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Abstract

We introduce nonlinear formulations of the multiway cut and multicut problems. By simple
linearizations of these formulations we derive several well known formulations and valid inequal-
ities as well as several new ones. Through these formulations we establish a connection between
the multiway cut and the maximum weighted independent set problem that leads to the study
of the tightness of several LP formulations for the multiway cut problem through the theory of
perfect graphs. We also introduce a new randomized rounding argument to study the worst case
bound of these formulations, obtaining a new bound of 2a(H)(1 - ) for the multicut problem,
where a(H) is the size of a maximum independent set in the demand graph H.

1 Introduction

Given a graph G = (V, E) with edge weight ce for each e E E, and a set of terminal vertices
T = vl, v2, ... , vk}, a multiway cut is a set of edges whose removal disconnects every pair of
terminal vertices. The problem of finding the multiway cut of minimum total weight is called the
multiway cut problem. When T consists of only two terminals (k = 2) the problem reduces to the
well known minimum cut problem. For k > 3, it has been shown by Dalhaus et. al. [7] that the
problem is NP-hard even on planar graphs.

The case k = 2 is not the only polynomially solvable instance of the multiway cut problem.
Lovlsz [12] and Cherkasskij [3] show that when ce = 1 Ve E E and G is Eulerian, then the multiway
cut problem is polynomially solvable. Erdos and Szekely [8] have shown that a generalization of
the multiway cut problem is polynomially solvable when the underlying graph G is a tree. Dalhaus
et. al. [7] have shown the problem to be polynomial solvable for fixed k on planar graphs.

Chopra and Rao [5] and Cunningham [6] have investigated the multiway cut problem using
a polyhedral approach. They derive a number valid inequalities and facets. For one particular
formulation of the problem, Cunningham [6] shows that the value of the minimum multiway cut is
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at most twice the value of its linear programming relaxation. Chopra and Owen [4] proposed an
extended formulation of the problem which was shown to be tighter than all previously proposed. In
addition, when the underlying graph is a tree, they show that the extended formulation is integral.
They also report computational results that show that their formulation consistently yields high
quality solutions to the multiway cut problem. Regarding approximation algorithms, Dalhaus et.
al. [7] proposed a 2(1 - ) approximation algorithm.

A more general problem that we also consider in the present paper is the multicut problem. Given
a graph G = (V, E) with edge weights ce for each e E E, and a demand graph H = (V(H), E(H)),
find a minimum weight set of edges whose removal disconnects each node s E V(H) from t E V(H)
if (s, t) E E(H). If V(H) is a complete graph on k vertices, the multicut problem reduces to the
multiway cut problem. Regarding approximation algorithms Garg et. al. [9] propose an algorithm
that produces a multicut whose weight is within O(log(IV(H)j)) from the optimal solution.

Our contributions and the structure of the present paper are as follows:

1. In Section 2, we express the multiway cut problem as a continuous nonlinear program and
establish its integrality through the probabilistic method (Alon and Spencer [1]). The for-
mulation provides a framework for the study of extended linear formulations. Many of the
known standard and extended formulations and valid inequalities, as well as new ones, can
be derived from simple linearizations of the nonlinear constraints. This provides a systematic
way to construct improved extended formulations for the multiway cut problem. In particular
we derive the extended formulation of Chopra and Owen [4].

2. In Section 3, we establish a connection between the multiway cut problem and the stable
set problem. This allows us to derive relaxations for the multiway cut problem that are
stronger than previously known. In addition, we use the theory of perfect graphs to prove
the integrality of some extended formulations of the multiway cut problem that have special
structure. In this way we identify new polynomially solvable cases. Moreover, we obtain the
integrality result of Chopra and Owen [4] mentioned above (when the underlying graph is a
tree) and the result of Erdos and Szekely [8] as a corollary.

3. In Section 4, we propose a new randomized approximation algorithm for the multiway cut
problem based on probabilistically rounding the optimal fractional solution of an associated
linear program. Compared with traditional randomized rounding, our algorithm introduces
dependencies in the rounding process. If ZLP denotes the optimal objective function value
of the linear relaxation and Zp the value of the optimal integer solution, we show that
ZIP < 2(1- )ZLp. It offers a slight improvement over the Dalhaus et. al. [7] approximation
bound. As a by product we get a new proof of the max-flow-min-cut theorem based on the
probabilitsic method.

4. In Section 5, we introduce a new formulation for the multicut problem and apply the random-
ized rounding technique of Section 4 to obtain a new 2a(H)(1 - ) approximation algorithm
for the problem, where a(H) is the size of a maximum independent set in the demand graph
H. Notice that the bound is a direct generalization of the bound for the multiway cut prob-
lem. Our bound is stronger than the bound of O(log(jV(H)j)) derived by Garg et. al. [9] for
dense demand graphs H, but weaker for sparse graphs.

In Section 6 we include some concluding remarks.
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2 A nonlinear formulation for the multiway cut problem and its
linearizations

In this section we present a continuous nonlinear formulation for the multiway cut problem, prove
its validity through randomization and linearize it to obtain tight linear relaxations.

