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Abstract
We show that the eccentricities, diameter, radius, and Wiener index of an undirected n-vertex
graph with nonnegative edge lengths can be computed in time O(n ·

(
k+dlogne

k

)
·2kk2 logn), where

k is the treewidth of the graph. For every ε > 0, this bound is n1+ε expO(k), which matches a
hardness result of Abboud, Vassilevska Williams, and Wang (SODA 2015) and closes an open
problem in the multivariate analysis of polynomial-time computation. To this end, we show
that the analysis of an algorithm of Cabello and Knauer (Comp. Geom., 2009) in the regime of
non-constant treewidth can be improved by revisiting the analysis of orthogonal range searching,
improving bounds of the form logd n to

(
d+dlogne

d

)
, as originally observed by Monier (J. Alg.

1980).
We also investigate the parameterization by vertex cover number.
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1 Introduction

Pairwise distances in an undirected, unweighted graph can be computed by performing a
graph exploration, such as breadth-first search, from every vertex. This straightforward
procedure determines the diameter of a given graph with n vertices and m edges in time
O(nm). It is surprisingly difficult to improve upon this idea in general. In fact, Roditty
and Vassilevska Williams [14] have shown that an algorithm that can distinguish between
diameter 2 and 3 in an undirected sparse graph in subquadratic time refutes the Orthogonal
Vectors conjecture.
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However, for very sparse graphs, the running time becomes linear. In particular, the
diameter of a tree can be computed in linear time O(n) by a folklore result that traverses the
graph twice. In fact, an algorithm by Cabello and Knauer shows that for constant treewidth
k ≥ 3, the diameter (and other distance parameters) can be computed in time O(n logk−1 n),
where the Landau symbol absorbs the dependency on k as well as the time required for
computing a tree decomposition. The question raised in [1] is how the complexity of this
problem grows with the treewidth of the graph. We show the following result:

I Theorem 1. The eccentricities, diameter, radius, and Wiener index of a given undirected
n-vertex graph G of treewidth tw(G) and nonnegative edge lengths can be computed in time
linear in

n ·
(
k + dlogne

k

)
· 2kk2 logn (1)

where k = 5 tw(G) + 4.

For every ε > 0, the bound (1) is n1+ε expO(tw(G)). This improves the dependency on
the treewidth over the running time n1+ε expO

(
tw(G) log tw(G)

)
of Abboud, Vassilevska

Williams, and Wang [1]. Our improvement is tight in the following sense. Abboud et al. [1]
also showed that under the Strong Exponential Time Hypothesis of Impagliazzo, Paturi, and
Zane [10], there can be no algorithm that computes the diameter with running time

n2−δ exp o(tw(G)) for any δ > 0 . (2)

In fact, this holds under the potentially weaker Orthogonal Vectors conjecture, see [17] for
an introduction to these arguments. Thus, under this assumption, the dependency on tw(G)
in Theorem 1 cannot be significantly improved, even if the dependency on n is relaxed from
just above linear to just below quadratic. Our analysis encompasses the Wiener index, an
important structural graph parameter left unexplored by [1].

Perhaps surprisingly, the main insight needed to establish Theorem 1 has nothing to
do with graph distances or treewidth. Instead, we make – or re-discover – the following
observation about the running time of d-dimensional range trees:

I Lemma 2 ([13]). A d-dimensional range tree over n points supporting orthogonal range
queries for the aggregate value over a commutative monoid has query time O(2d · B(n, d))
and can be built in time O(nd ·B(n, d)), where

B(n, d) =
(
d+ dlogne

d

)
.

This is a more careful statement than the standard textbook analysis, which gives the
query time as O(logd n) and the construction time as O(n logd n). For many values of d, the
asymptotic complexities of these bounds agree – in particular, this is true for constant d and
for very large d, which are the main regimes of interest to computational geometers. But
crucially, B(n, d) is always nε expO(d) for any ε > 0, while logd n is not.

After Lemma 2 is realised, Theorem 1 follows via divide-and-conquer in decomposable
graphs, closely following the idea of Cabello and Knauer [6] and augmented with known
arguments [1, 5]. We choose to give a careful presentation of the entire construction, as some
of the analysis is quite fragile.

