11 research outputs found

    Multivariate Analysis of Orthogonal Range Searching and Graph Distances

    Get PDF
    We show that the eccentricities, diameter, radius, and Wiener index of an undirected n-vertex graph with nonnegative edge lengths can be computed in time O(n * binom{k+ceil[log n]}{k} * 2^k k^2 log n), where k is the treewidth of the graph. For every epsilon>0, this bound is n^{1+epsilon}exp O(k), which matches a hardness result of Abboud, Vassilevska Williams, and Wang (SODA 2015) and closes an open problem in the multivariate analysis of polynomial-time computation. To this end, we show that the analysis of an algorithm of Cabello and Knauer (Comp. Geom., 2009) in the regime of non-constant treewidth can be improved by revisiting the analysis of orthogonal range searching, improving bounds of the form log^d n to binom{d+ceil[log n]}{d}, as originally observed by Monier (J. Alg. 1980). We also investigate the parameterization by vertex cover number

    Multivariate Analysis of Orthogonal Range Searching and Graph Distances Parameterized by Treewidth

    Full text link
    We show that the eccentricities, diameter, radius, and Wiener index of an undirected nn-vertex graph with nonnegative edge lengths can be computed in time O(n⋅(k+⌈log⁥n⌉k)⋅2kk2log⁥n)O(n\cdot \binom{k+\lceil\log n\rceil}{k} \cdot 2^k k^2 \log n), where kk is the treewidth of the graph. For every Ï”>0\epsilon>0, this bound is n1+Ï”exp⁥O(k)n^{1+\epsilon}\exp O(k), which matches a hardness result of Abboud, Vassilevska Williams, and Wang (SODA 2015) and closes an open problem in the multivariate analysis of polynomial-time computation. To this end, we show that the analysis of an algorithm of Cabello and Knauer (Comp. Geom., 2009) in the regime of non-constant treewidth can be improved by revisiting the analysis of orthogonal range searching, improving bounds of the form log⁥dn\log^d n to (d+⌈log⁥n⌉d)\binom{d+\lceil\log n\rceil}{d}, as originally observed by Monier (J. Alg. 1980). We also investigate the parameterization by vertex cover number

    Beyond Helly graphs: the diameter problem on absolute retracts

    Full text link
    Characterizing the graph classes such that, on nn-vertex mm-edge graphs in the class, we can compute the diameter faster than in O(nm){\cal O}(nm) time is an important research problem both in theory and in practice. We here make a new step in this direction, for some metrically defined graph classes. Specifically, a subgraph HH of a graph GG is called a retract of GG if it is the image of some idempotent endomorphism of GG. Two necessary conditions for HH being a retract of GG is to have HH is an isometric and isochromatic subgraph of GG. We say that HH is an absolute retract of some graph class C{\cal C} if it is a retract of any G∈CG \in {\cal C} of which it is an isochromatic and isometric subgraph. In this paper, we study the complexity of computing the diameter within the absolute retracts of various hereditary graph classes. First, we show how to compute the diameter within absolute retracts of bipartite graphs in randomized O~(mn)\tilde{\cal O}(m\sqrt{n}) time. For the special case of chordal bipartite graphs, it can be improved to linear time, and the algorithm even computes all the eccentricities. Then, we generalize these results to the absolute retracts of kk-chromatic graphs, for every fixed k≄3k \geq 3. Finally, we study the diameter problem within the absolute retracts of planar graphs and split graphs, respectively

    Diameter computation on H-minor free graphs and graphs of bounded (distance) VC-dimension

    Get PDF
    International audienceUnder the Strong Exponential-Time Hypothesis, the diameter of general unweighted graphs cannot be computed in truly subquadratic time. Nevertheless there are several graph classes for which this can be done such as bounded-treewidth graphs, interval graphs and planar graphs, to name a few. We propose to study unweighted graphs of constant distance VC-dimension as a broad generalization of many such classes-where the distance VC-dimension of a graph G is defined as the VC-dimension of its ball hypergraph: whose hyperedges are the balls of all possible radii and centers in G. In particular for any fixed H, the class of H-minor free graphs has distance VC-dimension at most |V (H)| − 1. ‱ Our first main result is a Monte Carlo algorithm that on graphs of distance VC-dimension at most d, for any fixed k, either computes the diameter or concludes that it is larger than k in time Õ(k · mn 1−Δ_d), where Δ_d ∈ (0; 1) only depends on d. We thus obtain a truly subquadratic-time parameterized algorithm for computing the diameter on such graphs. ‱ Then as a byproduct of our approach, we get the first truly subquadratic-time randomized algorithm for constant diameter computation on all the nowhere dense graph classes. The latter classes include all proper minor-closed graph classes, bounded-degree graphs and graphs of bounded expansion. ‱ Finally, we show how to remove the dependency on k for any graph class that excludes a fixed graph H as a minor. More generally, our techniques apply to any graph with constant distance VC-dimension and polynomial expansion (or equivalently having strongly sublin-ear balanced separators). As a result for all such graphs one obtains a truly subquadratic-time randomized algorithm for computing their diameter. We note that all our results also hold for radius computation. Our approach is based on the work of Chazelle and Welzl who proved the existence of spanning paths with strongly sublinear stabbing number for every hypergraph of constant VC-dimension. We show how to compute such paths efficiently by combining known algorithms for the stabbing number problem with a clever use of Δ-nets, region decomposition and other partition techniques

    Multivariate Analysis of Orthogonal Range Searching and Graph Distances

    No full text
    We show that the eccentricities, diameter, radius, and Wiener index of an undirected n-vertex graph with nonnegative edge lengths can be computed in time O(n·(k+⌈logn⌉k)·2klogn), where k is linear in the treewidth of the graph. For every Ï”> 0 , this bound is n1 + Ï”exp O(k) , which matches a hardness result of Abboud et al. (in: Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, 2016. https://doi.org/10.1137/1.9781611974331.ch28) and closes an open problem in the multivariate analysis of polynomial-time computation. To this end, we show that the analysis of an algorithm of Cabello and Knauer (Comput Geom 42:815–824, 2009. https://doi.org/10.1016/j.comgeo.2009.02.001) in the regime of non-constant treewidth can be improved by revisiting the analysis of orthogonal range searching, improving bounds of the form log dn to (d+⌈logn⌉d), as originally observed by Monier (J Algorithms 1:60–74, 1980. https://doi.org/10.1016/0196-6774(80)90005-X). We also investigate the parameterization by vertex cover number

    Multivariate Analysis of Orthogonal Range Searching and Graph Distances

    No full text
    We show that the eccentricities, diameter, radius, and Wiener index of an undirected n-vertex graph with nonnegative edge lengths can be computed in time O(n * binom{k+ceil[log n]}{k} * 2^k k^2 log n), where k is the treewidth of the graph. For every epsilon>0, this bound is n^{1+epsilon}exp O(k), which matches a hardness result of Abboud, Vassilevska Williams, and Wang (SODA 2015) and closes an open problem in the multivariate analysis of polynomial-time computation. To this end, we show that the analysis of an algorithm of Cabello and Knauer (Comp. Geom., 2009) in the regime of non-constant treewidth can be improved by revisiting the analysis of orthogonal range searching, improving bounds of the form log^d n to binom{d+ceil[log n]}{d}, as originally observed by Monier (J. Alg. 1980). We also investigate the parameterization by vertex cover number
    corecore