Let T = l1, v2,. . , vk denote the set of terminal vertices. Let yJ(u) denote the probability
that node u belongs to the same component as vj in a multiway cut. Clearly

k

P(edge (u, v) in the multiway cut} = 1 - E y(u)yi(v). (1)
j=1

This motivates the following formulation:

(NLF) ZN = min c(u, v)x(u, v)
(u,v) EE

subject to
k

x(u,v) = 1 - E (u)y(v); (u,v) E E
j=1

k

y i(u) = 1; uEV
j=1

yi(vj) = 1; j

yj(vl) = 0; Vl j

0< yJ(u) <1,

0< x(u,v) <1.

Let IZMC denote the value of a minimum multiway cut.

Theorem 1 IZMC = ZN.

Proof: Let (XN, YN) be an optimal solution to Problem (NLF). Vertex u is assigned to the
component of vj with probability y3N (u). Let x be the incidence vector of the multiway cut obtained.
From equation (1),

k

E[x(u, v)] = P{x(u, v) = 1} = 1 - yN(u)YN(v) = N(U, v),
j=1

so E[E(U,,v)EE C(U, v)x(u, v)] = E[E(,V)EE c(u, v)xN(u, v)] = ZN. The random process always
produces a multiway cut solution, so its expected value cannot be smaller than the minimum.
Hence IZMC < E[E(,)EEC(U, v)x(U, v)] = ZN. Since all multiway cuts are feasible in (NLF),
ZN • IZMC. Therefore, IZMC = ZN. C
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Linearizing the previous formulation we immediately obtain the extended formulation proposed

by Chopra and Owen [4] via combinatorial arguments. In particular, by using the following lin-
earization trick:

k

E yJ()yJ(i) - < E y( + E yj(), (2)
j=1 jES j4s

we obtain the following extended formulation (relaxation) of the multiway cut problem:

(EF1) ZEF1 = min E c(u, v)x(u, v)
(u,v)EE

subject to

x(u,v) + yj(u) + y(v) 1
jES js

yi(u) = 1; uEV
j

y3 (vj) = 1; Vj

yj(vl) = O; Vlj

0<y3 (u) < 1,

O < x(u,v) < 1.

In the above formulation the edge variables, x(u, v), can be considered as the "natural" variables,
while the node variables, yj(u), can be viewed as the auxiliary variables.

Even though (EF1) has an exponential number of constraints, its linear relaxation can be solved
in polynomial time. This is because the associated separation problem is polynomial (see Chopra
and Owen [4]). If we represent the product terms in (NLF) by a variable:

zj (u, v) = yj (u)y (v)

we obtain a second extended formulation:

(EF2) ZEF2 = min E c(u, v)x(u, v)
(u,v)EE

subject to

x(u, v) + Z zj(u, v) = 1; (u, v) E E

z3 (u, V) < yJ (u),

z (u, V) > y () + y ()-1

y (U) = 1; uEV

y(j) = 1; Vj

yj (v) = 0; Vl j

0< yi(u) <1,

0< x(u,v) <1.
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Under the condition that the weight function c is nonnegative, it is easy to see that the constraints
z (u, v) > y (u) + yJ(v) - 1 are redundant. Chopra and Owen [4] prove that

Theorem 2 (Chopra and Owen [4]) When the cost function c is nonnegative, ZEF1 = ZEF2.

In contrast to (EF1) the formulation (EF2) involves only polynomially many variables and
constraints. In the sequel we will assume that ce > 0 for all e E E, so that we will not distinguish
between (EF1) and (EF2).

We next derive a third extended formulation, equivalent to (EF2), not previously considered.
Since ECj= 1 y(u) = 1 in (NLF) we can write

k k

x(u, V) = yJ(u) - E yi(u)yJ(v).
j=1 j=1

Replacing u by v (note that x(u, v) = x(v, u)) we get

k k

(u, V) = E y (v) - y ()y (v).
j=1 j=1

Adding these two equations together yields:

k

2x(u, v) = [y (u) + y (v)- 2yJ(u)yJ(v)].
j=1

Now,
y'(u) + y3 (v) - 2 y3 (u)y'(v) > Iy(u) - y3 (v)l

as long as 0 < yJ(u), yJ(v) < 1. Thus we get the following convex programming formulation:

(EF3) ZEF3 = min j c(u, v)x(u, v)
(u,v)EE

subject to
k

2x(u,v) > EIly(u)-y(v)
j=1

Syj(u) = 1; uEV

yj(vj) = 1; Vj

yj(vl) = 0; Vl#j

O<y3 (u) < 1,

O < x(u, v) < 1.

(EF3) can be turned into a linear program using the usual trick of introducing extra variables.

Theorem 3 When the cost function c is nonegative, ZEF2 = ZEF3.

5



Proof: Let (xo, yo, zo) be any optimal solution to (EF2). Notice that zo(u, v) = min({y(u), y3(v)}.
Let A(u, v) = {j: y3(u) > y(v)} and AC(u, v) be the complement. Now, (xo, yo, zo) must satisfy

xo(u, v) + z(u, v) = 1 = EyO3(u)

and

xo(u, v) + E z(u, v) = 1 = Z y(v).
i J

Adding them together we get

2xo(u, v) + 2 E z (u, ) = ZE Y3(u) + ZE Y(v).