Using known reductions, this implies that the following multivariate lower bound on
orthogonal range searching is tight:



K. Bringmann, and T. Husfeldt, and M. Magnusson 4:3

I Theorem 3 (Implicit in [1]). A data structure for the orthogonal range query problem for
the monoid (Z,max) with construction time n · q′(n, d) and query time q′(n, d), where

q′(n, d) = n1−ε exp o(d)

for some ε > 0, refutes the Strong Exponential Time hypothesis.

We also investigate the same problems parameterized by vertex cover number:

I Theorem 4. The eccentricities, diameter, and radius of a given undirected, unweighted
n-vertex graph G with vertex cover number k can be computed in time O(nk + 2kk2). The
Wiener index can be computed in time O(nk2k).

Both of these bounds are n expO(k). It follows from [1] that a lower bound of the form
(2) holds for this parameter as well.

1.1 Related work
Abboud et al. [1] show that given a graph and an optimal tree decomposition, various
graph distances can be computed in time O(k2n logk−1 n), where k = tw(G). This bound is
n1+ε expO(k log k) for any ε > 0. This subsumes the running time for finding an approximate
tree decomposition with k = O(tw(G)) from the input graph [5], which is n expO(k). Their
algorithm extends the construction of Cabello and Knauer [6] to superconstant treewidth.
According to [6], the idea of expressing graph distances as coordinates was first mentioned
by Shi [15].

If the diameter in the input graph is constant, the diameter can be computed in time
n expO(tw(G)) [9]. This is tight in both parameters in the sense that [1] rules out the
running time (2) even for distinguishing diameter 2 from 3, and every algorithm needs to
inspect Ω(n) vertices even for treewidth 1. For non-constant diameter ∆, the bound from [9]
deteriorates as n expO(tw(G) log ∆). However, the construction cannot be used to compute
the Wiener index.

The literature on algorithms for graph distance parameters such as diameter or Wiener
index is very rich, and we refer to the introduction of [1] for an overview of results dir-
ectly relating to the present work. A recent paper by Bentert and Nichterlein [2] gives a
comprehensive overview of many other parameterisations.

Orthogonal range searching using a multidimensional range tree was first described by
Bentley [3], Lueker [12], Willard [16], and Lee and Wong [11], who showed that this data
structure supports query time O(logd n) and construction time O(n logd−1 n). Several papers
have improved this in various ways by factors logarithmic in n; for instance, Chazelle’s
construction [8] achieves query time O(logd−1 n).

1.2 Discussion
In hindsight, the present result is a somewhat undramatic resolution of an open problem that
has been viewed as potentially fruitful by many people [1], including the second author [9]. In
particular, the resolution has led neither to an exciting new technique for showing conditional
lower bounds of the form n2−ε expω(k), nor a clever new algorithm for graph diameter.
Instead, our solution follows the ideas of Cabello and Knauer [6] for constant treewidth,
much like in [1]. All that was needed was a better understanding of the asymptotics of
bivariate functions, rediscovering a 40-year old analysis of spatial data structures [13] (see
the discussion in Sec. 3.3), and using a recent algorithm for approximate tree decompositions
[5].

IPEC 2018
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Of course, we can derive some satisfaction from the presentation of asymptotically
tight bounds for fundamental graph parameters under a well-studied parameterization. In
particular, the surprisingly elegant reductions in [1] cannot be improved. However, as we
show in the appendix, when we parameterize by vertex cover number instead of treewidth,
we can establish even cleaner and tight bounds without much effort.

Instead, the conceptual value of the present work may be in applying the multivariate
perspective on high-dimensional computational geometry, reviving an overlooked analysis
for non-constant dimension. To see the difference in perspective, Chazelle’s improvement
[8] of d-dimensional range queries from logd n to logd−1 n makes a lot of sense for small d,
but from the multivariate point of view, both bounds are nε exp Ω(d log d). The range of
relationships between d and n where the multivariate perspective on range trees gives some
new insight is when d is asymptotically just shy of logn, see Sec. 2.1.

