

Automatic machine learning

Citation for published version (APA):
Hutter, F., Kotthoff, L., & Vanschoren, J. (Eds.) (2019). Automatic machine learning: methods, systems,
challenges. (Challenges in Machine Learning). Springer. https://doi.org/10.1007/978-3-030-05318-5

DOI:
10.1007/978-3-030-05318-5

Document status and date:
Published: 01/01/2019

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 05. Oct. 2023

https://doi.org/10.1007/978-3-030-05318-5
https://doi.org/10.1007/978-3-030-05318-5
https://research.tue.nl/en/publications/14f00e7a-0861-477a-81f6-5b5c51f660f4

Automatic Machine Learning:

Methods, Systems, Challenges

October 16, 2018

ii

Dedication

To Sophia and Tashia. – F.H.

To Kobe, Elias, Ada, and Veerle. – J.V.

To the AutoML community, for being awesome. – F.H., L.K., and J.V.

iii

iv Dedication

Foreword

”I’d like to use machine learning, but I can’t invest much time.” That is some-
thing you hear all too often in industry and from researchers in other disciplines.
The resulting demand for hands-free solutions to machine learning has recently
given rise to the field of automatic machine learning (AutoML), and I’m de-
lighted that with this book there is now the first comprehensive guide to this
field.

I have been very passionate about automating machine learning myself ever
since our automatic statistician project started back in 2014. I want us to be
really ambitious in this endeavour; we should try to automate all aspects of the
entire machine learning and data analysis pipeline. This includes automating
data collection and experiment design, automating data cleanup and missing
data imputation, automating feature selection and transformation, automat-
ing model discovery, criticism and explanation, automating the allocation of
computational resources, automating hyperparameter optimization, automat-
ing inference, and automating model monitoring and anomaly detection. This
is a huge list of things, and we’d optimally like to automate all of it.

There is a caveat of course. While full automation can motivate scientific
research and provide a long-term engineering goal, in practice we probably want
to semi-automate most of these and gradually remove the human in the loop
as needed. Along the way, what is going to happen if we try to do all this
automation, is that we are likely to develop powerful tools that will help make
the practice of machine learning, first of all, more systematic (since it’s very
adhoc these days) and also more efficient.

These are worthy goals even if we did not succeed in the final goal of au-
tomation, but as this book demonstrates, current AutoML methods can already
surpass human machine learning experts in several tasks. This trend is likely
only going to intensify as we’re making progress and as computation becomes
ever cheaper, and AutoML is therefore clearly one of the topics that is here to
stay. It is a great time to get involved in AutoML, and this book is an excellent
starting point.

This book includes very up-to-date overviews of the bread-and-butter tech-
niques we need in AutoML (hyperparameter optimization, meta learning, and
neural architecture search), provides in-depth discussions of existing AutoML
systems, and thoroughly evaluates the state-of-the-art in AutoML in a series of
competitions that ran since 2015. As such, I highly recommend this book to

i

ii Foreword

any machine learning researcher wanting to get started in the field and to any
practitioner looking to understand the methods behind all the AutoML tools
out there.

San Francisco, USA, October 2018 Zoubin Gharamani
Professor, University of Cambridge & Chief Scientist, Uber

Preface

The past decade has seen an explosion of machine learning research and appli-
cations; especially deep learning methods have enabled key advances in many
application domains, such as computer vision, speech processing, and game
playing. However, the performance of many machine learning methods is very
sensitive to a plethora of design decisions, which constitutes a considerable bar-
rier for new users. This is particularly true in the booming field of deep learning,
where human engineers need to select the right neural architectures, training
procedures, regularization methods, and the hyperparameters of all of these
components in order to make their networks do what they are supposed to do
with sufficient performance. This process has to be repeated for every applica-
tion. Even experts are often left with tedious episodes of trial and error until
they identify a good set of choices for a particular dataset.