Hence
2xo(u, v) = [y(u) - Zu(, v)] + Z[y(v) - zO(U, v)].

i i

Now the right hand side of the above can be rewritten as

E [y(u) - z(u,v)] + E [ - = -(v)l- z(u,v)]= = IY.(u)-yo(v)I.
jEA(u,v) jeAC(u,v) j

Hence, any optimal solution to (EF2) is a feasible solution to (EF3).
Now suppose that (xo, yo) is an optimal solution to (EF3). Define zO(u, v) = minfy(u), y03(v)}.

We show that (xo, yo, zo) is feasible for (EF2).
Let A(u, v) = {j: yo(u) > yo(v)} and AC(u, v) be the complement. Then

E IJy(u) - y(v)l = E [y() - yo(V)] + E [yO(V) - y?(u)].
j jEA(u,v) jEAc(u,v)

Also
2AzO(u,v)=2 5 yj(v) + 2 y(u).

i jEA(u,v) jeAC(u,v)

Since xo(u, v) = j y (u) - y3(v) it follows that

2xo(u, v) +2 o(u, v) = E [y-(u)-(v)+2(v)+ 2yv) + [y (v) - y3(u) + 2y(u)] =2.
jEA(u,v) jeAC(u,v)

So, an optimal solution to (EF3) is feasible for (EF2). a

By projecting out the auxiliary variables in these extended formulations we can derive the stan-
dard formulations involving edge variables alone as well as several (facet defining) valid inequalities
for the multiway cut. This is described in the next theorem.

Theorem 4 Let L denote a subgraph of G which contains some demand nodes v E V(H), which
we label as vl, ..., vp, and at least a non-demand node w E V \ V(H). Suppose the edges of L can
be oriented in such a way that there are exactly q internally vertex disjoint paths from each vj to
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w, i. e., for all j = 1, ... , p all the paths from vj to w are node-disjoint except for the nodes vj and
w. Then,

x(e) > q(p- 1)
eEE(H)

is a valid inequality for the multiway cut problem.

Proof: Consider an orientation of the edges of H so that there are q (fixed) internally disjoint

directed paths from each demand node vj to w. For each edge (u, v) oriented from u to v, let
S(u, v) denote the set of demand nodes which use this edge along one of their q paths to w. We
have, from (EF1)

x(u,v)>l- E yj(v)-
jES(u,v)

>3 y3().
j¢S(u,v)

Note that if v -A w, then S(ul, v), S(u2, v) are disjoint, since the q paths from each demand node
to w are internally disjoint. Let N+(v),N-(v) denote respectively the set of in-neighbors and
out-neighbors of v under the orientation. Let u E N-(v), for each term

1- y(v),
j(v,u)

note that the
and

set {j : j E S(v, u)} is contained in U{j : j E S(r, v), r E N+(v)}. Since Ej y(v) = 1,

U uEN-(v)S(V, u) -- rEN+()S(r, v),

we have

- E y(v) +
uEN+(v) jES(u,v)

On the other
node,

E
uEN-(v)

(3){1- E yi(v)}>O.
j¢S(v,u)

hand, each demand node has degree at least q, and for each neighbor u of a demand

X(vj,U) > 1- y 3(u).

So

S x(vj,u) > q- E yj(u).
ueN- (vj) uEN- (v)

For the node w, since w has no out-neighbor, and each demand has exactly q internally disjoint
paths to w,

uEN+(w) jES(u,w)

yj(w) = qyi(w) = q.
J

By (3),

E x(u,v) > E
e=(u,v)EE(H) e=(u,v)EE(H)

Hence the result follows .

{1- E yi(V)-
jES(u,v)

E yj(u)}> qp-q.
j;s(u,v)

As an example, pick any two vertices vr and v, in T and let L be any path between them. The
theorem implies:

Xe_> 1.
eEL
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If we apply the theorem to every path between every pair of terminal vertices we get the path
formulation of the multiway cut problem. To describe this formulation let P(i, j) be the set of
paths between terminals vi and vj.

(PF) ZPF = min E cexe
eEE

subject to

Z e > 1; Vp E P(i, j) Vvi, vj E T
eEp

O <xe _ 1.

As another example pick a tree S on G all of whose leaves are in T, and no terminal vertex is
a non-leaf vertex. Call such a tree a T-tree. Then, by the theorem we get

Xe > IS n TI- 1,
eES

which are called the tree inequalities. Generating all tree inequalities gives us another formulation
called the tree formulation that was considered by Chopra and Rao [5] and Cunningham [6]. To
describe this formulation let T be the set of all T-trees.

(TF) ZTF = min cexe
eEE

subject to

EXe > ISnTI-1; SET
eES

O < e < 1.

In the same way one can derive the odd-wheel inequalities, and bipartite inequalities. These
are known to be facets of the tree formulation (see Chopra and Rao [5]).

2.1 Fractional extreme points

The examples above illustrate that the previous extended formulations are rather powerful as
they lead to a large collection of facet-defining inequalities. The following example, taken from
Cunningham [6], shows, however, that there are fractional extreme points in (EF1) and also (EF2).

For the above example, nodes 1, 3 and 5 are the demand nodes. Using the convention that
node 0 means node 6, we have the following fractional extreme point:

yi(i) - , y(i + 1) = y(i-1) z(i, i + ) = z(i, i-1) = z(i- i + ) 1/2,i=, 3,5;

and y, z = 0 otherwise. By this choice of y, z, x(e) = ½ for all edges in the graph. Assuming c(u, v) =
2 if the edge (u, v) is incident to a terminal, c(u, v) = 1 otherwise, then ZEF1 = ZEF2 < 7.5, while
it can be easily seen the cardinality of any multiway cut is at least 8, i.e., IZMC > 16/15ZMC.

