k+1; compute xk+1
Sj

by step of BCDA; extract xk+1
Tj

; set

xj = xk+1
Tj

;

(b) if fxSj
(xkTj ,x

0
Bj

)− fxSj
(xk+1

Tj
,x0

Bj
) < C1

∥∥∥xkTj − xk+1
Tj

∥∥∥2

then

redefine xj = xkTj exit next j; end

until
∥∥∥∇fxSj

∥∥∥ ≤ θ`

∥∥∥xk+1
Sj
− x`Sj

∥∥∥
else
mj = x`;
end

Step 3 define the new iterate x`+1

1. compute Fε(m̃) where m̃ = (x1, . . . ,xp)

2. update x`+1 = argmin{Fε(m̃), Fε(m
1), . . . , Fε(m

p)}

Step 4 if (Fε(y
`)− Fε(y`+1)) ≤ θouterFε(y

`+1) then stop; else ` = `+ 1 and go to
Step 2.
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subproblem enable to apply Theorem 3.5 in [209], which guarantees the station-

arity of any limit point of the sequence {x`} and, since LF 0
ε

is compact, also

ensures that a limit point of {x`} exists and the gradients sequence enjoys the

following property: ∇Fε(x`) → 0 as ` → ∞. Indeed it is simple to verify that

at any `-iteration of the algorithm the following conditions hold for ` ≥ 0 and a

positive constant C3:

Fε(x
`+1) ≤ Fε(m

j) ≤ Fε(x
`) j = 1, . . . , p

C3||∇xTj
Fε(x

`)||2 ≤ Fε(x
`)− Fε(x`+1) j = 1, . . . , p

In particular, condition 2.1.2.5 is preserved when at the first step of BCDA

a sufficient decrease of the objective fxSj
is assured with respect to the vari-

ables xTj . In order to obtain this decrease, at the first step of BCDA, the sub-

vectors (d0
i )|Tj of the computed descent directions d0

i , i = 1, 2, 3, restricted to

entries of Tj, have to be gradient related to g1 ≡ ∇sTj
fxj(s

0
Tj
, z0

Tj
,u0

Tj
,x0

Bj
), g2 ≡

∇zTj
fxj(s

1
Tj
, z0

Tj
,u0

Tj
,x0

Bj
), g3 ≡ ∇uTj

fxj(s
1
Tj
, z1

Tj
,u0

Tj
,x0

Bj
) respectively; using an

argument similar to the one in the proof of Theorem 1, this condition is verified

if the inner PCG scheme is stopped when the norm of the residual at the h-step,

restricted to the entries related to Tj satisfies the criterion:

∥∥∥(rhyi

)
|Tj

∥∥∥ ≤ c√
K (A0

i (Tj, Tj))
‖gi‖ , i = 1, 2, 3, 0 < c < 1

where y1 = s,y2 = z and y3 = u. From the practical point of view, since∥∥∥(rhyi)|Tj∥∥∥ ≤ ∥∥rhyi∥∥ and K (A0
i (Tj, Tj)) ≤ K (A0

i ), in the standard stopping crite-

rion of PCG (1) one must replace the norm of the gradient of the functional with

respect to the block variable yi at x0
Sj

with the one of corresponding sub-vector

‖gi‖ related to Tj. Furthermore, at the first step of BCDA, a sufficient decrease of

the objective function restricted to variables (yi)Tj is assured if the step-lenghts

α0
i satisfy (2.1.2.5):

α0
i ≤ 2 (1− ρi)

−gTi (d0
i )|Tj

(d0
i )
T
|Tj A

0
i (Tj, Tj) (d0

i )|Tj

Thus, since (d0
i )
T
A0
id

0
i ≥ (d0

i )
T
|Tj A

0
i (Tj, Tj) (d0

i )|Tj , we set α0
i = γi

−gTi (d0
i )|Tj

d0
iA

0
id

0
i

.
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Using the same argument as for the proofs of theorems 2, 3 we have

∥∥∥∇xTj
Fε(x

`)
∥∥∥ ≤ (M + 1√

C2
)

√
C1

√
fxSj

(x0
Tj

; x0
Bj

)− fxSj
(x1

Tj
; x0

Bj
) (2.9)

In the next iterations of BCDA, the control at the Step 2.2(b) assures at each

step a decrease of the objective function with a maximum value to C1

∥∥∥xkTj − xk+1
Tj

∥∥∥2

.

If the following condition

fSj

(
xkTj ; x

0
Bj

)
− fSj

(
xk+1
Tj

; x0
Bj

)
≥ C1

∥∥∥xkTj − xk+1
Tj

∥∥∥2

is satisfied, the update of the iteration is performed and a new iteration starts.

Otherwise, we put xj = xkTj and the inner solver is stopped. Indeed, 2.1.2.5

assumes the role of an inner stopping criterion. As consequence, at any outer

`-iteration we have that

Fε(x
`+1) ≤ Fε(m

j) ≤ Fε(x
`)) j = 1, . . . , p

and, from 2.9 2.1.2.5 and the connection rule, the inequality 2.1.2.5 remains

satisfied with C3 ≤ C1(
M+ 1√

c2

)2 :

C3

∥∥∥∇xTj
Fε
(
x`
)∥∥∥2

≤
(
Fε
(
x`
)
− Fε

(
mj
))
≤
(
Fε
(
x`
)
− Fε

(
x`+1

))
Thus, in view of Theorem 3.5 in [209], we can obtain the following convergence

result:

Theorem 6. A limit point of the generated sequence {x`} is stationary point of

Fε. Moreover, since L is compact, there exists at least a limit point of {x`} and

we have ∇Fε(x`)→ 0 as `→∞.

Before proving that the whole sequence {x`} converges to some critical point

of Fε in L we recall a property of functions having the Kurdyka Lojasiewicz (KL)

property, proved in [38, 236]

Theorem 7. Let Ω ∈ Rn be a compact set and let f : Rn → (−∞,∞) be a

proper and lower semicontinuous function. Assume that f is constant on Ω and

satisfies the KL property at each point of Ω. Then, there exists σ > 0, η > 0 and

a continuous and concave function φ : [0, η) → [0,∞), which is continuous on
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(0, η) and satisfies φ(0) = 0, φ′ > 0 on (0, η), such that

φ(f(x)− f(x))dist(0, ∂f(x)) ≥ 1

for every x ∈ Ω and every x such that dist(x,Ω) < σ and f(x) < f(x) < f(x)+η.

By following similar arguments to those of Theorem 1 in [236], we can prove

the convergence of the whole sequence {x`} generated by algorithm 2.

Theorem 8. Given a starting point x0, the sequence {x`} generated by gener-

ated by algorithm 2 has finite length, i.e.
∑∞

`=0

∥∥x`+1 − x`
∥∥ < ∞ and, thus, it

converges to some critical point of Fε in LF 0
ε
.

Following [126] we can obtain the following results about the convergence rate

of algorithm 2.

Theorem 9. Let Φ : (0, η)→ [0,∞) be any primitive of −(φ′)2.

i. If lim
`→∞

Φ is finite, the algorithm converges in a finite number of steps.

ii. If lim
`→∞

Φ =∞ there exists ` such that

• Fε(x`)− Fε(x) = O(Φ−1((`+ 1− `)) C1

Kp2C2
4

•
∥∥x` − x

∥∥ = O(φ ◦ Φ−1((`+ 1− `)) C1

Kp2C2
4

The proof follows from the same argument of Theorem 3.5 Eq. (9) in [126].

The theoretical results about the convergence and the rate of convergence of

algorithm 2 do not depend on the size ν of the frame of each tile Tj. Nevertheless,

practical experience shows that a selection of ν > 0 decreases the number of

external iterations. When ν > 0 the iterations are few, less than ten, also for

huge images. Indeed, in the connection rule, the selection ν > 0 facilitates the

choice x`+1 = m̃ rather than x`+1 = mj, for a suitable j, fully exploiting the

parallel processing of each tile.

As we can see from algorithm 1, the main computational bottleneck of BCDA

algorithm is the inexact minimization step of the functional restricted to one

of the blocks (u, s, z): few iterations of a PCG algorithm are required for the

evaluation of the descent direction. For taking advantage of all the cores in

a commodity CPU, parallel linear algebra libraries can be then adopted to
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speed up the segmentation problem. To this extent we adopted Thrust li-

brary (https://thrust.github.io/): that offers the possibility to target differ-

ent architectures by selecting, at compile-time, the parallelization backend. Be-

sides GPU support, a multicore CPU approach is offered based on OpenMP.

The library takes care of the parallelization of linear algebra routines: in this

BCDA implementation we then used Thrust provided implementation of vec-

tor norms and vectors updates (axpy). Concerning the evaluation of the ele-

ments of matrices A1,A2,A3, custom code has been developed and parallelized

through OpenMP parallel for directive. Diagonal preconditioner and linear

Conjugate Gradient are already offered by the library that offers the possibil-

ity to introduce custom preconditioners. This chance is exploited to develop a

block tridiagonal symmetric preconditioner class: factorization step can be easily

parallelized, since we are facing a block-diagonal structure. Matrix-vector prod-

uct routines involved banded matrices: a tabular structure is used to memorize

diagonals in compact vectors. Implementation relies on Cusp library (https:

//cusplibrary.github.io/), that provides dedicated dia matrix class. It is

useful to note that underlying implementation resides on aforementioned Thrust

blas routines. This first parallelization approach allows one to implement a ver-

sion of BCDA that contains parallel matrix vector product subroutines, plus a

number of blas − 1 subroutines for norms and dot products. When varying the

number of threads, memory-bound nature of this problem inhibits a satisfactory

decrease of the overall computational time: parallelization speed up is low due to

poor local data reuse. It is worth noting that, even if each subroutine is able to

split the computational task among more than one core, there is no data reuse:

each matrix-vector evaluation involves a complete scan of (u, s, z) vectors, no tem-

poral locality on data access is exploited. As a consequence, when large images

are considered, no speed up is achieved. The second parallelization approach aims

at increasing data locality by partitioning and considering independent subprob-

lems. Following this strategy, we are facing a decrease of data dimensionality and

variables are more likely to fit in the hardware cache, thus leveraging the impact

of extensive memory access. Concerning the algorithm 2 the intrinsic features of

steps 2 and 3 are exploited in two different ways. The tilling technique previously

described is exploited in order to generate at step 2 a number of independent

tasks that can be concurrently solved; concerning step 3 openMPparallelfor

directive is used when evaluating the objective function. Due to iterative nature
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of the inner BCDA solver, different running times are expected for the solution of

subproblems: to overcome this inconvenience we adopted manager/worker pat-

tern [17] that ensures runtime distribution of independent tasks among POSIX

threads. A number of computational threads (workers) is initialized and put on

wait on a shared task queue, while a monitor thread (master) is responsible to

extract for each subproblem j, initial data w0
j from current solution x` and col-

lects subproblems computed solutions. Mutex-protected queues collect both task

input and output results, as consequence two different queues are implemented:

• a job queue: a single manager is the producer of the queue elements, while

all workers are consumers;

• a results queue: in this case each worker fills the queue with results of

assigned subproblems, while the manager is responsible to insert them in

the overall segmentation variables (u, s, z) .

Both cases can be handled by the same implementation that provides:

• a thread-safe interface for insert/remove operations;

• a signaling mechanism for the communication of available resources;

An additional C++ class that stores resources in a private std :: queue < T >

variable, while exposes only two methods push and pop for resource insertion and

removal. This implementation can be used in conjunction with POSIX thread

[55] since additional members are present:

• a mutex variable of type pthread mutex t used as safeguard for the shared

resource;

• a condition variable of type pthread cond t, associated to previously men-

tioned mutex, for signaling procedures.

Such implementation choice allows for a mutually exclusive access to inter-

nal queue in multi-threading environment. Moreover, through the adoption of

a condition variable, producer threads can communicate information about the

state of shared data: for example to signal that a queue is no longer empty. An

exhaustive description of this approach can be found on Chapter 3 of [55]. In
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order to provide a reliable queue implementation even in the presence of excep-

tions, RAII (Resource Acquisition Is Initialization) [301] programming idiom is

adopted when locking/unlocking operations are executed on a mutex. Job queue

is used to communicate both commands and data from master to workers: in

this implementation, only two basic job types are used. A first job type contains

a complete description of one of the tasks (references to subproblem local data,

objective function parameters and algorithm parameters) generated in Step 2 of

Algorithm 2. A second type of job is used by master thread in order to ensure the

clean termination of workers threads. Each worker thread is structured as a while

loop: as long as the thread can pick a sub problem description, it solves it and

puts the outputs on results queue; when a termination job is picked, the thread

exits. Finally, as regard Step 3, OpenMP compiler directive omp parallel for

is used for evaluation of Fε(m̃). While this step is performed, worker threads are

waiting on a POSIX condition variable, without requiring CPU time.

2.2 Variational Methods on Graphs

2.2.1 Discrete calculus

Discrete calculus [152, 162] has been used in recent years to produce a combina-

torial reformulation of continuous problems onto a graph in such a manner the

solution behaves analogously to the continuous formulation [106, 150].

Discrete calculus has to be differentiated from finite elements discretization.

Such discretization aims to produce approximate solutions to problems defined in

the continuum. The approximation becomes better as the discretization becomes

finer and finer. In contrast, discrete calculus does not refer to the continuum.

We define some terminologies that will be used in the following sections.

A graph consists of a pair G = (V,E) with vertices v ∈ V and edges e ∈ E ⊆
V × V . Let n represent the number of nodes, i.e. n = |V |, and m the number of

edges of G, i.e. m = |E|. An edge, e, spanning two vertices, vi and vj, is denoted

by eij. We deal with weighted graphs that include weights on both edges and

nodes. An edge weight is a value assigned to each edge eij, and is denoted by wij.

We assume wij ∈ R∗+ and use w to denote the vector of Rm containing the wij

for every edge eij of G. In addition to edge weights, we may also assign weights

to nodes. The weights of a node vi is denoted by gi. We assume gi ∈ R∗+ and
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use g to denote the vector of Rn containing the gi for every node vi of G. Usually

vertices represent image elements, which might represent pixels or region in the

Euclidean space and weights measure a degree of similarity between to vertices

connected by an edge.

The incidence matrix of graph is a key operator for defining combinatorial

formulations of variational problems. Specifically, the incidence matrix A ∈ Rn×m

is known to define the discrete calculus analogue of the gradient, while AT is

known to define the discrete calculus analogue of the divergence (see [152] and

the references therein). The incidence matrix maps functions on nodes (a scalar

field) to functions on edges (a vector field) and may be defined as

Aeijvk =


−1 if i = k,

+1 if j = k,

0 otherwise.

for every vertex vk and edge eij. As explained in [152], several important

theorems such as the fundamental theorem of calculus or the Helmholtz decom-

position hold in this discrete framework.

2.2.2 Regularization methods

Numerous problems in signal processing and computer vision involve the opti-

mization of an energy function composed of a regularization term and a data

fidelity term. For example, image denoising problems may be solved by consider-

ing that the optimal recovered image is somehow regularized, that is to say that

variations (the local differences) of intensity are limited. For image segmentation

problems, the sum of variations between neighboring labels may be penalized.

In stereovision variational approaches, estimation of depth maps also assumes a

local consistency for the depth and limit the sum of variations in order to obtain

a piecewise smooth estimation.

In all these cases, the problem may be expressed as follows. A labelling x is

estimated, x being the solution to the minimization of its total variations added

to a term enforcing data fidelity.

min
x

∫
Ω

||∇(z)|| dz︸ ︷︷ ︸
Regularization

+ D(x)︸ ︷︷ ︸
Data fidelity

(2.10)
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A simple example of data fidelity term in image denoising context could be

D(x) =

∫
Ω

(x(z)− f(z))2 dz, (2.11)

appropriate in the case where f is an image corrupted with Gaussian noise. We

now review shortly two classical and efficient regularization models.

2.2.2.1 Total variation

The Total Variation problem (TV) was introduced originally in computer vision

by Shulman and Herve [293] as a regularizing criterion for optical flow computa-

tion and later Rudin, Osher and Fatemi [270] as a regularizing criterion for image

denoising. It has been shown to be quite efficient for smoothing images without

affecting contours so much. Moreover, a major advantage of TV is that it is a

convex problem, making it possible to find a global minimizer. When applied to a

2D discrete image (xi,j), 1 ≤ i, j ≤ N , the total variation minimization problem

becomes

min
x

∑
1≤i,j≤N

((xi+1,j − xi,j)2 + (xi,j+1 − xi,j)2)
1
2 +D(x) (2.12)

using a finite-difference discretization popularized in [67]. The Total variation

problem has been expressed in weighted and non-local graphs in [39, 139], leading

to better penalization of the gradient.

A number of convex optimization techniques suitable for solving this problem

has been employed for several decades. The most recent and efficient approaches

are compared in [68].

Among the most efficient methods, one can cite Nesterov’s algorithm [232],

Split-Bregman / Douglas-Rachford methods [139, 143], and Chambolle-Pock’s

Primal-dual algorithm [71]. Most methods minimizing TV focus on image filter-

ing as application, and even if those methods are remarkably fast in denoising

applications, in segmentation problems require more iterations for those algo-

rithms to converge.
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2.2.2.2 Max Flow - Min Cut

The max-flow/min-cut problem on a graph is a classical problem in graph the-

ory, for which the earliest solution algorithm goes back to Ford and Fulkerson

[122]. Initial methods for global optimization of the boundary length of a region

formulated the energy on a graph and relied on max-flow/min-cut methods for so-

lutions [122]. In the context of image segmentation, the seeded max-flow/min-cut

model is also known as “graph cuts”. Graph cuts algorithms provide a mecha-

nism for discrete optimization of an energy functional [185], which have been used

in a variety of applications such as image segmentation, stereo, image stitching

and texture synthesis. More specifically, the labelling x produced by graph cuts

algorithms is an optimal (not necessarily unique) solution to

min
x∈0,1n

∑
ei,j∈E

wij|xi − xj|+D(x) (2.13)

This energy may be optimized using the non-polynomial, but experimentally

fast methods of [44]. As explained in [186], more general - submodular - ener-

gies than 2.13 may be optimized using graph cuts. Consequently, the graph cuts

technique has been adapted to multilabel problems using various graph construc-

tions. One notable construction is that of Ishikawa [168] presenting the multilabel

problem as a segmentation problem.

2.2.2.3 Combinatorial Dirichlet Problem

The Laplace equation arises in many physical situations: heat propagation, fluid

dynamic and electronics among others. The Dirichlet problem aims at finding a

solution satisfying the Laplace equation subject to some boundary constraints.

In computer vision and image processing problems, solving the Dirichlet prob-

lem provides effective solution to labelling problems, given some markers. In this

context, the combinatorial Dirichlet problem is written

min
x∈Rn

∑
ei,j∈E

wi,j(xi − xj)2 +D(x) (2.14)

In image processing, this problem has been applied for example to interpola-

tion [153], impainting [62], image filtering [33], and seeded image segmentation

[148]. The famous “Random Walker” algorithm [148] is an adaptation of Dirichlet
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problem to image segmentation.

2.2.2.4 Free Discontinuity Problems on Graphs

As seen in the previous section, the Mumford-Shah functional (MSF ) formulates

the problem of finding piecewise smooth reconstructions of functions (e.g., images)

as an optimization problem [229]. Optimizing the MSF involves determining

both a function and a contour across which function smoothness is not penalized.

Unfortunately, since smoothness of the reconstruction is not enforced across the

contour and since the contour is variable in the optimization, the functional is

not easily minimized using classical calculus of variations.

Given a fixed contour it is possible to solve for the optimal reconstruction

function by solving a straightforward elliptic PDE with Neumann boundary con-

ditions. Additionally, given a fixed piecewise smooth reconstruction function, it is

possible to determine, at each point on the contour, the direction that the contour

would move to decrease the functional as quickly as possible. Thus, most meth-

ods for solving the MSF involve alternating optimization of the reconstruction

function and the contour [72], [73], [308]. The results of performing this type of

optimization are well known and achieve satisfactory results that are used for dif-

ferent imaging applications [308]. Unfortunately, this optimization of the MSF

using contour evolution techniques (typically implemented with level sets) is slow

primarily due to the small steps taken by the contour at each iteration. This

slowness is exacerbated by the fact that a small perturbation of the contour can

have a relatively large effect on the optimal reconstruction function. Additionally,

these traditional methods often require many implementation choices (e.g. im-

plementation parameters) and these choices may produce differences in the final

result. Practical energy minimization problems formulated on a finite set of vari-

ables can be solved efficiently using combinatorial algorithms [154], [186], [294].

Furthermore, because of the well-established equivalence between the standard

operators of multidimensional calculus and certain combinatorial operators, it is

possible to rewrite many PDEs formulated in RN equivalently on a graph. Refor-

mulating the conventional, continuous, PDE on a graph permits straightforward

application of the arsenal of combinatorial optimization techniques to efficiently

solve these variational problems. An alternate view of our approach is to con-

sider rewriting the continuous energy functional in terms of the precise discrete
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operations that would be performed on a computer to evaluate the energy of a

particular solution. By writing this energy in discrete terms, we can design our

optimization method to optimize the energy value that would actually be mea-

sured by the computer. In this section we reformulate the MSF on a graph so

that we may apply a combinatorial optimization to reduce the difficulties of speed

and local minima associated with the small contour improvements obtained via

traditional contour evolution. An added benefit of reformulating an energy in

a combinatorial setting is that such a generic formulation may be applied with-

out modification to higher dimensional data or general data analysis problems,

such as point clustering, mesh smoothing/segmentation or space-variant vision.

Similar approaches have been employed successfully in the minimization of to-

tal variation methods [106]. We now describe the combinatorial analogue of the

piecewise smooth Mumford-Shah model. We recall that the degree of a vertex

in a graph G is di =
∑
w(eij) for all edges eij incident on vi. An image may

be associated with a graph by identifying each pixel with a node and defining

an edge set to represent the local neighborhood of the pixels (e.g. a 4-connected

lattice ). Since its inception, there have have been several related notions of what

constitutes the Mumford-Shah functional. In this case we follow the level set

literature to consider the piecewise smooth model formulated as:

E(f, g, R) = α

(∫
R

(f−p)2+

∫
Ω\R

(g−p)2

)
+µ

(∫
R

||∇f ||2+

∫
Ω\R
||∇g||2

)
+νΓ(R).

where Ω represents the image domain, f is the smoothed foreground function, g

is the smoothed background function, R is the region of the image comprising

the foreground, p is the pixel intensity, Γ(R) is a function returning the length

of the contour of region R, and α, µ, ν are free parameters. To simplify the

parameter space, we assume that all three free parameters are strictly positive

and divided by the value of µ. Thus, we will omit the inclusion of µ in the

remaining part. Similar models were considered by Blake and Zisserman, who

referred to the energy as the “weak membrane model” [35] and by the influential

paper of Geman and Geman [136].

Formulation of 2.2.2.4 on a graph requires the use of combinatorial analogues

of the continuous vector calculus operators. Although combinatorial represen-

tations of differential operations are fairly well established, the challenge in the
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graph reformulation of any particular energy (or PDE) is to associate variables in

the continuous formulation with representative combinatorial structures (pixels,

edges, cycles, etc) and, as in the continuous case, to produce a useful represen-

tation of a “contour”. Specifically, each integral may be considered as a paring

between a chain (domain of integration) and a cochain (function to be integrated).

Associating each pixel in our image with a node in the graph, the integration over

a collection of pixels (in set SR ⊆ V ) may be represented by the N × 1 chain

vector r, where

ri =

1 if vi ∈ SR,

0 otherwise.

The other two variables in E are cochains taking real values, i.e., fi ∈ R, gi ∈
R. Note also that the image I is treated as a vectorized, real-valued cochain

existing on the nodes(pixels). Both chains and cochains will be treated as column

vectors.

The first (data) term in 2.2.2.4 concerns quantities associated with pixels (i.e.,

intensities). We chose above to associate nodes with pixels, so p,f , and g must

represent a 0-cochain (a function mapping nodes to real numbers). This matches

the continuous conception of these quantities as scalar fields. Since the data term

in 2.2.2.4 integrates over a set of the domain for which p, f and g are defined, r

must represent a 0-chain indicating a region of the domain. Thus, the analogue

of the first term on a graph is:

E1(f, g, r) = rT (f − p)2 + (1− r)T (g − p)2

In order to formulate the second term one should recall that the combinatorial

analogue of the gradient operator is given by the node-edge incidence matrix, A.

Consequently, we may write the gradient of f as the product Af . However,

since gradients are vectorfunctions (corresponding to cochain on edges in the

combinatorial setting) and the integral in the second term is performed over a

scalar (i.e., the norm of the gradient at each point), we have to transfer the

gradient cochain associated with edges back to a scalar cochain associated with

nodes. Such an operator may be represented by the absolute value of the incidence

matrix, although each edge is now double counted, requiring a normalizing factor
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of one-half. Specifically, the second term may be formulated as

E2(f, g, r) =
1

2

(
rT |A|T (Af)2 + (1− r)T |A|T (Ag)2

)
. (2.15)

Finally, the contour length term may be formulated on a graph by counting

the edges spanning from R to R. Such a measure may be represented in matrix

form as:

E3(f, g, r) = 1T |Ar|. (2.16)

If our graph is a standard 4-connected lattice, then 2.16 produces the `1

measure of the region R. If we view the graph as embedded in RN and wish to

measure the Euclidean contour length, it was shown [43] that a suitably weighted

graph and corresponding incidence matrix could instead be used in 2.16. However,

since this construction was designed to produce a Euclidean contour length, we

use this construction only in term E3. For purposes of generality and clarity

here, we will continue to use the same A in all terms. All three terms may now

be put back together to define the combinatorial analogue of the piecewise smooth

Mumford-Shah model, i.e.,

E(f, g, R) = α

(
rT (f − p)2 + (1− r)T (g − p)2

)
+

1

2

(
rT |A|T (Af)2 + (1− r)T |A|T (Ag)2

)
+ ν1T |Ar|

2.2.3 Combinatorial Optimization Techniques

A good overview of combinatorial optimization techniques is presented in [243].