It remains open to find an algorithm for diameter with running time n expO(tw(G)), or
an argument that such an algorithm is unlikely to exist under standard hypotheses. This
requires better understanding of the regime d = o(logn).

2 Preliminaries

2.1 Asymptotics
We summarise the asymptotic relationships between various functions appearing in the
present paper:

I Lemma 5.

B(n, d) = O(logd n) . (3)

For any ε > 0,

B(n, d) = nε expO(d) , (4)
logd n = nε exp Ω(d log d) , (5)
logd n = nε expO(d log d) . (6)

The first expression shows that B(n, d) is always at least as informative as O(logd n).
The next two expressions show that from the perspective of parameterised complexity, the
two bounds differ asymptotically: B(n, d) depends single-exponentially on d (no matter how
small ε > 0 is chosen), while logd n does not (no matter how large ε is chosen). Expression (6)
just shows that (5) is maximally pessimistic.

Proof. Write h = dlogne. To see (3), consider first the case where d < h. Using
(
a
b

)
≤ ab/b!

we see that(
d+ h

d

)
≤
(

2h
d

)
≤ (2h)d

d! = 2d

d! h
d = O(logd n) . (7)

Next, if d ≥ h then(
d+ h

d

)
=
(
d+ h

h

)
≤
(

2d
h

)
= 2h

h! d
h ≤ dh ,

provided h ≥ 4. It remains to observe that dh ≤ hd = O(logd n). Indeed, since the
function α 7→ α/ lnα is increasing for α ≥ e, we have h/ ln h ≤ d/ ln d, which implies
exp(h ln d) ≤ exp(d ln h) as needed.
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For (4), we let δ = d/h and consider two cases. First, from Stirling’s formula we know(
a
b

)
≤
( ea
b

)b, so(
d+ h

d

)
=
(

(1 + δ)h
δh

)
≤
(e(1 + δ)h

δh

)δh
≤
(e(1 + δ)

δ

)2δ logn
= n2δ log(e(1+δ)δ−1) .

Using that δ 7→ 2δ log(e(1 + δ)δ−1) is a monotone increasing function in the interval
(
0, 1

2
]

that tends to 0 for δ → 0, we obtain
(
d+h
d

)
≤ nε for any sufficiently small δ.

It remains to consider the case that δ ≥ c for some positive constant c depending only
on ε. In this case, we have(

d+ h

d

)
≤
(

(1 + 1/c)d
d

)
< 2(1+1/c)d = expO(d) .

We turn to (5). Assume that there is a function g such that

logd n = ncg(d) .

Then choose b > 1 and consider d such that d = b−1 logn . Then

g(d) ≥ logd n
nc

= 2d log logn−c logn = 2d log (bd)−cbd = exp Ω(d log d) .

Finally for (6), we repeat the argument from [1]. If d ≤ ε logn/ log logn then logd n =
2d log logn ≤ nε . In particular, if d = o(logn/ log logn) then logd n = no(1). Moreover, for
d ≥ log1/2 n we have log logn ≤ 2 log d and thus logd n = 2d log logn ≤ 4d log d. J

These calculations also show the regimes in which these considerations are at all interesting.
For d = o(logn/ log logn) then both functions are bounded by no(1), and the multivariate
perspective gives no insight. For d ≥ logn, both bounds exceed n, and we are better off
running n BFSs for computing diameters, or passing through the entire point set for range
searching.

2.2 Model of computation
We operate in the word RAM, assuming constant-time arithmetic operations on coordinates
and edge lengths, as well as constant-time operations in the monoid supported by our range
queries. For ease of presentation, edge lengths are assumed to be nonnegative integers; we
could work with abstract nonnegative weights instead [6].

3 Orthogonal Range Queries

3.1 Preliminaries
Let P be a set of d-dimensional points. We will view p ∈ P as a vector p = (p1, . . . , pd).

A commutative monoid is a set M with an associative and commutative binary operator
⊕ with identity. The reader is invited to think of M as the integers with −∞ as identity
and a⊕ b = max{a, b}.

