481 research outputs found

    Evolutionary trees: an integer multicommodity max-flow-min-cut theorem

    Get PDF
    In biomathematics, the extensions of a leaf-colouration of a binary tree to the whole vertex set with minimum number of colour-changing edges are extensively studied. Our paper generalizes the problem for trees; algorithms and a Menger-type theorem are presented. The LP dual of the problem is a multicommodity flow problem, for which a max-flow-min-cut theorem holds. The problem that we solve is an instance of the NP-hard multiway cut problem

    Discrete Convex Functions on Graphs and Their Algorithmic Applications

    Full text link
    The present article is an exposition of a theory of discrete convex functions on certain graph structures, developed by the author in recent years. This theory is a spin-off of discrete convex analysis by Murota, and is motivated by combinatorial dualities in multiflow problems and the complexity classification of facility location problems on graphs. We outline the theory and algorithmic applications in combinatorial optimization problems

    Tight Bounds for Gomory-Hu-like Cut Counting

    Full text link
    By a classical result of Gomory and Hu (1961), in every edge-weighted graph G=(V,E,w)G=(V,E,w), the minimum stst-cut values, when ranging over all s,tVs,t\in V, take at most V1|V|-1 distinct values. That is, these (V2)\binom{|V|}{2} instances exhibit redundancy factor Ω(V)\Omega(|V|). They further showed how to construct from GG a tree (V,E,w)(V,E',w') that stores all minimum stst-cut values. Motivated by this result, we obtain tight bounds for the redundancy factor of several generalizations of the minimum stst-cut problem. 1. Group-Cut: Consider the minimum (A,B)(A,B)-cut, ranging over all subsets A,BVA,B\subseteq V of given sizes A=α|A|=\alpha and B=β|B|=\beta. The redundancy factor is Ωα,β(V)\Omega_{\alpha,\beta}(|V|). 2. Multiway-Cut: Consider the minimum cut separating every two vertices of SVS\subseteq V, ranging over all subsets of a given size S=k|S|=k. The redundancy factor is Ωk(V)\Omega_{k}(|V|). 3. Multicut: Consider the minimum cut separating every demand-pair in DV×VD\subseteq V\times V, ranging over collections of D=k|D|=k demand pairs. The redundancy factor is Ωk(Vk)\Omega_{k}(|V|^k). This result is a bit surprising, as the redundancy factor is much larger than in the first two problems. A natural application of these bounds is to construct small data structures that stores all relevant cut values, like the Gomory-Hu tree. We initiate this direction by giving some upper and lower bounds.Comment: This version contains additional references to previous work (which have some overlap with our results), see Bibliographic Update 1.

    Fixed-parameter tractability of multicut parameterized by the size of the cutset

    Get PDF
    Given an undirected graph GG, a collection {(s1,t1),...,(sk,tk)}\{(s_1,t_1),..., (s_k,t_k)\} of pairs of vertices, and an integer pp, the Edge Multicut problem ask if there is a set SS of at most pp edges such that the removal of SS disconnects every sis_i from the corresponding tit_i. Vertex Multicut is the analogous problem where SS is a set of at most pp vertices. Our main result is that both problems can be solved in time 2O(p3)...nO(1)2^{O(p^3)}... n^{O(1)}, i.e., fixed-parameter tractable parameterized by the size pp of the cutset in the solution. By contrast, it is unlikely that an algorithm with running time of the form f(p)...nO(1)f(p)... n^{O(1)} exists for the directed version of the problem, as we show it to be W[1]-hard parameterized by the size of the cutset

    Half-integrality, LP-branching and FPT Algorithms

    Full text link
    A recent trend in parameterized algorithms is the application of polytope tools (specifically, LP-branching) to FPT algorithms (e.g., Cygan et al., 2011; Narayanaswamy et al., 2012). However, although interesting results have been achieved, the methods require the underlying polytope to have very restrictive properties (half-integrality and persistence), which are known only for few problems (essentially Vertex Cover (Nemhauser and Trotter, 1975) and Node Multiway Cut (Garg et al., 1994)). Taking a slightly different approach, we view half-integrality as a \emph{discrete} relaxation of a problem, e.g., a relaxation of the search space from {0,1}V\{0,1\}^V to {0,1/2,1}V\{0,1/2,1\}^V such that the new problem admits a polynomial-time exact solution. Using tools from CSP (in particular Thapper and \v{Z}ivn\'y, 2012) to study the existence of such relaxations, we provide a much broader class of half-integral polytopes with the required properties, unifying and extending previously known cases. In addition to the insight into problems with half-integral relaxations, our results yield a range of new and improved FPT algorithms, including an O(Σ2k)O^*(|\Sigma|^{2k})-time algorithm for node-deletion Unique Label Cover with label set Σ\Sigma and an O(4k)O^*(4^k)-time algorithm for Group Feedback Vertex Set, including the setting where the group is only given by oracle access. All these significantly improve on previous results. The latter result also implies the first single-exponential time FPT algorithm for Subset Feedback Vertex Set, answering an open question of Cygan et al. (2012). Additionally, we propose a network flow-based approach to solve some cases of the relaxation problem. This gives the first linear-time FPT algorithm to edge-deletion Unique Label Cover.Comment: Added results on linear-time FPT algorithms (not present in SODA paper

    Nonlinear formulations and improved randomized approximation algorithms for multiway and multicut problems

    Get PDF
    Cover title.Includes bibliographical references (p. 21-22).D. Bertsimas, C. Teo and R. Vohra
    corecore