We described those are used in the segmentation methods described in the next

chapter.

2.2.3.1 Maximum Flow/Minimum Cut Algorithms

A transport graph G is a graph with exactly one source s, with no entering edge,

and one sink t, with no exiting edge. A flow in a transport graph is a function

associating a value to every edge according to some rules. The value of the flow

in each edge must be less than the capacity (weight) of the edge, and the sum of

the flow entering in each node - except s and t - must be equal to the sum of flow
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exiting the node. The max-flow problem consists of maximizing the amount of

flow sent from the source toward the sink. This process creates a bottleneck for

some edges. If the flow of an edge is equal to its capacity, we say that the edge

is saturated.

A cut is a partition of the nodes into two sets S and T , such that s is in S and

t is in T . The capacity of a cut is the sum of the weights of all the edges crossing

the cut, from the region S to the region T . Ford and Fulkerson [122] proved that

maximum flow is equals to the capacity of a minimal cut.

Most max-flow algorithms can be sorted in two categories, augmenting path

[122] and push-relabel methods [142]. Min-cut algorithms without computing

a maximum flow exist, a well known one is Stoer-Wagner algorithm [297]. Its

complexity of O(nm+ n2log(m)) is one of the most effective for general purpose

min-cut/max-flow methods, but in practice the runtime on image data is not the

fastest. The regular lattice structure of images was exploited in the dedicated

max-flow algorithm of [44], resulting in faster runtimes.

2.2.3.2 Shortest Path Methods

The shortest path problem consists of finding, from two nodes of a graph, a path

of minimal cost (such that the sum of weights of component edges is minimized)

in the graph. When the graph does not contain negative weights, Dijkstra’s

algorithm [96] is very efficient. When implemented using Fibonacci heaps, its

complexity is O(m + nlog(n)). First introduced as a by-product of reinitializing

level set energies, the fast marching algorithm [288] has been used for shortest

path computation [79] over sampled continuous domains.

Shortest path methods are popular in image processing, particularly for thin

object segmentation. The “Intelligent scissors” [227] consists, for example, of

computing shortest paths between several points placed on the contour of objects

to be extracted. Improvements have been proposed to limit the user interaction,

and to define better weighting strategies [254]. Other strategies for image segmen-

tation using shortest path based algorithms include the construction of shortest

path forests. Given foreground and background seeds, each pixel is assigned to

the foreground label if there is a shorter path from that pixel to a foreground

seed than to any background seed. This approach was recently popularized by

Bai and Sapiro [21].
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2.2.3.3 Maximum Spanning Trees and Forests

A spanning tree of a graph is a tree (a connected graph without cycles) connecting

all the nodes of the graph. The weight of a spanning tree is defined by the sum

of the edge weights composing the tree. There exist several greedy algorithms

minimizing or maximizing this weight, called respectively minimum or maximum

spanning trees algorithms. The Prim [258] and Kruskal [190] algorithms are the

most commonly used. When using a union-find data structure [305] for cycles

detection, the complexity of maximum spanning tree algorithms is quasi-linear

[74].

In clustering applications, a set of several maximum/minimum spanning trees

may be computed, where different trees correspond to the different defined labels.

The resulting set of trees is called a Maximum (or resp. Minimum) Spanning

Forest. The segmentation is given by the Maximum Spanning Forest cut, defined

by the set of edges that separates different trees. The first appearance of such

forest in image processing dates from 1986 with the work of Morris [226]. It was

later introduced by Meyer in a morphological context in [218]. Different criteria

for regions merging appear in the literature, as for example in the widely used

algorithm of Felzenszwalb [117]. If the markers are located on the minima of the

weight function, the cut obtained by minimum spanning forest computation was

shown by Cousty to be a watershed cut [82]. These greedy procedures may be

used for optimizing meaningful and useful energies.

2.3 Conclusions

One of the scopes of this work is to propose a novel method to segment thin

structures such as cracks in images. One of the best known model for image

segmentation was introduced by Mumford and Shah ([229]) and belongs to varia-

tional methods. This one is successful in segmenting object edges that are related

to discontinuities in grey level intensities, but has some drawbacks: it is unable to

reconstruct crease discontinuities and yields the over-segmentation of steep gradi-

ents (the so-called ramp effect). To overcome these defects, Blake and Zisserman

[35] introduced a second order functional, but its minimization is extremely diffi-

cult. However, Γ-convergence proposed by Ambrosio and Tortorelli has shown to

be fundamental to solve the problem of numerically computing a minimizer. The
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main result of this chapter is a parallel approach for this minimization technique

that is of remarkable importance when large-size images are considered. Results

on a crack dataset are showed in Section 5.2.2 in Chapter 5. Besides, we showed

how variational methods can be easily extended to graphs in order to process

different kinds of data.
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Chapter 3

Segmentation on Graphs

3.1 Introduction

One of the most classical and fundamental problems in computer vision is image

segmentation. It refers to partitioning an image into several disjoint subsets such

that each subset corresponds to a meaningful part of the image. As an inte-

gral step of many computer vision problems, the quality of segmentation output

largely influences the performance of the whole vision system. A rich amount

of literature on image segmentation has been published over the past decades.

Some of them have achieved an extraordinary success and become popular in a

wide range of applications, such as medical image processing [151, 170], object

tracking [286], recognition [296, 273], image reconstruction [116, 36] and so on.

Since the very beginning, image segmentation has been closely related to percep-

tual grouping or data clustering. Such a relationship was clearly pointed out by

Werterheimer’s gestalt theory [327] in 1938. In this theory, a set of grouping laws

such as similarity, proximity and good continuation are identified to explain the

particular way by which the human perceptual system groups tokens together.

The gestalt theory has inspired many approaches to segmentation and it is hoped

that a good segmentation can capture perceptually important clusters which re-

flect local and/or global properties of the image. Early edge detection methods

such as the Robert edge detector, the Sobel edge detector [146] and the Canny

edge detector [56] are based on the abrupt changes in image intensity or color.

Due to the distinguishable features of the objects and the background, a large

number of thresholding based methods [328, 329, 266, 330] have been proposed
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to separate the objects from the background. In the partial differential equations

(PDE) based methods [288, 177, 241, 240, 72, 239, 84], the segmentation of a

given image is calculated by evolving parametric curves in the continuous space

such that an energy functional is minimized for a desirable segmentation. Re-

gion splitting and merging is another popular category of segmentation methods,

where the segmentation is performed in an iterative manner until some unifor-

mity criteria [234, 103] are satisfied. Among the previous image segmentation

techniques, many successful ones benefit from mapping the image elements onto

a graph. The segmentation problem is then solved in a spatially discrete space

by the efficient tools from graph theory. One of the advantages of formulating

the segmentation on a graph is that might require no discretization by virtue of

purely combinatorial operators and thus incur no discretization errors.

With a history dating back to 1960s, the earliest graph theoretic methods

stress the importance of the gestalt principles of similarity or proximity in cap-

turing perceptual clusters. The graph is then partitioned according to these

criteria such that each partition is considered as an object segment in the image.

In these methods, fixed thresholds and local measures are usually used for com-

puting the segmentation results, while global properties of segmentation are hard

to guarantee. The introduction of graph as general approach to segmentation

with a global cost function was brought by Wu et al. [335] in 1990s. From then

on, much research attention was moved to the study of optimization techniques

on the graph. It is known that one of the difficulties in image segmentation is

its ill-posed nature. Since there are multiple interpretations of the image con-

tent, it might be difficult to find a single correct answer for segmenting a given

image. This suggests that image segmentation should incorporate the mid- and

high-level knowledge in order to accurately extract objects of interest. In the

late 1990s, a prominent graph technique emerged in the use of a combination of

model-specific cues and contextual information. An influential representation is

the s/t graph cut algorithm [46]. Its technical framework is closely related to

some variational methods [288, 177, 241, 240, 72, 239, 84] in terms of a discrete

manner. Up to now, s/t graph cut and its variants have been extended for solving

many computer vision problems and eventually acting as an optimization tool in

these areas.

In the next section a systematic survey of graph theoretic techniques is pro-

vided. They are grouped into five categories. (1) Minimal spanning tree-based
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methods : the clustering or grouping of image pixels is performed on the minimal

spanning tree. The connection of graph vertices satisfies the minimal sum on

the defined edge weights and the partition of a graph is achieved by removing

edges to form different subgraphs. (2) Graph cut with cost functions : graph cut

is a natural description of image segmentation. Using different cut criteria, the

global functions for partitioning the graph will be different. Usually, by opti-

mizing these functions, we can get the desirable segmentation. (3) Graph cut on

Markov random field models : the goal is to combine the high-level interactive

information with the regularization of the smoothness in the graph cut function.

Under the MAP-MRF framework the optimization of the function is obtained by

the classical min-cut/max-flow algorithm or its nearly optimal variants. (4) The

shortest path-based methods : the object boundary is defined on a set of shortest

paths between pairs of graph vertices. These methods require user interactions

to guide the segmentation. (4) Other methods : several efficient graph theoretic

methods that do not belong to any of the above categories are described, such as

random walker [147] and dominant set-based method [244].

3.2 Classical Methods

In this section we review the most representative graph segmentation methods.

For each class, the formulation of the problem is provided and an overview of their

implementation is presented. Their advantages and disadvantages are discussed

as well. Although the methods are classified into five categories, some of them

are often used in conjunction with one another.

First, we recall some useful definitions (see also subsection 2.2.1). For image

segmentation an image is partitioned into mutually exclusive components such

that each component A is a connected graph G′ = (V ′, E ′), where V ′ ⊂ V,E ′ ⊂ E

and E ′ contains only edges built from nodes of V ′. In other words, non-empty

sets A1, . . . , Ak form a partition of the graph G if Ai∩Aj = ∅ and Ai∪ . . .∪Aj =

G. The well-accepted segmentation criteria [327] require that image elements in

each component should have uniform and homogeneous properties in the form of

brightness, color, texture etc. and elements in different components should be

dissimilar.

In graph theoretic definition the degree of dissimilarity between two compo-
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nents can be computed in the form of a graph cut. A cut is related to a set of

edges by which the graph G will be partitioned into two disjoint sets A and B.

As a consequence the segmentation of an image can interpreted in form of graph

cut, where the cut value is usually defined as:

cut(A,B) =
v∈B∑
u∈A

w(u, v) (3.1)

where u and v refer to the vertices in two different components. In image seg-

mentation noise and other ambiguities bring uncertainties into the understanding

of image content. The exact solution to image segmentation is hard to obtain.

Therefore it is more appropriate to solve this problem with optimization methods.

The optimization-based approach formulates the problem as the minimization of

some established criterion, whereas one can find an exact or approximate solution

to the original uncertain visual problem. In this case, the optimal bi-partitioning

of a graph can be taken as the one which minimizes the cut value in Eq. 3.3.1.1.

In a large amount of literature image segmentation is also formulated as a

labelling problem, where a set of labels L is assigned to a set of sites in S. In

two-class segmentation, for example, the problem can be described as assigning

a label fi from the set L = {object, background} to site i ∈ S where the elements

in S are the image pixels or regions. Labelling can be performed separately from

image partitioning while they achieve the same effect on image segmentation.

Several methods perform both partitioning and labelling simultaneously.

Methods in image segmentation can be categorized into automatic methods

and interactive methods. Automatic segmentation is desirable in many cases

for its convenience and generality. However, in many applications such as medi-

cal and biomedical imaging, objects of interest are often ill-defined so that even

sophisticated automatic segmentation algorithms will fail. Interactive methods

can improve the accuracy by incorporating prior knowledge from user; however,

in some practical applications where a large number of images are needed to be

handled, they can be laborious and time consuming. Note that automatic and

interactive methods are often used together to improve the segmentation results.

Some automatic segmentation methods may require interaction for setting ini-

tial parameters and some interactive methods may start with the results from

automatic segmentation as an initial segmentation.
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3.2.1 Minimal Spanning Tree based methods

The minimal spanning tree (MST) (also called shortest spanning tree) is an impor-

tant concept in graph theory. A spanning tree T of a graph G is a tree such that

T = (V,E ′), where E ′ ⊆ E. A graph may have several different spanning trees

and the MST is the one with the smallest weights. The algorithms for computing

the MST can be found in [190, 97, 258]. For example, in Prim’s algorithm the

MST is constructed by iteratively adding the frontier edge of the smallest edge-

weight. The algorithm is in a greedy style and runs in polynomial time. MST

based segmentation methods are essentially related to the graph-based clustering.

The general study of graph clustering can be dated back to 1970s or earlier. In

graph-based clustering the data to be clustered are represented by an undirected

adjacency graph. In order to represent the affinity, edges with certain weights

are defined between two vertices if they are neighbors according to a given neigh-

borhood system. Clustering is then achieved by removing edges of the graph to

form mutually exclusive subgraphs. The clustering process usually emphasizes

on the importance of the gestalt principles of similarity or proximity in the graph

vertices.

The early MST based methods [342] perform image segmentation in an im-

plicit way, which is based on the inherent relationship between the MST and

the cluster structure. The intuition underlying this relationship is that the MST

consists of edges with the minimal sum of weights among all spanning trees and,

as result, it guarantees the connection of graph vertices which are most similar to

each other (i.e., at the lowest cost of weights). This nature makes MST spans all

the vertices and at the same time jump across the smaller gaps between different

clusters. However, it is not enough to deal with situations when there is a large

variation inside a cluster. The complex scenes in real world images often have

perceptually meaningful clusters with non-uniform densities; therefore it is more

desirable to consider both the difference across two clusters and the difference

inside a cluster. The gestalt principles play an important role in guiding the

MST based image segmentation; however, they lack a precise measurement on

the definition in quantitative results.

Morris et al. [225] used MST to hierarchically partition images. Their method

can obtain the segmentation in different scales based on the principle that the

most similar pixels should be grouped together and dissimilar pixels should be
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separated. By cutting the MST at the highest edge weights, partitions of a graph

are formed with the maximal difference between neighbouring subgraphs. In

some improved algorithms were also proposed based on MST, e.g. the recursive

MST algorithm. In [225], some improved algorithms were also proposed based on

MST, e.g. the recursive MST algorithm. In each iteration, the segmentation is

formed by partioning one subgraph. Therefore, the algorithm can lead to a final

segmentation with a given number of subgraphs. Apparently, the algorithm in

this form is inefficient. Kwok et al. [191] proposed a fast recursive MST algorithm

to speed up Morris et al.’s method.

An advanced work of MST based algorithm proposed in [117] makes use of

both the differences across two subgraphs and the differences inside a subgraph.

The segmentation is performed in conjunction with a region merging process and

produces results that satisfy some global properties. The key of this algorithm

is adaptive thresholding. In contrast to single linkage clustering which uses a

constant K to set the threshold, here it is a variable and is defined on the size of

clusters. This allows two components to be merged if the linkage between them

is smaller than the maximal edge in either of the components’ MST plus this

threshold. The formal definition of the merging criterion is given as below:

|et| ≤ min

(
Int(C1) +

K

|C1|
, Int(C2) +

K

|C2|

)
(3.2)

where K is a constant, |C1| and |C2| are the sizes of component C1 and C2,

respectively. Int(C) is the largest edge weight in the MST of C. |et| is the edge

with the smallest weight which connects C1 and C2. From Eq. 3.2 we can see

that the algorithm is sensitive to edges in smooth areas and less sensitive to areas

with high variability.

It is evident that in the context of edge-weighed graphs MST based algorithms

explicitly define the structures of clusters. Pixels expressed by low level features

such as intensity, colour or texture can be intuitively organized by these algo-

rithms. However, the algorithms are strongly based on the assumption that la-

belling of pixels in the same segment is consistent. This is not the case when these

pixels belong to different object classes. Therefore, this category of algorithms

is often used as an initial processing for other high-level applications [165, 166].

MST often forms a segmentation by cutting it at the highest edge weights, so a

further region can be obtained by making a further cut in the tree. This implies
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a hierarchical segmentation in MST, which provides a mechanism for converting

any over-segmentation into higher-level counterparts without loss of the cluster

feature.

3.2.2 Graph Cut with Cost Functions

3.2.2.1 Minimal Cut Methods

Using graph cut for image segmentation was first proposed by Wu and Lethy [334]

in 1990. Like MST, graph cut is also a notion explicitly defined on edge-weighted

graphs. Graph cut based methods propose a general framework of optimally

partitioning a graph globally. This brings the advantages that for different ap-

plications, different cost functions can be designed with a clear definition of seg-

mented objects. Graph cut in equation 3.3.1.1 provides us with an opportunity

for a clear and meaningful definition of graph partitioning: minimizing this cut

makes vertices in different sets dissimilar. However, for a practical graph parti-

tion problem, it also requires vertices in the same set to be similar. These two

requirements are studied by existing graph cut methods, which attempt to satisfy

one or two of the requirements.

In their work [334] Wu and Leahy minimized a cost function formulated ex-

actly in the form of equation 3.3.1.1, namely minimal cut. According to the

Ford-Fulkerson theorem [123], the maximum flow between a pair of vertices

equals to the value of the minimal s/t − cut, which could be solved efficiently.

In [334] the authors also discussed a more general case where a k-partition of

graph G is identified by using the Gomory-Hu algorithm [145], as an equivalent

of finding the maximal flow between k-pairs of vertices.

3.2.2.2 Normalized Cut Methods

The minimal cut criterion gives a good illustration of gestalt principles, but it

has a bias towards finding small components. In order to alleviate this problem,

one should consider to explicitly require that each individual set is “reasonably

large”. Several studies have been done to address this problem, which lead to

various normalized objective functions.

One well-known objective function to avoid this unnatural bias is proposed by

Shi et al. [292] in terms of normalized cut (NCUT). The graph cut is measured
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by the weights of vol(·), which is the total connection from vertices in a set (e.g.

A) to all the vertices in the graph. Formally we have vol(A) =
∑

vi∈A,vj∈V w(vi,j )

, where weight measures a certain image quantity (e.g. intensity, colour, etc.)

between the two vertices connected by that edge. Then Ncut cost function is

defined as follows:

Ncut(A,B) =
cut(A,B)

vol(A)
+
cut(A,B)

vol(B)
=

∑
xi>0,xj<0−w(vi, vj)xixj∑

xi>0 di
+

∑
xi<0,xj>0−w(vi, vj)xixj∑

xi<0 di
(3.3)

where xi is the indicator variable, xi = 1 if vertex vi is in A and xi = −1 oth-

erwise. di =
∑

j w(vi, vj) is the total connection from vi to all the other vertices.

Note that with this definition, the partitions containing small set of vertices will

not have small Ncut value and hence the minimal cut bias is circumvented. The

minimization of equation 3.3 can be formulated into a generalized eigenvalue

problem, which has been well-studied in the field of spectral graph theory. After

a common matrix transformation, the Ncut problem can be re-written into:

minNcut(A,B) = miny
yT (D−W)y

yTDy
(3.4)

subject to y(i) ∈ {1,−b}, b =

∑
xi>0 di∑
xi<0 di

and yTD1 = 0, where D and W are

the degree and the adjacency matrix of G, respectively. We call L = D−W the

graph Laplacian of G. It can be seen that −b represents the ratio of connections

which are from vi to vertices inside and outside the same set, respectively. The

relaxed optimization of equation 3.4 is obtained by discarding the discreteness

condition, but allowing y to take arbitrary real values. According to Rayleigh-

Ritz theorem [207], the eigenvector corresponding to the second smallest general

eigenvalue of L is the real valued solution to the relaxed version of equation 3.4.

Finally, in order to partition the graph one can perform a simple thresholding on

this eigenvector. The multi-class partitioning is also discussed in [292], where an

iterative process of 2-way partition is implemented on the graph until a satisfac-

tory result is achieved.

In fact, not limited to image segmentation, there has been several existing

works in spectral graph clustering referring to the ”graph cut” problem. The ra-
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tio cut [158] and MinMaxCut [98] define different cut functions on the other types

of data and lead to different graph Laplacians for clustering. All these methods

overcome the drawback of Wu et al.’s minimal cut criterion and achieve “bal-

anced” partitions. As a clustering method, spectral clustering often outperforms

the traditional approaches in its efficiency and simplicity of implementation.

Let P be a directed path in G that starts and finishes at the same node v.

Denote by cost(P ) the length of the boundary and by weight(P ) the segment-area

cost. The graph cut cost function is the defined as:

Regioncut(A,B) =
cost(P )

weight(P )
(3.5)

Obviously, this cut criterion favours large objects in the image and the object

characteristic of smoothness is induced via the area and perimeter measures. This

definition is very similar to 3.3 except that it is defined on a single region. Addi-

tionally, one can use different interior information such as the intensity, texture

or the size of the region in coding the area term (weight(P )). The limitation of

this method is that it can only segment enclosed objects due to the definition of

cost function.

The mean cut [323] proposed by Wang et al. addresses the problem by defining

an edge-weight function:

Meancut(A,B) =
cut(A,B|w(u, v))

cut(A,B|1)
(3.6)

where cut(A,B|w(u, v)) is the cut cost between region A and region B given

the edge weight w(u, v), cut(A,B|1) is defined similarly with all edge weights to

be 1. This cut function minimizes the average edge weight in the cut boundary.

It allows both open and closed boundaries and guarantees that partitions are

connected. However, the mean cut criterion does not explicitly introduce the bias

on the preference for large object regions or smooth boundaries. The authors

argued that this lack of bias allows producing segmentations that are better

aligned with image edges. The global minimization is performed in a polynomial

time by graph theoretic algorithm, but limited to connected planar graphs. To

solve the cost function equation 3.6 there are three reductions in their algorithm:

from minimal mean cut to minimal mean simple cycle, from minimal mean simple

cycle to negative simple cycle and from negative simple cycle to minima weight
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perfect matching. Afterwards Wang and Siskind extended the mean cut to a more

general form called ratio cut [323]. The ratio cut inherits the merit of mean cut,

but corresponds to the average affinity per unit length of segmentation boundary

instead of the average affinity per element of the cut boundary. Furthermore,

graph vertices in ratio cut method correspond to regions which are created by

iterated region-based segmentation. The cut function is formulated as:

Meancut(A,B) =
cut1(A,B)

cut2(A,B)
(3.7)

where cut1(A,B) and cut2(A,B) are defined on the graphs of different iter-

ations. Mean cut is the same as ratio cut when cut2(A,B) contains the unit

weights. Minimization of ratio cut for arbitrary graph is NP-hard and thus the

same reduction process is used as the mean cut.

Graph cut methods provide well-defined relationships between the segments

while the problem of finding a cut in an arbitrary graph may be NP-hard. Efficient

approximation of the solution needs to be studied. Since these methods form good

basis for general image segmentation problems, they can be combined with other

segmentation techniques for further extension.

3.2.3 Graph Cut on Markov Random Field Models

The study of psychology suggests that the use of contextual constraints is crucial

for interpreting visual information. The Markov Random Field (MRF) theory

provides a useful and consistent way of modelling contextual information. In this

framework, the mutual influences among pixels can be formulated into conditional

MRF distributions. The joint distribution of a MRF can be transformed into

a simple form due to the equivalence between MRF’s and Gibbs distributions.

In conjunction with the Bayesian maximum a posterior (MAP) estimation, the

MAP-MRF framework [136, 129, 137, 332, 135] formulates the labelling problem

into a problem of minimizing an energy function: f∗ = argminfE(f |d), where

d is the observation of image elements, f is the unknown labelling and E(f |d)

is thus the posterior energy function. Compared with the graph cut methods,

these methods tend to explicitly incorporate any desirable high-level contextual

information in the energy function.
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3.2.3.1 Bi-labelling Graph Cut Methods

Strategies for optimizing the energy functional can be various. From those de-

fined on discrete set of variables, the combinatorial min-cut/max-flow graph cut

algorithm [42] is a prominent one. Greig et al. [154] are the first to find out that

powerful min-cut/max-flow algorithms can be used to minimize certain energy

functions in image restoration. The energy functional they used is:

E(f) =
∑
p∈P

Dp(fp) + λ
∑

(p,q)∈N

Vp,q(fp, fq) (3.8)

where fp is the label of an image pixel, Dp(·) is the regional term that measures

the penalties for assigning fp to p, Vp,q(·) is the boundary term for measuring

the interaction potential and N is the neighbourhood set. This graph energy

functional was used later to solve the multi-camera stereo problem [268] and

further generalized to image segmentation for convex or non-convex problems.

The graph cut energy functional encodes both the constraints from user in-

teraction and the regularization of the image smoothness under the MAP-MRF

framework. In the graph cut model, edges E consist of two types of links to

formulate these two constraints: t− links and n− links. Visual terminal nodes

are added in the graph to represent the user input information. For example,

if one attempts to partition an image into two classes (i.e. the object and the

background), the class information is then modelled as two visual terminal nodes

based on the user input. With this setting, each node is connected to the ter-

minal nodes by t− links and each pair of neighboring nodes is connected by an

n− links.
The work in [186] studies what energy functionals can be minimized via graph

cut. In particular, it provides a simple necessary and sufficient condition on

energy functionals of binary variables with double and triple cliques. The global

optimal solution of minimal cut can be found by different combinatorial min-

cut/max-flow algorithms [123, 142, 44, 164], where Boykov and Kolmogorov’s

augmenting-path based algorithm has the best performance for common vision

problems [44]. For huge 2D or 3D grids, the parallelizing of graph cut algorithm

has also been studied [298, 202, 92].