Let f : P →M be a function and define for each subset Q ⊆ P

f(Q) =
⊕
{ f(q) : q ∈ Q}

with the understanding that f(∅) is the identity in M .

IPEC 2018
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x

y

z

p

q

rs

p (0, 0, 0) f(p) = 5
q (2, 0, 0) f(q) = 6
r (0, 2, 1) f(r) = 7
s (2, 1, 2) f(s) = 8

Figure 1 Four points in three dimensions. With the monoid (Z, max) we have f({p, r, s}) = 8.

3.2 Range Trees
Consider dimension i ∈ {1, . . . , d} and enumerate the points in Q as q(1), . . . , q(r) such
that q(j)

i ≤ q
(j+1)
i , for instance by ordering after the ith coordinate and breaking ties

lexicographically. Define medi(Q) to be the median point q(dr/2e), and similarly mini(Q) =
q(1) and maxi(Q) = q(r). Set

QL = {q(1), . . . , q(dr/2e)}, QR = {q(1+dr/2e), . . . , q(r)} . (8)

For i ∈ {1, . . . , d}, the range tree Ri(Q) for Q is a node x with the following attributes:
L[x], a reference to range tree Ti(QL), called the left child of x. Only exists if |Q| > 1.
R[x], a reference to range tree Ti(QR), called the right child of x. Only exists if |Q| > 1.
D[x], a reference to range tree Ti+1(Q), called the secondary, associate, or higher-
dimensional structure. Only exists for i < d.
l[x] = mini(Q).
r[x] = maxi(Q).
f [x] = f(Q). Only exists for i = d.

Construction

Constructing a range tree for Q is a straightforward recursive procedure:

I Algorithm C (Construction). Given integer i ∈ {1, . . . , d} and a list Q of points, this
algorithm constructs the range tree Ri(Q) with root x.
C1 [Base case Q = {q}.] Recursively construct D[x] = Ti+1(Q) if i < d, otherwise set

f [x] = f(q). Set l[x] = r[x] = qi. Return x.
C2 [Find median.] Determine q = mediQ, l[x] = mini(Q), r[x] = maxi(Q).
C3 [Split Q.] Let QL and QR as given by (8), note that both are nonempty.
C4 [Recurse.] Recursively construct L[x] = Ri(QL) from QL. Recursively construct R[x] =

Ri(QR) from QR. If i < d then recursively construct D[x] = Ti+1(Q). If i = d then set
f [x] = f [L[x]]⊕ f [R[x]].

The data structure can be viewed as a collection of binary trees whose nodes x represent
various subsets Px of the original point set P . In the interest of analysis, we now introduce a
scheme for naming the individual nodes x, and thereby also the subsets Px. Each node x is
identified by a string of letters from {L,R,D} as follows. Associate with x a set of points,
often called the canonical subset of x, as follows. For the empty string ε we set Pε = P . In
general, if Q = Px then PxL = QL, PxR = QR and PxD = Q. The strings over {L,R,D} can
be understood as uniquely describing a path through in the data structure; for instance, L
means ‘go left, i.e., to the left subtree, the one stored at L[x]’ and D means ‘go to the next
dimension, i.e., to the subtree stored at D[x].’ The name of a node now describes the unique
path that reaches it.
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Figure 2 Part of the range tree for the points from Fig. 1. The label of node x appears in red on
the arrow pointing to x. Nodes contain l[x]:r[x]. The references L[x] and R[x] appear as children
in a binary tree using usual drawing conventions. The reference D[x] appears as a dashed arrow
(possibly interrupted); the placement on the page follows no other logic than economy of layout and
readability. References D[x] from leaf nodes, such as D[LL] leading to node LLD, are not shown; this
conceals 12 single-node trees. The ‘3rd-dimensional nodes,’ whose names contain two Ds, show the
values f [x] next to the node. To ease comprehension, leaf nodes are decorated with their canonical
subset, which is a singleton from {p, q, r, s}. The reader can infer the canonical subset for an internal
node as the union of leaves of the subtree; for instance, PDR = {r, s}. However, note that these
point sets are not explicitly stored in the data structure.

