83,428 research outputs found

    Multivariate Random Effect Models with complete and incomplete data

    Get PDF
    This paper considers the problem of estimating fixed effects, random effects and variance components for the multi-variate random effects model with complete and incomplete data. It also considers making inference about the fixed and random effects, a problem which requires careful consideration of the choice of degrees of freedom to use in confidence intervals. This paper uses the EM algorithm to maximise the hierachical likelihood (HL). The HL estimates are often the same as the REML and Bayesian-justified estimates in Shah, Laird, and Schoenfeld (1997). A key benefit of the h-likelihood approach is its simplicity- it doesn’t require integrating over the random effects or use of priors for its justification. Another benefit is that all inference can be made within a single framework. Extensive simulations show: that the h-likelihood approach is significantly more accurate than the well-known ANOVA approach; the h-likelihood approach often recovers a lot of the information lost through missing data; the h-likelihood approach has good coverage properties for fixed and random effects that are estimated using small samples

    Comparison of techniques for handling missing covariate data within prognostic modelling studies: a simulation study

    Get PDF
    Background: There is no consensus on the most appropriate approach to handle missing covariate data within prognostic modelling studies. Therefore a simulation study was performed to assess the effects of different missing data techniques on the performance of a prognostic model. Methods: Datasets were generated to resemble the skewed distributions seen in a motivating breast cancer example. Multivariate missing data were imposed on four covariates using four different mechanisms; missing completely at random (MCAR), missing at random (MAR), missing not at random (MNAR) and a combination of all three mechanisms. Five amounts of incomplete cases from 5% to 75% were considered. Complete case analysis (CC), single imputation (SI) and five multiple imputation (MI) techniques available within the R statistical software were investigated: a) data augmentation (DA) approach assuming a multivariate normal distribution, b) DA assuming a general location model, c) regression switching imputation, d) regression switching with predictive mean matching (MICE-PMM) and e) flexible additive imputation models. A Cox proportional hazards model was fitted and appropriate estimates for the regression coefficients and model performance measures were obtained. Results: Performing a CC analysis produced unbiased regression estimates, but inflated standard errors, which affected the significance of the covariates in the model with 25% or more missingness. Using SI, underestimated the variability; resulting in poor coverage even with 10% missingness. Of the MI approaches, applying MICE-PMM produced, in general, the least biased estimates and better coverage for the incomplete covariates and better model performance for all mechanisms. However, this MI approach still produced biased regression coefficient estimates for the incomplete skewed continuous covariates when 50% or more cases had missing data imposed with a MCAR, MAR or combined mechanism. When the missingness depended on the incomplete covariates, i.e. MNAR, estimates were biased with more than 10% incomplete cases for all MI approaches. Conclusion: The results from this simulation study suggest that performing MICE-PMM may be the preferred MI approach provided that less than 50% of the cases have missing data and the missing data are not MNAR

    Formal and Informal Model Selection with Incomplete Data

    Full text link
    Model selection and assessment with incomplete data pose challenges in addition to the ones encountered with complete data. There are two main reasons for this. First, many models describe characteristics of the complete data, in spite of the fact that only an incomplete subset is observed. Direct comparison between model and data is then less than straightforward. Second, many commonly used models are more sensitive to assumptions than in the complete-data situation and some of their properties vanish when they are fitted to incomplete, unbalanced data. These and other issues are brought forward using two key examples, one of a continuous and one of a categorical nature. We argue that model assessment ought to consist of two parts: (i) assessment of a model's fit to the observed data and (ii) assessment of the sensitivity of inferences to unverifiable assumptions, that is, to how a model described the unobserved data given the observed ones.Comment: Published in at http://dx.doi.org/10.1214/07-STS253 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Missing.... presumed at random: cost-analysis of incomplete data

    Get PDF
    When collecting patient-level resource use data for statistical analysis, for some patients and in some categories of resource use, the required count will not be observed. Although this problem must arise in most reported economic evaluations containing patient-level data, it is rare for authors to detail how the problem was overcome. Statistical packages may default to handling missing data through a so-called complete case analysis, while some recent cost-analyses have appeared to favour an available case approach. Both of these methods are problematic: complete case analysis is inefficient and is likely to be biased; available case analysis, by employing different numbers of observations for each resource use item, generates severe problems for standard statistical inference. Instead we explore imputation methods for generating replacement values for missing data that will permit complete case analysis using the whole data set and we illustrate these methods using two data sets that had incomplete resource use information

    Taking "Don't Knows" as Valid Responses: A Complete Random Imputation of Missing Data

    Get PDF
    Incomplete data is a common problem of survey research. Recent work on multiple imputation techniques has increased analysts' awareness of the biasing effects of missing data and has also provided a convenient solution. Imputation methods replace non-response with estimates of the unobserved scores. In many instances, however, non-response to a stimulus does not result from measurement problems that inhibit accurate surveying of empirical reality, but from the inapplicability of the survey question. In such cases, existing imputation techniques replace valid non-response with counterfactual estimates of a situation in which the stimulus is applicable to all respondents. This paper suggests an alternative imputation procedure for incomplete data for which no true score exists: multiple complete random imputation, which overcomes the biasing effects of missing data and allows analysts to model respondents' valid "I don't know" answers.Missing data; Incomplete data; Non-response; Multiple imputation; Survey methodology; Mixture regression models; Vote choice

    MissForest - nonparametric missing value imputation for mixed-type data

    Full text link
    Modern data acquisition based on high-throughput technology is often facing the problem of missing data. Algorithms commonly used in the analysis of such large-scale data often depend on a complete set. Missing value imputation offers a solution to this problem. However, the majority of available imputation methods are restricted to one type of variable only: continuous or categorical. For mixed-type data the different types are usually handled separately. Therefore, these methods ignore possible relations between variable types. We propose a nonparametric method which can cope with different types of variables simultaneously. We compare several state of the art methods for the imputation of missing values. We propose and evaluate an iterative imputation method (missForest) based on a random forest. By averaging over many unpruned classification or regression trees random forest intrinsically constitutes a multiple imputation scheme. Using the built-in out-of-bag error estimates of random forest we are able to estimate the imputation error without the need of a test set. Evaluation is performed on multiple data sets coming from a diverse selection of biological fields with artificially introduced missing values ranging from 10% to 30%. We show that missForest can successfully handle missing values, particularly in data sets including different types of variables. In our comparative study missForest outperforms other methods of imputation especially in data settings where complex interactions and nonlinear relations are suspected. The out-of-bag imputation error estimates of missForest prove to be adequate in all settings. Additionally, missForest exhibits attractive computational efficiency and can cope with high-dimensional data.Comment: Submitted to Oxford Journal's Bioinformatics on 3rd of May 201
    corecore