The most typical way to represent the object/background models is based

on the intensity distributions (e.g. histogram). Blake et al. [34] suggested using
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a Gaussian Mixture Model (GMM) to approximate the distributions. As the

object/background models are updated interactively, the high-level contextual

information is enhanced for a stable representation of the objects of interest. A

similar way of iteratively updating the regional term was proposed in [252], where

the information is obtained progressively from the local image. In each iteration

only the local neighbouring regions to the labelled regions are involved in the

optimization so that strong interference from the far unknown regions can be

significantly reduced.

The boundary term of equation 3.8 reflects the smoothness of the segmen-

tation and hence the penalty of neighbouring graph elements will be small if

they are similar. To describe such a penalty, local intensity gradient or colour

histograms are the most commonly used criteria. Boykov et al. [43] investigated

geometric properties of segments. They showed that discrete topology of graph

cut can approximate any continuous Riemannian metric space. Thus many of

the well-known geometric methods based on level sets [239, 54, 238] can be also

studied in the discrete space by combinatorial graph cut.

3.2.3.2 Multi-labelling Graph Cut Methods

The standard s/t graph cut algorithm can find the exact optimal solution for

certain classes of energy functionals [186]; however, in many cases the number

of labels for assigning to graph nodes is more than two and the minimization

of energy functions becomes NP-hard. For approximate optimization Boykov et

al. [46] developed the α−expansion−move and αβ−swap−move algorithms to

deal with multi-labelling problems for more general energy functionals. Although

the algorithm can only find local minimum solutions, their effectiveness has been

validated by extensive experiments. This work inspires more studies to incorpo-

rate various constraints in the energy functional. In [?, ?, ?] the authors used

ordering constraints in object segmentation. By defining the spatial relationship

between the objects, the impossible segmentation is ruled out. The improved

α − expansion − move algorithms make the optimization of energy functional

more effective under the constraints.
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3.2.3.3 Graph Cut with Shape Prior

Incorporating the shape prior in graph cut has been proven very useful for image

segmentation. This visual cue can be added in either the regional term or the

boundary terms to force the segmented object to follow a certain pre-defined

shape. The idea of using a signed distance map function to represent some shape

was proposed by Kolmogorov and Boykov [186], where they pointed out that

combining geometric concept of flux and length/area in the regional term can

improve the segmentation quality of long thin objects. In [45] the gradient flow

evolution of a surface was computed by the L2 distance of the drifting from its

current position. It guarantees that the shape is not very far from the previous

position in the evolving process. Freedman et al. [127] used a similar idea as in

level-sets [84, 83] to specify the template as a distance function whose zero level

set corresponds to the template. The rigid and the scale transformations were

also considered in this work, where the shape term is integrated into the boundary

term of the energy functional. Instead of using the specific shape template, Das

et al. [87] and [316] studied more generic shape priors for image segmentation.

These shapes are defined on the relative positions of neighbouring pixel pairs,

thus the neighbourhood system for incorporating the shape constraints is the

same as for the boundary constraints. In 2-labelling case, minimizing the shape

based energy functionals can be accomplished exactly with a graph cut if all the

pairwise terms are submodular.

3.2.3.4 Interactive Graph Cut Methods

The interactive property of graph cut allows an efficient editing of segmentation

results. The lazy snapping [198] and Grabcut [267] provide quick object marking

schemes for better user experience. Users are allowed to loosely position seed

points to indicate which parts of the image are objects and modify the segmen-

tation results by editing the boundary with some soft constraint [198]. Alterna-

tively, instead of putting seeds in both the object and background, a user can

simply drag a rectangle around the candidate object to indicate the background

region only [267]. The “incomplete labelling” leads to a considerable reduction of

user interaction. In Grabcut, the graph cut algorithm is performed iteratively

with an updating process on the object and background models. Lempitsky et

al [195] method used a rectangle to impose the topological prior on the segmented
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object. The prior is incorporated into the energy minimization framework which

leads to an NP-hard integer programming. An approximated solution is achieved

by first relaxing it to a convex continuous optimization problem and then using a

new graph cut based algorithm as a rounding procedure for the original problem.

A more advanced user interactive tool was developed by Liu et al. [203], called

“Paint Selection”. It provides instant feedback to the users when they drag the

mouse. This progressive selection algorithm is implemented based on multicore

graph-cut and adaptive band upsampling. Experiment shows that a series of local

optimization guarantees the segmentation quality since in each step the algorithm

will match users’ directions as much as possible.

3.2.4 Shortest Path Based Methods

Finding the shortest path between two vertices is a classical problem in graph

theory. In a weighted graph, the shortest path will connect the two vertices

with minimized sum of edge weights. Formally, let s and t be two vertices of

a connected weighted graph G. The goal is to find a path from s to t whose

total edge weights is minimal. This is a single pair shortest path problem and

there are several algorithms to solve it. The most well-known one is Dijkstra’s

algorithm [97, 96] based on dynamic programming. This algorithm is to grow

a Dijkstra tree, starting at the vertex s, by adding at each iteration a frontier

edge whose non-tree endpoint is as close to s as possible. After each iteration

the vertices in Dijkstra are those to which the shortest paths from s have been

found [156]. In the shortest path based image segmentation the problem of finding

the best boundary segment is converted into finding the minimum cost path

between the two vertices.

The livewire method [115, 114] allows the user to select an initial point on the

boundary. The subsequent point is chosen such that the shortest path between

the initial point and the current cursor position will best fit the object of inter-

est. In this setting the boundary is represented as a sequence of oriented pixel

edges. Each oriented edge carries a single cost value to measure the quality of

boundary. The boundary wraps around the object at a real-time speed. Com-

pared with tedious manual tracing, livewire provides a more accurate and more

reproducible tool for segmentation task. The difficulty with livewire is that user

has to accurately put the seeds near the desired boundary. When there is texture
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or weak boundary, a lot of guidance from the user may be required to obtain an

acceptable segmentation. Livewire requires a searching over the whole graph for

the shortest paths, therefore a large amount of computational resource is needed

when segmenting high resolution images. Live Iane [115] overcomes this limita-

tion by confining the searching space in a much smaller range (5-100 pixels) and

largely reduces the computational time in most cases. As a matter of fact, the

use of shortest path in edge and contour detection has been investigated for many

years. Early work in this area [210, 211] tried to improve the computing time by

heuristic search methods. However, the computing time is still dependent on the

amount of noise in the picture. Other works [221, 257] embed certain restrictions

on the form of the contour, which are useful in specific applications. One recent

work was proposed by Falcao et al. [113] who exploited some known properties of

graphs to avoid the unnecessary shortest path computation and proposed a fast

algorithm called live-wire-on-the fly. The acceleration of graph searching is based

on the fact that the results of computation from the selected point can make use

of the previous position of the cursor. Their algorithm has the advantage that

there is no restriction on the shape or size of the boundary and that it is oriented

so that its inner and outer parts are well defined. The latter would be very useful

when there are stronger boundaries nearby. The same idea has been adopted by

other segmentation methods such as graph cut based algorithms. A very similar

technique called Intelligence Scissors [227, 228] integrates the boundary cooling

and on-the-fly-training in the graph searching process and as a result it reduces

the amount of user interaction and makes the boundary adhere to specific type

of edges.

Bai et al. [22] used geodesic distance to assign the path weights and study

the image segmentation under a different framework. Instead of computing the

shortest path on the boundary, their algorithm is based on image regions. A pixel

is assigned with a foreground label if there is a shorter path from that pixel to a

foreground seed than to any background seed. The algorithm can be implemented

very efficiently as the time complexity for geodesic is linear time. However, it is

strongly dependent on the seed locations and is more likely to leak through weak

boundaries.

Due to the increasing applications of 3D data in practice, researchers have

been looking for the 3D extensions of the 2D shortest path techniques. 3D ex-

amples of live wire were proposed in [112, 160] for medical image segmentation.
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Other 3D extensions of the shortest path algorithm can be found in [15, 16].

However, these extensions are not straightforward and fundamentally path-based

techniques. There is no guarantee that the shortest paths will lie on the minimal

surface. To solve this problem, Grady [149] adopted a mathematically elegant

method to find the minimal surfaces and then used them to segment the 3D data.

In comparison with the MST based methods, which focus on the clustering

properties of a segment, the shortest path can well describe certain nature of

the object boundaries in the image. By virtue of its computational reliability,

the image segmentation problem can be solved intuitively and effectively. Unlike

contour evolution methods (e.g. active contour [80, 63]), live wire is based on

a user-driven process where image features are used to define the graph model.

In most circumstances live wire provides more freedom for user to control the

segmentation process. It might be more suitable for extracting complex objects

with relatively explicit boundaries than other graph based methods.

3.2.5 Other Methods

The random walker [147] is an interactive segmentation method that is formulated

on a weighted graph to assign a label to each pixel on an image. Each edge on the

graph is assigned a real valued weight defined as: wij = exp(−β(gi−gj)2), where gi

is the image intensity at pixel i and β is a free parameter. This weight can be taken

as the likelihood that a random walker will go across that edge. As a consequence,

the label of a pixel is given by the seed point that the random walker first reaches.

The theoretical basis of random walker is an analogue of the discrete potential

theory on electrical circuits [102]. The solution of random walker probabilities

has been found the same as minimizing a combinatorial Dirichlet problem [173]:

D[x] =
1

2

∑
ei,j∈E

wij(xi − x2
j) (3.9)

Minimizing D[x] equals to solving the harmonic function that satisfies the

boundary condition, which can be set by letting the seed point value be unit.

The equation 3.9 has an identical form to graph cut function in equation 3.3.1.1.

Sinop et al. [294] unified the graph cuts [42] and random walker [147] into

a general framework, which is based on the minimization of lq norms. A new

algorithm was therefore derived in the case of q =∞.
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Pavan et al. [244] proposed an image segmentation method based on domi-

nant sets, which is a generalization of maximum clique in the context of weighted

graph. The maximal clique is the strictest definition of a cluster [20], since it

defines a cluster in the edge-weighted graph which has the internal homogeneity

and the external inhomogeneity simultaneously. The dominant sets are converted

into a continuous quadratic optimization problem and thus solved by the repli-

cator dynamics from evolutionary game theory [324]. However, to compute the

dominant set in a graph there is a requirement of comparing all possible pairs

of pixels in an image. To reduce the computational load, an efficient solution to

this problem was studied in [245]. The dominant sets clustering method has been

proved with better classification performance in intensity, colour, texture image

segmentation and it is competitive with other spectral graph clustering methods

such as normalized cut method [292] in both clustering quality and computational

cost.

3.3 Variational Methods

In recent years algorithms based on the graphical framework have gained in pop-

ularity as highly competitive for problems involving high dimensional data, with

applications ranging from image processing to machine learning. The graphical

setting has even been extended to deep learning techniques. In particular, [287]

introduce the concept of graph convolutional recurrent networks, [50] compare

them with graph convolutional neural networks. Other works on deep learning

methods on graphs include [196, 222, 91]. The success of such methods is partly

due to the many advantages offered by using a graph-based approach. First,

graphical techniques not only provide useful information about the overall struc-

ture of the data, but also about the connections between pieces of data, via a

similarity graph, composed of nodes and edges, where the nodes correspond to

elements of the data and the edge weights encode the degree of similarity be-

tween pairs of vertices. Second, the graphical structure provides a general way

to incorporate diverse types of data, such as hyperspetral data, text data, LI-

DAR data, images, video, etc. Methods for segmenting data can be classified

into several categories: unsupervised, semisupervised and supervised algorithms.

In unsupervised learning the algorithm is not provided with any training data
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and it proceeds to obtain the structure and labels of the data without any prior

information. In semisupervised learning, the method is equipped with small set

of labelled data and the goal is to propagate the labels towards the unlabelled

elements. Supervised approaches involves using a large training set, obtaining the

parameters for the model and testing the model on a small testing set. One of

the most common and basic methods for segmenting data is spectral clustering,

an unsupervised algorithm which clusters the data according to the K −means
method applied to a small set of eigenfunctions of the graph Laplacian matrix

[319]. The procedure can be used along with the Nyström extension method to

obtain a O(n) low-rank approximation of the graph Laplacian matrix, where n is

the number of elements in the data.

An optimization technique for data classification used in the context of ma-

chine learning often involves minimizing a general form of energy (or cost) func-

tional:

E(u) = R(u) + µ||u− û||pb

where u is the classification function, R(u) is a regularization term and ||u−
û||pb is a fidelity term, incorporating most (supervised) or just a few (semisu-

pervised) of the known values û. In the case of unsupervised classification, the

second term is replaced by a region homogeneity term, the first term is equipped

with a penalty, or additional constraints are imposed. The type of regulariza-

tion term R(u) has nontrivial consequences for the final classification accuracy.

When choosing the regularization norm, it is important to conserve the sharp

discontinuities that may appear in the boundaries between classes. The total

variation seminorm and Mumford-Shah energy are particularly successful in the

latter task. Overall, [41] describe the structural properties of certain solutions of

3.3. Moreover, the authors of [310] analyse `1 vs `2 regularization for the reso-

lution of ill-posed linear inverse and compressed sensing problems. In addition,

[311] provide a definition and analysis of a generalized total variation seminorm.

Recently, the Ginzburg-Landau (GL) energy has been explored as a regulariza-

tion term for tasks such as semisupervised classification and image processing,

since it serves as an approximation to total variation. Given a phase field variable

u, the GL energy, introduced for the Euclidean space in the last century, involves

competition between the convex functional
∫

(∇u)2dx that induces smoothing,
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with a double-well function
∫
W (u)dx, that separates its argument into phases.

Another multiphase image segmentation method, based on a phase transition

model of Modica and Mortola in material sciences, is described in [172]

In this section, several variational graph-based optimization methods are de-

scribed. Subsection 3.3.1 outlines recent methods for image segmentation and

data classification using the Ginzburg-Landau (GL) and Mumford-Shah function-

als on graphs based on the Merriman-Bence-Osher (MBO) scheme. Subsection

3.3.2 provides an introduction to recent total variation (TV) algorithms for ma-

chine learning, while subsection 3.3.3 describes how the techniques described in

?? can be extended from image segmentation to data classification. In particular,

it provides an alternative to MBO scheme for applying Mumford-Shah energy to

data clustering

3.3.1 Merriman Bence Osher Scheme

This subsection describes a fast algorithm for a variational method in a graph

setting. The method, which was developed by Bertozzi et al., is inspired by diffuse

interface models and is based on spectral graph theory.

In their work [29] Bertozzi and Flenner introduce a graph-based model based

on the Ginzburg-Landau functional. They propose a binary classification algo-

rithm based on the minimization of the GL functional with a fidelity term,

E(u) =
ε

2

∫
|∇u|2dx+

1

ε

∫
W (u)dx+ F (u, u0)

where u0 is the initial state of the system. To define the functional on a graph,

they replaced the spatial gradient by a more general graph gradient operator: the
ε
2

∫
|∇u|2dx term is replaced with the more general graph operator term εu ·Lsu,

so that

E(u) = εu · Lsu+
1

ε

∫
W (u)dx+

∫
F (u, u0)

The functional is minimized using the method of gradient descent, resulting

in the following expression:

∂u

∂t
= −εLsu−

1

ε
W ′(u)− ∂F

∂u
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that this is the Allen-Cahn equation with a fidelity term, where ∆u is replaced

by a graph operator term −LS. Taking F to be 1
2
Cλ(x)(u−u0)2 for some constant

C, one obtains

∂u

∂t
= −εLsu−

1

ε
W ′(u)− Cλ(x)(u− u0) (3.10)

The main purpose of this section is to describe a fast and simple method for

solving 3.10 in the small ε limit. This is based on a graph-based Merriman-Bence-

Osher (MBO) scheme, which uses simple threshhold dynamics to approximate

motion by mean curvature. Since the Allen-Cahn equation is closely related to

motion by mean curvature, this scheme has been very successful in solving dif-

ferent its variants. For example, the authors of [108] propose an adaptation of

the MBO scheme to minimize the piecewise constant Mumford-Shah functional.

Inspired by this work, Bertozzi et al. decide to adapt it for solving 3.10. However,

the implementation of the proposed scheme poses many computational challenges.

The quadratic size of graph Laplacian could make the iterative process very com-

putationally expensive. To reduce the dimension of the graph Laplacian and make

the computation more efficient, Bertozzi et al. propose the Nyström extension

method for approximating eigenvalues and the corresponding eigenvectors.

3.3.1.1 Background

Numerous image segmentation energy functionals use a binary segmentation func-

tion that takes a certain value inside the segmented region and a different one

outside of the segmented region. In their pioneering work [229], Mumford and

Shah propose an energy functional that uses the perimeter of the segmentation

function as regularizer. Many papers, such as [72], successfully use the total

variation (TV) as seminorm

‖u‖TV =

∫
Ω

|∇u|dx

to approximate the perimeter of the front between the two values of the seg-

mentation function. As an alternative to this approach, some researchers , such

as Esedoglu and Tsai in their work [108], use the Ginzburg-Landau functional

GL(u) =
ε

2

∫
|∇u|2dx+

1

ε

∫
W (u)dx
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to approximate the perimeter of the front. In this case, W (u) = (u2−1)2 and

is a double well potential. A proof in [183] shows that the perimeter is the limit

in the sense of Γ-convergence of the Ginzburg-Landau functional. Therefore, one

can write

GL(u)→Γ C|u|TV

This convergence allows the two functionals to be interchanged in some cases.

One might prefer to use the Ginzburg-Landau functional instead of the TV semi

norm since its highest order term is purely quadratic, which allows for efficient

minimization procedures. In contrast, minimization of the TV semi norm leads

to a nonlinear curvature term, making it less trivial to solve numerically. How-

ever, recent advances, such as the split Bregman method described in [143], have

made progress in such problems. Due to its connection to the TV semi norm, the

Ginzburg-Landau functional has also often been used in image processing and in

various image processing applications, such as inpainting [99, 28] and segmenta-

tion [109, 108]. In practice, one would minimize

E(u) = GL(u) + F (u, u0)

where F is the fidelity term and u0 is the initial state of the system. When

one minimizes the Ginzburg-Landau functional, the function u approaches either

one of the two minimizers, 1 and -1. of the double well potential. However, the

presence of the gradient term will force u to be somewhat smooth, i.e., without

any sharp transitions between 1 and -1. Therefore, the function that minimizes

the functional will have regions where it is close to -1, regions close to 1, and a

thin region of scale O(ε) which is somewhere in between. Since the minimizer

appears to have two phases with an interface between them, models involving

the Ginzburg-Landau functional are typically referred to as “diffuse interface

models”.

In order to understand the minimization algorithm designed by Bertozzi et

al. it is useful to recall some useful notions in graph theory, described in [78].

Consider an undirected graph G = (V,E), where V and E are the sets of vertices

and edges, respectively. The vertices are, for example, points in Rn or pixels in a

image. Let w be the weight function, where w(i, j) represents the weight (often

measured between 0 and 1) between vertices i and j and w(i, i) is set to zero. The
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weight represents a measure of similarity between the vertices; thus, two vertices

having a weight close to 1 are very similar to each other, and two vertices having

a weight close to 0 are dissimilar. Now, let the degree of a vertex i ∈ V be defined

as

d(i) =
∑
j∈V

w(i, j)

Using the above, one defines the graph Laplacian to be the matrix L such

that

L(i, j) =

{
d(i) if i = j

−w(i, j) otherwise

If one defines the degree matrix D to be the N × N diagonal matrix with

diagonal elements d(i), then the graph Laplacian can be written in matrix form

as L = D − W , where W is the matrix w(i, j). The matrix W is sometimes

referred to as the “affinity matrix”. The graph Laplacian satisfies the equations

Lu(i) =
∑
j

w(i, j)(u(i)− u(j))

u · Lu =
1

2

∑
i,j

w(i, j)(u(i)− u(j))2

for all u ∈ Rn and has nonnegative, real-valued eigenvalues, including 0. When

working with the graph Laplacian, one must consider the behaviour that arises

as the sample size grows larger. Increasing sample size leads to decreasing grid

size; thus, the operator must be scaled to converge to the differential Laplacian

as N → ∞, where N is the number of vertices. Although several versions that

have been shown to have the correct scaling in the limit exist, the one used here

is the symmetric Laplacian

Ls = D−
1
2LD−

1
2 = I −D−

1
2WD−

1
2

that satisfies

u · Lsu =
1

2

∑
i,j

w(i, j)(u(i)− u(j))2√
d(i)d(j)

∀u ∈ Rn
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Bertozzi et al. use this version since the symmetric property of the matrix

allows for more efficient algorithms for calculating eigenvectors. Another version

that is commonly used is the random walk Laplacian,

Lw = D−1L = I −D−1W

which is related to Markov processes. More detail about Laplacians is given

in [78] and [319].

As mentioned in previously the weight function w(i, j) is a function that mea-

sures the degree of similarity between vertices i and j. Therefore, it is necessary

to choose the function in such a way that two vertices that are heavily weighted

by w, i.e., w(i, j) large, are also closely related in the data. Although several

options for w are discussed in [319], the choice depends on the problem, so no

general theory can be formulated. One popular choice for the similarity is the

Gaussian function

w(i, j) = e−
d(i,j)2

σ2

where d(i, j) is some distance measure between the two vertices i and j, and σ

is a parameter to be chosen. Von Luxurg in [319] explains that σ can be chosen to

be on the order of log(N) + 1, where N is the number of vertices. This similarity

function is an appropriate choice when vertices are, for example, points in Rn,

since two points that are close together are more likely to belong to the same

cluster than are two points that are far apart. The choice of d(i, j) varies with

the data set. If one wants to cluster points in Rn, a reasonable choice for d(i, j) is

the Euclidean distance between points i and j. In the case of image processing,

where the vertices are the pixels in the image, the concept of feature vectors is

used to construct d(i, j), as in[29]. Each vertex i is assigned an n-dimensional

feature vector, and d(i, j) is then the weighted 2-norm (where each coordinate of

the vector is assigned a weight) of the difference of the feature vectors of pixels i

and j. The goal of graph clustering is to partition the graph so that the weights

between vertices of different groups are small and the weights between vertices

within the same group are large. A mincut approach to the above problem is to

partition a set of vertices V into sets A and A in such a way that
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cut(A, Ā) =
∑

x∈A,y∈Ā

w(x, y)

is minimized. This mincut problem can be solved using an efficient algorithm

like the ones in [297, 175, 176]. However, this problem leads to poor classification

in many cases since the resulting “bad” partition often isolates one vertex from

the rest of the set [219]. One way to overcome this problem is to use correct

normalization, i.e., to force the sets A and A to be “large”. Let

vol(A) =
∑
x∈A

d(x)

then the modified problem is to find a subset A of V such that

Ncut(A, Ā) =
cut(A, Ā)

vol(A)
+

cut(A, Ā)

vol(Ā)

is minimized. This is a NP-hard problem [322]. One way to simplify it would

be to allow the solution to take arbitrary values in R. This leads to the following

relaxed NCut

min
A⊂Y
〈u, Lsu〉 , u ⊥ D

1
2 1, ‖u‖2 = vol(Y )

The fact that the above problem obtains a real-valued solution instead of a

discrete-valued solution, like problem 3.3.1.1, is emphasized. The relaxed problem

3.3.1.1 has been applied to many segmentation problems; for example, appeal-

ing results are shown in [292]. To solve the above problem, one can apply the

Rayleigh-Ritz theorem, and the solution is given by the second eigenvector ot the

symmetric graph Ls [319].

In the following, fully connected graphs and non-local operators are used

because they allow to capture patterns and texture in the image by using non-

local information.

Spectral Clustering [319] is a popular approach for clustering data set into

several classes. The method requires the data set to be embedded in a graph

framework and the eigenvectors of the graph Laplacian (or the random walk

Laplacian) to be computed.

The K-means [208] algorithm for finding K clusters proceeds iteratively by

first choosing K centroids and then assigning each point to the cluster of the
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Algorithm 3: Spectral Clustering

Data: Graph Laplacian L(orLw), number K of clusters to construct.
Result: Clusters A1 . . . AK with Ai = {j|yj ∈ Ci}

1 Compute first K eigenvectors v1 . . . vK of L (or Lw);
2 Let V ∈ RN×K be the matrix containing the vectors v1, . . . , vK as columns;
3 For i = 1, . . . , N let yi ∈ RK be the vector corresponding to the
ith rowof V ;

4 Cluster the points (yi)i=1,...,N with the K−means algorithm into clusters
C1, . . . , CK ;

nearest centroid. The centroid of each cluster is the recalculated and the iterations

continue until there is little change from one iteration to the next. A generalized

version of spectral clustering using the p− Laplacian is proposed in [53].

