74 research outputs found

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication

    Transmit Beamforming in Dense Networks-A Review

    Get PDF
    Communication technology has prospered in manifolds over the last decade. The scarcity of spectrum as well as the demand for higher data rates and increase in capacity has become a matter of concern. Newer technologies have evolved time and again, the latest of which is Long Term Evolution (LTE) and Long Term Evolution Advanced (LTE-A) systems more commonly known as 4G technology. The striking feature of LTE/LTE-A is the deployment of smaller cells (femto cells) in the vicinity of a large macro cells resulting in a dense network. As a result the data rate as well as capacity has increased in manifolds but the detrimental factor is the issue of interference between the various cells. Beamforming provides a solution in removing the issues of interference in dense networks. This paper focuses on the interference scenario in LTE dense networks and gives an overview of different beamforming methods that can provide a solution to the interference problem. Further, a review of several such methods so far proposed in available literature has been presented in this paper.Keywords:LTE/LTE-A, Dense Network, Interference,Beamformin

    Interference Alignment for Cognitive Radio Communications and Networks: A Survey

    Get PDF
    © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).Interference alignment (IA) is an innovative wireless transmission strategy that has shown to be a promising technique for achieving optimal capacity scaling of a multiuser interference channel at asymptotically high-signal-to-noise ratio (SNR). Transmitters exploit the availability of multiple signaling dimensions in order to align their mutual interference at the receivers. Most of the research has focused on developing algorithms for determining alignment solutions as well as proving interference alignment’s theoretical ability to achieve the maximum degrees of freedom in a wireless network. Cognitive radio, on the other hand, is a technique used to improve the utilization of the radio spectrum by opportunistically sensing and accessing unused licensed frequency spectrum, without causing harmful interference to the licensed users. With the increased deployment of wireless services, the possibility of detecting unused frequency spectrum becomes diminished. Thus, the concept of introducing interference alignment in cognitive radio has become a very attractive proposition. This paper provides a survey of the implementation of IA in cognitive radio under the main research paradigms, along with a summary and analysis of results under each system model.Peer reviewe

    INTERFERENCE MANAGEMENT IN LTE SYSTEM AND BEYOUND

    Get PDF
    The key challenges to high throughput in cellular wireless communication system are interference, mobility and bandwidth limitation. Mobility has never been a problem until recently, bandwidth has been constantly improved upon through the evolutions in cellular wireless communication system but interference has been a constant limitation to any improvement that may have resulted from such evolution. The fundamental challenge to a system designer or a researcher is how to achieve high data rate in motion (high speed) in a cellular system that is intrinsically interference-limited. Multi-antenna is the solution to data on the move and the capacity of multi-antenna system has been demonstrated to increase proportionally with increase in the number of antennas at both transmitter and receiver for point-to-point communications and multi-user environment. However, the capacity gain in both uplink and downlink is limited in a multi-user environment like cellular system by interference, the number of antennas at the base station, complexity and space constraint particularly for a mobile terminal. This challenge in the downlink provided the motivation to investigate successive interference cancellation (SIC) as an interference management tool LTE system and beyond. The Simulation revealed that ordered successive interference (OSIC) out performs non-ordered successive interference cancellation (NSIC) and the additional complexity is justified based on the associated gain in BER performance of OSIC. The major drawback of OSIC is that it is not efficient in network environment employing power control or power allocation. Additional interference management techniques will be required to fully manage the interference.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Performance Analysis of Resource Allocation with Successive group in Dense Femtocell Networks

    Get PDF
    To mitigate the uplink co-tier interference in heterogeneous networks, advanced receivers are used by Femtocell Base Stations. Orthogonal frequency allocation in interfering cells leads to inefficient spectrum usage. The users can opportunistically access the resources of nearby cells by exploiting the advantage of successive group decoder. Multi cell uplink spectrum allocation with SGD is formulated as a joint channel, rate and decoding group allocation problem. A greedy algorithm is proposed to maximize the weighted sum rates of variable bit rate users while meeting the rate requirements of guaranteed bit rate users. This greedy algorithm allows opportunistic transmission on nearby cell channels by GBR users and utilise interference free channels for high-rate transmission of VBR users. It also focuses on reducing the complexity of decoder design and improving the throughput gain over the conventional orthogonal spectrum allocation

