151 research outputs found

    Hierarchical Action Classification with Network Pruning

    Full text link
    Research on human action classification has made significant progresses in the past few years. Most deep learning methods focus on improving performance by adding more network components. We propose, however, to better utilize auxiliary mechanisms, including hierarchical classification, network pruning, and skeleton-based preprocessing, to boost the model robustness and performance. We test the effectiveness of our method on four commonly used testing datasets: NTU RGB+D 60, NTU RGB+D 120, Northwestern-UCLA Multiview Action 3D, and UTD Multimodal Human Action Dataset. Our experiments show that our method can achieve either comparable or better performance on all four datasets. In particular, our method sets up a new baseline for NTU 120, the largest dataset among the four. We also analyze our method with extensive comparisons and ablation studies

    Rethinking Pose in 3D: Multi-stage Refinement and Recovery for Markerless Motion Capture

    Get PDF
    We propose a CNN-based approach for multi-camera markerless motion capture of the human body. Unlike existing methods that first perform pose estimation on individual cameras and generate 3D models as post-processing, our approach makes use of 3D reasoning throughout a multi-stage approach. This novelty allows us to use provisional 3D models of human pose to rethink where the joints should be located in the image and to recover from past mistakes. Our principled refinement of 3D human poses lets us make use of image cues, even from images where we previously misdetected joints, to refine our estimates as part of an end-to-end approach. Finally, we demonstrate how the high-quality output of our multi-camera setup can be used as an additional training source to improve the accuracy of existing single camera models.Comment: International Conference on 3DVision (3dv

    Architectures d'apprentissage profond pour la reconnaissance d'actions humaines dans des séquences vidéo RGB-D monoculaires. Application à la surveillance dans les transports publics

    Get PDF
    Cette thèse porte sur la reconnaissance d'actions humaines dans des séquences vidéo RGB-D monoculaires. La question principale est, à partir d'une vidéo ou d'une séquence d'images donnée, de savoir comment reconnaître des actions particulières qui se produisent. Cette tâche est importante et est un défi majeur à cause d'un certain nombre de verrous scientifiques induits par la variabilité des conditions d'acquisition, comme l'éclairage, la position, l'orientation et le champ de vue de la caméra, ainsi que par la variabilité de la réalisation des actions, notamment de leur vitesse d'exécution. Pour surmonter certaines de ces difficultés, dans un premier temps, nous examinons et évaluons les techniques les plus récentes pour la reconnaissance d'actions dans des vidéos. Nous proposons ensuite une nouvelle approche basée sur des réseaux de neurones profonds pour la reconnaissance d'actions humaines à partir de séquences de squelettes 3D. Deux questions clés ont été traitées. Tout d'abord, comment représenter la dynamique spatio-temporelle d'une séquence de squelettes pour exploiter efficacement la capacité d'apprentissage des représentations de haut niveau des réseaux de neurones convolutifs (CNNs ou ConvNets). Ensuite, comment concevoir une architecture de CNN capable d'apprendre des caractéristiques spatio-temporelles discriminantes à partir de la représentation proposée dans un objectif de classification. Pour cela, nous introduisons deux nouvelles représentations du mouvement 3D basées sur des squelettes, appelées SPMF (Skeleton Posture-Motion Feature) et Enhanced-SPMF, qui encodent les postures et les mouvements humains extraits des séquences de squelettes sous la forme d'images couleur RGB. Pour les tâches d'apprentissage et de classification, nous proposons différentes architectures de CNNs, qui sont basées sur les modèles Residual Network (ResNet), Inception-ResNet-v2, Densely Connected Convolutional Network (DenseNet) et Efficient Neural Architecture Search (ENAS), pour extraire des caractéristiques robustes de la représentation sous forme d'image que nous proposons et pour les classer. Les résultats expérimentaux sur des bases de données publiques (MSR Action3D, Kinect Activity Recognition Dataset, SBU Kinect Interaction, et NTU-RGB+D) montrent que notre approche surpasse les méthodes de l'état de l'art. Nous proposons également une nouvelle technique pour l'estimation de postures humaines à partir d'une vidéo RGB. Pour cela, le modèle d'apprentissage profond appelé OpenPose est utilisé pour détecter les personnes et extraire leur posture en 2D. Un réseau de neurones profond est ensuite proposé pour apprendre la transformation permettant de reconstruire ces postures en trois dimensions. Les résultats expérimentaux sur la base de données Human3.6M montrent l'efficacité de la méthode proposée. Ces résultats ouvrent des perspectives pour une approche de la reconnaissance d'actions humaines à partir des séquences de squelettes 3D sans utiliser des capteurs de profondeur comme la Kinect. Nous avons également constitué la base CEMEST, une nouvelle base de données RGB-D illustrant des comportements de passagers dans les transports publics. Elle contient 203 vidéos de surveillance collectées dans une station du métro incluant des événements "normaux" et "anormaux". Nous avons obtenu des résultats prometteurs sur cette base en utilisant des techniques d'augmentation de données et de transfert d'apprentissage. Notre approche permet de concevoir des applications basées sur des techniques de l'apprentissage profond pour renforcer la qualité des services de transport en commun.This thesis is dealing with automatic recognition of human actions from monocular RGB-D video sequences. Our main goal is to recognize which human actions occur in unknown videos. This problem is a challenging task due to a number of obstacles caused by the variability of the acquisition conditions, including the lighting, the position, the orientation and the field of view of the camera, as well as the variability of actions which can be performed differently, notably in terms of speed. To tackle these problems, we first review and evaluate the most prominent state-of-the-art techniques to identify the current state of human action recognition in videos. We then propose a new approach for skeleton-based action recognition using Deep Neural Networks (DNNs). Two key questions have been addressed. First, how to efficiently represent the spatio-temporal patterns of skeletal data for fully exploiting the capacity in learning high-level representations of Deep Convolutional Neural Networks (D-CNNs). Second, how to design a powerful D-CNN architecture that is able to learn discriminative features from the proposed representation for classification task. As a result, we introduce two new 3D motion representations called SPMF (Skeleton Posture-Motion Feature) and Enhanced-SPMF that encode skeleton poses and their motions into color images. For learning and classification tasks, we design and train different D-CNN architectures based on the Residual Network (ResNet), Inception-ResNet-v2, Densely Connected Convolutional Network (DenseNet) and Efficient Neural Architecture Search (ENAS) to extract robust features from color-coded images and classify them. Experimental results on various public and challenging human action recognition datasets (MSR Action3D, Kinect Activity Recognition Dataset, SBU Kinect Interaction, and NTU-RGB+D) show that the proposed approach outperforms current state-of-the-art. We also conducted research on the problem of 3D human pose estimation from monocular RGB video sequences and exploited the estimated 3D poses for recognition task. Specifically, a deep learning-based model called OpenPose is deployed to detect 2D human poses. A DNN is then proposed and trained for learning a 2D-to-3D mapping in order to map the detected 2D keypoints into 3D poses. Our experiments on the Human3.6M dataset verified the effectiveness of the proposed method. These obtained results allow opening a new research direction for human action recognition from 3D skeletal data, when the depth cameras are failing. In addition, we collect and introduce in this thesis, CEMEST database, a new RGB-D dataset depicting passengers' behaviors in public transport. It consists of 203 untrimmed real-world surveillance videos of realistic "normal" and "abnormal" events. We achieve promising results on CEMEST with the support of data augmentation and transfer learning techniques. This enables the construction of real-world applications based on deep learning for enhancing public transportation management services