I Lemma 6. Let n = |P |. Algorithm C computes the d-dimensional range tree for P in time
linear in nd ·B(n, d).

Proof. We run Algorithm C on input P and i = 1.
Disregarding the recursive calls, the running time of algorithm C on input i and Q is

dominated by Steps C2 and C3, i.e., splitting Q into two sets of equal size. It is known that
this task can be performed in time linear in |Q| [4]. Thus, the running time for constructing
Ri(Q) is linear in |Q| plus the time spent in recursive calls.

This means that we can bound the running time for constructing T1(P ) by bounding the
sizes of the sets Px associated with every node x in the data structure. If for a moment X
denotes the set of all these nodes then we want to bound∑

x∈X
|Px| =

∑
x∈X
|{ p ∈ P : p ∈ Px }| =

∑
p∈P
|{x ∈ X : p ∈ Px }| .

Thus, we need to determine, for given p ∈ P , the number of subsets Px in which p appears.
By construction, there are fewer than d occurrences of D in x. Moreover, if x contains more
than h occurrences of either L or R then Px is empty. Thus, x has at most h + d letters.
For two different strings x and x′ that agree on the positions of D, the sets Px and Px′ are
disjoint, so p appears in at most one of them. We conclude that the number of sets Px such
that p ∈ Px is bounded by the number of ways to arrange fewer than d many Ds and at most
h non-Ds. Using the identity

(
a+0

0
)

+ · · ·+
(
a+b
b

)
=
(
a+b+1
b

)
repeatedly, we compute

d−1∑
i=0

h∑
j=0

(
i+ j

j

)
=
d−1∑
i=0

(
i+ h+ 1

h

)
=
d−1∑
i=0

(
i+ h+ 1
i+ 1

)
=

(−1) +
d∑
i=0

(
i+ h

i

)
=
(
h+ d+ 1

d

)
− 1 = h+ d+ 1

h+ 1

(
h+ d

d

)
− 1 ≤ d

(
d+ h

d

)
.

The bound follows from aggregating this contribution over all p ∈ P . J

IPEC 2018
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Search

In this section, we fix two sequences of integers l1, . . . , ld and r1, . . . , rd describing the query
box B given by

B = [l1, r1]× · · · × [ld, rd] .

I Algorithm Q (Query). Given integer i ∈ {1, . . . , d}, a query box B as above and a range
tree Ri(Q) with root x for a set of points Q such that every point q ∈ Q satisfies lj ≤ qj ≤ rj
for j ∈ {1, . . . , i− 1}, this algorithm returns

⊕
{ f(q) : q ∈ Q ∩B }.

Q1 [Empty?] If the data structure is empty, or li > r[x], or l[x] > ri, then return the identity
in the underlying monoid M .

Q2 [Done?] If i = d and ld ≤ mind[x] and maxd[x] ≤ rd then return f [x].
Q3 [Next dimension?] If i < d and li ≤ l[x] and r[x] ≤ ri then query the range tree at D[x]

for dimension i+ 1. Return the resulting value.
Q4 [Split.] Query the range tree L[x] for dimension i; the result is a value fL. Query the

range tree R[x] for dimension i; the result is a value fR. Return fL ⊕ fR.

To prove correctness, we show that this algorithm is correct for each point set Q = Px.

I Lemma 7. Let i = D(x) + 1, where D(x) is the number of Ds in x. Assume that Px is
such that lj ≤ pi ≤ rj for all j ∈ {1, . . . , i− 1} for each p ∈ Px. Then the query algorithm
on input x and i returns f(B ∩ Px).

Proof. Backwards induction in |x|.
If |x| = h+ d then Px is the empty set, in which case the algorithm correctly returns the

identity in M .
If the algorithm executes Step Q2 then B is satisfied for all q ∈ Px, in which case the

algorithm correctly returns f [x] = f(Px).
If the algorithm executes Step Q3 then B satisfies the condition in the lemma for i+ 1,

and the number of Ds in PxD is i+ 1, and D[x] store the (i+ 1)th range tree for PxD. Thus,
by induction the algorithm returns f(PxD ∩B), which equals f(Px ∩B) because PxD = Px.