The field of automatic machine learning (AutoML) aims to make these de-
cisions in a data-driven, objective, and automatic way: The user simply pro-
vides data, and the AutoML system automatically determines the approach that
performs best for this particular application. Thereby, AutoML makes state-
of-the-art machine learning approaches accessible to domain scientists who are
interested in applying machine learning but do not have the resources to learn
about the technologies behind it in detail. This can be seen as a democratiza-
tion of machine learning: with AutoML, customized state-of-the-art machine
learning is at everyone’s fingertips.

As we show in this book, AutoML approaches are already mature enough
to rival and sometimes even outperform human machine learning experts. Put
simply, AutoML can lead to improved performance while saving substantial
amounts of time and money, as machine learning experts are both hard to find
and expensive. As a result, commercial interest in AutoML has grown dramati-
cally in recent years, and several major tech companies are now developing their
own AutoML systems. We note, though, that the purpose of democratizing ma-
chine learning is served much better by open-source AutoML systems than by
proprietary paid black-box services.

This book presents an overview of the fast-moving field of AutoML. Due to
the community’s current focus on deep learning, some researchers nowadays mis-
takenly equate AutoML with the topic of neural architecture search (NAS); but
of course, if you’re reading this book you know that – while NAS is an excellent
example of AutoML – there is a lot more to AutoML than NAS. This book is

iii

iv Preface

intended to provide some background and starting points for researchers inter-
ested in developing their own AutoML approaches, highlight available systems
for practitioners who want to apply AutoML to their problems, and provide an
overview of the state of the art to researchers already working in AutoML. The
book divides into three parts on these different aspects of AutoML.

Part I presents an overview of AutoML methods. In Chapter 1, the au-
thors discuss the problem of hyperparameter optimization, the simplest and
most common problem that AutoML considers and describe the wide variety of
different approaches that are applied, with a particular focus on the methods
that are currently most efficient.

Chapter 2 shows how to learn to learn, i.e. how to use experience from
evaluating machine learning models to inform how to approach new learning
tasks with new data. Such techniques mimic the processes going on as a human
transitions from a machine learning novice to an expert and can tremendously
decrease the time required to get good performance on completely new machine
learning tasks.

Chapter 3 provides a comprehensive overview of methods for NAS. This is
one of the most challenging tasks in AutoML, since the design space is extremely
large and a single evaluation of a neural network can take a very long time.
Nevertheless, the area is very active, and new exciting approaches for solving
NAS appear regularly.

Part II focuses on actual AutoML systems that even novice users can use. If
you are most interested in applying AutoML to your machine learning problems,
this is the part you should start with. All of the chapters in this part evaluate
the systems they present to provide an idea of their performance in practice.

Chapter 4 describes Auto-WEKA, one of the first AutoML systems. It is
based on the well-known WEKA machine learning toolkit and searches over dif-
ferent classification and regression methods, their hyperparameter settings, and
data preprocessing methods. All of this is available through WEKA’s graphical
user interface at the click of a button, without the need for a single line of code.

Chapter 5 gives an overview of Hyperopt-Sklearn, an AutoML framework
based on the popular scikit-learn framework. The chapter describes the setup
of the optimization problem Hyperopt-Sklearn that considers and demonstrates
how to use the system.

Chapter 6 describes Auto-sklearn, which is also based on scikit-learn. It ap-
plies similar optimization techniques as Auto-WEKA and adds several improve-
ments over other systems at the time, such as meta-learning for warmstarting
the optimization and automatic ensembling. The chapter compares the per-
formance of Auto-sklearn to that of the two systems in the previous chapters,
Auto-WEKA and Hyperopt-sklearn. In two different versions, Auto-sklearn is
the system that won the challenges described in Part III of this book.

Chapter 7 gives an overview of Auto-Net, a system for automated deep
learning that selects both the architecture and the hyperparameters of deep
neural networks. An early version of Auto-Net produced the first automatically-
tuned neural network that won against human experts in a competition setting.

