267 research outputs found

    Variational methods and its applications to computer vision

    Get PDF
    Many computer vision applications such as image segmentation can be formulated in a ''variational'' way as energy minimization problems. Unfortunately, the computational task of minimizing these energies is usually difficult as it generally involves non convex functions in a space with thousands of dimensions and often the associated combinatorial problems are NP-hard to solve. Furthermore, they are ill-posed inverse problems and therefore are extremely sensitive to perturbations (e.g. noise). For this reason in order to compute a physically reliable approximation from given noisy data, it is necessary to incorporate into the mathematical model appropriate regularizations that require complex computations. The main aim of this work is to describe variational segmentation methods that are particularly effective for curvilinear structures. Due to their complex geometry, classical regularization techniques cannot be adopted because they lead to the loss of most of low contrasted details. In contrast, the proposed method not only better preserves curvilinear structures, but also reconnects some parts that may have been disconnected by noise. Moreover, it can be easily extensible to graphs and successfully applied to different types of data such as medical imagery (i.e. vessels, hearth coronaries etc), material samples (i.e. concrete) and satellite signals (i.e. streets, rivers etc.). In particular, we will show results and performances about an implementation targeting new generation of High Performance Computing (HPC) architectures where different types of coprocessors cooperate. The involved dataset consists of approximately 200 images of cracks, captured in three different tunnels by a robotic machine designed for the European ROBO-SPECT project.Open Acces

    Information Extraction and Modeling from Remote Sensing Images: Application to the Enhancement of Digital Elevation Models

    Get PDF
    To deal with high complexity data such as remote sensing images presenting metric resolution over large areas, an innovative, fast and robust image processing system is presented. The modeling of increasing level of information is used to extract, represent and link image features to semantic content. The potential of the proposed techniques is demonstrated with an application to enhance and regularize digital elevation models based on information collected from RS images

    Selecting Optimal RBF Kernel with Machine Learning for Feature Extraction and Classification in SAR Images

    Get PDF
    Kernel methods are gaining popularity in image processing applications. The accuracy of feature extraction and classification on image data for a given application is greatly influenced by the choice of kernel function and its associated parameters. As on today there existing no formal methods for selecting the kernel parameters. The objective of the paper is to apply machine learning techniques to arrive at suitable kernel parameters and improvise the accuracy of kernel based object classification problem. The graph cut method with Radial Basis function (RBF) is employed for image segmentation, by energy minimization technique. The region parameters are extracted and applied to machine learning algorithm along with RBF2019;s parameters. The region is classified to be man made or natural by the algorithm. Upon each iteration using supervised learning method the kernel parameters are adjusted to improve accuracy of classification. Simulation results based on Matlab are verified for Manmade classification for different sets of Synthetic Aperture RADAR (SAR) Images

    Higher-Order Feature-Preserving Geometric Regularization

    Full text link

    Efficient Models and Algorithms for Image Processing for Industrial Applications

    Get PDF
    Image processing and computer vision are now part of our daily life and allow artificial intelligence systems to see and perceive the world with a visual system similar to the human one. In the quest to improve performance, computer vision algorithms reach remarkable computational complexities. The high computational complexity is mitigated by the availability of hardware capable of supporting these computational demands. However, high-performance hardware cannot always be relied upon when one wants to make the research product usable. In this work, we have focused on the development of computer vision algorithms and methods with low computational complexity but high performance. The first approach is to study the relationship between Fourier-based metrics and Wasserstein distances to propose alternative metrics to the latter, considerably reducing the time required to obtain comparable results. In the second case, instead, we start from an industrial problem and develop a deep learning model for change detection, obtaining state-of-the-art performance but reducing the computational complexity required by at least a third compared to the existing literature

