95 research outputs found

    An Industrial Data Analysis and Supervision Framework for Predictive Manufacturing Systems

    Get PDF
    Due to the advancements in the Information and Communication Technologies field in the modern interconnected world, the manufacturing industry is becoming a more and more data rich environment, with large volumes of data being generated on a daily basis, thus presenting a new set of opportunities to be explored towards improving the efficiency and quality of production processes. This can be done through the development of the so called Predictive Manufacturing Systems. These systems aim to improve manufacturing processes through a combination of concepts such as Cyber-Physical Production Systems, Machine Learning and real-time Data Analytics in order to predict future states and events in production. This can be used in a wide array of applications, including predictive maintenance policies, improving quality control through the early detection of faults and defects or optimize energy consumption, to name a few. Therefore, the research efforts presented in this document focus on the design and development of a generic framework to guide the implementation of predictive manufacturing systems through a set of common requirements and components. This approach aims to enable manufacturers to extract, analyse, interpret and transform their data into actionable knowledge that can be leveraged into a business advantage. To this end a list of goals, functional and non-functional requirements is defined for these systems based on a thorough literature review and empirical knowledge. Subsequently the Intelligent Data Analysis and Real-Time Supervision (IDARTS) framework is proposed, along with a detailed description of each of its main components. Finally, a pilot implementation is presented for each of this components, followed by the demonstration of the proposed framework in three different scenarios including several use cases in varied real-world industrial areas. In this way the proposed work aims to provide a common foundation for the full realization of Predictive Manufacturing Systems

    Multimodal sentiment analysis in real-life videos

    Get PDF
    This thesis extends the emerging field of multimodal sentiment analysis of real-life videos, taking two components into consideration: the emotion and the emotion's target. The emotion component of media is traditionally represented as a segment-based intensity model of emotion classes. This representation is replaced here by a value- and time-continuous view. Adjacent research fields, such as affective computing, have largely neglected the linguistic information available from automatic transcripts of audio-video material. As is demonstrated here, this text modality is well-suited for time- and value-continuous prediction. Moreover, source-specific problems, such as trustworthiness, have been largely unexplored so far. This work examines perceived trustworthiness of the source, and its quantification, in user-generated video data and presents a possible modelling path. Furthermore, the transfer between the continuous and discrete emotion representations is explored in order to summarise the emotional context at a segment level. The other component deals with the target of the emotion, for example, the topic the speaker is addressing. Emotion targets in a video dataset can, as is shown here, be coherently extracted based on automatic transcripts without limiting a priori parameters, such as the expected number of targets. Furthermore, alternatives to purely linguistic investigation in predicting targets, such as knowledge-bases and multimodal systems, are investigated. A new dataset is designed for this investigation, and, in conjunction with proposed novel deep neural networks, extensive experiments are conducted to explore the components described above. The developed systems show robust prediction results and demonstrate strengths of the respective modalities, feature sets, and modelling techniques. Finally, foundations are laid for cross-modal information prediction systems with applications to the correction of corrupted in-the-wild signals from real-life videos

    English for Geodesy and Land Management Students: tutorial.

    Get PDF
    English for Geodesy and Land Management Students is the manual for the students majoring in this specialty «Geodesy and Land Management» at higher education institutions and aimed at mastering the English language for specific purposes in this domain. The manual consists of 2 parts comprising the key theoretical issues students study at their special classes. The 1st part consists of 11 units. The 2nd part consists of 14 units. Each unit is designed in the way to provide students with the possibility to practice all language skills giving them flexibility in the field of future professional sphere. In the last part of the tutorial students can find texts for supplementary reading useful for efficient independent work

    Automatic machine learning:methods, systems, challenges

    Get PDF

    Towards Supporting Visual Question and Answering Applications

    Get PDF
    abstract: Visual Question Answering (VQA) is a new research area involving technologies ranging from computer vision, natural language processing, to other sub-fields of artificial intelligence such as knowledge representation. The fundamental task is to take as input one image and one question (in text) related to the given image, and to generate a textual answer to the input question. There are two key research problems in VQA: image understanding and the question answering. My research mainly focuses on developing solutions to support solving these two problems. In image understanding, one important research area is semantic segmentation, which takes images as input and output the label of each pixel. As much manual work is needed to label a useful training set, typical training sets for such supervised approaches are always small. There are also approaches with relaxed labeling requirement, called weakly supervised semantic segmentation, where only image-level labels are needed. With the development of social media, there are more and more user-uploaded images available on-line. Such user-generated content often comes with labels like tags and may be coarsely labelled by various tools. To use these information for computer vision tasks, I propose a new graphic model by considering the neighborhood information and their interactions to obtain the pixel-level labels of the images with only incomplete image-level labels. The method was evaluated on both synthetic and real images. In question answering, my research centers on best answer prediction, which addressed two main research topics: feature design and model construction. In the feature design part, most existing work discussed how to design effective features for answer quality / best answer prediction. However, little work mentioned how to design features by considering the relationship between answers of one given question. To fill this research gap, I designed new features to help improve the prediction performance. In the modeling part, to employ the structure of the feature space, I proposed an innovative learning-to-rank model by considering the hierarchical lasso. Experiments with comparison with the state-of-the-art in the best answer prediction literature have confirmed that the proposed methods are effective and suitable for solving the research task.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    Automatic machine learning:methods, systems, challenges

    Get PDF
    This open access book presents the first comprehensive overview of general methods in Automatic Machine Learning (AutoML), collects descriptions of existing systems based on these methods, and discusses the first international challenge of AutoML systems. The book serves as a point of entry into this quickly-developing field for researchers and advanced students alike, as well as providing a reference for practitioners aiming to use AutoML in their work. The recent success of commercial ML applications and the rapid growth of the field has created a high demand for off-the-shelf ML methods that can be used easily and without expert knowledge. Many of the recent machine learning successes crucially rely on human experts, who select appropriate ML architectures (deep learning architectures or more traditional ML workflows) and their hyperparameters; however the field of AutoML targets a progressive automation of machine learning, based on principles from optimization and machine learning itself

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum
    corecore