In general, image processing methods that are local fail to produce satisfactory

results on images with repetitive structures and textures because they operate

only on small neighbourhoods, without using any information about the whole

domain. The advantage of non-local operators is that they contain data about the

whole vertex set and are thus more successful with those types of images. Zhou

and Schölkopf in their papers [343] formulated a theory of non-local operators

that is related to the discrete graph Laplacian. Gilboa and Osher proposed using

non-local operators to define functionals involving the TV seminorm for various

image processing applications in their work [139]. A review of non-local calculus

is presented below. Let Ω ∈ Rn, u(x) be a function u : Ω→ R and the non-local

derivative be defined as

∂u

∂y
(x) =

u(y)− u(x)

d(x, y)
, x, y ∈ Ω

where d is some positive distance defined on the space and 0 < d(x, y) < ∞
for all x, y. If the (symmetric) weight function is defined as

w(x, y) =
1

d(x, y)2

the non-local derivative can be written as

∂u

∂y
(x) = (u(y)− u(x))

√
w(x, y)

Vectors are denoted by ~v = v(x, y) ∈ Ω×Ω. Let ~v1 and ~v2 be two such vectors.
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The dot product and the inner product are defined as

(~v1 · ~v2) (x) =

∫
Ω

v1(x, y)v2(x, y)dy

〈~v1, ~v2〉 = 〈~v1 · ~v2, 1〉 =

∫
Ω×Ω

v1(x, y)v2(x, y)dxdy

The magnitude of a vector can be defined as

|v|(x) =
√
~v · ~v =

√∫
Ω

v(x, y)2dy

while the non-local gradient ∇wu(x) : Ω → Ω × Ω is the vector of all partial

derivatives:

(∇wu) (x, y) = (u(y)− u(x))
√
w(x, y), x, y ∈ Ω

With the above definitions, the non local divergence divw ~v(x) : Ω × Ω → Ω

is defined as the adjoint of the non-local gradient:

(divw ~v) (x) =

∫
Ω

(v(x, y)− v(y, x))
√
w(x, y)dy

The Laplacian is now defined as

∆wu(x) =
1

2
divw (∇wu(x)) =

∫
Ω

(u(y)− u(x))w(x, y)dy

Since the graph Laplacian was defined as

Lu(x) =
∑
y

w(x, y)(u(x)− u(y))

one can interpret −Lu(x) as a discrete approximation of ∆wu. Note that a

constant of 1
2

was needed here to relate the two Laplacians. According to the

non-local calculus described above,∫
Ω

|∇u|2dx =

∫
Ω×Ω

(u(y)− u(x))2w(x, y)dxdy

since
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u · Lu =
1

2

∑
x,y

w(x, y)(u(x)− u(y))2

one can consider 2u ·Lu to be the discrete version of
∫
|∇u|2dx. In their paper

[29], Bertozzi and Flenner replace the ε
2

∫
|∇u|2dx term of 3.3.1.1 by εu · Lu(x).

However, normalization of the Laplacian is necessary (refer to [29]), so instead

they use

εu · Lsu =
ε

2

∑
x,y

w(x, y)(u(x)− u(y))2√
d(x)d(y)

When the variational solution u takes the values −1 or 1.

u·Lsu = C+4
∑

x∈A,y∈Ā

w(x, y)√
d(x)d(y)

−2

 ∑
x∈A,y∈A

w(x, y)√
d(x)d(y)

+
∑

x∈Ā,y∈Ā

w(x, y)√
d(x)d(y)


In this case, C is a constant that varies with the graph, but not with the

partition. The representation shows that the above is minimized when the nor-

malized weights between vertices of different groups are small, but the normalized

weights between vertices within a group are large. This is precisely the goal of

graph clustering. Therefore, by replacing the ε
2

∫
|∇u|2dx term of 3.3.1.1 with

εu · Lu(x), thus creating a graph-based version of 3.3.1.1, and then minimizing

the resulting equation, one achieves the desired segmentation. The Γ-convergence

of the graph-based Ginzburg-Landau functional is investigated in [313]. The au-

thors prove that as ε → 0, the limit is related to the TV seminorm and cut

from 3.3.1.1. Another important operator that arises from the need to define

variational methods on graphs is the mean curvature on graphs. This non-local

operator was introduced by Osher and Shen in [242], who defined it via graph-

based p-Laplacian operators. p-Laplacian operators are a family of quasi-linear

elliptic partial differential operators defined for 1 ≤ p <∞:

Lp(f) = ∇ ·
(
|∇f |p−2∇f

)
In the special case p = 2, the p-Laplacian is just a regular Laplacian. For

p = 1, the p-Laplacian represents curvature. The discrete graph version of p-

Laplace operators is defined in [106] as
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Lp(u(x)) =
1

p

∑
(x,y)∈E

w(x, y)
(
‖∇u(x)‖p−2 + ‖∇u(y)‖p−2

)
(u(x)− u(y))

Note that the graph 2-Laplacian is just the graph Laplacian, which is con-

sistent with continuous case. Let us now define the mean curvature on graphs,

which is the discrete analogue of the mean curvature of the level of a function

defined on a continuous domain of RN :

κw =
1

2

∑
(x,y)∈E

w(x, y)

(
1

‖∇u(x)‖
+

1

‖∇u(y)‖

)
(u(x)− u(y))

Note that in the case of an unweighted mesh graph, kw becomes a numerical

discretization of the mean curvature. This curvature, kw is also used in [93] as a

regularizer in a graph adaptation of the Chan-Vese method. In their work [314],

van Gennip et al. propose a different definition of mean curvature on graphs and

prove convergence of the MBO scheme on graphs.

3.3.1.2 Algorithms

The idea of approximating mean curvature flow using threshold dynamics was

introduced in [214] by Merriman, Bence and Osher (MBO). They propose a new

computational algorithm for tracking the evolution in time of a set in Rn whose

boundary moves with normal velocity equaling ((n−1) times) its mean curvature.

The procedure is this. Given a compact set C0 ⊂ Rn the heat equation is solved

with initial data the indicator function of C0:{
ut −∆u = 0 in Rn × (0,∞)

u = χC0 on Rn × {t = 0}

Fix now a time step t > 0 and define the new set

Ct ≡
{
x ∈ Rn | u(x, t) ≥ 1

2

}
One can write

Ct = H(t)C0
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where t ≥ 0 and regardH(t) for each time t > 0 as a mapping on the collection

K of compact subsets of Rn. H(t)t≥0 represents heat diffusion flow. As explained

heuristically in [215] the evolution of C0 into Ct = H(t)C approximates for small

times t the mean curvature motion of the boundary Γ0 of C0, at least if Γ0 is

smooth. Hence continually reinitiating the procedure over short time steps should

yield an approximation to mean curvature flow, valid even for large times. From

the previous discussion follows the MBO numerical scheme for approximation of

the motion u by mean curvature at discrete times:

• Step 1 (diffusion). Let v(x) = S(δt)un(x), where S(δt) is the propagator

(by time δt) of

∂v

∂t
= ∆v

• Step 2 (thresholding). Set

un+1(x) =

{
1 if v(x) ≥ 1

2

0 if v(x) < 1
2

The minimization of Ginzburg-Landau functional by gradient descent yields

the Allen-Cahn equation:

∂u

∂t
= 2ε∆u− 1

ε
W ′(u)

here W is the double well potential W (u) = (u2 − 1)2. It is proven in [269]

that as ε → 0+, the rescaled solutions uε(x, t/ε) of the above equation move ac-

cording to mean curvature of the interface between the −1 and 1 phases of the

solutions. In addition, [23] and [111] present rigorous proofs that the MBO algo-

rithm approximates motion by mean curvature. This implies that for the small

values of ε, the MBO thresholding scheme can be used to numerically solve the

Allen-Cahn equation. Multiple extensions, adaptations and applications of the

MBO scheme are present in literature. [108] proposes a modification of the MBO

scheme for solving the inhomogeneous Allen-Cahn equation. To create a fast im-

age segmentation algorithm, Esedoglu and Tsai propose a thresholding scheme

form minimizing a diffuse interface version of the piecewise constant Mumford-

Shah functional, [108] propose a MBO scheme for minimizing the diffuse interface
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version of the piecewise constant Mumford-Shah functional

MSε (u, c1, c2) =

∫
D

ε |∇u|2 +
1

ε
W (u) + λ

{
u2 (c1 − f)2 + (1− u)2 (c2 − f)2} dx

(3.11)

where f is the image. The first variation of the model 3.11 yields the following

gradient descent equation:

ut = 2ε∆u− 1

ε
W ′(u) + 2λ

{
u (c1 − f)2 + (1− u) (c2 − f)2}

and the adaptation of the MBO scheme is used to solve it. Esedoglu and Tsai

propose the following scheme (similar to the MBO scheme, where the propagation

step based on the heat equation is combined with thresholding):

• Step 1 (diffusion) Let v(x) = S(δt) is a propagator by time δt of the equation

wt = ∆w − 2λ̃
(
w (c1 − f)2 + (1− w) (c2 − f)2)

with appropriate boundary conditions.

• Step 2 (thresholding) Set

un+1(x) =

{
0 if v(x) ∈

(
−∞, 1

2

]
1 if v(x) ∈

(
1
2
,∞
)

Some other extensions of the MBO scheme appeared in [314, 110, 215]. An

efficient algorithm for motion by mean curvature using adaptive rids was proposed

in [277].

This method involves the computation of eigenvalues and associated eigenvec-

tors of the symmetric graph Laplacian. In practice, one needs to compute only

a fraction of the eigenvalues and eigenvectors (since eigenvectors with very small

eigenvalues are not very significant computationally), and different methods of

doing so are depending on the size of the domain. When the graph is sparse and

is of moderate size, around 5000 × 5000 or less, Rayleigh-Chebyshev procedure

can be applied [14]. When the graph is very large, such as in the case of image

classification, the Nyström extension method is used. Nyström extension [124]

is a matrix completion method often used in image processing applications, such
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as kernel principle component analysis [27] and spectral clustering [124]. This

procedure performs much faster the many alternate techniques because it uses

approximations based on calculations on small submatrices of the original ma-

trix. When the size of the matrix becomes very large, this method is especially

valuable. A detailed description can be found in [213].

Bertozzi et al. designed several data classification algorithms based on the

MBO scheme for minimizing 3.3.1. For small ε the MBO thresholding scheme

can be used to evolve the Allen-Cahn equation to a steady state. The scheme

consists of two steps: a heat equation propagation step and a thresholding step.

Therefore, the algorithm consists of alternating between the following two steps

to obtain approximate solutions un(x) at discrete times:

• Step 1 (diffusion) Propagate using

∂y

∂t
= −Lsy − C1λ(x) (y − u0)

starting with un.

• Step 2 (thresholding). Set

un+1(x) =

{
1 if y(x) ≥ 0

−1 if y(x) < 0

Bertozzi et al. discretize 3.3.1.2 above in the following manner:

un+1 − un

dt
= −Lsun+1 − C1λ(x) (un − u0)

The symmetric Laplacian is calculated implicitly. An implicit term is needed,

since an explicit scheme requires all the scales of the eigenvalues to be resolved

numerically. The above scheme is used because it is the simplest scheme possible

keeping the Laplacian term implicit. The scheme is solved using the spectral

decomposition of the symmetric graph Laplacian. Let un =
∑

k a
n
kφk(x) and

C1λ (un − u0) =
∑

k d
n
kφk(x), where φ(x) are the eigenfuntions of the symmetric

Laplacian. Using the obtained representation and 3.3.1.2 one obtains

un+1 − un

dt
= −Lsun+1 − C1λ(x) (un − u0)
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where λk are the eigenvalues of the symmetric graph Laplacian. This spec-

tral decomposition method is chosen because it is very efficient. Without it,

the discrete Laplacian term by itself requires O(N2) calculations (without as-

suming any sparsity). However, when using spectral decomposition, one obtains

the advantage of only having to calculate the first few largest eigenvalues and

associated eigenvectors (as the smallest eigenvalues and associated eigenvectors

become insignificant in calculations). Therefore, the discrete Laplacian term now

requires only O(NL) calculations, where L is the number of eigenvalues/eigen-

vectors calculated. Of course, this method is useful only if there is an efficient

way to calculate the eigenvalues and eigenvectors of the symmetric Laplacian.

Therefore, the algorithm consists of the following:

Step 1 Create a graph from the data, choose a similarity function, and then calcu-

late the symmetric graph Laplacian.

Step 2 Calculate the eigenvectors and eigenvalues of the symmetric graph Lapla-

cian. It is necessary only to calculate a portion of the eigenvectors.

Step 3 Initialize u.

Step 4 Apply the two-step scheme (to minimize the Ginzburg-Landau functional)

described above for a certain number of iterations until stopping criterion

is satisfied. Use the following method:

1. Let u0
k =

∑
x u0φk(x) and d0

k = 0 for all x

2. Until a stopping criterion is satisfied, do the following:

a. Repeat for some number s of steps:

1. ank ←
ank−δtd

n
k

1+δtλk

2. y(x) =
∑

k a
n
kφk(x)

3. dnk =
∑

xC1(y − u0)(x)φk(x)

b. (thresholding part)

un+1(x) =

{
1 if y(x) ≥ 0

−1 if y(x) < 0

c. Let an+1
k =

∑
x un+1(x)φk(x) and dn+1

k =
∑

xC1(y − u0)(x)φk(x)
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The parameter δt is chosen using trial and error. The used stopping criteria is
‖unew−uold ‖22
‖unew ‖22

< α = 0.0000001.

Semi-supervised Algorithm In semi-supervised learning, the fidelity, or a

small amount of “ground truth”, is known and the rest of the data set needs to be

classified according to the categories of the known data. In this section the semi-

supervised classification problem is approached by using energy minimization

techniques. Similar approaches have been used in [29], where the problem is

formulated as a minimization of the Ginzburg-Landau (GL) functional (in graph

form) with a fidelity term. In [213], the authors propose an MBO scheme to solve

the binary classification; a multi-class extension of that algorithm is described in

[131, 29].

The problem is to classify a data set with N elements into n̂ classes, where

n̂ is to be provided to the algorithm in advance. An assignment matrix u is an

N × n̂ matrix, where each row is an element of the Gibbs simplex
∑n̂, defined as

Σn̂ :=

{
(x1, . . . , xn̂) ∈ [0, 1]n̂ |

n̂∑
k=1

xk = 1

}

Therefore, each row of u is a probability distribution: the kth component of

the ith row of u is the probability the ith node belongs to class k. In the text

that follows, the ith row of u is denoted by ui. Let ek be the kth vertex of the

simplex, where all the entries are zero, except the kth which is equal to one. The

optimization problem consists of minimizing the following energy

E(u) = ε〈u, Lsu〉+
1

ε

∑
i

W (ui)dx+
∑
i

µ

2
λ(xi)||ui − ûi||2L2

(3.12)

The first two term of 3.12 comprise the graph form of the Ginzburg-Landau

functional, where LS is the symmetric Laplacian, ε is a small positive constant

and W (ui) is the multi-well potential in n̂, where n̂ is the number of classes.

W (ui) =
n̂∏
k=1

1

4
||ui − ek||2L1

The last term of 3.12 is the regular L2 fit to known data with some constant
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µ, while λ(x) takes the value of 1 on fidelity nodes and 0 otherwise. The variable

û is the initial value for u with randomly chosen labels for non-fidelity data points

and the “ground truth for the fidelity points. Lastly, in 3.12 for matrices A and

B, 〈A,B〉 = trace
(
ATB

)
, where AT indicates A transpose. Minimizing E(u) by

the gradient descent method, one obtains

∂u

∂t
= −εLsu−

1

ε
W ′(u)− µλ(x)(u− û) (3.13)

This is the Allen-Cahn equation [4, 118, ?] with fidelity term with the differ-

ential operator ∇u replaced by a more general operator −LS [206]; when ε→ 0,

the solution to the Allen-Cahn equation approximates motion by mean curvature

[214]. It is important to note that in the last term of 3.13 the product is meant

to be calculated on each node.

In [130], the authors propose an MBO scheme to solve 3.13. Here a semi-

supervised algorithm is presented and is based on [130]. The initialization û is

composed by known labels for the fidelity points and random class labels for non-

fidelity points. To obtain the next iterate of u, one proceeds with the following

two steps:

Step 1 Heat equation with forcing term:

un+ 1
2 − un

dt
= −Lsun − µλ(x) (un − û)

Step 2 Threshhold

un+1
i = er, r = arg max u

n+ 1
2

i

for all i ∈ 1, 2, . . . , N , where er is the rth standard basis in Rn̂.

For a stopping criterion, one computes the norm of the difference between

the label matrix u of two consecutive iterations and stop the iteration when the

norm is below a threshold value. If one denotes the final u by uf . To obtain

the final classification of node i, the largest value in the ith row of uf is chosen

and the corresponding index is assigned as the class label of node i. Step 1 can

be computed very efficiently and simply by using the eigendecomposition of LS,

which is

LS = XΛXT
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where X is the eigenvector matrix and Λ is a diagonal matrix containing the

eigenvalues. X can be approximated by a truncated matrix retaining only a small

number of the leading eigenvectors. If one writes

un = Xan, µλ(x)(un − û) = Xdn

and equates coefficients, Step 1 can be formulated in the MBO scheme as

solving for the coefficients

an+1
k = (1− dtλk) · ank − dt · dnk (3.14)

where λk is the kth eigenvalue of LS in ascending order. Due to the fact that, in

practice, only the leading eigenvalues and eigenvectors (in ascending order) need

to be calculated to obtain a good accuracy, 3.14 is an efficient way to compute

Step 1 of the algorithm, even in the case when th number of classes is very large.

Empirically, the algorithm converges after a small number of iterations. The

iterations stop when a purity score between the partitions from two consecutive

iterations is grater than 99.99%. The purity score measures how “similar” two

partitions are. Intuitively, it can be viewed as the fraction of nodes of one partition

that have been assigned to the correct class with respect to the other partition.

Unsupervised algorithm In order to handle the case when there is no knowl-

edge of the class of any part of the data set an unsupervised algorithm is presented.

This method is based on the Mumford-Shah [229] (see 2.1.2.4). One simplified

version of the Mumford-Shah model tailored for images is the piecewise constant

model [73, 108]

EMS(Φ, {cr}n̂r=1) = |Φ|+ µ

n̂∑
r=1

∫
Ωr

(f − cr)2, (3.15)

where the contour Φ segments an image region Ω into n̂ disjoint sub-regions

Ωr, |Φ| is the length of contour, f is the observed image data, µ is a constant

and {cr}n̂r=1 is a set of constant values which represent the local centroids. The

graph version of the multi-class piecewise constant Mumford-Shah energy was
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introduced in [167] for hyperspectral images.

MS(u, {cr}n̂r=1) =
1

2
|u|TV + µ

n̂∑
r=1

〈‖f − cr‖2, u∗,r〉, (3.16)

where u is the class assignment matrix in which each row is an element of the

Gibbs simplex. The length of the contour is estimated by total variation (TV)

of the assignment matrix u. In 3.16 the term ||f − cr||2 denotes an N × 1 vector

(||f(x1) − cr||2, . . . , ||f(xN) − cr||2)T and xi (i = 1, . . . , N) are the N pixels of

the data set. In addition, the term u?,r indicates the rth column of u: the vector

u?,r is a N × 1 vector which contains the probabilities of every node belonging

to class r. Lastly, in 3.16, 〈, 〉 indicates the usual inner product. The problem

is to classify a data with N elements into n̂ classes, where n̂ is to be provided

to the algorithm in advance. u is the assignment matrix, defined in the previous

section and one needs to minimize 3.16. This problem is essentially equivalent

ot the K-means method when µ approaches +∞. Minimizing the variation in c

yields the following formula for the optimal constants cr

cr =
〈f, ur〉∑N
i=1 u?,r (xi)

where u?,r(xi) indicates the ith entry of u?,r.

This algorithm is motivated by the fact that GL functional converges to the

TV seminorm [183, 313]; thus, 3.16 is modified using a diffuse interface approxi-

mation

E (u, cr) = ε 〈u, Lsu〉+
1

ε

∑
i

W (ui) + µ

n̂∑
r=1

〈
‖f − cr‖2 , u?,r

〉
Similarly to the procedure in the previous section (supervised), using gradient

descent yields

∂u

∂t
= −εLsu−

1

ε
W ′(u)− µ

(
‖f − cn1‖

2 , . . . , ‖f − cnn̂‖
2)

One can use the MBO scheme, described in 3.3.1.2, to solve this minimization

problem. For initialization of u in the unsupervised algorithm, random labels are

used. To obtain the next iterate of u, one proceeds with following three steps:
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Step 1 : Compute

un+ 1
2 − un

dt
= −Lsun − µ

(
‖f − cn1‖

2 , . . . , ‖f − cnn̂‖
2)

Step 2 : Threshold

un+1
i = er, r = arg maxu

n+ 1
2

i

for all i ∈ 1, 2, . . . , N , where er is the rth standard basis in Rn̂.

Step 3 : Update c

cn+1
r =

〈
f, un+1

?,r

〉〈
1, un+1

?,r

〉
The stopping criteria for this scheme is the same as the one in the previous

section. The final classification of nodes is also obtained in the same manner

as in previous section.

As in the case of the semisupervised algorithm. Step 1 can be computed

very efficiently and simply by using the eigendecomposition of LS. Let X be

the matrix containing the first m << N orthogonal leading eigenvectors of

L, Λ be the diagonal matrix containing the corresponding eigenvalues, and

write un as un = Xan. Then Step 1 of the algorithm can be approximately

computed as

un+ 1
2 = X(1− dt · Λ)an − dt · µ

(∥∥f − ck1∥∥2
, . . . ,

∥∥f − ckn̂∥∥2
)

Due to the fact that, in practice, only the leading eigenvalues and eigenvec-

tors need to be computed to obtain a good accuracy, 3.3.1.2 is an efficient way

to compute Step 1 of the algorithm, even when the number of classes is large.

This feature makes this method very fast. The algorithm also converges after a

small number of iterations empirically. The iterations stop when a purity score

between the partitions from two consecutive iterations is grater than 99.99%. In

[212] Bertozzi et al. presented several applications of these techniques to image

segmentation and data clustering and classification, showing how methods com-

ing from image processing can be extended to different kind of data thanks to

the graph setting.
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3.3.2 Total Variation Scheme

Many clustering models rely on the minimization of an energy over possible par-

titions of the data set. These discrete optimizations usually pose NP -hard prob-

lems, however. A natural resolution of this issue involves relaxing the discrete

minimization space into a continuous one to obtain an easier minimization proce-

dure. Many current algorithms, such as spectral clustering methods, follow this

relaxation approach. A fundamental problem arises when using this approach,

however; in general the solution of the relaxed continuous problem and that of the

discrete NP-hard problem can differ substantially. In other words, the relaxation

is too loose. A tight relaxation has a solution that closely matches the solution

of the original discrete NP-hard problem. Recently, a new set of algorithm that

can obtain tighter relaxations than those used by spectral clustering provide a

promising set of clustering tools. These all rely on the concept of total variation.

In fact, total variation techniques promote the formation of sharp indicator func-

tions in the continuous relaxation. These functions equal to one on a subset of

the graph, zero elsewhere and exhibit a non-smooth jump between two regions.

In contrast to relaxations employed by spectral clustering, total variation tech-

niques therefore lead to quasi-discrete solutions that closely resemble the discrete

solution of the original NP-hard problem. These techniques are broadly referred

as “Total Variation Clustering” and were introduced in [302]. In the following

we will describe the main concepts. Over the past several years, spectral cluster-

ing methods have become very popular; see [292] and [319] for an introduction.

These methods start with a (nonnegative, symmetric) matrix W which collects

the relative similarities between a set of points V to be clustered, and then makes

the assumption that in some sense, the cluster indicators should be smooth with

respect to W . A simple such notion is that the length of the boundary of the

clusters should be small relative to their area. This motivates the definition of

the Cheeger cut value of a partition P = {V1, V2} of V into two pieces given by

C(V1, V2) =
Cut(V1, V2)

min(|V1|, |V2|)
, (3.17)

where

cut(V1, V2) =
∑

i∈V1,j∈V2

Wij (3.18)
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and |V | is just the cardinality of V . Since finding the optimal Cheeger cut is

NP-hard, the Cheeger cut is usually approximated by the second eigenvalue of

the combinatorial Laplacian D −W , where Dii =
∑

jWij, such that:

1

2 maxiDii

C2 ≤ λ2 ≤ 2C (3.19)

See [75] for the continuous version and [78] for the discrete one. In [184] the

parametric max flow-min cut (a.k.a graph-cut) was used to minimize the biased

ratio cut Cut(V1,V2)
|V1| , but cannot be used to solve the unbiased ratio cut defined as

Rcut(V1, V2) = Cut(V1,V2)
|V1| + cut(V1,V2)

|V2| which is NP-hard.

Using the Raleigh quotient formula for the eigenvalue gives

λ2 = arg min
f∈L2(V )

H2(f) = arg min
f∈L2(V )

∑
||∇f ||2

||f −M(f)||22
, (3.20)

where for p ≥ 1, ||∇f ||p at i is given by

||∇f ||p(i) =
∑
j

Wij|f(i)− f(j)|p, (3.21)

and where M(f) is the mean of f . The functional H2 measures smoothness.