Otherwise, by induction, fL = f(PxL ∩B) and fR = f(PxR ∩B). Since PxL ∪ PxR = Px,
we have f(Px ∩B) = f((PxL ∩B) ∪ (PxR ∩ P )) = fL ⊕ fR. J

I Lemma 8. If x is the root of the range tree for P then on input i = 1, x, and B, the query
algorithm returns f(P ∩B) in time linear in 2dB(n, d).

Proof. Correctness follows from the previous lemma.
For the running time, we first observe that the query algorithm does constant work in

each visited node. Thus it suffices to bound the number of visited nodes as

2d
(
h+ d

d

)
(d ≥ 1, h ≥ 0) . (9)

We will show by induction in d that (9) holds for every call to a d-dimensional range tree
for a point set Px, where h = dlog |Px|e. The two easy cases are Q1 and Q2, which incur no
additional nodes to be visited, so the number of visited nodes is 1, which is bounded by (9).
Step Q3 leads to a recursive call for a (d− 1)-dimensional range tree over the same point set
PxD = Px, and we verify

1 + 2d−1
(
h+ d− 1
d− 1

)
≤ 2d

(
h+ d

d

)
.
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The interesting case is Step Q4. We need to follow two paths from x to the leaves of the
binary tree of x. Consider the leaves l and r in the subtree rooted at x associated with the
points mini(Px) and maxi(Px) as defined in Sec. 3.2. We describe the situation of the path
Y from l to x; the other case is symmetrical. At each internal node y ∈ Y , the algorithm
chooses Step Q4 (because li ≥ l[y]). There are two cases for what happens at yL and yR. If
li ≤ medi(Py) then PyR satisfies li ≤ mini(PyR) ≤ ri, so the call to yR will choose Step Q3.
By induction, this incurs 2d−1(d−1+i

d−1
)
visits, where i is the height of y. In the other case,

the call to yL will choose Step Q1, which incurs no extra visits. Thus, the number of nodes
visited on the left path is at most

h+
h−1∑
i=0

2d−1
(
d− 1 + i

d− 1

)
,

and the total number of nodes visited is at most twice that:

2h+ 2d
h−1∑
i=0

(
d− 1 + i

d− 1

)
≤ 2d

h∑
i=0

(
d− 1 + i

d− 1

)
= 2d

(
d+ h

d

)
. J

3.3 Discussion
The textbook analysis of range trees, and similar d-dimensional spatial algorithms and data
structures sets up a recurrence relation like

r(n, d) = 2r(n/2, d) + r(n, d− 1) ,

for the construction and

r(n, d) = max{ r(n/2, d), r(n, d− 1) } ,

for the query time. One then observes that n logd n and logd n are the solutions to these
recurrences. This analysis goes back to Bentley’s original paper [3].

Along the lines of the previous section, one can show that the functions n ·B(n, d) and
B(n, d) solve these recurrences as well. A detailed derivation can be found in [13], which
also contains combinatorial arguments of how to interpret the binomial coefficients in the
context of spatial data structures. A later paper of Chan [7] also takes the recurrences as
a starting point, and observes asymptotically improved solution for the related question of
dominance queries.

4 Graph Distances

We present the algorithm for computing the diameter. The construction closely follows
Cabello and Knauer [6], but uses the range tree bounds from Section 3. The analysis
is extended to superconstant dimension as in Abboud et al. [1]. Using the approximate
treewidth construction of Bodlaender et al. [5], we can pay more attention to the parameters
of the recursive decomposition into small-size separators.

4.1 Preliminaries
We consider an undirected graph G with n vertices and m edges with nonnegative integer
weights. The set of vertices is V (G). For a vertex subset U we write G[U ] for the induced
subgraph.
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4:10 Multivariate Analysis of Orthogonal Range Searching and Graph Distances

A path from u to v is called a u, v-path and denoted P . The length of a path, denoted
l(P ), is the sum of its edge lengths.