The computational results of Chopra and Owen [4] show that the formulation (EF1) and (EF2)
consistently yield high quality bound to the multiway cut problems. The preceeding example shows
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1

3 4 5

Figure 1: G is the above graph and H = 1, 3, 5}).

that the gap can be as large as 16/15. We next generalize the construction of this example to give
an example whose gap is asymtotically close to 10/9.

Define the graph G with nodes denoted vl, v2, ..., vk (terminals) and uij where i j, 1 < i, j < k.
The edge set of G consists of edges vi, ui,j}, j = 1,..., k, and ui,j, ui,r) for r,j = 1,..., ,k. Let
c(u, v) = k-1 if (u, v) is incident to a terminal, otherwise c(u, v) = 1. When k = 3, the construction
reduces to the preceeding example.

Let yi(ui,j) = 1/2, zi(ui,j, ui,k) = 1/2, zi(ui,j, vi) = 1/2 for each i = 1,..., k. Thus x(u, v) = 1/2

for all edges in G. This yields a fractional LP solution with cost kk + k(k-)(k-2)
4

On the other hand, consider an optimum multiway cut solution. Let Ti denote the set of vertices
in the same componenet as the terminal vi. Let Ai denote the number of vertices in Ti of the
type ui,j for some j, Bi = ITi - Ai. Then there are exactly k(k - 1) - >L 1 Ai edges with cost
k - 1 in the cut. Furthermore, there are at least (k - 2 - Ai)Ai edges of the type {ui,j, ui,k} in
the cut. For each ui,j, there are (k - 2) other neighbours of the type Uj,k. Hence there are at least
(k - 2) kl A- 2 k=l Bi edges of the type {ui,j, uj,k} in the cut. The last term arising because
there are at most 2Bi edges between the nodes enumerated by Ai and Bi, which do not belong to
the cut. By eliminating duplication, we have

k 1 k k
IZMC > (k - 1)(k(k - 1) - Ai) + {(k - 2 - Ai)(Ai) + (k - 2) Ai - 2 ~ Bi}

i=l i=l i=1 i=l

Since ikTi = k(k-, we have

I2ZMC + o(k3).

It is easy to see that ei A2 is maximized when

* the vertex ui,j belongs to either Ti or Tj.
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* Ai Aj if i j.

Hence
k3

E A? < 12 + 22 + ... +(k - 1) 2 = 3 + (k3 ).
i

Using this bound, we have IZMc 5 + o(k 3). Thus IZMC/ZMC > 10/9 for large k.

2.2 Connection with quadratic zero-one programming

In order to strengthen the formulations further, we can consider stronger linearizations of the
quadratic terms y(u)yJ(v). The problem of linearizing quadratic terms of this type has been
addressed within the context of unconstrained quadratic zero-one programming problems, leading
to the Boolean Quadric polytope (BQP) (see Padberg [13] for a comprehensive treatment of the
subject). The polyhedron (BQP) is also called the correlation polytope by Laurent and Poljak [11].
In this way, all valid inequalities known for the (BQP) can easily be converted to valid inequalities
for the multiway cut problem. For instance, we can add the following valid inequalities

· zj (u, u) + zi(v, ) > zi(u, v) + zi(u, w),

· zi (u, u) + zJ(v, v) + (w, w) < 1 + zi(u, v) + zi(v, w) + z3 (u, w).

Unfortunately these valid inequalities do not cutoff the fractional extreme point of Figure 1.

3 Relation between the multiway cut and the independent set
problem

In this section, we establish that the multiway cut problem on G can be solved as an independent
set problem on a related graph I(G). We then use this connection to establish a new stronger
extended formulation for the multiway cut problem.

In (EF2) we can use the equation

x(u,v) + zi(u,v) = 1

to eliminate the variable x(u, v) from the formulation. This yields the following version of (EF2):

k

(EF2) ZEF2 = min E c(u,v)[1-Ez(u,v)]
(u,v)EE j=1

subject to

z (u, v) < 1; (u, v) E E

z3 (U, V) _< y (U),

zi (u, v) < y (v),

y() = 1; uEV
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= 1; Vj

= 0; j

0 < yj(u)

0 < zJ(u, v)

< 1,

< 1.

Now the constraints z(u, v) < y(u)
redundant. Eliminating the constant
equivalent to

(EF) ZEF

subject to

zJ(u, v)

zi (u, v)

E y (u)

yj(vj)

y'(v)
<

0<

and Ej y (u) = 1 make the constraint jz ( u, v) < 1
term in the objective function we deduce that (EF2) is

k

max c(u,v)z(u,v)
(Uv)EEj=1

< yj(u),
< yj(v ),
-- 1; u V

= 1; Vj

yj(u)

zj(u, v)

; Vl 0 j

< 1,

<1.

To summarize, (EF) and (EF2) have identical feasible
solution. We focus on (EF).
From the constraints of (EF) we deduce that for i j,

regions and will have the same optimal

k

z j (u, v) + z(u, v) < yJ3(u) + yi(u) < yJ(u) = 1.
j-=1

Furthermore, for any two neighbors v and w of u and i : j we have

z j (u, v) + zi(u, w) < y (u) + yi(u) < 1.