It has long been known that L2 measures of smoothness are not as well suited for

dealing with functions jumps as L1 measures of smoothness; in image processing,

see for example [271]. In [12] and in [53] it was shown that

lim
p→1

min
f

∑
i ||∇f ||p(i)

minc ||f − c||pp
= minPC(P ) (3.22)

With this in mind one can relax the problem

min
P
C(P ) (3.23)

as follows: for any binary valued function f = χV1 , V1 ( V ,

||f −m(f)||1 =

|V2| if |V1| ≥ |V2|,

|V1| if |V1| ≤ |V2|,

where m(f) is the median of f , and V2 is the compliment in V of V1. Then∑
i ||∇fP ||(i)

||fP −m(fP )||1
= 2

∑
vi∈V1

∑
vj∈V2

Wij

min(|V1|, |V2|)
= 2C(V1, V2) (3.24)
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thus

min
f

∑
i ||∇f ||(i)

||f −m(f)||1
(3.25)

is a relaxation of the Cheeger cut problem,

min
f

∑
i ||∇f ||(i)

||f −m(f)||1
≤ min

P
C(P ) (3.26)

In [302] Bresson et al. showed the inequality 3.26 is actually an equality, and

that for any solution of the relaxed minimization there is a threshold γ so that

the binary function

fγ =

1 if f ≥ γ,

|0 if f ≤ γ,

has the same energy as the minimum cut. A similar approach has been studied

in the continuous setting by Strang in [299]. In [302], authors give algorithms for

minimizing the ratio energy and provide some experiments on the quality of the

clusterings given by the algorithms presented.

3.3.3 Mumford-Shah Scheme

In this section we present an ongoing research whose aim is to show how the

methods described in section 2.1.2 can be extended from image processing to

data clustering. Our investigation of graph based Mumford-Shah functionals is

motivated by problems arising in machine learning. Given a point cloud in Eu-

clidean space with (noisy) real-valued labels or a graph with labeled vertices, we

investigate a model to denoise the labels while allowing for jumps (discontinuities)

in label values. As with the classical Mumford-Shah functional, this allows one to

identify the locations of sharp transitions of label values. Our primary focus is on

graphs arising as neighbourhood graphs of point clouds in an Euclidean space, in

dimension two or higher, where we can carry out rigorous analysis. However some

of the functionals we study can be formulated purely in the setting of weighted

graphs and may be useful in applications.

Our scheme is based on an adaptation of the Mumford and Shah functional

2.1.2.4 to point clouds and graphs. We relay on the work of Gobbino [140] and
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Gobbino and Mora [141] who introduced a family of non-local models which

approximate the functional.

General graph setting. Considering an undirected weighted graph with

vertices V = 1, . . . , n and edge weights matrix W = [wij]i,j=1,...,n. Edge weights

are considered to be nonnegative and symmetric. Let f : V → R be the observed

noisy labels. Let ζ : [0,∞)] → [0,∞) be concave and such that ζ(0) = 0,

0 < ζ ′(0) < ∞. For p > 1 we define the Graph Mumford-Shah functional acting

on u : V → R as

GMSf (u) :=
λ

n

n∑
i=1

|ui − fi|2 +
1

εn2

n∑
i,j=1

ζ

(
1

ε
|ui − uj|2

)
wij

Minimizing the functional allows one to find the sharp transitions in the data

by detecting edges where ui− uj is large compared to ε. That is the parameter ε

sets the scale for what differences of the values are considered “large”. We note

that functional is non-convex.

Geometric graph setting We now consider the setting of point clouds and

the random geometric graphs generated by them. The ability to measure the

distance between vertices allow us to create a larger family of graph Mumford-

Shah functionals. Let Vn = x1, . . . , xn be a set of point in Rd. The points xi are

typically random samples of a measure describing the data distribution, but this

interpretation is not essential in defining the functional. Given these points we

define a graph by setting the edge weights to be wi, i = 0 and for i 6= j

wij = ηε(|xi − xj|)

where η is nonnegative, nonincreasing function which decays to 0 faster than

a specified algebraic rate. Let f : Vn → R be the observed noisy labels and let ζ

be as in the graph setting above. For p ∈ [1, d)] and q ∈ [0, p − 1] we define the

Graph Mumford-Shah functional acting on u : Vn → R as

GMSf,ε,n(u) :=
λ

n

n∑
i=1

|u (xi)− fi|2 +

1

ε

1

n2

n∑
i,j=1

ζ

(
ε1−p+q | u (xi)− u (xj)

p

|xi − xj|q
)
ηε (|xi − xj|)

(3.27)

We note that taking q = 0 reduces this functional to one considered in the
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pure graph setting. We study the asymptotics GMSε,n(u) as n→∞ and ε→ 0

and establish that its minimizers converge to the minimizers of a Mumford-Shah

functional posed in continuum Euclidean domain. The result can be extended to

stochastic lattice model.

Related works Regularizing and denoising functions given on graphs has

been studied in variety of contexts in machine learning. Here we focus on reg-

ularizations which still allow for the jumps in the regularized function. In our

approach we take inspiration from image processing where variational approaches

have been widely used for image denoising and segmentation. Particularly rel-

evant in the context of imaging are the works of Chan and Vese [72, 73], who

proposed a piecewise constant simplification of the Mumford-Shah functional and

have shown its effectiveness in image segmentation, and Rudin, Osher and Fatemi

[271] who proposed a TV (total variation) based regularization for the image pro-

cessing denoising. As showed in a previous section, Bertozzi et al. formulated

the piecewise-constant Mumford functional on graphs. They also developed an

efficient numerical approach to compute the minimizers and used it to study a

(multi-class) classification problem [167].

Continuum Mumford-Shah functional and its nonlocal approxima-

tion. We recall the Mumford-Shah functional using the formulation in the space

of the special functions of bounded variation. For background on spaces of (spe-

cial) functions of bounded variation we refer the reader to the book [9]. For

u ∈ SBV (Ω)

MSf (u) := λ

∫
Ω

|u− f |2dx+

∫
Ω

|∇u|2 dx+Hd−1 (Su) (3.28)

where f ∈ L∞(Ω) is the noisy image, ∇u is the absolutely continuous (in the

measure sense, and with respect to the Lebesgue measure) part of the gradient

Du (which is a measure) of the function u, Su is the jump set of u and Hd−1 is the

(d− 1)-dimensional Hausdorff measure. The first term of the functional ensures

the closeness of the approximation u to the original image f while the next two

terms reward the regularity of u. The idea is that natural images are piecewise

smooth, but often do have jumps in intensity between different regions. Thus the

terms of the functional reward the regularity of u, while still allowing jumps in the

intensity. Thanks to the work of Ambrosio in [5] and to the lower-semicontinuity

of MSf with respect to the topology of the space SBV (Ω), the direct method of
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calculus of variations ensures us that a minimum u0 ∈ SBV (Ω) for the functional

3.28 is always attained. For the considerations we have in mind the fidelity term∫
Ω
|u−f |2dx is quite straightforward to treat. Hence, for readability, we introduce

the functional without it and focus on this functional

MS(u) =

∫
Ω

|∇u|2 dx+Hd−1 (Su) (3.29)

As shown in [47] any functional of the form of 3.29 cannot be approximated

in the sense of Γ-convergence by local integral functional of the type

∫
Ω

hε (∇u) dx

for u ∈ W 1,2(Ω). De Giorgi conjectured that the MS functional can be ap-

proximated by nonlocal functionals. The conjecture was prove by Gobbino in

[141], who showed that 3.29 can be approximated by the functionals

Gε(u) :=
1

εd+1

∫
Rd×Rd

arctan

(
|u(y)− u(x)|2

|y − x|

)
e−
|y−x|2

ε2 dx dy

defined for u ∈ L1
loc(Ω). He shows that for appropriate dimensional constants

θ, σ

Γ− lim
ε→0

Gε = θ

∫
Ω

|∇u|2 dx+ σHd−1 (Su)

where the Γ-limit is considered with respect to L1 topology. The work [141]

has been the generalized in [140] to functionals defined in SBV (Ω) of the form

F (u) :=

∫
Ω

ϕ(|∇u(x)|)dx+

∫
Su

ψ
(∣∣u+(x)− u−(x)

∣∣) dHn−1(x)

where u+(x) and u−(x) denote the so-called approximate liminf and limsup

of u at point x:

u+(x) = sup

{
t ∈ R : lim

r→0+

1

rn
|{y ∈ B(x, r) : u(y) > t}| > 0

}
They show that for suitable ϕ the functional can be approximated in the

Γ-convergence sense with the family of non-local functionals of the form
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Fε(u) :=

∫
Rd×Rd

ϕ|x−y|

(
|u(x)− u(y)|
|x− y|

)
ηε(x− y)dx dy

where {ηε}ε is a family of functionals and {ηε}ε>0 ⊂ L1(Ω) is a kernel.

Point cloud MumfordShah functional The above non-local approxima-

tion to the Mumford-Shah functional can be adapted to the graph setting. We

consider the setting of random geometric graphs formulated on random samples

of a measure µ with density ρ, which describes the underlying data distribution.

Consider an open, bounded set with Lipschitz boundary Ω. The density ρ is

assumed to satisfy: ρ ∈ C1(Ω) ∩ C0(Ω) and

0 < c ≤ min
x∈Ω

ρ(x) ≤ max
x∈Ω

ρ(x) ≤<∞ (3.30)

We consider ζ : [0,∞)→ [0,∞) such that

(A1) ζ is concave and differentiable at 0;

(A2) ζ is not decreasing;

(A3) ζ ′(0) <∞ and

Θ := lim
x→∞

ζ(x) (3.31)

We fix p ≥ 1, q ∈ [0, p) and we assume that the kernel η : [0,∞) → [0,∞)

satisfies

(B1) η is nonincreasing L1 function, non identically 0;

(B2) 0 <
∫∞

0

(
td + tp−q+d−1

)
η(t)dt <∞

In the sequel, we always assume the functions η, ζ and ρ to satisfy the above

assumption. Let x1 . . . xn ∈ Ω a set of n i.i.d random points on Ω chosen according

to the probability measure µ = ρ dx. The empirical measure of the sample is

defined by

µn =
1

n

n∑
i=1

δxi

Given a Borel measure σ on Ω, the space Lp(Ω, σ) is the space of equivalence

classes of measurable functions u : Ω → R with
∫

Ω
|u|pdσ finite. Notice that,
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under this assumption on ρ, we have that L1(Ω; ρ) = L1(Ω). For that reason we

often write u ∈ L1(Ω) in place of u ∈ L(Ω : ρ).

The graph Mumford-Shah functional we denote the most attention to is the

functional 3.27 without the fidelity term. Namely for a function u ∈ L1(Ω;µn)

let

GMSε,n(u) :=
1

ε

1

n2

n∑
i,j=1

ζ

(
ε1−p+q |u (xi)− u (xj)|p

|xi − xj|q
)
ηε (|xi − xj|) (3.32)

Here ηε(s) = ε−dη(s/ε).

Main results The main result (see Theorem 10) states that as n → ∞
and εn → 0 the Graph Mumford-Shah functional 3.32 converges to the following

continuum Mumford-Shah functional:

MSη,ζ(u; ρ) := ϑη(p, q)ζ
′(0)

∫
Ω

|∇u(x)|pρ(x)2 dx+ σηΘ

∫
Su

ρ(y)2 dHd−1(y)

(3.33)

defined for all u ∈ SBV p(Ω) and where Θ is defined by 3.31 and


ϑη(p, q) := 2ωd−1

Γ(p/2 + 1/2)Γ(d/2 + 1/2)

Γ(p/2 + d/2)

∫ ∞
0

tp−q+d−1η(t)dt

ση := 2ωd−1

∫ ∞
0

tdη(t)dt

The Γ−convergence is the TL1 sense defined in [307]. We point out that

assumption (B2) on η is the one that guarantees the finitess of σn, ϑn(p, q). With

all these in mind we are able to show the validity of the following statement.

Theorem 10. Let Ω be an open set and ρ be a probability density satisfying 3.30.

Consider ζ, η satisfying the assumptions (A1)-(A3) and (B1)-(B2). Let {xi}i∈N
be a sequence of i.i.d. random points chosen accordingly to the density ρ and

{εn}n∈N be a sequence of positive number converging to 0 such that

lim
n→∞

(log(n))1/d

εnn1/d
= 0 for d ≥ 2 (3.34)

Then GMSεn,n defined in 3.32, Γ-converges to MSη,ζ(·; ρ), defined in 3.29.
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in the TL1 sense.

3.4 Conclusions

In recent years algorithms based on the graphical framework have gained in pop-

ularity as highly competitive for problems involving high dimensional data. The

success of such methods is partly due to the many advantages offered by using a

graph-based approach. First, graphical techniques not only provide useful infor-

mation about the overall data structure, but also about the connections between

pieces of data via edge weights that encode the degree of similarity between pairs

of nodes. Second, the graphical structure provides a general way to incorporate

diverse types of data, such as hyperspetral data, text data, LIDAR data, images,

video, etc.

A standard technique for data classification used in the context of machine

learning involves minimizing a general form of energy (or cost) functional com-

posed by a regularization term and a fidelity term. In the case of unsupervised

classification, the second term is replaced by a region homogeneity term. When

choosing the regularization norm, it is important to conserve the sharp disconti-

nuities that may appear in the boundaries between classes. The model we studied

is based on ideas from image processing and go back to the celebrated Mumford

and Shah variational model for image segmentation that is particularly successful

in denoising and recovering domain edges.

Several authors have proposed techniques for classifying data via Mumford

and Shah functional minimization. We proposed a new one based on the math-

ematical framework showed in Chapter 2 that can be efficiently implemented on

HPC architectures. Given a point cloud in a Euclidean space with (noisy) real-

valued labels or an undirected graph with labeled vertices, our model denoises

the labels while allowing for jumps (discontinuities) in label values. We tested

our methods on image data, but we plan to apply it on different types of data.
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Chapter 4

Variational Restoration of

Curvilinear Structures

4.1 Introduction

In this chapter we will show the state of art in variational detection and restora-

tion of curvilinear structures. Even though these techniques are successful at

segmenting and reconstructing vessels in medical images, they do not provide

satisfying results on images of cracks, due to their complex background textures

and their high level of noise. Moreover their execution takes too long for a real-

world application scenario. For this reason, we adapted them to the second order

model described in subsection 2.1.2.5 and provided a parallel numerical imple-

mentation.

We recall that a curvilinear structure is any object with a spatial dimension d

that is strictly lower than the dimension n of the space in which it is embedded.

For d = 1 and n = 2, such objects can be vessels in eye fundus imaging, cracks on

walls etc. The preservation of these structures is challenging for various reasons.

They are generally sparsely distributed within images, due to their low dimen-

sion. They are also often thin structures, with a thickness similar to the image

resolution. In addition, they can have complex topology with high curvatures,

tortuosity, junctions and bifurcations and are easily corrupted by noise. For these

reasons, many existing image processing methods cannot efficiently discriminate

them from noise and artifacts. For tackling these issues, a solution may consist of

guiding the restoration process by information related to the location and geomet-
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ric properties (size, orientation) of these objects. Several contributions have been

devoted to compute this kind of information from curvilinear structures in nD

images (where n = 2 or 3). Two representative examples of such contributions

are RORPO [217] and Frangi vesselness [125].

4.2 Curvilinear Structure Detection

In order to make a thin structure easily detectable, two main families of ap-

proaches have been developed: linear and non linear filters.

4.2.1 Linear Filters

In general, thin structures represent areas of higher intensity in the image. If we

consider a grayscale 3D image as a discrete function of R3 in R (or a 2D image

as a discrete function of R2 in R ) thin structures appear as its local maxima.

For this reason the detection of such structures can be performed by studying the

differential properties of the image.

This first family of filters relies on linear operators, based on local, differen-

tial analysis of images. In particular, the analysis of second order derivatives of

3D images were proposed in [281, 205]. In these pioneering works, the eigenvec-

tors of multiscale Hessian matrices and their associated eigenvalues are analysed

to characterise blobs (3D), planar (2D) and curvilinear (1D) structures, as well

as their scale and orientation. The measure proposed in [125] is often considered

the current gold-standard. Several variants have been proposed since then, for

instance in [189]. Alternatively, steerable filters [128] can be expressed, for similar

purposes, in terms of a linear combination of basis filters. Anisotropic diffusion

methods [253, 325] were also proposed to filter curvilinear structures. Of partic-

ular interest is the Coherence Enhancing Diffusion (CED) filter [326], designed

to perform actual anisotropic diffusion by adapting the diffusion direction using

structure tensors.

There are three main classes of filters based on derivatives: the gradient

operator, the Hessian operator and the structure tensor. The last ones are

both more efficient than the gradient operator, which gives information only on

the contour orientation. Indeed the Hessian operator and the structure tensor can

capture characteristics related to the object shape (for example tubes or plans),
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to the absence of structure (isotropic structure or “blob”) or to noise.

The Gradient Operator The gradient operator is the vector of the first

derivatives. It is given in 2D by:

∇(I) =

[
∂I
∂x
∂I
∂y

]
or in 3D by:

∇(I) =


∂I
∂x
∂I
∂y
∂I
∂z


where I : Ω ⊂ R2(R3)→ R is a C1 function.

The gradient vector is characterized by its modulus and direction. Its modulus

represents the image intensity slope in a specific point and its direction gives the

direction of this slope. A high modulus reflects a large variation in gray levels

around this point. We can therefore deduce that we are in a transition zone

between a light part and a dark part, that is on a contour. In this case the vector

is perpendicular to the contour. In practice, the gradient can be obtained from

Sobel or Prewitt type filters, which calculate differences between neighbours in

a given direction after smoothing. For example in 2D, the image is convolved

with the following masks (the operator of Prewitt is defined for k = 1 and that

of Sobel for k = 2)

Gx =

 −1 0 1

−k 0 k

−1 0 1

 Gy =

 −1 −k −1

0 0 0

1 k 1


The Roberts filter is the classical gradient operator consisting of the two masks:

Gx =

[
1 1

0 −1

]
Gy =

[
0 1

−1 0

]
These kernels are designed to respond maximally to edges running at 45◦ to the

pixel grid, one kernel for each of the two perpendicular orientations. The kernels

can be applied separately to the input image, to produce separate measurements
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of the gradient component in each orientation (call these Gx and Gy). These can

then be combined together to find the absolute magnitude of the gradient at each

point and the orientation of the gradient. The gradient magnitude is given by:

|G| =
√
G2
x +G2

y

The Roberts filter produces finer, more localized contours than other operators

because it is the local differential filter of minimal size. Nevertheless, the filters

of Prewitt and Sobel are more resistant to noise thanks to the low-pass filter.

The Hessian Operator The Hessian operator is the matrix of second deriva-

tives. In 2D, the Hessian matrix of an image can be calculated in any pixel

as

H(I) =

[
∂2I
∂x2

∂2I
∂x∂y

∂2I
∂y∂x

∂2I
∂y2

]
In 3D, the Hessian matrix:

H(I) =


∂2I
∂x2

∂2I
∂x∂y

∂2I
∂x∂z

∂2I
∂y∂x

∂2I
∂y2

∂2I
∂y∂z

∂2I
∂z∂x

∂2I
∂z∂y

∂2I
∂z2


In order to detect vessels of different sizes, it is important to apply these

operators in a multi-scale setting. For that reason, one uses the linear theory of

the “scale-space” which redefines the first and second derivatives as the product

of convolution with the derivatives of the Gaussian function [182]

∂

∂x
I(x, σ) = σγI(x) ∗ ∂

∂x
G(x, σ)

∂2

∂2x
I(x, σ) = σγI(x) ∗ ∂2

∂x2
G(x, σ)

∂2

∂x∂y
I(x, σ) = σγI(x) ∗ ∂2

∂x∂y
G(x, σ)

(4.1)

where G(x, σ) is the Gaussian function defined by

G(x, σ) =
1

(2πσ2)D/2
e−
|x|2

2σ2
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The parameter γ [201] to defines a normalization with respect to the σ scale.

The larger the σ scale, the more noise in the image is removed while the contours

are smoothed.

The Hessian matrix being symmetrical, it is diagonalisable. Its eigenvalues

λ1, λ2 and λ3 (|λ1| ≤ |λ2 ≤ |λ3|) are respectively associated with eigenvectors

e1,e2 and e3 forming an orthonormal basis. According to the theory of singular

value decomposition, the vectors e1,e2 and e3 are oriented in the main directions

of the tensor associated with the Hessian matrix. From the three directions and

the three eigenvalues, we can then construct an ellipsoid representing the tensor

described by the Hessian matrix or in other words the structure of the image at

this point.

The analysis of orders of magnitude of these eigenvalues thus makes it possible

to determine the shape (tubular, planar or isotropic structure) and the intensity

(light, dark) of the local structures. For example, for an ideal tubular structure

in a 2D image we have:

|λ1| ≈ 0

|λ1| � |λ2|

in a 3D image:

|λ2| ≈ |λ3|

The Structure Tensor The structure tensor g(I) is the matrix of the second

order moments of the image gradient. In 2D. it is defined by:

g(I) =

 (
∂Gσ(I)
∂x

)2
∂Gσ(I)
∂x

∂Gσ(I)
∂y

∂Gσ(I)
∂y

∂Gσ(I)
∂x

(
∂Gσ(I)
∂y

)2


In 3D, it is defined by:
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g(I) =


(
∂Gσ(I)
∂x

)2
∂Gσ(I)
∂x

∂Gσ(I)
∂y

∂Gσ(I)
∂x

∂Gσ(I)
∂z

∂Gσ(I)
∂y

∂Gσ(I)
∂x

(
∂Gσ(I)
∂y

)2
∂Gσ(I)
∂y

∂Gσ(I)
∂z

∂Gσ(I)
∂z

∂Gσ(I)
∂x

∂Gσ(I)
∂z

∂Gσ(I)
∂y

(
∂Gσ(I)
∂z

)2


where Gσ(I)(x) = I(x)∗G(x, σ) with G(x, σ) is the Gaussian function previously

defined. The tensor can be reformulated as the matrix product:

g(I) = ∇ (Gσ(I)) .∇ (Gσ(I))T

The structure tensor contains the principal directions of the gradient in the

neighbourhood of a pixel x. It can be used in the same way as for the Hessian

operator, although its interpretation is different. Since the tensor is semi-definite

positive, all its eigenvalues are positive and can be ordered as before in 3D:

0 ≤ λ1 ≤ λ2 ≤ λ3

In this order, λ3 is the largest eigenvalue and its associated eigenvector e3

provides the principal direction of the gradient. If λ3 � λ1 ≈ λ2, then this means

that the isosurfaces of I are planes perpendicular to e3. If λ3 ≈ λ2 � λ1, then the

isosurfaces of I are tubes perpendicular to e3. If the three eigenvalues are of the

same order of magnitude, the isosurfaces are isotropic structures. Identical to the

case of the Hessian operator, we can reduce ourselves to a multi-scale framework

by varying the parameter σ. On the other hand, the eigenvalues of the structure

tensor do not make it possible to determine if the structures are clear or dark.

4.2.2 Non Linear Filters

Non-linear approaches include those based on mathematical morphology [230].

In this framework, a common notion is the structuring element (SE), a geometric

pattern from which basic operators (erosions, dilations, openings, closings, etc)

can be defined. The most popular approach uses a small and straight line of

arbitrary orientation to carry out opening or closing operations [295], however

the hard geometry remains a limitation to its accuracy and requires more flexible

SEs [52]. Another approach is based on the more global notion of connectivity.

In this context, the concept of component-tree [279] and attribute-based methods
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were specifically investigated for threshold-based filtering. One example is area

opening, which removes all the connected components whose area (number of pix-

els) is less than some threshold. This will, in general, not give the desired result,

since short compact features will be preserved as well as the long, thin structures

of interest. Another attribute that has been proposed for this problem is elon-

gation. However, this one is not increasing [223], as required to form an opening

and it becomes problematic if there are crossings in the image. The SE- and

connectivity-based approaches present dual intrinsic strengths and weaknesses.

SE-based approaches can naturally handle anisotropy, which is highly desirable

for curvilinear structure filtering, but require explicitly defined families of SEs

for orientation sampling. In comparison, connectivity-based approaches lead to

more global descriptors, unfortunately the isotropic notion of adjacency cannot

efficiently model the anisotropy of curvilinear structures. In [318], a notion of

local optimal path was pioneered. The purpose was to restrict the search to a

given distance, and in a given cone of orientation, in order to find the best paths

starting from a given point. This paradigm led to the development of a notion of

path operator [161], which uses a family of paths instead of a fixed shape as SE

in order to enable a higher flexibility in geometry and size, while preserving a 1D

semantics. The majority of oriented filters compute the response of a structure in

an isotropic neighbourhood whose size depends on the scale, which itself depends

on the size of the sought structure. This approach is not optimal for curvilinear

structures which are highly anisotropic. In particular, it may lead to false detec-

tions and wrong orientation estimation, especially near structures borders. Path

operators, by computing the response along an anisotropic neighbourhood fitting

in the curvilinear structure, avoid this pitfall, moreover they are parameter-free:

the only real parameter is the path length which is semantically related to the

length of the structure of interest. The path operator is a kind of opening that

removes bright features in which a path of length L does not fit. Since its intro-

duction by Buckley and Talbot [161], several algorithms have been proposed to

implement it. The one by van de Gronde [312] is the fastest, but it has the same

time complexity as Appleton and Talbot’s one [304]. It runs in O(min(L, d,Q)N)

time, where L is the chosen length threshold, d is the maximum path length, Q

is the number of gray levels and N is the size of the image. Moreover, it suffers

from over-estimating the length because it tends to zig-zag in structures wider

than one pixel.
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Graph Path Operator In order to avoid this problem and to significantly

increase the execution speed we propose an algorithm based on graph path open-

ing. First of all we propose to preselect paths by an upper skeletonization [317].

This technique sets to zero some pixels, but preserves bright ridges. The algo-

rithm goes on building a directed, acyclic graph from this preprocessed image:

each non-zero pixel is represented as a node and each node is connected to its

neighbours according to an adjacency graph G (traditionally S-N, SE-NW, E-W,

NE-SW see figure 4.1).