The distance from vertex u to vertex v, denoted d(u, v), is the minimum length of shortest
u, v-path. The Wiener index of G, denoted wien(G) is

∑
u,v∈V (G) d(u, v). The eccentricity

of a vertex u, denoted e(u) is given by e(u) = max{ d(u, v) : v ∈ V (G) }. The diameter
of G, denoted diam(G) is max{ e(u) : u ∈ V (G) }. The radius of G, denoted rad(G) is
min{ e(u) : u ∈ V (G) }.

4.2 Separation
A vertex subset Z separates X and Y if every x, y-path with x ∈ X and y ∈ Y contains a
vertex from Z. A skew k-separator tree T of G is a binary tree such that each node t of T is
associated with a vertex set Zt ⊆ V (G) such that
|Zt| ≤ k,
If Lt and Rt denote the vertices of G associated with the left and right subtrees of t,
respectively, then Zt separates Lt and Rt and

n

k + 1 ≤ |Lt ∪ Zt| ≤
nk

k + 1 , (10)

T remains a skew k-separator even if edges between vertices of Zt are added.

It is known that such a tree can be found from a tree decomposition, and an approximate
tree decomposition can be found in single-exponential time. We summarise these results in
the following lemma:

I Lemma 9 ([6, Lemma 3] with [5, Theorem 1]). For a given n-vertex input graph G, a skew
(5 tw(G) + 4)-separator tree can be computed in time n expO(tw(G)).

4.3 Algorithm
We follow the construction of [6].

Given graph G, let Sx,w denote the set of shortest x,w-paths. We refine the notion of
eccentricity to a subset W of vertices. Formally,

e(x,W ) = max
w∈W
{ l(P ) : P ∈ Sx,w } .

We will consider a situation where V (G) = X ∪ Y with separator Z = X ∩ Y . We can then
compute e(x) as max{e(x,X), e(x, Y )} for each x ∈ X. The first term is found recursively
in G[X]; the interesting part is the computation of e(x, Y ).

Enumerate Z = {z1, . . . , zk}. For i ∈ {1, . . . , k} define the ith eccentricity ei(x, Y ) as the
maximum distance from x to any vertex in Y ‘via zi.’ Formally,

ei(x, Y ) = max
y∈Y
{ l(P ) : P ∈ Sx,y, zi ∈ V (P ) } .

See Figure 3 for a small example.

I Lemma 10. If Z separates X and Y then e(x, Y ) = maxki=1 ei(x, Y ) for x ∈ X.

Proof. A shortest x, y-path with y ∈ Y must contain a vertex from Z, say zi. Thus, e(x, Y ) ≤
ei(x, Y ). Conversely, e(x, Y ) ≥ ej(x, Y ) for all j ∈ {1, . . . , k} from the definition. J

Now we can write the eccentricity via zi as the distance to zi plus a range query:
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Figure 3 Left: Example with Z = {z1, z2, z3} and Y = Z ∪ {y, y′, y′′}. We have e(x, Y ) = 5
(along xz1y) and e(x′, Y ) = 3. For the case i = 3 we see e3(x, Y ) = 4 along xz3y′′, because there are
no shortest paths from x via z3 to y or y′, and the one-edge path xz3 itself is shorter. Similarly,
e3(x′, Y ) = 3 (along x′z3y′). Right: The corresponding points in Z2, only the first two coordinates
are shown, and only for the points in Y \ Z. The points corresponding to y′ and y′′ both belong
to the rectangle for x′, certifying that there are shortest x′, y′- and x′, y′′-paths through z3. Right:
Over Rx′ , the point py′ maximises f . We have e3(x′, Y ) = l(x′z3y′) = d(x′, z3) + f(py′) = 1 + 2 = 3.

I Lemma 11. Let i ∈ {1, . . . , k} and assume {z1, . . . , zk} separates X and Y . Define for
each y ∈ Y the k-dimensional point

py =

d(zi, y)− d(z1, y)
...

d(zi, y)− d(zk, y)

 with f(py) = d(zi, y) . (11)

Define for each x ∈ X the rectangle

Rx = "kj=1[−∞, d(x, zj)− d(x, zi)] . (12)

Then

ei(x, Y ) = d(x, zi) + max
y : py∈Rx

f(py) .