Using the two inequalities just derived we obtain the following relaxation of (EF):

(REF) ZREF

k
= max E Ec(u,v)zi(u,v)

(u,v)EEj=l

subject to

zi(u, v) + zj(u, v) < 1, i # j

zi(u,v)+ Zj(u,w) < 1, i # j, (u,v), (u,w) E E

O < z (u,v) < 1.

Although (REF) is a relaxation of (EF), there is an one to one correspondance between integer
solutions to (EF) and (REF). If we associate a vertex with each variable zi(u, v) in (REF) we

11

y (vj)

yj(vl)



see that (REF) can be interpreted as the linear relaxation of the problem of finding a maximum
weight independent set.

Formally, given G, let I(G) denote the graph with vertex set

{(u, v,j): (u,v) E E(G),j=l1,2,...,k}\{(vj,u,i): i j,(vj,u) E E(G)};

and edge set
{((u l, ,i), (2, w2, j)): i j; {u, w1 n 2, W2}l > 1}.

Consider a maximal independent (stable) set I in I(G). Let Fj = {(u, v) E E(G) : (u, v,j) E I}.
The edge induced subgraphs G[Fj] are node disjoint in the graph G, since I is a stable set. Moreover,
by maximality of I, each non-demand node must be a vertex in one of the subgraphs G[Fj]. This
partition induces a solution to the multiway cut problem and vice versa. For each vertex (u, v, j) in
I(G) we assign costs c(u, v). Then the cost of the multiway cut in G and the cost of the maximum
independent set in I(G) are related as follows:

IZMC = a c(u, v) - max{c(I) : I stable set in I(G)}.
(u,v)EE(G)

The problem of finding a maximum weight stable set in I(G) can be formulated as:

k

(IREF) ZIREF = max E E c(u,v)zj(u,v)
(u,v)EE j=l

subject to

zi(u,v) + z(u,v) < 1, i j

zi(u, v) + z(u,w) < 1, i j, (u,v),(u,w) E E
z (u, v) = 0, 1.

Notice that (REF) is just the linear relaxation of (IREF).
This correspondence has many interesting consequences. As an example, since the multiway

cut for fixed k > 3 is NP-hard, we obtain as a direct corollary that the maximum independent set
on k-partite graph ( k > 3) is also NP-hard. In addition, many classes of facet-defining inequalities
for the stable set problem can be interpreted as valid inequalities for the multiway cut problem.

A natural way to strengthen (REF) is to include the the maximal clique inequalities for the
stable set problem. The maximal cliques in I(G) are of the form (type I)

{(U, Wl, 1), · ·, (U, Wk, k)};

where (u, wi) E E(G) or type II
{(el,1),...,(ek, k)}

where ei E {(u, w), (u, v), (v, w)} are edges of a triangle in G. We will show that in relaxing (EF)
to (REF), the inequalities thrown out are those that correspond to all maximal cliques of type I
in I(G). Consider the formulation, (RIND) obtained from (REF) by adding all clique constraints
corresponding to cliques of type I:

ZRIND = max E E cez (e)
eEE j

12



subject to
k

zJ(u, wj) < 1; Vu, wj adjacent to u
j=1

< z(e) <1.

These clique constraints are implied by the constraints in (EF), so (RIND) is a relaxation of
(EF). So, ZREF > ZRIND > ZEF-

Theorem 5

ZEF = ZRIND.

Proof: Since (RIND) is a relaxation of (EF), it suffices to show that ZRIND < ZEF. Let z
be an optimal solution to (RIND). Let yj(u) = maxe zi(e) where the maximum is taken over all
edges e incident to u. By optimality of z, for each u, there exists a set of edges ej (possibly repeat),
j = 1, ..., k, incident to u, such that

Zzi(ej) = 1.

So by definition of y,
Ey(u) =1 for each node u.

At the demand node vj, by construction, y(vj) = 0 if i j. Hence yi(vj) 1. Therefore, the
solution (z, y) is feasible in (EF), and hence the result follows. C

The previous theorem implies that the feasible regions of (EF) and
(RIND) = (EF). Hence, any facet of (RIND) is automatically a facet
the clique constraints corresponding to maximal cliques of type II in I(G)

If we add them to (RIND) we obtain:

(IND) ZIND =

subject to

(RIND) coincide, i.e.,
of (EF). In particular,
are facets.

min E c(u, v)(1 - z(u,v))
(u,v)EE(G) j

(4)

(5)

z (u, wj) < 1; Vu, wj adjacent to u

k

E zi(uj, wj) < 1; V triangles A (uj, wj) are edges of A
j=l

0 < z(e) < 1.

Formulation (IND) is strictly stronger than (EF2) , as inequalities
extreme points in the example of Figure 1 . Recall that

(7) cut off the fractional

y(i) = l,y(i + 1) = y(i -1)= z(i, i + 1) = z 1(i, i-1) = z 1 (i - 1,i+ 1) = 1/2, i = 1,3,5.

13
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Hence the solution violates the triangle inequality

z1 (2, 6) + z 3(2, 4) + z 5 (4, 6) < 1.