Figure 4.1: The four adjacency graphs for the path opening algorithm. Graph
(a) shows the S-N adjacency graph, graph (b) shows the SW-NE graph, (c) is the
W-E adjacency, and (d) is the NW-SE adjacency graph

Each of these graphs define adjacency relations between pixels in the image as

follows: let I ⊂ Z2 and x, y ∈ I are adjacent if (x, y) forms a directed edge in the

adjacency graph G. It is easy to show that these ones are directed, acyclic graphs.

The weights are chosen in order to minimize the relative error (i.e. the difference

between the measured length and the actual length divided by the actual length)

for digital lines of arbitrary orientation [259]: edges connecting diagonal neigh-

bours are weighted by 1.340 and edges connecting horizontal/vertical neighbours

are weighted by 0.948. Since paths are line-like, they will also minimize the er-

ror of paths reasonably well, assuming that they do not zig-zag inside thicker,

line-like structures. Since the skeleton produces one-pixel thin preselected paths,

the assumption holds. There are, however, other weights that could be used,

depending on the error to be minimized (see [101]). After the graph has been

generated a modified path opening is used to open this graph. For an adjacency

graph G = (V,E) and a set of image pixels I, let:

νG(x) = {y ∈ I : (x, y) ∈ E} (4.2)

be the set of all neighbours of x. Then, a tuple a = (a1, . . . , aL) is a path of
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length L if ak+1 ∈ νG(ak) for all k ∈ {1, 2, . . . L− 1}. Let ΠG
L(X) denote the set

of all paths of length L in X ⊂ I using the adjacency relation specified by G. For

a path a = (a1, . . . , aL), let σ(a) = {a1, . . . , aL}. Define the operator γGL (X) as

γGL (X) = ∪a∈ΠGL (X)σ(a). (4.3)

It is easy to check that the union of the elements of all paths of length L in X

according to the adjacency graph G is an binary opening. In order to get the anal-

ogous operator for a grayscale image, one may decompose it in a series of binary

image using thresholding, apply the binary path opening operator on each of these

and finally combine the resulting openings into a single image, which corresponds

to the grayscale opening. The only difference between the traditional algorithm

and graph adaptation is that, instead of counting pixels, lengths are calculated

from the edge weights that have been set during the graph creation. The main

advantage is that, being easily implemented on High Performance Computing

architectures, this version decreases in significant way the execution time.

4.2.3 Vesselness

Lorenz [205], Sato [282], and Frangi [125] used a tubularity measure or vesselness

to detect tubular structures. All these measures calculate from Hessian matrix

eigenvalues a criterion, which reaches strong values for a tubular structure and

weak values elsewhere.

For a 3D image I(x), observed at the σ scale, Lorenz proposes:

L(x) =
|λ1|+ |λ2|

2|λ3|

which takes values close to 1 if you are in a tube, and values close to 0 otherwise.

Similarly, Sato proposes the following measure

S(x, σ) =


|λ3|

(
λ2

λ3

)ξ (
1 + λ1

|λ2|

)τ
if λ3 < λ2 < λ1 < 0

|λ3|
(
λ2

λ3

)ξ (
1− ρ λ1

|λ2|

)>
if λ3 < λ2 < 0 < λ1 <

‖λ2‖
ρ

0 otherwise
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where ξ influences the asymmetry of the cross sections; τ > 0 controls the sen-

sitivity to the isotropic structure; and 0 < ρ ≤ 1 controls sensitivity to tubular

structures.

For a 3D image, the vesselness of Frangi is

V(x, σ) =

 0 if λ2 > 0or λ3 > 0(
1− e

−R2
A

2α2

)
· e
−R2

B
2β2 ·

(
1− e

−s2

2c2

)
otherwise

with

RA =

∣∣∣∣λ2

λ3

∣∣∣∣
RB =

|λ1|√
|λ2λ3|

S = ‖H(I)σ‖ =
√

Σjλ2
j

The first term RA discriminates the tubular structures from the planes, be-

cause it is close to 1 for a tube, while it is close to 0 for a plane. The second

term RB discriminates the isotropic structures from the tubes, because it is close

to 1 for a blob, whereas it is close to 0 for a tube. Finally, S evaluates the noise

level in a neighbourhood. The parameters α, β and c respectively control the

filter sensitivity to RA, RB and S. For a 2D image, the vesselness of Frangi can

be reformulated by

V(x, σ) =

 0 if λ2 > 0

e
−R2

B
2β2 ·

(
1− e

−s2

2c2

)
otherwise

where RB = |λ1|
|λ2| distinguishes the isotropic structures from the thin ones. These

models also admit a scale parameter σ used when calculating the first and sec-

ond derivatives from the Gaussian function 4.1. Since this parameter is a priori

unknown, a solution proposed by Sato and Frangi consists in calculating the re-

sponse at each point of the image, S(x, σ) or V (x, σ) for several values of σ and

take the maximum response. For example, for the Frangi’s vesselness, we have

V(x) = max
σmin≤σ≤σmax

V(x, σ)
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where σmin and σmax are the minimum and maximum scales for which structures

of interest are expected to be found.

In the next section, we will show two hybrid methods that include the Frangi

vesselness in a variational framework (the first in the ROF or TV-L1 denoising

model and the second in the Chan-Vese segmentation model)

4.2.4 Inclusion of vesselness in the variational model

In [216] Merveille et al. introduced some traditional techniques to adapt im-

age restoration (denoising/segmentation) to thin structures. Even though they

showed interesting results in blood vessel restoration, they are not suitable for

fracture segmentation, which requires a second order variational model as we

showed in Chapter 2.

As first instance the authors presented a hybrid model in which Rudin Os-

her Fatemi (ROF) and L1 Total Variation (TV-L1) variational denoising models

weights the data fidelity term by a vesselness prior. Actually, they replaced the

coefficient λ in equations 4.6 and 4.5 by:

λ = αλreg + (1− α)V0(x) (4.4)

where α ∈ [0, 1] is a free parameter which balances the regularization and the

vesselness (i.e. α ≈ 0 enhances the vesselness whereas α ≈ 1 promotes the

regularization). Even though this solution made it possible to raise vessels in

an image, it did not provide a proper segmentation. For this reason the au-

thors showed a second example including a vesselness feature in the Chan-Vese

variational segmentation model. In the context of tubular structures, several

segmentation techniques have already been proposed by adding a shape prior,

for example superellipsesoids [309], B-splines wavelet [303], adaptive dictionaries

[264], and elastic regularization [105], but they all may have disconnections be-

cause the restoration has been carried out outside the structure of interest. In

order to overcome this problem, Merveille et al. described how to include both

vesselness and vessel directions in the Chan-Vese model. The directions were

extracted from the Hessian matrix (we recall that they are the eigenvectors asso-

ciated to the smallest eigenvalues in absolute value) and were integrated in the

computation of the directional gradient. In particular they compared the direc-

tions extracted by Frangi’s vesselness with the RORPO operator [217], which is
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a tubular object filter based on mathematical morphology.

Hybrid Total Variation Model The ROF model corresponds to the following

minimization problem:

min
x

∫
Ω

|∇x|+ λ

2

∫
Ω

(x− f)2dx (4.5)

where x is the denoised image, f is the observed image, Ω is the domain of the

image, while the parameter λ is used to manage the weighting between regular-

ization and fidelity. We recall also that when the L2 fidelity term is replaced by

the L1 norm, we obtain the TV-L1 model:

min
x

∫
Ω

|∇x|+ λ

∫
Ω

|x− f |dx. (4.6)

Total variation is not appropriate for regularizing thin structures since it pe-

nalizes contours. By including the vesselness the hybrid model preserves better

these shapes because it regularizes more outside than inside a tubular object. The

parameter λ, which was previously a constant value for the whole image, now de-

pends on the tubularity at each point (see formula 4.4), nevertheless the problem

remains convex and can be addressed with traditional optimization techniques.

Let F,G ∈ Γ0(Rn) and K : Rn → Rn a linear operator, then 4.5 and 4.6 can be

formulated in a general way:

min
x∈Rn

F (Kx) +G(x) (4.7)

This minimization problem can be solved by convex optimization algorithms such

as the proximal algorithms [81]. In this case the primal-dual was chosen because

it does not need any differentiability. In order to apply it to ROF and TV-L1

model, the proximal operators proxσF ? and proxτGx̃ have to be defined.

Regarding ROF model, the regularization term is F (Kx) = |∇x|, the data

fidelity is GROF (x) = λ
2
||x−f ||2 and the linear operatorK = ∇ implies a Lipschitz

constant L2 = ||∇||2 = ||div||2 ≤ 8 ([67] Theorem 3.1). The proximal operator

for the primal variable is given by:

x = proxτGROF
x̃ = arg min

x

{
‖x− x̃‖2

2τ
+
λ

2
‖x− f‖2

}
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Solving this minimization problem is equivalent to solving the associated Euler-

Lagrange equation:

1

τ
(x− x̃) + λ(x− f) = 0

then, the solution is given by:

x =
x̃+ λτf

1 + λτ

Finally, the proximal operator for the dual variable is given by:

y = proxσF∗ ỹ = arg min
y

{
‖y − ỹ‖2

2σ
+ F∗(y)

}
The conjugate by duality of F, F ?, can be calculated using Chambolle algorithm

[67]:

F(Kx) = ‖∇x‖2,1 = sup
{ξ such that |ξi,j |≤1}

〈ξ,∇x〉

= sup
{ξ such that |ξi,j |≤1}

〈− div ξ, x〉

= sup
p∈Rn

(〈p, x〉 − ιp(p))

where P = {p = − div ξ : |ξi,j| ≤ 1∀i, j} and ιP is the P indicator function defined

by:

ιP =

{
0 if p ∈ P

+∞ if p /∈ P

F ?(y) = ιP (y) and since it is the indicator function of a convex set, the operator

proximal is reduced to a Euclidean projection on the unit ball:

y =
ỹ

max(1, |ỹ)

The primal-dual algorithm for solving the ROF model is described in algorithm

4

For the TV-L1 model, one can use the same proximal operator for the dual

variable proxσF∗ ; only the proximal operator for the primal variable changes:

proxτGTV−L1
with GTV−L1 = λ||x − f ||. This proximal operator is given by the

following minimization problem:
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Algorithm 4: Primal-dual algorithm for solving ROF model

1 τ = σ = 1
L

= 1√
8
, θ = 1;

2 x0 = f, y0 = 0 and x0 = x0

3 while k ≥ 0 do
4 ỹk+1 = yk + σ∇x̃k;
5 yk+1 = ỹk+1

max(1,|ỹk+1|)
;

6 xk+1 = (1 + τλ)−1(x̃k + τλf);
7 x̃k+1 = xk+1 + θ(xk+1 − xk);

x = proxτGTV−L1
x̃ = arg min

x

{
‖x− x̃‖2

2τ
+ λ||x− f ||

}
with the associated Euler-Lagrange equation:

1

τ
(x− x̃) + λ

x− f
|x− f |

= 0

that is equivalent to the following schema:

x =


x̃− τλ if x̃− f > τλ

x̃+ τλ if x̃− f < −τλ
f if |x̃− f | ≤ τλ

The primal-dual algorithm for solving the TV-L1 model is described in algorithm

5.

Algorithm 5: Primal-dual algorithm for solving TV-L1 model

1 τ = σ = 1
L

= 1√
9
, θ = 1;

2 x0 = f, y0 = 0 and x0 = x0

3 while k ≥ 0 do
4 ỹk+1 = yk + σ∇x̃k;
5 yk+1 = ỹk+1

max(1,|ỹk+1|)
;

6 x̃k+1 = xk + τ div yk+1;

7 xk+1 =


x̃k+1 − τλ ifx̃k+1 − f > τλ
x̃k+1 + τλ if x̃k+1 − f < −τλ
f si |x̃k+1 − f | ≤ τλ

;

8 x̃k+1 = xk+1 + θ(xk+1 − xk);
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Hybrid Chan-Vese Segmentation Model The Chan-Vese segmentation prob-

lem corresponds to the following minimization problem:

min
Σ,c1,c2

λPer(Σ) +

∫
Σ

(c1 − f)2 dx︸ ︷︷ ︸
region of interest

+

∫
Ω\Σ

(c2 − f)2 dx︸ ︷︷ ︸
background

(4.8)

where c1 is the mean intensity in the region of interest Σ and c2 is the average

intensity in the background Ω \ Σ and Per(Σ) is the perimeter of Σ.

Even though it is not convex, the problem 4.8 is equivalent to the following

convex minimization problem [?]:

min
0≤u≤1

λ

∫
Ω

|∇u|+
∫

Ω

(
(c1 − f(x))2 − (c2 − f(x))2)u(x)dx (4.9)

And then Σ = {x : u(x) ≥ µ} for all µ ∈ ]0, 1]. By setting TVc(u) = λ|∇u| +
1[0,1](u) the total variation under constraints and A(x) = (c1−f(x))2−(c2−f(x))2

the data fidelity, one can solve the equation 4.9 by using a backward-forward

algorithm:

u(x) = proxγTVc(u(x)− γA(x))

where γ is the algorithm step. The backward-forward algorithm is combined by

a gradient descent on the differentiable function A(x) and the calculation of the

proximal operator of the non differentiable function TVc(u). The difficulty lies

on calculating the TVc(u) proximal operator under constraints given by:

proxTVc(f) = arg min
0≤u≤1

‖u− f‖2 + 2λTVc(u)

The minimization of total variation under constraints can be solved using Fast

Gradient Projection algorithm (FGP) [24]. As in the previous models including

vesselness, the λ coefficient is replaced by a parameter λ(x) which depends locally

on vesselness (see formula 4.4).

The Total Variation proximal operator without any constraint can be calcu-

lated using algorithm by Chambolle [67]:

uk+1 = f − λ div pk

pk+1 = P (pk + τ∇uk+1)
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where P (ξ) = ξ
max(1,|ξ|) is the projection on the unit ball, τ is the algorithm step

and div is the discrete divergence. In [24], this algorithm is adapted to Total

Variation under constraint TVC :

uk+1 = PC(f − λ div(pk))

pk+1 = P (pk + τ∇uk+1)

where PC is the projection on the convex set C ( here C = [0, 1] in order to satisfy

the constraint 0 ≤ u ≤ 1).

The FGP algorithm for solving the problem 4.9 is described in algorithm 6.

Algorithm 6: Algorithm FGP (Fast Gradient Projection)

1 u0 = f, p0 = 0and τ > 0 (algorithm step)
2 while k ≥ 0 do
3 uk+1 = PC(f − λ div pk);
4 pk+1 = P (pk + τ∇uk+1);

Directional Gradient Model Unfortunately, all these models do not provide

an acceptable restoration for tubular objects because, by preventing denoising

inside the structure, they allow disconnections and loss of smaller vessels. For

tackling this issue one should find a way to guide the regularization along the main

direction of an anisotropic shape. The notion of directional gradient operator ∇D

can provide a solution because it is based on two tubular priors: vesselness V and

vessel direction. Several filters can provide them, for instance the Frangi [125]

and the RORPO filters [217]. To define the directional gradient Merveille et al.

consider a 2D image of size N ×N and the family of unity vectors

v1 = (~i+~j)/‖~i+~j‖,v2 =~i,v3 = (~j −~i)/‖~i+~j‖,v4 = ~j

The directional gradient ∇D is defined by:

(∇Du)i,j = D1
i,j (∇u)1

i,j v1 + . . .+ D4
i,j (∇u)4

i,j v4

with Dq, 1 ≤ q ≤ 4 the matrix defined by:

Dq
i,j = dqi,jVi,j + (1− Vi,j)
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where V is the vesselness and (dq)q∈[1,4] are the direction coefficients. Intuitively,

if V = 0, i.e. the pixel (i, j) does not belong to a tube, then

(∇Du)i,j = (∇u)1
i,j v1 + . . .+ (∇u)4

i,j v4

is an isotropic gradient. If V = 1, i.e. the pixel (i, j) belongs to a tube, then

(∇Du)i,j = d1
i,j (∇u)1

i,j v1 + . . .+ d4
i,j (∇u)4

i,j v4

is a directional gradient. Optimizing this new gradient no longer causes the

contours of tubular structures to be lost since only the ends are captured.

In the following a way to compute the direction coefficients dq(q ∈ [1, 4]) from

the vesselness direction feature is described. As we have recalled a Hessian matrix

has three eigenvalues λ1, λ2 and λ3 (|λ1| < |λ2| < |λ3|) associated respectively

with the eigenvectors e1, e2 and e3. The principal direction of the vessel is then

given by e1, corresponding to the smallest eigenvalue λ1 [125].

Figure 4.2: Ellipsoids representing the image structure.

Let us denote then δi,j = (e1
x, e1

y)i,j the vector giving the vessel local direction

at pixel (i, j). The coefficients (dq)i,j, are then the coefficients of δi,j decomposed

on the family of vectors (v1,v2,v3,v4). Note that if all the coefficients (dq)i,j

are different from 0, then ∇D is similar to the isotropic gradient ∇. In order to

obtain a proper gradient directional in 3D a way would be to impose that this

decomposition would involve all zero coefficients, except for two vectors vm and
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vn :

δi,j =
4∑
q=1

dqi,jvq = dmi,jvm + dni,jvn (4.10)

By multiplying equation 4.10 by vm, then by vn, one obtains the following system:

{
dmi,jvm · vm + dni,jvn · vm = δi,j · vm L1

dmi,jvm · vn + dni,jvn · vn = δi,j · vn L2

By replacing vm · vn =
√

2
2

because (vm,vn) = π
4

and vm · vm = vn · vn = 1

because vm and vn are unit vectors, one gets:

{
dmi,j +

√
2

2
dni,j = δi,j · vm L1√

2
2
dmi,j + dni,j = δi,j · vn L2

This is equivalent to

{
dmi,j +

√
2

2
dni,j = δi,j · vm L1

dni,j − 1
2
dni,j = δi,j · vn −

√
2

2
δi,j · vm L2 ← L2 −

√
2

2
L1

{
dmi,j = −

√
2

2
dni,j + δi,j · vm = −

√
2δi,j · vn + 2δi,j · vm

dni,j = 2δi,j · vn −
√

2δi,j · vm

{
dmi,j = 2δi,j · vm −

√
2δi,j · vn

dni,j = 2δi,j · vn −
√

2δi,j · vm

To calculate the proximal operator of the total variation under the constraint,

one has to simply adapt the FGP algorithm to the directional gradient. Then,

the first two iterations of algorithm 6 become:

uk+1 = PC(f − λ divD pk)

pk+1 = P (pk + τ∇Duk+1)

where ∇D = D∇ is the directional gradient with ∇ calculated as follows:
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(∇u)1
i,j = ui−1,j−1 − ui,j if i, j > 0

(∇u)2
i,j = ui−1,j − ui,j if i > 0

(∇u)3
i,j = ui−1,j+1 − ui,j if i > 0, j < N− 1

(∇u)4
i,j = ui,j+1 − ui,j if j < N− 1

(∇u)ni,j = 0 ∀n ∈ [1, 4] otherwise

and div is the discrete divergence given by:

(div p)i,j = p1
i,j − p1

i+1,j+1 + p2
i,j − p2

i+1,j + p3
i,j − p3

i+1,j−1 + p4
i,j − p4

i,j−1

with

p1
N−1, N−1 = p2

N−1,j = p3
N−1,0 = p4

i,0 = 0∀i, j ∈ [0, N− 1]

4.3 Conclusions

Classical variational restoration models such as ROF and TV-L1 are not appropri-

ate to thin structures because they penalizes contours. For this reason Merveille

et al. (see [216]) introduced a first model which includes a “tubularity measure”

(i.e. Frangi’s vesselness), which preserves these structures because it regularizes

more outside rather than inside, but does not segment them properly. In fact, to

obtain a segmentation a thresholding is necessary, but this process make darkest

structures disappear.

The Chan-Vese model is a segmentation model that can detect regions of in-

terest from background. Merveille et al. proposed a first model that includes only

Frangi’s vesselness, which outperforms ROF and TV-L1, but presents disconnec-

tions. In order to overcome this problem they introduced a model including both

vesselness and structure direction. The latter one is extracted from vesselness

and is integrated into the gradient, which is no longer a classic gradient, but a

directional gradient. This model provides better results in terms of accuracy and

structure reconnection (see [216]).

In order to segment only anisotropic structures like cracks, we apply this

technique to the mathematical model described in 2.1.2.5. In particular, we tried

two morphological filters (4.2.2,[217]) that showed equivalent results (see 5.2.2 in

Chapter 5).
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Chapter 5

Computer Vision Techniques for

Inspection of Large Concrete

Structures

5.1 Introduction

Infrastructures can be exposed to different loading conditions, recurrent ones due

to vehicular traffic and extraordinary ones caused by earthquakes, wind, and

strong rain. The consequently induced stresses may determine structural deterio-

ration and damage, which can even cause catastrophic collapses [255]. Therefore,

the issues related to the possibility of reaching/increasing a level of automation

for inspection and maintenance of infrastructure are still under research. During

these last years, the classical activities conducted mainly by human inspectors

through visual quality control for damage assessment is under reconsideration

due to newly available tools coming from information and communication tech-

nologies. For example, current visual inspection, which highly relies on an inspec-

tors subjective, error-prone and empirical knowledge [180], can be enhanced by

robotic/automatic assisted operations [260]. Usually, the actions performed by

inspectors require a long time to examine large areas, which may be also difficult

to access. Inspections often need to be performed with specialized equipment

like large under bridge units, heavy trucks, special elevating platforms or scaf-

folding on structures. Altogether these solutions are in most cases expensive and

cause high logistical efforts and costs. Moreover they can even interfere with the
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operational conditions of structures and infrastructure.

Recent works address the problem of the automation of inspection and mainte-

nance tasks based on robotic systems [199]. Existing automatic or robotic systems

based on ground or aerial solutions have been proposed for inspection of dangerous

sites or those difficult to access, but at the present state-of-the-art, human-based

procedures are not yet completely substituted. Examples of ground systems used

for inspection are wheeled robots [163] and legged robots [119]. In case of in-

spection of vertical surfaces, wall-climbing robots were developed using magnetic

devices [157] or using vacuum suction techniques [283] and remote-controlled un-

manned aerial vehicles (UAVs), equipped with high-definition photo and video

cameras, were used to get high-quality data. In particular, (UAVs) have showed

great potential not only in inspection applications [159, 272, 174], but also in

additive building manufacturing [86].

Figure 5.1: Inspection with drones

Most of the infrastructure and civil structures are made by concrete, steel

and masonry, which are prone to cracks due to creep, shrinkage and corrosion

of reinforcements. Actually, crack information (e.g., the number of cracks and

crack width and length) represents one of the current structural health indica-

tors [204]. Nowadays damages in buildings and bridges can be easily captured

using a commercial digital camera and consequently analysed and classified by

image processing algorithms, but the detection of fractures is still challenging in
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image processing. The main reasons are that they have a complex topology, a

thickness similar to the image resolution and are easily corrupted by noise. The

most frequently used techniques are those based on colour detection. In [179]

a comparative analysis is proposed among different colour spaces to evaluate

the performance of colour image segmentation using an automatic object image

extraction technique. In [171] an RGB based image processing technique was pro-

posed for rapid and automated crack detection. Even though these techniques

allow fast processing and are highly robust to geometric variations of object pat-

terns and viewing directions, they are not suitable for inspections because they

are too sensitive to change in environmental conditions and noise. Recently,

algorithms based on Convolutional Neural Networks have showed promising re-

sults. In particular, [64] uses these techniques to detect concrete cracks without

calculating the defect features [65], [200]. Furthermore, a Fusion Convolutional

Neural Network is proposed and employed in [338] for crack identification in steel

box girders containing complicated disturbing background and handwriting. As

stated in [261] these methods are affected by a high incidence of false alarms

and need to be combined with pre/post processing techniques in order to process

corrupted images.

Since many damages and many defects are characterized by their distinctive

visual appearance (different shape, colour or texture), computer vision-based ap-

proaches can be used to automatically recognize, classify and measure them in

image and video data.

5.1.1 Autonomous Robotic Systems for Defect Detection

5.1.1.1 San Giorgio’s Bridge

The San Giorgio bridge, which was designed by the renowned architect Renzo

Piano, replaced the Morandi Bridge that dramatically collapsed in August 2018.

Setting up an ideal connection between the bridge and the essential maritime

character of the city of Genoa, Piano designed the box steel girder supporting the

deck with a unique elliptical shape that resembles the keel of a ship. The girder,

whose components were built at different Italian shipyards, continuously spans

for 1067 metres over 18 reinforced concrete piers. The continuity of the girder is

allowed by an advanced bearing system that isolates the continuous girder from

the piers and also protects the bridge against potential seismic activity. Between
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the many outstanding qualities of Renzo Piano, there is his willingness to em-

brace the most advanced construction technologies. He has been known to speak

of maintenance as an act of “care” toward bridges and buildings that ultimately

make them last long. In this case he combined his focus on advanced technologies

and his emphasis on maintenance by envisioning the use of mobile robots perma-

nently installed on the bridge deck. The task of bringing Piano’s vision to fruition

was taken by the Industrial Robotic Unit (IRU) of Italian Institute of Technology

(IIT). On the San Giorgio bridge are installed two robots, the RobotInspection

and the RoboWash (see figure 5.2)

Figure 5.2: RoboWash and RobotInspection

Both the RobotInspection and the RoboWash move longitudinally along the

rails placed at the two sides of the deck making a total of four robots. The two

robots look distinctively different from one another.