Proof. Consider a shortest x, y-path P containing zi ∈ Z. No other x, y-path is shorter than
P , so in particular we have

d(x, zi) + d(zi, y) ≤ d(x, zj) + d(zj , y) , j ∈ {1, . . . , k} ,

equivalently,

d(zi, y)− d(zj , y) ≤ d(x, zj)− d(x, zi) , j ∈ {1, . . . , k} . (13)

which means py ∈ Rx. Moreover, if y is chosen so that P attains the eccentricity ei(x, Y )
then ei(x, Y ) = l(P ) = d(x, zi) + d(zi, y) and py maximises f(py) = d(zi, y) over the points
in Rx. J

One observes that the ith coordinate of py is always 0 and of Ry is always [−∞, 0], so
the reduction is actually to a (k − 1)-dimensional range query instance. However, we are
mainly interested in the asymptotic dependency on k, so we avoid this possible (but tedious)
improvement.

We are ready for the algorithm.

I Algorithm E (Eccentricities). Given an undirected, connected graph G with nonnegative
integer weights and a skew k-separator tree with root t, this algorithm computes the eccentricity
e(v) of every vertex v ∈ V (G). We write Z = Zt, X = Lt ∪ Zt, and Y = Rt ∪ Zt.
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E1 [Base case.] If n/ lnn < 4k(k+1) find all distances using Dijkstra’s algorithm. Terminate.
E2 [Distances from separator.] Compute d(z, v) for each z ∈ Z, v ∈ V (G) using k applications

of Dijkstra’s algorithm. Compute e(z, Y ) = maxy∈Y d(z, y) for each z ∈ Z.
E3 [Add shortcuts.] For each pair z, z′ ∈ Z, add the edge zz′ to G, weighted by d(z, z′).

Remove duplicate edges, retaining the shortest.
E4.1 [Start iterating over {z1, . . . , zk}.] Let i = 1.
E4.2 [Build range tree for zi.] Construct a k-dimensional range tree for the points { py : y ∈

Y } given by (11) using the monoid (Z,max).
E4.3 [Query range tree.] For each x ∈ X, query the rectangle Rx given by (12) and add

d(x, zi). The result is ei(x, Y ) by Lemma 11.
E4.4 [Next zi.] If i < k then increase i and go to E4.1.
E5 [Recurse on G[X] and combine.] Recursively compute the distances in G[X] using the

left subtree of t as a skew k-separator tree. The result are eccentricities e(x,X) for
each x ∈ X. For each x ∈ X, set e(x, Y ) = maxki=1 ei(x, Y ) from Step E4.3, then set
e(x) = max{e(x,X), e(x, Y )}.

E6 [Flip.] Repeat Steps E4–5 with the roles of X and Y exchanged.

4.4 Running Time
I Lemma 12. The running time of Algorithm E is O(n ·B(n, k) · 2kk2 logn).

We omit the proof. We can now establish Theorem 1 for diameter and radius.

Proof of Thm. 1, distances. To compute all eccentricities for a given graph we find a k-skew
separator for k = 5 tw(G)+4 using Lemma 9 in time n expO(tw(G)). We then run Algorithm
E, using Lemma 12 to bound the running time. From the eccentricities, the radius and
diameter can be computed in linear time using their definition. J

Algorithm E can be modified to compute the Wiener index, as described in [6, Sec. 4],
completing the proof of Theorem 1. The main observation is that the sum of distances
between all pair u, v ∈ V (G) can be written as pairwise distances within X, within Y ,
and between X and Y , carefully subtracting contributions from these sums that were
included twice. The orthogonal range queries for vertex x ∈ X now need to report the
sum of distances to every y ∈ Y , rather than just the value of the maximum distance
e(x;Y ). To this end, we use the monoid of positive integer tuples (d, r) with the operation
(d, r)⊕ (d′, r′) = (d+ d′, r+ r′) with identity element (0, 0). The value associated with vertex
x in Step E4.2 is f(p(y)) = (1, d(zi, y)). To avoid overcounting, the definition of Rx and
ei(x, Y ) have to be changed carefully.
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