Other valid inequalities for the multiway cut problem can be constructed from facets for the
independent set problem. For example, the well known odd cycle inequality for the stable set
problem translates to:

E zj()(ei) < LC/2]; (9)
i=l

where C = {(ei,j(i))}=l is an odd cycle in I(G). It is well known (see [10]) that the separation
problem for the odd cycle inequalities can be solved in polynomial time.

In general the clique constraints for the independent set problem cannot be separated in polyno-
mial time. In this case, because of the specific nature of I(G), we can separate the clique constraints
in I(G) in polynomial time. Hence (IND) is solvable in polynomial time via the ellipsoid algorithm.

Theorem 6 (IND) is solvable in polynomial time.

Proof: For each node u in G, the inequalities

zji(u, wj) < 1 , V wj adjacent to u;

are satisfied if and only if the inequality is satisfied by a single choice of wj. In particular, choose

Wj = argmax{zJ(u, w): w adjacent to u}.

Similarly, the inequalities corresponding to the triangles can be checked by verifying only for the
case ej = argmax{z (e), zi (f), z (g) .

It follows directly from the theory of perfect graphs that

Theorem 7 If I(G) is a perfect graph, formulation (IND) for the multiway cut problem is integral.

Note that for k = 2, I(G) is bipartite and is therefore a perfect graph. Thus (IND) is always
integral in this case.

3.1 Polynomially solvable cases of the multiway cut problem

Chopra and Owen [4] showed that (EF2) is integral when the underlying graph G is a tree. The
proof of this result follows easily from the theory of perfect graphs.

Theorem 8 ([4]) Formulation (EF2) is integral when G is a tree.

Proof: Since G does not contain any triangles, (EF2) coincides with the formulation (IND).
It suffices, then, to show that I(G) is perfect. If G corresponds to a star on n + 1 nodes, then
I(G) is a complete n-partite graph and therefore perfect. Since all trees G are formed by "gluing"
star graphs on cut-edges, I(G) is formed by clique-gluing of complete multipartite graphs. Since
clique-gluing operations preserve perfectness, I(G) is perfect, when G is a tree. Therefore (IND)

14



and hence (EF2) is integral in this instance.

This result is interesting, as the multiway cut problem over trees has important generalizations
in the study of evolutionary trees. The generalized multiway cut problem introduced in Erdos and
Szekely [8] is as follows: Given a graph G = (V, E) and a partial k-coloring of the vertices, i.e., a
subset V' C V and a function f : V' -- (1, ..., k, find an extension of f to V such that the total
weight of edges with different colored endpoints is minimized. Erdos and Szekely [8] contains a nice
illustration of how this problem arises naturally in the study of evolutionary trees. They have also
constructed a polynomial time dynamic programming algorithm for the generalized multiway cut
problem on trees. In (EF2), this amounts to setting

yf(u)(u) = 1 ,y(u) = 0 otherwise,

for each u in V'. This has the effect of deleting nodes in I(G) that corresponds to (u, v, i) if
i A f(u). Since subgraphs of perfect graphs are also perfect, the above argument yields directly
that the generalized multiway cut problem is solved by (EF2) when G is a tree. Using this notion
of generalized multiway cut, it follows directly (see Erdos and Szekely [8]) that if the set of demands
V(H) in G intersects every cycle in G, then by splitting the demands into multiple demands with
the same coloring, we can transform G to a forest. Thus the multiway cut problem in this case
can be transformed to a generalized multiway cut problem on a forest. In fact, the result can be
improved as follows.

Theorem 9 If the demands V(H) in G intersect every cycle of length greater or equal to 4, then
the multiway cut problem is solvable in polynomial time.

Proof: Consider the following class of graphs (called triangular cactus) obtained from node
gluing of triangles and edges. By splitting demands as in Erdos and Szekely [8], the multiway
cut problem in the above theorem can be transformed to a generalized multiway cut problem on
triangular cactus. Hence the theorem follows immediately from the following property:

Lemma 10 When G is a triangular cactus, I(G) is perfect.

Proof : We next sketch the main idea of the proof of the lemma. Let M be a node-induced
subgraph of I(G). H(M) corresponds to a set of colored edges in G. Let q(M) denote the size of a
maximum clique in M. We only need to show that the chromatic number of M is at most q(M).
We proceed by induction, using the fact that G is built up with node gluing of edges and triangles. O

4 A new randomized rounding technique and its applications to
the multiway cut problem

In this section we describe a new randomized rounding heuristic for the multiway cut problem and
use it to analyze the worst case bound of the extended formulation (EF3) ((EF1), and (EF2))
relative to the optimum multiway cut solution.
Dependent randomized rounding heuristic

15
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1. Solve the relaxation (EF3) obtaining an optimal solution (xo, yo).

2. Generate a random number U, uniformly between 0 and 1.

3. For each vertex u and j, set y(u) to 1 if U < yo(u) and 0 otherwise.
In this way sets Sj = {u: yJ(u) = 1} (not necessarily disjoint) are generated, j = 1,..., k
such that Sj contains demand node vj but not vi for i j (recall y(vi) = 0 if i j).
Compute c(6(Sj)). Let Smaz = argmax c(6(Sj)).

4. The proposed solution is the set of edges in

D = Uj:Sjsm,,S(Sj).

Notice that unlike the usual independent randomized rounding method which rounds each yO(u)
independently, we correlate the rounding process by generating a single random variable U. Clearly,
the solution is feasible for the multiway cut problem. Let ZH be the value of the heuristic.