The RobotInspection is essentially a carbon fiber beam with a fixed section

and a retractable one. When the retractable beam is fully elongated, the RobotIn-

spection reaches 17 meters in length. The robot weighs 2200 kg; it is 7-meters

wide and is anchored to the rails with 56 wheels. Another 26 wheels are in place

for moving the retractable beam. The robot moves at a rate of 100-150 mm/s

over the rails. As reported in the bridge’s inspection manual, the RobotInspec-

tion is responsible for fully autonomously monitoring the exterior of the steel

girder. This is the robot’s primacy compared to current robots in use. As an

additional feature, this robot is also suitable for semi-autonomous inspection of

the bearings. The fixed and retractable sections of the RobotInspection monitor
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the outer surface of the steel box girder, which has an elliptical shape, by taking

approximately 20000 pictures over the 30, 000 m2 of outer surface of the girder.

The RobotInspection has the ability to take up to 25, 000 photos in a few days if

weather and light permit.

Figure 5.3: Inspection Bot: Full Extension of the Retractable Beam

The retractable beam is equipped with 3 cameras that have the capacity to

scan the full outer surface of the steel girder. Scanning proceeds from the top

level to the bottom level of the girder, which can only be reached when the re-

tractable beam is fully extended. Essentially the RobotInspection works as a

scanner taking photos of the outer surface of the steel box girder. Each photo

covers a surface of approximately 1 m2. By analysing the photos taken by the

RobotInspection, bridge maintenance expert personnel can detect early signs of

deterioration, such as paint flacking and/or steel corrosion. They can also exam-

ine the conditions of welding and connections. What sets this monitoring system

apart from conventional inspection methods is the sheer amount of information

collected and, even more importantly, the total objectivity of data. When photos

are compared over time, there is total consistency of information due to the fact

that photos are taken by the same equipment, at the same distance, and at the

same angle. This level of data accuracy, consistency and repeatability cannot be

achieved by drones or by inspections carried out by individuals, whose reporting

always contains subjective elements of evaluation. Even if inspections are carried
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out by the same individual, this individual cannot guarantee that two or more

reports will not be somehow affected by his subjectivity. The RobotInspection

can be equipped with an additional retractable beam that is connected to the

retractable section of the main beam. The main beam is a huge structure that

can carry up to 80 kg on its end. The additional beam has the ability of moving

toward the surface of the steel girder to the point of touching it. It is designed

to carry specialized instruments, such as 3D camera and ultrasound sensors that

can provide in-depth information of steel imperfections. Ideally, in the future,

the additional beam could also be equipped with instruments for painting and

touching up. The additional beam is designed to be used ad hoc. For example,

if pictures taken by the main beam show 3 or 4 anomalies in the girder’s steel

surface, the owner has the capability of using the additional beam to evaluate

these anomalies. If one of these anomalies remains questionable after the second

inspection, then it is time to send an inspector. As a result, the robot has re-

duced the use of inspectors to a bare minimum, thus lowering costs and risks. It

is the bridge owner that decides on the frequency of use of the RobotInspection:

it operates from one to two times per year. It takes a few days for the RobotIn-

spection to complete the full inspection of the continuous girder. This time varies

depending on weather conditions. The robot is equipped with sensors that stop

its functioning in conditions of extreme weather, such as heavy rain or wind gusts

of more than 15 meters/second. The RobotInspection also stops working if the

light is not sufficient to take pictures. Having a memory, the robot resumes op-

erating from where it stopped. The large number of 2D pictures taken by the

RobotInspection are sent in real time to the data base of bridge’s Control Center,

which is equipped with a custom-designed software that contains algorithms for

data analysis and storage. The RobotInspection is considered part of the moni-

toring system of the bridge, which also encompasses more than 240 sensors that

are embedded in the bridge structure. These sensors include 70 inclinometers, 50

accelorometers, and 50 extensometers.

5.1.1.2 ROBO-SPECT Project

Tunnel’s structural evaluation and maintenance is an important task in civil

transportation infrastructures. It is a tedious and resource consuming opera-

tion, mainly performed through tunnel-wide visual observations by inspectors; a
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human must identify structural defects, evaluate them and then, based on their

severity, categorize them. Such human-involving approaches have serious draw-

backs: they reduce the operational uptime of tunnels and are often incomplete

due to fatigue, lack of experience, subjectivity and adverse working conditions.

For these reasons the adoption of automated procedure can significantly improve

the inspection quality.

The framework presented in [260, 261] has been deployed on board an in-

tegrated, autonomous robotic system for tunnel inspection, which was designed,

implemented and validated in the context of the EU ROBO-SPECT project. The

robotic inspector was tested in a tunnel of Egnatia Motorway in Metsovo, Greece.

Experimental results were obtained using a i7 quad core processor, 8GB RAM

and GPU available. The code was developed in Python. The constraints involved

in such a real-world functional system setting make crack detection a far more

challenging task compared to a standalone desktop application evaluating pho-

tographs of concrete tunnel surfaces from a dataset. The significant challenges

are: limited processing resources on board the robotic platform; seamless inte-

gration with other components of the platform; difficult deployment conditions;

need for increased detection accuracy at fast response times, since the presented

computer vision framework drives the precision positioning of a sensitive ultra-

sound sensor around the crack to further evaluate the defect attributes; limited

training samples; need for keeping the overall computational cost at reasonable

levels.

Figure 5.4 displays the components of the robotic platform and Figure 5.5

shows the robotic platform in action.

The main goal of the computer vision module is to identify cracks over images

acquired on the robotic camera and pinpoint the precise location in which a

depth sensor would be inserted in order to further investigate the condition. The

problem was limited to a traditional binary classification approach.

Visual inspection systems should ideally be able to identify cracks on an RGB

image of a concrete surface as successfully as the human eye. Their performance

should not be affected by angle and distance from the surface, nor from illumina-

tion conditions. Proximity sensors, advanced navigation and lighting equipment

facilitate the acquisition process, but cannot guarantee ideal conditions or elimi-

nate occlusions (e.g. by wiring).

However, even under ideal conditions, the variability of defect types make the
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Figure 5.4: The components of the ROBO-SPECT robotic platform

problem increasingly difficult for a detection mechanism. There are various de-

fect types, which makes feature construction/selection a cumbersome task. The

term “defect” can be interpreted in many ways; deformations, cracks, surface

disintegration, spalling and other defects are widely known and commonly ap-

pear. Other defects include discoloration of the concrete, small voids (bug holes)

on the surface of vertical concrete placements and honeycombing, which is the

presence of large voids in concrete. This variety in defect types hinders the fea-

ture extraction process making it difficult to construct appropriate descriptors for

representation. Cracks appear on concrete surfaces usually as secondary symp-

toms of other defects. As such, the identification of a crack should be the first

step, prior to an extensive analysis in the surrounding area, using laser scanners,

ultrasounds or other approaches. Moreover, the variability of defect types, the

existence of noise as well as other surface formations, which resemble cracks but

are not and finally the scarcity of training data further underscore the challenging

nature of the task at hand.

Crack detection is performed by a CNN-based classifier that annotates an

RGB image (see for details [260]). Initially, an RGB image pair is captured.
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Figure 5.5: Left: Visual inspection of a tunnel at the Egnatia Motorway by the
robotic paltform. Crack detection is driven by the presented computer vision
component. Right: The robotic arm positioning the ultra-sonic sensor on a crack
detected by the computer vision component

Figure 5.6: Illustration of a noisy case resulting in falsely identified cracked areas

The detection mechanism utilizes only one of these two images; the second one

is exploited in case of a positive detection for 3D reconstruction. Grayscale and

resize operators are applied to the image, prior to the assessment by the CNN

detector. Both operators, as well as other techniques, were used in order to reduce

detection times. Unfortunately, it is likely that unexpected occurrences appear

on the tunnel surface. Given the scarcity of training data, it is very difficult for

the CNN to train for all possible cases including outliers. Therefore, the CNN

will probably handle a cracked area as anything that looks like a crack and was

not modelled during training. Even though in [261] a post-processing heuristics-

based mechanism is applied in order to avoid the false positives, we think that

the variational methods for curvilinear structures restoration we showed in the

section 5.2.2 could be even more useful in filtering out all the noise sources in

the images. The main advantages are: 1) the procedure is fully automated; 2) it

does not require any context knowledge; 3) it can be executed efficiently on huge

amount of data on any commodity server; 4) it can be integrated in any Build
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Figure 5.7: Illustration of wrong crack position indication. The CNN annotations
have falsely marked as potentially cracked areas noisy regions of the image.

Management Information platform.

5.2 Crack Detection

5.2.1 Introduction

Many machine vision-based methods have been created to automatically detect

cracks on structural concrete member surfaces. These methods are generally

classified into three categories. The first category recognizes only whether or not

an image contains a crack (crack presence). For example [2] propose a principal

component analysis (PCA) based algorithm for recognizing crack presence in

concrete bridge surface images. In their algorithm, an image is first segmented

into square blocks. Each block is filtered by linear feature detectors (horizontal,

vertical and oblique) and then projected onto dominant eigenvectors that are pre-

generated using a training data set. The projection result is further compared

with the projection results of training data to determine the presence of cracks in

each block. This way, cracks in an image can be recognized sequentially on the

basis of these blocks.

Methods that belong to the second category can also locate crack points in an

image a produce a crack map. A crack map is binary image in which each isolated

crack pixel is marked white, and non-crack pixels are marked black. These meth-

ods use special visual characteristics of cracks in images and adopt various image
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Figure 5.8: Crack detection and properties retrieval results: (a) original crack
image; (b) crack map; and (c) crack segments

processing techniques, such wavelet transforms, threshold, and edge detection

(Canny edge detector, Sobel edge detector, Fourier transform, fast Haar trans-

form), to extract pixels from the image background. [77] detects cracks by simply

thresholding the concrete surface image. The threshold value is determined based

on the image’s mean and standard deviation values. However, in these global pro-

cessing methods detection accuracy is affected by image noise. To address the

problem of image noise, [339] propose a fast and scalable local percolation-based

image processing method that considers crack connectivity among neighbouring

image pixels.

The third category contains methods that use crack maps to retrieve crack

properties like length, maximum width, average width and orientation. [340]

calculate the length, width and orientation of cracks through graph search; how-

ever, their method required the start and end points of the crack to be manually

provided first. [66] use an artificial neural network to retrieve crack properties.

[344] propose a method that creates topological skeletons of cracks through bi-

nary image thinning and calculates the distance field of crack pixels in the map

using a distance transform. According to skeleton configurations and the distance
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Figure 5.9: Crack property retrieval procedure and results: (a) edge map; (b)
crack skeleton; and (c) distance map

values of crack pixels, crack properties (width, length, orientation and location)

are retrieved with an average error of 3%.

5.2.2 Automatic Crack Detection with Calculus of Varia-

tions

Variational methods have successfully addressed problems such as image segmen-

tation and edge detection. They propose as solution a minimizer of a global

energy. A first example is described by Mumford and Shah (MS) (see section

2.1.2.4) where they proposed a first order functional, whose minimization deter-

mines an approximation of the image by means of a piecewise smooth function

and detects edges as singularities in the image intensity. However, this model is

not suitable for cracks because they do not represent singularities in the inten-

sity function, but in its gradient instead. For this reason, we propose a second

order variational model based on the Blake-Zissermann (BZ) functional see sec-

tion 2.1.2.5). This was introduced with the aim of overcoming some limitations
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of the MS approach, such as the over segmentation and the lack in detecting

gradient discontinuities. With the original formulation being not suitable for nu-

merical treatment, we had to work on a different approach that is based on the

approximation proposed by Ambrosio and Tortorelli (AT) for the MS functional

[8]. In their model, they replaced the unknown discontinuity set by an auxiliary

function which smoothly approximates its indicator function. In our case two

auxiliary functions are introduced as indicators of both intensity discontinuity

and gradient discontinuity sets. The qualifying terms “free discontinuities”, “free

gradient discontinuities” mean that the functional is minimized over three vari-

ables: two unknown sets K0, K1 with K0 ∪K1 closed, and u, a smooth function

on Ω(K0 ∪K1) as follows:

F(u,K0, K1) =

∫
Ω\(K0∪K1)

(|∇2u|2 + Φ(x, u))dx

+αHn−1(K0 ∩ Ω) + βHn−1((K1\K0) ∩ Ω)

(5.1)

α and β being two positive parameters. The set K0 represents the set of jump

points for u, and K1 \ K0 is the set of crease points of u, those points where u

is continuous, but ∇u is not. Under certain conditions, the existence of mini-

mizers for Blake-Zisserman functional is ensured over the space {u : Ω ⊂ Rn →
R|u ∈ L2(Ω), u ∈ GSBV (Ω),∇u ∈ (GSBV (Ω))n}, being GSBV (Ω) the space

of generalized special functions of bounded variation. By properly adapting the

techniques of [8], two auxiliary functions s, z : Ω → [0, 1] (aimed at approximat-

ing the indicator functions of the discontinuity sets) are introduced to the model

and a Γ−convergence approximation of F is proposed via the following family of

uniformly elliptic functionals

Fε(u, s, z) =δ

∫
Ω

z2
∣∣∇2u

∣∣2 dx+ ξε

∫
Ω

(
s2 + oε

)
|∇u|2dx+ (α− β)

∫
Ω

ε|∇s|2+

1

4ε
(s− 1)2dx+ β

∫
Ω

ε|∇z|2 +
1

4ε
(z − 1)2dx+ µ

∫
Ω

|u− g|2dx

where (s, z, u) ∈ [W 1,2(Ω, [0, 1])]
2 ×W 2,2(Ω) = D(Ω).

For the numerical minimization algorithm, we chose an inexact block-coordinate

descent scheme (BCD) in order to address the heterogeneous hardware environ-
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ment. Although the model is global, several numerical experiments have high-

lighted that the solutions weakly depend on boundary conditions. This motivates

the adoption of a tiling scheme to address very large images: the minimizer is

assembled by merging together local solutions restricted to portion of images.

Regarding the implementation, initial results pointed out the need to find an

approach that increases data locality: this feature can be achieved by partitioning

data and variables and considering independent subproblems. In this approach

data dimensionality decreases and variables are more likely to fit in the hardware

cache, thus leveraging the impact of an extensive memory access. A tiling tech-

nique is exploited in order to generate a number of independent tasks that can

be concurrently solved. Due to iterative nature of inner BCD solver, different

running times are expected for the solution of subproblems: to overcome this

disadvantage we adopted manager/workers pattern that ensures run-time distri-

bution of independent tasks among POSIX threads. A number of computational

threads (workers) is initialized and put on wait on a shared task queue, while

a monitor thread (master) is responsible to extract initial data and to collect

computed solutions for each subproblem. Mutex-protected queues collect both

task input and output results, and therefore, two different queues are present in

the implementation:

• a job queue: a single manager is the producer of the queue elements, while

all workers are consumers;

• a results queue: in this case each worker fills the queue with results of

assigned subproblems, while the manager is responsible to insert them in

the overall segmentation variables (u, s, z).

Both cases can be handled by the same implementation that provides:

• a thread-safe interface for insert/remove operations;

• a signaling mechanism for the communication of available resources.

We provide a simple C++ class that stores resources in a private std :: queue <

T > variable, while exposing only two methods push and pop for resource inser-

tion and removal, respectively. This implementation can be used in conjunction

of POSIX Threads, since additional private members are present:
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• a mutex variable of type pthread mutex t, used as safeguard for the shared

resource;

• a condition variable of type pthead cond t, associated to previously men-

tioned mutex, for signaling procedures.

Such implementation choice allows for a mutually exclusive access to internal

queue in multi-threading environment. Moreover, through the adoption of a con-

dition variable, producer threads can communicate information about the state

of shared data: for example to signal that a queue is no longer empty. In order

to provide a reliable queue implementation even in presence of exceptions, RAII

(Resource Acquisition Is Initialization) programming idiom is adopted when lock-

ing/unlocking operations are executed on a mutex. Job queue is used to commu-

nicate both commands and data from master to workers: in this implementation,

only two basic job types are used. First job type contains a complete descrip-

tion of one of the tasks (references to subproblem local data, objective function

parameters and algorithm parameters). A second type of job is used by master

thread in order to ensure the clean termination of workers threads. Each worker

thread is structured as a while loop: as long as the thread can pick a subproblem

description, it solves it and puts the results on results queue; when a termination

job is picked, the thread exits.

We tried our methods on images of cracks taken in tunnels in Greece and back-

scattered electron images of concrete samples. In the former case the challenge

was to reconstruct the whole structure avoiding the effect of the noise and the

environmental conditions (i.e. lights). In the latter the aim was to detect the

structure despite the complex texture in the background.

Table 5.1: Run time comparisons for a single image

time (s)

sequential 13.184868
parallel 24 cores 1.056701
parallel 48 cores 0.5915374

In both cases the structures have been detected correctly (see figure 5.10,5.11).

In order to reduce the execution time and to provide an automatic procedure we
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Figure 5.10: Crack on a concrete wall

Figure 5.11: Microcracks on a BSE microscopy of concrete materials

tested a sequential implementation against a parallel one based on the OpenMP

framework that implements two strategies for collaboratively executing a program

on an environment composed by devices of different types (aka heterogeneous

architectures). The experiments were performed both on a commodity PC and

on a High Performance Computing cluster. A sequential version was executed

on a workstation equipped with a processor Intel (R) Xeon CPU E6-79 at 3.40

GHz with 32GB of RAM and total number of cores 12, running an Ubuntu 18.04

operating system. The parallel version based was executed on a heterogeneous

cluster equipped with x86-64 processors, running a CentOS 7.6 operating system.

Overall, the results show a significant reduction in the execution time with respect

to the sequential algorithm.
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5.2.2.1 Evaluation Criteria

In order to compare and analyse the results, quantitative measures as long as

ground-truth are required. Computing a quantitative criterion requires a ground-

truth, i.e. a certified image of the expected result. Our algorithm provides a

grey-level image which has a high intensity for curvilinear structures and a low

intensity for any other structures. The natural ground-truth for such a feature

is a binary image composed of white pixels for curvilinear structures and black

pixels, for the rest. Quantifying the intensity of a grey-level intensity feature

with a binary ground-truth requires a thresholding procedure. All the images are

thresholded at all its gry-level values, resulting in several binary images. Each of

these binary images are compared pixel-wise to the ground-truth and the total

number of true positives (TP), true negatives (TN), false positives (FP) and false

negatives (FN) are computed (see Table 5.2)

Table 5.2: Classification of the errors according to the value of the result and the
ground-truth

Value of the binary result
0 1

Value of the 0 TN FP
ground-truth 1 FN TP

The sum of the TP and FN is the total number of positives (PGT ) in the

ground-truth whereas the sum of the TN and FP is the total number of negatives

(NGT ) in the ground-truth. Images containing curvilinear structures are ususally

sparse, which means that PGT << NGT . Consequently, the number of FP and

TN are potentially much higher than the maximum number of TP and FN. To

present meaningful results, we define the false positive rate (FPR), true positive

rate (TPR), false neegative rate (FPR) and true negative rate (TNR) as follows:

FPR =
FP

PGT
TPR =

TP

PGT

FNR =
FN

PGT
TNR =

TN

PGT

the TPR is also called the sensitivity while the FPR is also called the fall-

out. The closer the TPR to 1 and FPR to 0, the best result. It is important
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to note that with these definitions FPR can exceed 1. For example, if FPR =

2, the evaluted method detected twice as many false positives as possible true

positives. Based on these error measures, several quantitative similarity criteria

have been proposed. The widely used criteria to compare segmentation results is

the accuracy:

ACC =
TP + TN

TP + FP + FN + TN
. (5.2)

The closer this coefficient is to 1, the more similar the result to the ground-truth.

Another important metric is precision as

PPV =
TP

TP + FP
. (5.3)

Precision expresses how many correct positive predictions the classifier have

made; i.e., how many actual cracked areas exist among the classifiers’ suggestions

as cracked. The harmonic mean of precision and sensitivity is the F1 score,

F1 =
2TP

2TP + FP + FN
. (5.4)

The TPR and FPR are representative of one threshold of the evaluated result.

To obtain a global vision of a grey-level result, a Receiver Operating Character-

istic (ROC) curve is usually computed. A ROC curve is the curve of the TPR

against the FPR at every grey-level value of the evaluated result. The closer the

curve to the point [0, 1] (FPR = 0 and TPR = 1) the more similar the result is

to the ground-truth.

Table 5.3: Validation results of the proposed computer vision method using dif-
ferent types of metrics

Method ACC PPV TPR F1
Our method 0.643 0.727 0.730 0.451

CNN 0.637 0.720 0.720 0.494

Our method outperforms the method described in [260] (see Table 5.3), but

all these criteria are based on the hypothesis that PGT ' NGT which is clearly

untrue for sparse images of curvilinear structures. To cope with this problem, a

similarity criterion specially designed to deal with unbalanced classes should be
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used instead.

5.3 Digital Twin Model and 3D Point Cloud

Segmentation

Building Information Modeling (BIM) is an up-to-date modeling concept involv-

ing the generation and the management of a three-dimensional (3D) digital rep-

resentation of physical and functional characteristics of a facility during its en-

tire life-cycle. These digital representations, including geometric and semantic

aspects, are called Building Information Models (BIM). Building Information

Models are usually used as shared data and knowledge resources to support plan-

ning, construction, management activities. In particular, 3D geometric objects,

such as walls, columns, and slabs, including their interrelations and life-cycle at-

tributes, are defined within a building information model. One main advantage

of the BIM concept is the opportunity to virtually construct the facility prior to

its actual physical construction to reduce uncertainty, improve safety, and work

out problems as well as to simulate and analyse potential impacts. Another

important aspect of BIM is the integration of facility maintenance information,

such as preventive maintenance/inspection schedules and intervals, specification

and manuals, and as-is performance data, such as current condition and damage

states. BIM is often associated with the Industry Foundation Classes (IFCs),

which are a data structure for representing complex building information. The

IFCs have been developed by buildingSMART as a neutral, non-proprietary

and open standard for sharing BIM data. Currently, the IFC standard predom-

inantly supports building construction rather than civil infrastructure, such as

roads, bridges and tunnel constructions. However, there are initiatives that un-

dertake efforts to extend the IFC and develop an IFC-based model for roads,

bridges and shield tunnels. The IFC-Bridge model, for example, integrates in-

formation on the general structure of bridges, the complete geometry definition,

technological definitions, materials associations (concrete, steel, wool, etc.), pre-

stressing information, and process control. Since BIM could be seen as the civil

and building engineering advancement of the Computer-Aided Design (CAD)

technology, it is currently predominantly implemented in the design phase of an

infrastructure facility. Designers use BIM software tools to create a virtual 3D

167



model - an as-designed model - of a building, bridge, or tunnel. As the main

idea of BIM is to use this information model during the entire life-cycle, the as-

designed model is supposed to be converted to an as-built model, and finally to

an as-damaged model. While the as-built model contains actual BIM data after

the infrastructure facility has been constructed, the as-damaged model also in-

cludes damage that has been identified during inspection procedures. However,

today very few existing infrastructure facilities have a complete as-designed model

available. So the question arises, how to create an as-built and as-damaged

building information model based on the existing facility without hav-

ing an initial as-designed model ?

A BIM is 3D model with objects defined as building elements and classified

into different categories such as openings, footings and vertical structure, hor-

izontal structure, roof structure. BIM is not only a 3D model as it combines

geometric information and a database.

Despite well established BIM processes for new buildings, the majority of

existing buildings is not maintained, refurbished or deconstructed with BIM yet.

The creation of an as-built 3D model requires the acquisition of the as-is

conditions of the building. The scanner laser is widely used to achieve this goal

because of its fast acquisitions and its accuracy. Point clouds also provide a very

high level of geometric information. Unfortunately, the creation of as-built 3D

models from point clouds remains currently largely a manual process because of

the huge amount of data and because of processes, which are difficult to automate.

The creation of as-built BIM involves 3 tasks: geometric modelling of building

elements, object category and material properties assignment as well as object

relationship modelling. We focus on geometric modelling based on a segmentation

approach.

Fully three-dimensional scanners are now widely available. With scanners

such as Light Detection and Ranging (LIDAR) and Microsoft Kinect, 3D point

clouds can be easily acquired for different purposes. A point cloud is a collection of

points that provide a discrete non-parametric representation of a 3D surface. The

points have three Cartesian coordinates that define their positions with respect

to some fixed coordinate frame.
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Figure 5.12: Mckanes Falls bridge

Data Acquisition and Preprocessing

There exist several ways to obtain point cloud data. Firstly, one may use various

range imaging sensors that are capable of measuring distances. Secondly, if a

parametric or a dense model of a surface is available a point cloud could be

sampled from this model.

Range Imaging Sensors Range imaging sensors operate according to several

different physical principles: structured light and time-of-flight are the most

widely used in the robotics context. These sensors deliver 2D images that encode

distances from scene points to a fixed point (usually the optical center of the

acquisition device). Using known calibration parameters, it is possible to project

these points into 3D space, thereby obtaining a point cloud. An important prop-

erty of point cloud data acquired this way is that they represent a surface as

observed from a single viewpoint. This implies that the objects and structures

in the foreground occlude the background, making the surfaces there partially

unobservable. Despite the fact that the points have 3D coordinates, they do not

capture the complete 360 view of a scene and are often times called 21
2
D.

Laser scanning, also known as light detection and ranging (LiDAR), has been

used to quickly and accurately acquire three-dimensional (3D) topographic data

of visible surfaces. The fundamental principle of LiDAR involves a laser beam

to measure the distance from the instrument to a surface of an object based on

the time of travel between signal transmission and reception called a laser pulse.