    Learning Robust Features and Latent Representations for Single View 3D Pose Estimation of Humans and Objects

    Get PDF
    Estimating the 3D poses of rigid and articulated bodies is one of the fundamental problems of Computer Vision. It has a broad range of applications including augmented reality, surveillance, animation and human-computer interaction. Despite the ever-growing demand driven by the applications, predicting 3D pose from a 2D image is a challenging and ill-posed problem due to the loss of depth information during projection from 3D to 2D. Although there have been years of research on 3D pose estimation problem, it still remains unsolved. In this thesis, we propose a variety of ways to tackle the 3D pose estimation problem both for articulated human bodies and rigid object bodies by learning robust features and latent representations. First, we present a novel video-based approach that exploits spatiotemporal features for 3D human pose estimation in a discriminative regression scheme. While early approaches typically account for motion information by temporally regularizing noisy pose estimates in individual frames, we demonstrate that taking into account motion information very early in the modeling process with spatiotemporal features yields significant performance improvements. We further propose a CNN-based motion compensation approach that stabilizes and centralizes the human body in the bounding boxes of consecutive frames to increase the reliability of spatiotemporal features. This then allows us to effectively overcome ambiguities and improve pose estimation accuracy. Second, we develop a novel Deep Learning framework for structured prediction of 3D human pose. Our approach relies on an auto-encoder to learn a high-dimensional latent pose representation that accounts for joint dependencies. We combine traditional CNNs for supervised learning with auto-encoders for structured learning and demonstrate that our approach outperforms the existing ones both in terms of structure preservation and prediction accuracy. Third, we propose a 3D human pose estimation approach that relies on a two-stream neural network architecture to simultaneously exploit 2D joint location heatmaps and image features. We show that 2D pose of a person, predicted in terms of heatmaps by a fully convolutional network, provides valuable cues to disambiguate challenging poses and results in increased pose estimation accuracy. We further introduce a novel and generic trainable fusion scheme, which automatically learns where and how to fuse the features extracted from two different input modalities that a two-stream neural network operates on. Our trainable fusion framework selects the optimal network architecture on-the-fly and improves upon standard hard-coded network architectures. Fourth, we propose an efficient approach to estimate 3D pose of objects from a single RGB image. Existing methods typically detect 2D bounding boxes and then predict the object pose using a pipelined approach. The redundancy in different parts of the architecture makes such methods computationally expensive. Moreover, the final pose estimation accuracy depends on the accuracy of the intermediate 2D object detection step. In our method, the object is classified and its pose is regressed in a single shot from the full image using a single, compact fully convolutional neural network. Our approach achieves the state-of-the-art accuracy without requiring any costly pose refinement step and runs in real-time at 50 fps on a modern GPU, which is at least 5X faster than the state of the art

    Rethinking Pose in 3D: Multi-stage Refinement and Recovery for Markerless Motion Capture

    Get PDF
    We propose a CNN-based approach for multi-camera markerless motion capture of the human body. Unlike existing methods that first perform pose estimation on individual cameras and generate 3D models as post-processing, our approach makes use of 3D reasoning throughout a multi-stage approach. This novelty allows us to use provisional 3D models of human pose to rethink where the joints should be located in the image and to recover from past mistakes. Our principled refinement of 3D human poses lets us make use of image cues, even from images where we previously misdetected joints, to refine our estimates as part of an end-to-end approach. Finally, we demonstrate how the high-quality output of our multi-camera setup can be used as an additional training source to improve the accuracy of existing single camera models
    • …
    corecore