    Joint methods in imaging based on diffuse image representations

    Get PDF
    This thesis deals with the application and the analysis of different variants of the Mumford-Shah model in the context of image processing. In this kind of models, a given function is approximated in a piecewise smooth or piecewise constant manner. Especially the numerical treatment of the discontinuities requires additional models that are also outlined in this work. The main part of this thesis is concerned with four different topics. Simultaneous edge detection and registration of two images: The image edges are detected with the Ambrosio-Tortorelli model, an approximation of the Mumford-Shah model that approximates the discontinuity set with a phase field, and the registration is based on these edges. The registration obtained by this model is fully symmetric in the sense that the same matching is obtained if the roles of the two input images are swapped. Detection of grain boundaries from atomic scale images of metals or metal alloys: This is an image processing problem from materials science where atomic scale images are obtained either experimentally for instance by transmission electron microscopy or by numerical simulation tools. Grains are homogenous material regions whose atomic lattice orientation differs from their surroundings. Based on a Mumford-Shah type functional, the grain boundaries are modeled as the discontinuity set of the lattice orientation. In addition to the grain boundaries, the model incorporates the extraction of a global elastic deformation of the atomic lattice. Numerically, the discontinuity set is modeled by a level set function following the approach by Chan and Vese. Joint motion estimation and restoration of motion-blurred video: A variational model for joint object detection, motion estimation and deblurring of consecutive video frames is proposed. For this purpose, a new motion blur model is developed that accurately describes the blur also close to the boundary of a moving object. Here, the video is assumed to consist of an object moving in front of a static background. The segmentation into object and background is handled by a Mumford-Shah type aspect of the proposed model. Convexification of the binary Mumford-Shah segmentation model: After considering the application of Mumford-Shah type models to tackle specific image processing problems in the previous topics, the Mumford-Shah model itself is studied more closely. Inspired by the work of Nikolova, Esedoglu and Chan, a method is developed that allows global minimization of the binary Mumford-Shah segmentation model by solving a convex, unconstrained optimization problem. In an outlook, segmentation of flowfields into piecewise affine regions using this convexification method is briefly discussed

    Variational Image Segmentation with Constraints

    Get PDF
    The research of Huizhu Pan addresses the problem of image segmentation with constraints though designing and solving various variational models. A novel constraint term is designed for the use of landmarks in image segmentation. Two region-based segmentation models were proposed where the segmentation contour passes through landmark points. A more stable and memory efficient solution to the self-repelling snakes model, a variational model with the topology preservation constraint, was also designed

    Predicting urban tree cover from incomplete point labels and limited background information

    Full text link
    Trees inside cities are important for the urban microclimate, contributing positively to the physical and mental health of the urban dwellers. Despite their importance, often only limited information about city trees is available. Therefore in this paper, we propose a method for mapping urban trees in high-resolution aerial imagery using limited datasets and deep learning. Deep learning has become best-practice for this task, however, existing approaches rely on large and accurately labelled training datasets, which can be difficult and expensive to obtain. However, often noisy and incomplete data may be available that can be combined and utilized to solve more difficult tasks than those datasets were intended for. This paper studies how to combine accurate point labels of urban trees along streets with crowd-sourced annotations from an open geographic database to delineate city trees in remote sensing images, a task which is challenging even for humans. To that end, we perform semantic segmentation of very high resolution aerial imagery using a fully convolutional neural network. The main challenge is that our segmentation maps are sparsely annotated and incomplete. Small areas around the point labels of the street trees coming from official and crowd-sourced data are marked as foreground class. Crowd-sourced annotations of streets, buildings, etc. define the background class. Since the tree data is incomplete, we introduce a masking to avoid class confusion. Our experiments in Hamburg, Germany, showed that the system is able to produce tree cover maps, not limited to trees along streets, without providing tree delineations. We evaluated the method on manually labelled trees and show that performance drastically deteriorates if the open geographic database is not used

    Direction Selective Contour Detection for Salient Objects

    Get PDF
    The active contour model is a widely used technique for automatic object contour extraction. Existing methods based on this model can perform with high accuracy even in case of complex contours, but challenging issues remain, like the need for precise contour initialization for high curvature boundary segments or the handling of cluttered backgrounds. To deal with such issues, this paper presents a salient object extraction method, the first step of which is the introduction of an improved edge map that incorporates edge direction as a feature. The direction information in the small neighborhoods of image feature points are extracted, and the images’ prominent orientations are defined for direction-selective edge extraction. Using such improved edge information, we provide a highly accurate shape contour representation, which we also combine with texture features. The principle of the paper is to interpret an object as the fusion of its components: its extracted contour and its inner texture. Our goal in fusing textural and structural information is twofold: it is applied for automatic contour initialization, and it is also used to establish an improved external force field. This fusion then produces highly accurate salient object extractions. We performed extensive evaluations which confirm that the presented object extraction method outperforms parametric active contour models and achieves higher efficiency than the majority of the evaluated automatic saliency methods

    Level Set KSVD

    Full text link
    We present a new algorithm for image segmentation - Level-set KSVD. Level-set KSVD merges the methods of sparse dictionary learning for feature extraction and variational level-set method for image segmentation. Specifically, we use a generalization of the Chan-Vese functional with features learned by KSVD. The motivation for this model is agriculture based. Aerial images are taken in order to detect the spread of fungi in various crops. Our model is tested on such images of cotton fields. The results are compared to other methods.Comment: 25 pages, 14 figures. Submitted to IJC
    • …
    corecore