The output datasets consisting of x−, y−, z−coordinates associated with other
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Figure 5.13: UAV photogrammetry vs Terrestrial Laser Scanning

attributes are commonly referred to as a 3D point cloud. One of the LiDAR units

is a terrestrial laser scanner (TLS), the laser sensor operating from the ground

capturing great details of surfaces of objects with millimetre accuracy. Terres-

trial laser scanning has the ability to capture visible surfaces accurately, quickly

and efficiently. Laser scanning has been widely used in many civil engineering

applications and recently in construction projects for creating as-built building

information model.

Over the past few years, advances in the field of 3D imaging have led to manu-

facturing inexpensive sensors and mainstreaming their use in consumer products

(e.g. Kinect, Structure Sensor, RealSense, etc). Microsoft Kinect is an RGB-D

sensor. It consists of an RGB colour camera and an infrared (IR) depth sen-

sor and simultaneously provides an RGB and a depth image for a scene. This

sensor generates three outputs, namely, IR, RGB, and depth images. The IR

projector projects a known IR pattern onto the scene and based on the pattern’s

deformation as captured by the IR camera, the depth is determined. It is essen-

tially designed for indoor use because the IR component of the sunlight alters

the known IR pattern when the object under inspection is exposed to direct sun-

light and causes all the captured depth values to be valued wrongly. However,

if the object is in shadow (i.e., indirect sunlight), it can obtain the depth infor-
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mation accurately. Furthermore, Kinect can provide depth images in complete

darkness and, tested under different light conditions, can provide depth images in

the presence of artificial light sources such as typical streetlights. [169] describes

an autonomous approach for detecting and quantifying defects in pavements us-

ing Microsoft Kinect to collect data. The system applies Otsu’s method to the

histogram of the normalized depth values in order to discriminate between the

depressed and flat regions. Using this approach various pavement defects, in-

cluding patching, severe cracks, and potholes were detected robustly without any

need for training and were quantified accurately. Several field experiments were

carried out under different light conditions to evaluate its capabilities and its im-

itations. The tests clearly demonstrate its superior features compared with the

traditional pavement-evaluation approaches. Furthermore, it is fully functional

at night without any need for a light source, which makes it ideal for night- time

condition assessment of structures.

Model Sampling Recent advances in point cloud registration and surface re-

construction make it possible to perform 3D mapping of the environment in real

time [233, 331]. Tools like KinectFusion track the motion of an RGB-D camera

with respect to the model built so far, simultaneously extending it with the newly

acquired data. The model is typically represented with the volumetric truncated

signed distance function (TSDF). Using a marching cubes type algorithm it is

relatively easy to render the model into a mesh or a point cloud. The resulting

point cloud is truly three-dimensional because it incorporates observations from

multiple viewpoints. Depending on the number and arrangement of the incor-

porated views, it is still possible that some surfaces are occluded. However, it

is reasonable to assume that in the region of interest, the objects and structures

were observed from multiple viewpoints and thus, their models are complete.

This makes the conventional 2D image-based processing methods inapplicable.

Many different kinds of preprocessing can be applied to point cloud data.

The most known are downsampling and computation of basic geometric

features of surface.

Downsampling The number of points in a cloud may be huge. A scene cap-

tured by a Kinect camera at standard resolution contains 300000 points. This

amount of data may be hard to process, especially if real-time performance is
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required. Therefore, it is often desirable to downsample point cloud data in order

to reduce Its amount and retain the quality as much as possible.

Voxelization is a simple method that may be used to downsample a point

cloud. A grid is superimposed on 3D Euclidean space; each of its cells is a unit

cubic volume called voxel. The points of the original cloud that belong to the same

voxel are approximated by their centroid. By varying the resolution of the grid,

different degrees of downsampling may be achieved. Besides from downsampling

the data, voxelization serves two additional purposes. Firstly, a certain degree of

smoothing is achieved by suppressing high-frequency noise in point coordinates.

Secondly, the grid induces relations between voxels. Indeed, two voxels may share

a face, an edge or a corner; they are assumed to be adjacent in such case. This

make neighbourhood computation a cheap and straightforward procedure.

Normal and Curvature Estimation A point, when viewed in isolation, is

described by its Euclidean coordinates. Two additional attributes - normal ori-

entation and curvature- may be attached when it is considered as part of the

surface from which it was sampled. The former describes the plane tangential to

the surface at the point; the latter captures the amount of variation in the surface

around the point. These attributes are of an importance for various point cloud

visualization and processing tasks; shading and rendering, denoising, feature de-

tection and segmentation are just a few of them.

There exist a number of approaches to normal estimation [181]. The classi-

cal method consists of approximating the tangential plane by means of the first

order 3D plane fitting and is based on the theory of Principal Component Anal-

ysis (PCA). Given a point p0 and a set of its neighbours P = {p1, . . . , pk}, the

covariance matrix is defined as

C =
1

k + 1

k∑
i=0

(pi − p)(pi − p)T , (5.5)

where p is the centroid of P ∪ {p0}. The eigenvectors of this matrix form an

orthogonal coordinate frame and correspond to the principal components of P .

Thus, the eigenvector associated with the minimal eigenvalue defines the normal

of the plane fitted to the neighbourhood.

A few different ways to compute the curvature are available. [274] proposed

a simple method which makes use of the eigendecomposition involved in normal
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computation. He notes that the eigenvalues λj of the covariance matrix C ap-

proximate surface variations around the point p0. Therefore, the ratio between

the minimum eigenvalue λ0 and the sum of all eigenvalues approximates the cur-

vature. Formally, the curvature σ is defined by

σ =
λ0

λ0 + λ1 + λ2

(5.6)

5.3.1 Datasets

Recently, more point cloud datasets have been introduced. they can be classified

into two categories: Indoor datasets which are captured by Kinect and outdoor

datasets which are captured by laser scanners such as LIDAR. The use of public

datasets allows us to compare different approaches and gives insight into the

advantages and disadvantages of these methods.

Cornell RGBD dataset [13]: This dataset has 52 labeled indoor scenes of

point clouds with RGB values (24 labeled office scenes and 28 labeled home

scenes). Point cloud data are created from original RGB-D images using RGBD-

SLAM [107]. The dataset composed from about 550 views, having 2945 segments

labeled with 27 object classes.

VMR-Oakland dataset [336]: This dataset contains labeled point cloud data

collected from a moving platform around CMU campus. The points were collected

using laser scanner and are saved in text format, three real valued coordinates of

each point are written in each line. The training, validation and testing data are

also available.

KITTI dataset [133]: This dataset includes a large number of unorganized

point clouds that were captured by a Velodyne laser scanner. It consists of

manually annotated ground truth bounding boxes for outdoor objects such as

cars, pedestrians, trams, trucks and cyclists.

Robotic 3D Scan Repository [1]: This repository provides collection of 3D

point cloud datasets for both indoor and outdoor environments. This is the huge

collection of 3D point cloud data and can be used not only for segmentation, but

also for different purposes. However, these datasets have not been labeled and

they also may need a preprocessing step before using them as input for segmenting

algorithms.
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5.3.2 Methods

The segmentation is a fundamental step in processing 3D point clouds. Given

a set of point, the objective of the segmentation process is to cluster points with

similar characteristics into homogeneous regions. This process could be helpful

for analyzing the scene in various aspects such as locating and recognizing objects,

classification and feature extraction. The general way to decompose a 3D model

into functionally meaningful regions is to build a graph from the input mesh and

cluster it by using information such as normal direction, smoothness or concavity

along boundaries. Several methods have been proposed for this problem: convex

decomposition, watershed analysis, hierarchical clustering, region growing and

spectral clustering. Many of these approaches have been widely used to segment

point cloud data, especially in region-based methods [291, 276, 262]. Segmenting

objects in 3D point clouds is not a trivial task. The point cloud data are usually

noisy, sparse and unorganized. The sampling density of points is also typically

uneven due to varying linear and angular rates of the scanner. In addition the

surface shape can be arbitrary with sharp features and there is no statistical

distribution pattern in the data. Moreover, due to the limitations of the 3D

sensors, the foreground is often highly entangled with the background. These

problems present a difficult challenge when designing a segmentation algorithm.

In this section we discuss the methodologies have been suggested for the seg-

mentation of 3D point clouds. We categorized them into five classes: edge-based

methods, region-based methods, attributes-based methods, model-based

methods and graph-based methods. Fundamentally, there are two basic ap-

proaches: a model-driven and a data-driven approach. The first one uses

purely mathematical model and geometric reasoning techniques such as region

growing or model fitting in combination with robust estimators to fit linear and

non-linear models to point cloud data. This approach allows fast running time

and achieves good results in simple scenarios. However, it has some limitations

due to the difficulty to choose the size of the fitting model and the extremely

high sensitivity to noise. The second one extracts 3D features from data and uses

machine learning techniques to learn different classes of object types and classify

acquired data. In complex scenes machine learning techniques outperform tech-

niques based on geometric modelling. The reason is due to noise, uneven density

and occlusions in point cloud. However, they are usually slow and rely on the
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result of feature extraction process.

Edge-based methods . Edges describe the characteristics about the shape of

objects. Edge-based methods detect the boundaries of several regions in the point

clouds to obtain segmented regions. The principle of these methods is to locate

the points which have rapid change in the intensity (see subsection 3.3.3). Bhanu

et al. [31] proposed an edge detection technique by computing the gradient, fitting

3D lines to a set of points and detecting changes in the direction of unit normal

vectors on the surface. Jiang [117] presented a fast segmentation method using

scan line grouping techniques. Scan lines of the range image are split into curves

and they are then clustered to represent surfaces. Compared to [31], this method

is advantageous in both quality and running time. But it is only suitable for range

images and not good for uneven density point clouds. In [280] authors proposed a

new edge detection strategy by extracting close contours from a binary edge map

for fast segmentation. Although edge-based methods allow fast segmentation,

they have accuracy problems because all of them are very sensitive with noise

and uneven density of point clouds, a situation that commonly occur in point

cloud data.

Region-based methods . Region-based methods use neighbourhood infor-

mation to combine nearby points that have similar properties to obtain isolated

regions. They are more accurate to noise than edge-based methods, but have

problem with over and under segmentation and determining region borders accu-

rately. We divide region-based methods into two categories: seeded-region (or

bottom-up) methods and unseeded-region (or top-down) methods.

Seeded-region methods start the segmentation process by choosing a

number of seed points, then from these points, each region will grow by adding

neighbour points if they satisfy certain criterion or compatibility thresholds. The

initial algorithm was introduced by Besl [30] and includes two steps: identification

of the seed points based on the curvature of each point and growing them based on

predefined criteria such as proximity of points and planarity of surfaces. A draw-

back of this method is it is very sensitive to noise and is time consuming. Several

subsequent works proposed improvements to this initial method. Koster [188]

presented an algorithm that generates an irregular graph pyramid to store rela-
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tive information between regions. This information is used to compare and merge

adjacent regions. The work of Rusu et al. [276] used seeded-region methods based

on smoothness constraint as described in [263]. In [193] Tovari introduced a re-

gion growing method for airborne laser data. This approach proposed a method

for growing the seed points based on their normal vector and its distance to the

growing plane. Pu [262] adopted the planar surface growing algorithm [321] for

segmenting terrestrial laser data. Many important properties of point cloud data

were retrieved from the segments to recognize potential building features. Ning

[235] proposed a method that includes two stages as rough and detail segmenta-

tion. Rough segmentation is used to extract main objects in the scene based on

the consensus of normal vector in the same plane. Detailed segmentation is used

as a refined process to extract finer information object components. The work

of Dorninger [100], reduced the time complexity by using a sequential implemen-

tation of the clustering algorithm. This method segments the original points by

hierarchical clustering and coarse contour information. Seeded-region approaches

are highly dependent on selected seed points. Inaccurate choosing seed points

will affect the segmentation process and can cause under and over segmentation.

Choosing seed points as well as controlling the growing process is time consuming.

The segmented results could be sensitive to the chosen compatibility thresholds.

Another difficulty is to decide whether to add points in a given region, since the

decision is done locally which is susceptible to noise.

unseeded-region methods , on the contrary, base on the top-down ap-

proach. First, all points are grouped into one region. Then the subdivision

process starts to divide it into smaller regions. Chen [76] used this method in

guiding the process of clustering planar regions to reconstruct complete geome-

try of architectural buildings. A limitation of this method is it may have over

segmentation and it does not perform well when segment other objects such as

trees. The main difficulty of unseeded-region methods are to decide where and

how to subdivide. Another limitation of theses methods is that they require a

large amount of a prior knowledge (e.g. object models, number of regions, etc.)

which are usually unknown in complex scenes.

Attributes-based methods . These methods consist in point clouds cluster-

ing based on attributes that are previously computed. The main limitation of
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these approaches is they are highly dependent on the quality of derived attributes.

Moreover, they should be computed precisely to produce the the best separation

among different classes. Briosca [32] introduced a new strategy for segmentation

of terrestrial laser point clouds by using unsupervised clustering approach and

fuzzy algorithms. This method adapts parameters of fuzzy algorithms to use in

combination with cluster merging method. The method is promising, but it re-

lies on choosing correct parameters and is time consuming. Filin [120] proposed

a methodology for clustering laser data surfaces. It can cope with the varying

point density and operates on the laser points directly without rasterization. An

improvement of this approach can be found in [120].This work proposed a seg-

mentation method based cluster analysis in a feature space. In this method the

normal vectors are derived using a neighbourhood system called slope adaptive.

Neighbourhood among the measured points is defined using attributes of point

cloud data e.g. distance, point density and horizontal or vertical point distri-

bution. Then, the slopes of the normal vector in each directions and the height

difference between the point and its neighbourhood are used as the clustering

attributes. This method can eliminate the influence of outliers or noise. Vossel-

man [320] used 3D version of the well known Hough transform for segmentation of

planar surfaces in laser point cloud data. In this method each point is redefined

as a plane in the 3D attribute space. Authors showed that this method suc-

cessfully extracts planar faces from the irregularity distributed point clouds, but

it sometimes leads to over segmentation results. Attributes-based methods are

the robust approach for grouping points into homogeneous regions. Their results

are flexible and accurate. However, they rely on the definition of neighbourhood

between points and the point density of point cloud data. Another limitation

is that they are time consuming especially when dealing with multidimensional

attributes.

Model based methods . Model based methods use geometric primitive shapes

(e.g. sphere, cone, plane and cylinder) for grouping points. The points which have

the same mathematical representation are grouped as one segment. Fisher [121]

introduced a well-known algorithm called RANSAC (RANdom Sample Consen-

sus). RANSAC is a robust model and is used to detect mathematical features

like straight lines, circles etc. This method is now the state of the art for model

fitting. In 3D point cloud segmentation, many subsequent works have inherited
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this initial algorithm. Schnabel et al. [284] proposed an algorithm that used

RANSAC for segmenting both mesh and point cloud data. It works well with

outliers and with high noisy data, but it does not scale well on the size of the

input point clouds and of the included shapes. To expand the restriction of

primitive shapes, Gelfand et al. [134] presented in a method to detect slippable

shapes. Slippable shapes are defined as rotationally and translationally symmet-

rical shapes and include: sphere, helix, plane, cylinder, linear extrusions and

surfaces of revolution. This idea can be used to segment point cloud data con-

taining complex shape structure by merging initial slippable surfaces. However,

its accuracy relies on the selection of the size of the initial patches, which is hard

to determine. Tarsha-Kurdi [306] compared RANSAC and 3D Hough transform

for automatically detect roof planes from point cloud laser data. Despite the

limitation encountered in both methods, RANSAC is more efficient in both seg-

mented results and running time. It can process a large amount of input data

in negligible time. In the other hand, 3D Hough transform is slower and more

sensitive to the segmentation parameters values. The work by Li et al.l [197]. pre-

sented an algorithm for globally consolidating the results obtained by RANSAC

method. In this approach RANSAC is used for local fitting of primitives. The

global coupling corrects the primitives obtained in the local RANSAC stage and

brings them to a more precise global alignment. This technique could be used

to refine the parameters of the fitted primitives when segmenting point clouds.

Model based methods have purely mathematical principles. They are fast and

robust with outliers. The main limitation of these methods is their inaccuracy

when dealing with different point cloud sources.

Graph-based methods . Graph-based methods consider the point clouds in

terms of a graph. In a simple model each vertex corresponds to a point in the data

and each edge connects certain pairs of neighbouring points. Graph-based meth-

ods are accurate and gain popularity for robotic applications due to its efficiency.

A well-known of this approach is Felzenszwalb Huttenlocher algorithm [117]. It

operates like Kruskal’s algorithm for finding a minimum spanning tree in a graph.

Golovinskiy [144] used k-nearest neighbours (KNN) to build a 3D graph on the

point cloud. This method introduces a penalty function to encourage smooth

segmentation where the foreground is weakly connected to the background and

minimize it with min-cut. This method can be run fully automatically or in-
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teractively with a user interface, but it requires prior knowledge on the location

of the objects to be segmented. In [300], Strom et al. extended graph-based

method to segment coloured 3D laser point clouds. By using co-registered sen-

sors, this work proposed a segment union criterion based on colour and surface

normals. It can successfully segment coloured point clouds of both indoor and

outdoor scenes. The experiment showed that it can run in real time and is con-

siderably more robust than segmenting either laser data alone or colour image

alone. The limitation of this method is that it requires a complex sensors sys-

tem and the segmentation results are sensitive with colour information. Many

works on graph-based methods are cast into probabilistic inference model such as

Conditional Random Fields (CRF) [192]. Rusu et al. [275] proposed an approach

for labelling points with different geometric surface primitives using CRF. Like

Nurunnabi [237], this method based on surface segmentation extracts feature de-

scriptor called Fast Point Feature Histograms (FPFH) [275] to encode the local

surface geometry around a point. By defining classes of 3D geometric surfaces

and making use of contextual information using CRF, this method successfully

segments and labels 3D points based on their surfaces even with noisy data.

Schoenberg et al. [285] presented an algorithm to segment 3D points in dense

range data generated from fusion of single optical camera and laser scanner. This

method uses Markov Random Field [95] to estimate a 3D point corresponding to

each image pixel. Textured dense point clouds are generated from interpolating

spare laser range data constrained by an aligned optical image. The weight on

graph is computed as a combination of Euclidean distances, pixel intensity differ-

ences and angles between surface normals estimated at each point. This method

successfully segments point clouds in complex urban environment with near real

time performance. Compared with other methods, graph-based techniques can

segment complex scenes in point cloud data with noise and uneven density with

better results. However, these methods cannot run in real time. Some of them

may need offline training step or require special co-registered sensors and camera

system.
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5.4 Conclusions

Large concrete structures need to be inspected in order to predict future condi-

tions and assess long-term needs, to support investment planning and decision

making, and to allocate limited maintenance and rehabilitation [278]. Current

procedures for condition and safety assessment of large concrete structures are

performed manually leading to subjective and unreliable results, costly and time-

consuming data collection, and safety issues. To address these limitations, auto-

mated machine vision-based inspection procedures are increasingly proposed by

the research community. In this chapter we summarized current achievements

and open challenges in vision-based inspection of large concrete structures and

we proposed an automatic procedure to detect cracks in images that is robust to

changes in light conditions and noise corruption. This technique is based on vari-

ational calculus and was implemented on modern HPC architectures in order to

process efficiently huge amounts of data collected by robotic machines designed to

inspect structures (see subsection 5.2.2 and [247], [248], [249], [246],[250], [251]).

Furthermore, we described the state of art of point cloud denoising and segmen-

tation. Point clouds provide fundamental tools for digital representation of 3D

surfaces, however these data are corrupted by scanner noise and are not accessible

to supervised learning that requires pairs of noisy and clean data. Consequently,

it is desirable to be able to denoise the acquired noisy 3D point clouds by solely

using the noisy data itself. As future work we would like to apply the techniques

described in 3.3.3 to denoise point cloud.
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Chapter 6

Future Work

Autonomous mobile robots, such as drones, rovers and legged robots, promise to

play a main role in autonomously monitoring of civil structures. These applica-

tions require robots to operate for extended periods while performing complex

tasks, often in unknown, changing and complicated environments. This brings

great challenges, among which is the difficulty of executing a rich repertoire of

autonomous, robust, and adaptive behaviors with onboard resources.

More than ten years ago, it was reasonable to anticipate that further improve-

ments to microprocessors would soon close this performance gap. At that time,

processor development still kept pace with Moore’s law, which predicted a dou-

bling of the number of transistors in a dense integrated circuit about every two

years. However, with the end of Moore’s law in sight, we can no longer count

on this. Hence, we need to explore alternative approaches to both the comput-

ing hardware and the data processing algorithms of small, autonomous robots.

Processor designers must therefore increasingly look towards alternative means

than simply faster clocks to improve computation performance. The processor

landscape is becoming much more complex, parallel and specialised, as described

well in Sutters online article “Welcome to the Jungle”. Pressure to move away

from CPUs is even stronger in embedded applications, because here power usage

is a critical issue, and parallel, heterogeneous, specialised processors seem to be

the only route to achieving the computational performance it needs within power

restrictions which will fit real products.

The key to efficient processing which is both fast and consumes little power

is to divide computation between a large number of relatively low clock-rate or
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otherwise simple cores and to minimise the movement of data between them. A

CPU pulls and pushes small pieces of data one by one from and to a separate

main memory store as it performs computation, with local caching of regularly

used data as the only mechanism for reducing the flow. Programming for a single

CPU is straightforward, because any type of algorithm can be broken down into

sequential steps with access to a single central memory store, but the piece by

piece flow of data to and from central memory has a huge power cost. More

efficient processor designs aim to keep processing and the data operated on close

together and to limit the transmission of intermediate results. The ideal way

to achieve this is a close match between the design of a processor/storage archi-

tecture and the algorithm it must run. A GPU certainly has large advantages

over a CPU for many computer vision processing tasks. Its SIMT architecture

can efficiently run algorithms where the same operation is carried out simulta-

neously on many different data elements, but in the end a GPU is a processor

designed originally for computer graphics rather than vision and AI. Moreover, a

joint CPU/GPU architecture is currently needed with substantial data transfer

between the two. If we try to look further ahead, we can conceive of processor

designs which offer the possibility of a much closer match between architecture

and algorithms. With the aim of providing an important new type of processor

for AI, Graphcore is a UK company developing ’IPU’ processors which comprise

thousands of highly interconnected cores on a single chip. As future work, we

would like to test our algorithm on this new kind of hardware architecture aiming

at building drones specialized in the structural health of civil structures.

In Section 5.3 we described the state of art of point cloud denoising and

segmentation. Point clouds provide fundamental tools for digital representation

of 3D surfaces, however these data are corrupted by scanner noise and are not

accessible to supervised learning that requires pairs of noisy and clean data.

Consequently, it is desirable to be able to denoise the acquired noisy 3D point

clouds by solely using the noisy data itself. As future work we would like to apply

the techniques described in 3.3.3 to denoise this kind of data.
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[341] Christopher Zach, Christian Häne, and Marc Pollefeys. What is optimized

in convex relaxations for multilabel problems: Connecting discrete and con-

tinuously inspired map inference. IEEE transactions on pattern analysis

and machine intelligence, 36(1):157–170, 2013.

[342] C.T. Zahn. Graph-theoretical methods for detecting and describing gestalt

clusters. IEEE Transactions on Computers.

[343] Dengyong Zhou and Bernhard Schölkopf. Regularization on discrete spaces.

In Joint Pattern Recognition Symposium, pages 361–368. Springer, 2005.

[344] Zhenhua Zhu and Ioannis Brilakis. Machine vision-based concrete surface

quality assessment. Journal of Construction Engineering and Management,

136(2):210–218, 2010.

217



218


	Introduction
	Mathematical Framework
	Variational Problems
	Classical and Direct Methods in the Calculus of Variations
	Free Discontinuity Problems 
	A General Introduction
	The Space of Special Functions of Bounded Variation
	Variational Convergence
	The Mumford and Shah Functional
	The Blake and Zisserman Functional


	Variational Methods on Graphs
	Discrete calculus
	Regularization methods
	Total variation
	Max Flow - Min Cut
	Combinatorial Dirichlet Problem
	Free Discontinuity Problems on Graphs

	Combinatorial Optimization Techniques
	Maximum Flow/Minimum Cut Algorithms
	Shortest Path Methods
	Maximum Spanning Trees and Forests


	Conclusions

	Segmentation on Graphs
	Introduction
	Classical Methods
	Minimal Spanning Tree based methods
	Graph Cut with Cost Functions
	Minimal Cut Methods
	Normalized Cut Methods

	Graph Cut on Markov Random Field Models
	Bi-labelling Graph Cut Methods
	Multi-labelling Graph Cut Methods
	Graph Cut with Shape Prior
	Interactive Graph Cut Methods

	Shortest Path Based Methods
	Other Methods

	Variational Methods
	 Merriman Bence Osher Scheme
	Background
	Algorithms

	Total Variation Scheme
	Mumford-Shah Scheme

	Conclusions

	Variational Restoration of Curvilinear Structures
	Introduction
	Curvilinear Structure Detection
	Linear Filters
	Non Linear Filters
	Vesselness
	Inclusion of vesselness in the variational model

	Conclusions

	Computer Vision Techniques for Inspection of Large Concrete Structures
	Introduction
	Autonomous Robotic Systems for Defect Detection
	San Giorgio's Bridge
	ROBO-SPECT Project


	Crack Detection
	Introduction
	Automatic Crack Detection with Calculus of Variations
	Evaluation Criteria


	Digital Twin Model and 3D Point Cloud Segmentation
	Datasets
	Methods

	Conclusions

	Future Work
	Bibliography