Theorem 11 For c > O, IZMC < E[ZH] < 2(1 - )ZEF3.

Proof: Clearly, the value of the multicut D is

c(D) < (1- k) Z c((S)).
3

Since
P{(u,v) E 6(Sj)) = P{(y(u) = 1, y(v) = 0) U (y(u) = O, y(v) = 1)} =

P(min(yl(u), y(v)) < U < max(yo(u), y(v))} = Iyo(u)- yo(v)l

we have

k k

E[Zc(6(Sj))] = E c(u,v)P{(u,v) E 6(Sj)}= E E c(u,v)Jy3(u )-y(v)J.
j j=l (,v)EE j=1 (u,v)EE

From (EF3) we know that
k

E Il(u) - yo(v) < 20(u, ).
j=1

Hence

E[Ec(6(Sj))] < 2 E c(u,v)xo(u,v).
j (u,v)EE

Therefore,

E[ZH] = E[c(D)] < (1- )E[y c((Sj))] < 2(1- )ZEF3.

Remark: When k = 2, the bound is exact. In this case, since (EF1) is equivalent to the dual of a
max-flow problem, we have obtained a randomized proof of the max-flow-min-cut theorem.
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Using the conditioning method (see Alon and Spencer [1]) we can make step 3 of the dependent
randomized heuristic deterministic. So, we obtain an approximation algorithm that delivers a mul-
tiway cut at most twice the optimal. Another easier way to obtain a deterministic 2-approximation
algorithm is to find, for each j, a minimum cut containing the terminals vj but not the other
terminals, this time among the sets vj, ul, u2, U3, ...} with the vertices ordered (in non-increasing
order, breaking ties arbitrarily) according to the value of yi(ui). Dalhaus et. al. [7] constructed
directly a combinatorial algorithm to approximate the multiway cut problem, also within a bound
of 2(1 - k). However, our result is a little stronger in that the bound on the heuristic solution is in
terms of the linear programming relaxation and not the integer optimal.

4.1 The case k = 4

Dalhaus et. al. [7] showed that the approximation bound 3/2 can be improved further to 4/3 for
the 4-demand cut problems. By a randomized version of their heuristic, we propose next a linear
relaxation attaining the same worst case bound of 4/3 for the four-demand cut problem.

(4T) Z4T = min E c(u,v)x(u,v)
(u,v)EE

subject to
4

2x(u, ) _ E Jy1(u) + yi(u)- yl(v)- yi(v)l; (u, v) E E,
i=2

yj(vj) = 1;Vj

Y3 (Vi) = O;Vlj

O < yJ(u) < 1,

0O< x(u,v) <1.

Note that the above convex programming problem is essentially a linear program. We keep this
form as it makes the following analysis more transparent. Let IZ4T be the corresponding optimal
integer programming value.

Theorem 12 IZ4T < Z4T-

Proof: Let (x, y) be an optimal solution to Z4T. We generate randomly cuts of the form F(1, i),
which separates demands v1, vi from the other two demands, in the following way:

* F(1, i) = 0. Generate U randomly on [0,1].

* If yl(u) + yi(u) > U then F(1, i) - F(1, i) U {u}. Repeat for all u.

Note that

E[c(6(F(1, i)))] = , c(2, v)I y(u) + yi(u) - y(v)- yi(v)l.

Now, since union of any 2 of the 3 cuts generated is a valid 4-demand cut, by taking the minimum
ZH of the 3 feasible solutions, we have

2 4 4
ZH < E(c(b(F(1, i))) < Z4T.

i=2
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Similarly, the combinatorial approximation algorithm for the 8-way-cut problem [7] can be
turned into a LP formulation with equivalent bound to the 8-way-cut problem.

5 A new approximation algorithm for the multicut problem

In this section, we introduce a nonlinear formulation for the multicut problem, and a linear formu-
lation to which we apply the randomized rounding technique of the previous section to obtain an
approximation algorithm within 2a(H)(1 - ) of the LP relaxation, where a(H) is the independent
set number of the demand graph H.

5.1 An exact nonlinear formulation

Let E(H) = {(sj, tj), j = 1,...,m}. We assign node u of G in the same component with sj with
probability y (u) (yJ (tj) = 0). This creates a set Sj of nodes that are in the component of node sj.
Then the multicut solution is D = UjS(Sj). Then

P((u, v) E D} = 1 - P(u, v) D} = 1 - Pnj[(u E Sj, v E Sj) U (u Sj, v ¢ Sj)]} =
m m

1 - fl(P{u e Sj,v e Sj} + P{u V Sj,V V Sj}) = 1 - [yJ(u)yJ(v) + (1 - yJ(u))(l - yJ(v))] =
j=1 j=l

1- (1 - yi(u) - yi(v) + 2zi(u,v)),
j=1

with z (u, v) = yJ (u)yj (v). With this motivation we consider the following nonlinear formulation.

m

ZNM = min E c(u,v)[1-II(1-yj(u)-y(v)+2z(u,v))]
(u,v)EE j=1

subject to

z (u, v) = y(u)yi(v); Vj, V(u, v) E

yj (sj) = 1; Vj

yi(t) = 0; j
O < yJ(u) <1,

0 < x(u,v) <1.