Chapter 8 describes the TPOT system, which automatically constructs and

Preface v

optimizes tree-based machine learning pipelines. These pipelines are more flex-
ible than approaches that consider only a set of fixed machine learning compo-
nents that are connected in pre-defined ways.

Chapter 9 presents the Automatic Statistician, a system to automate data
science by generating fully-automated reports that include an analysis of the
data, as well as predictive models and a comparison of their performance. A
unique feature of the Automatic Statistician is that it provides natural-language
descriptions of the results, suitable for non-experts in machine learning.

Finally, Part III and Chapter 10 give an overview of the AutoML challenges,
which have been running since 2015. The purpose of these challenges is to spur
the development of approaches that perform well on practical problems, and
determine the best overall approach from the submissions. The chapter details
the ideas and concepts behind the challenges and their design, as well as results
from past challenges.

To the best of our knowledge, this is the first comprehensive compilation of
all aspects of AutoML: the methods behind it, available systems that imple-
ment AutoML in practice, and the challenges for evaluating them. This book
provides practitioners with background and ways to get started developing their
own AutoML systems and details existing state-of-the-art systems that can be
applied immediately to a wide range of machine learning tasks. The field is mov-
ing quickly, and with this book we hope to help organize and digest the many
recent advances. We hope you enjoy this book and join the growing community
of AutoML enthusiasts.

Acknowledgments

We wish to thank all the chapter authors, without whom this book would not
have been possible. We are also grateful to the European Union’s Horizon 2020
research and innovation programme for covering the open access fees for this
book through Frank’s ERC Starting Grant (grant no. 716721).

Freiburg, Germany Frank Hutter
Laramie, WY, USA Lars Kotthoff
Eindhoven, The Netherlands Joaquin Vanschoren

October 2018

vi Preface

Contents

I AutoML Methods 1

1 Hyperparameter Optimization 3
1.1 Introduction . 3
1.2 Problem Statement . 5

1.2.1 Alternatives to Optimization: Ensembling and Marginal-
ization . 6

1.2.2 Optimizing for Multiple Objectives 6
1.3 Blackbox Hyperparameter Optimization 7

1.3.1 Model-Free Blackbox Optimization Methods 7
1.3.2 Bayesian Optimization . 9

1.4 Multi-Fidelity Optimization . 13
1.4.1 Learning Curve-Based Prediction for Early Stopping . . . 14
1.4.2 Bandit-Based Algorithm Selection Methods 15
1.4.3 Adaptive Choices of Fidelities 17

1.5 Applications to AutoML . 18
1.6 Open Problems and Future Research Directions 20

2 Meta-Learning 39
2.1 Introduction . 39
2.2 Learning from Model Evaluations 40

2.2.1 Task-Independent Recommendations 41
2.2.2 Configuration Space Design 41
2.2.3 Configuration Transfer . 42
2.2.4 Learning Curves . 44

2.3 Learning from Task Properties 45
2.3.1 Meta-Features . 45
2.3.2 Learning Meta-Features 47
2.3.3 Warm-Starting Optimization from Similar Tasks 47
2.3.4 Meta-Models . 49
2.3.5 Pipeline Synthesis . 50
2.3.6 To Tune or Not to Tune? 51

2.4 Learning from Prior Models . 51
2.4.1 Transfer Learning . 51
2.4.2 Meta-Learning in Neural Networks 52

vii

viii CONTENTS

2.4.3 Few-Shot Learning . 52
2.4.4 Beyond Supervised Learning 54

2.5 Conclusion . 55

3 Neural Architecture Search 69
3.1 Introduction . 69
3.2 Search Space . 70
3.3 Search Strategy . 73
3.4 Performance Estimation Strategy 76
3.5 Future Directions . 78

