research

Tight Bounds for Gomory-Hu-like Cut Counting

Abstract

By a classical result of Gomory and Hu (1961), in every edge-weighted graph G=(V,E,w)G=(V,E,w), the minimum stst-cut values, when ranging over all s,t∈Vs,t\in V, take at most ∣V∣−1|V|-1 distinct values. That is, these (∣V∣2)\binom{|V|}{2} instances exhibit redundancy factor Ω(∣V∣)\Omega(|V|). They further showed how to construct from GG a tree (V,E′,w′)(V,E',w') that stores all minimum stst-cut values. Motivated by this result, we obtain tight bounds for the redundancy factor of several generalizations of the minimum stst-cut problem. 1. Group-Cut: Consider the minimum (A,B)(A,B)-cut, ranging over all subsets A,B⊆VA,B\subseteq V of given sizes ∣A∣=α|A|=\alpha and ∣B∣=β|B|=\beta. The redundancy factor is Ωα,β(∣V∣)\Omega_{\alpha,\beta}(|V|). 2. Multiway-Cut: Consider the minimum cut separating every two vertices of S⊆VS\subseteq V, ranging over all subsets of a given size ∣S∣=k|S|=k. The redundancy factor is Ωk(∣V∣)\Omega_{k}(|V|). 3. Multicut: Consider the minimum cut separating every demand-pair in D⊆V×VD\subseteq V\times V, ranging over collections of ∣D∣=k|D|=k demand pairs. The redundancy factor is Ωk(∣V∣k)\Omega_{k}(|V|^k). This result is a bit surprising, as the redundancy factor is much larger than in the first two problems. A natural application of these bounds is to construct small data structures that stores all relevant cut values, like the Gomory-Hu tree. We initiate this direction by giving some upper and lower bounds.Comment: This version contains additional references to previous work (which have some overlap with our results), see Bibliographic Update 1.

    Similar works