    Blind interference alignment for cellular networks

    Get PDF
    Mención Internacional en el título de doctorManaging the interference is the main challenge in cellular networks. Multiple-Input Multiple-Output (MIMO) schemes have emerged as a means of achieving high-capacity in wireless communications. The most efficient MIMO techniques are based on managing the interference instead of avoiding it by employing orthogonal resource allocation schemes. These transmission schemes require the knowledge of the Channel State Information at the Transmitter (CSIT) to achieve the optimal Degrees of Freedom (DoF), also known as multiplexing gain. Providing an accurate CSIT in cellular environments involves high-capacity backhaul links and accurate synchronization, which imply the use of a large amount of network resources. Recently, a Blind Interference Alignment (BIA) scheme was devised as a means of achieving a growth in DoF regarding the amount of users served without the need for CSIT in the Multiple-Input Single-Output (MISO) Broadcast Channel (BC). It is demonstrated that BIA achieves the optimal DoF in the BC without CSIT. However, the implementation of BIA in cellular networks is not straightforward. This dissertation investigates the DoF and the corresponding sum-rate of cellular networks in absence of CSIT and their achievability by using BIA schemes. First, this dissertation derives the DoF-region of homogenous cellular networks with partial connectivity. Assuming that all the Base Stations (BSs) cooperate in order to transmit to all users in the network, we proposed an extension of the BIA scheme for the MISO BC where the set of BSs transmits as in a network MIMO. It is shown that the cooperation between BSs results futile because of the lack of full connectivity in cellular networks. After that, this dissertation presents several transmission schemes based on the network topology. By differentiating between users that can treat this interference optimally as noise and those who need to manage the interference from neighbouring BSs, a network BIA scheme is devised to achieve the optimal DoF in homogeneous cellular networks. Second, the use of BIA schemes is analyzed for heterogeneous cellular networks. It is demonstrated that the previous BIA schemes based on the network topology result nonoptimal in DoF because of the particular features of the heterogenous cellular networks. More specifically, assuming a macro-femto network, cooperation between both tiers leads to a penalty for macro users while femto users do not exploit the particular topology of this kind of network. In this dissertation, the optimal linear DoF (lDoF) in a two-tier network are derived subject to optimality in DoF for the upper tier. It is demonstrated that, without CSIT or any cooperation between tiers, the lower tier can achieve nonzero DoF while the upper tier attains the optimal DoF by transmitting independently of the lower tier deployment. After that, a cognitive BIA scheme that achieves this outer bound is devised for macro-femto cellular networks. The third part of this dissertation is focused on the implementation of BIA in practical scenarios. It is shown that transmission at limited SNR and coherence time are the main hurdles to overcome for practical implementations of BIA. With aim of managing both constraints, the use of BIA together with orthogonal approaches is proposed in this work. An improvement on the inherent noise increase of BIA and the required coherence time is achieved at expenses of losing DoF. Therefore, there exists a trade-off between multiplexing gain, sum-rate at finite SNR and coherence time in practical scenarios. The optimal resource allocation for orthogonal transmission is obtained after solving a very specific optimization problem. To complete the characterization of the performance of BIA in realistic scenarios a experimental evaluation based on a hardware implementation is presented at the end of this work. It is shown that BIA outperforms the sum-rate of schemes based on CSIT such as LZFB because of the hardware impairments and the costs of providing CSIT in a realist implementation.Programa Oficial de Doctorado en Multimedia y ComunicacionesPresidente: Luc Vandendorpe.- Secretario: María Julia Fernández-Getino García.- Vocal: Ignacio Santamaría Caballer
    • …
    corecore