Let IZM denote the value of an optimum multicut. Using a similar idea as in Theorem 1, we have

Theorem 13 IZM = ZNM.

By linearizing the above formulation, we obtain next a classical formulation of the multicut
problem (see Garg et.al. [9]).
Since z(u, v) < min(yJ(u), y(v)) and

I(1 - y (u) - y (v) + 2zi(u, v)) < min(1 - y(u) - y(v) + 2zJ(u, v)),
j i
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we have
1 - (l - yj(u) - yj(v) + 2z(u,v)) > Iy3 (u) - y(v)l j.

We obtain immediately the following formulation for the multicut problem:

(M1) ZM1 = min E c(u, v)x(u, v)
(u,v)EE

subject to

x(u, ) > y(u) - y(v); (u, v) E E
x(u, ) > yJ(v) -y (u); (u, v) E

yj (sj) = 1; Vj
y (tj) = 0; Vj

0o yJ(u) < 1,
0 < x(u,v) <1.

The above formulation is usually obtained by considering the LP dual to a multicommodity flow
problem. The route through the nonlinear characterization offers additional insights into the above
formulation. Moreover, it indicates how the above formulation can be strengthened via better
linearizations of the nonlinear term.

5.2 A new relaxation and a randomized approximation algorithm

Garg et.al. [9] propose a primal-dual approximation algorithm A with cost ZA based on formulation
(M1) that leads to the bound ZA < O(log(k))ZM1, for an arbitrary demand graph H. This bound,
however, is quite weak for the multiway cut problem. In this section, we generalize the formulation
for the multiway cut problems to yield a stronger formulation for the multicut problem. The new
relaxation uses variables yj (u) where j is indexed on the set of terminals. Note that the formulation
in (M1) uses variables yJ(u) where j is indexed on the edges of the demand graph.

Let o(H) the independent set number of H with node set V(H) and edge set E(H).
In order to improve the bound we consider the following formulation

(M2) ZM2 = min E c(u, v)x(u, v)
(u,v)EE

subject to
2a(H)x(u, v) + E (u, v) > E y () + E y (v); (u, v) E E, S C V(H)

j jeS j¢S

Z (u, ) < y (),

z (u, v) < yJ (),

5yi(u) < o(H);u E V

x(U, ) > y (U) - j(v),

x(u, v) > y ()- (),

yj(sj) = 1;Vj
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y(v) = 0; VIl such that (v, sj) E E(H)

0 < yi(u) <1

< x(u,v) <1.

Theorem 14 ZM2 < IZM. ZM2 can be computed in polynomial time.

Proof: Consider the incidence vector x of any multicut solution. Let y(u) = 1 if node u and
vj E V(H) lie in the same component in the multicut. Let z(u, v) = yj(u)yj(v). If u, v lie in the
same component C, then

E yj(u) + E y3(v) = IV(H)n Cl = E z'(u, v).
jES jOS jEV(H)

If u, v lie in two different components C1 and C 2, then V S C V(H)

E y(u) + y(v) < 2X(H).
jES jWS

Hence
2a(H)x(u, v) + z j (u, v) > 5 y(u) + 5 y (v)

j jES j¢s

is a valid inequality. Clearly, Ej y (u) < a(H) is also a valid inequality. Moreover, x(u,v) >
yj (u) - y (v)l follows directly from definition. Since

max{E y(u) + E yj(v) : S c A}
jES j¢s

is solvable in polynomial time (see [4]), we can solve (M2) in polynomial time by the ellipsoid
method. o

Let (x, y, z) be a feasible solution to LP relaxation (M2). Consider demand edges in the form
{vi, vj }. Define new variables yvvit (u) = y(u) for all u in G. Clealry x(u, v) > yli'vj (u) -yi (v).
Hence (x, yl) is feasible to (M1). It follows immediately that (M2) is a tighter relaxation to the
multicut problem.

We next apply the dependent randomized rounding heuristic H to the optimal solution of (M2).
Using the same notation we obtain

Theorem 15 IZM < E[ZH] 2(H)(1- -VT)

Proof: Let (xo, yo, zo) be an optimal solution to (M2). Then

E[ c(6(Sj))] = E E c(u, v) I(u) - yo()l
j j (u,v)EE(G)

5 E C(U,V){ 5 (yO(u)-zO(u,V))+ E (y'O()-zO(u,v))}
(u,v)EE(G) jET(u,v) jqT(u,v)

< 2a(H) c(u, v)xo(u, v) = 2a(H)ZM2.
(u,V)EE(G)
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By disregarding the set Sma, with the maximum cut we obtain a multicut solution D' such that

E[ZH] = E[c(D')] < (1 - I)E[ c((Sj))] < 2a(H)(1 IV(H)I)ZM2

6 Concluding remarks

In this paper, we proposed several extended formulations for the multiway and multicut problems.
We showed that these formulations can be constructed from linearizations of exact nonlinear for-
mulations of the underlying problems. By reducing the multiway cut problem to the maximum
independent set problem, we utilized the tools of perfect graph theory to study several instances of
the multiway cut problems. Finally, we used a new randomized rounding argument to analyze the
worst case behaviour of the formulations, resulting in a new approximation bound for the multicut
problem. The rounding argument differs from the traditional randomized rounding method by
imposing certain dependency structure on the rounding.
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