II AutoML Systems 87

4 Auto-WEKA 89
4.1 Introduction . 90
4.2 Preliminaries . 91

4.2.1 Model Selection . 91
4.2.2 Hyperparameter Optimization 91

4.3 CASH . 92
4.3.1 Sequential Model-Based Algorithm Configuration (SMAC) 93

4.4 Auto-WEKA . 94
4.5 Experimental Evaluation . 96

4.5.1 Baseline Methods . 97
4.5.2 Results for Cross-Validation Performance 99
4.5.3 Results for Test Performance 100

4.6 Conclusion . 100
4.6.1 Community Adoption . 101

5 Hyperopt-Sklearn 105
5.1 Introduction . 105
5.2 Background: Hyperopt for Optimization 106
5.3 Scikit-Learn Model Selection as a Search Problem 107
5.4 Example Usage . 109
5.5 Experiments . 114
5.6 Discussion and Future Work . 114
5.7 Conclusions . 119

6 Auto-sklearn 123
6.1 Introduction . 124
6.2 AutoML as a CASH Problem . 125
6.3 New Methods for Increasing Efficiency and Robustness of AutoML126

6.3.1 Meta-Learning for Finding Good Instantiations of Ma-
chine Learning Frameworks 126

6.3.2 Automated Ensemble Construction of Models Evaluated
During Optimization . 127

CONTENTS ix

6.4 A Practical Automated Machine Learning System 128

6.5 Comparing Auto-sklearn to Auto-WEKA and Hyperopt-sklearn131

6.6 Evaluation of the Proposed AutoML Improvements 133

6.7 Detailed Analysis of Auto-sklearn Components 135

6.8 Discussion and Conclusion . 138

6.8.1 Discussion . 138

6.8.2 Usage . 138

6.8.3 Extensions in PoSH Auto-sklearn 139

6.8.4 Conclusion and Future Work 139

7 Towards Automatically-Tuned Deep Neural Networks 145

7.1 Introduction . 145

7.2 Auto-Net 1.0 . 147

7.3 Auto-Net 2.0 . 149

7.4 Experiments . 151

7.4.1 Baseline Evaluation of Auto-Net 1.0 and Auto-sklearn . . 153

7.4.2 Results for AutoML Competition Datasets 154

7.4.3 Comparing AutoNet 1.0 and 2.0 155

7.5 Conclusion . 156

8 TPOT 163

8.1 Introduction . 163

8.2 Methods . 164

8.2.1 Machine Learning Pipeline Operators 164

8.2.2 Constructing Tree-Based Pipelines 165

8.2.3 Optimizing Tree-Based Pipelines 166

8.2.4 Benchmark Data . 166

8.3 Results . 167

8.4 Conclusions and Future Work . 170

9 The Automatic Statistician 175

9.1 Introduction . 175

9.2 Basic Anatomy of an Automatic Statistician 177

9.2.1 Related Work . 178

9.3 An Automatic Statistician for Time Series Data 178

9.3.1 The Grammar Over Kernels 178

9.3.2 The Search and Evaluation Procedure 179

9.3.3 Generating Descriptions in Natural Language 180

9.3.4 Comparison with Humans 181

9.4 Other Automatic Statistician Systems 183

9.4.1 Core Components . 183

9.4.2 Design Challenges . 184

9.5 Conclusion . 185

x CONTENTS

III AutoML Challenges 189

10 AutoML Challenges 191
10.1 Introduction . 192
10.2 Problem Formalization and Overview 195

10.2.1 Scope of the Problem . 195
10.2.2 Full Model Selection . 195
10.2.3 Optimization of Hyper-Parameters 196
10.2.4 Strategies of Model Search 198

10.3 Data . 202
10.4 Challenge Protocol . 205

10.4.1 Time Budget and Computational Resources 205
10.4.2 Scoring Metrics . 206
10.4.3 Rounds and Phases in the 2015/2016 Challenge 208
10.4.4 Phases in the 2018 Challenge 209

10.5 Results . 210
10.5.1 Scores Obtained in the 2015/2016 Challenge 211
10.5.2 Scores Obtained in the 2018 Challenge 212
10.5.3 Difficulty of Datasets/Tasks 214
10.5.4 Hyper-Parameter Optimization 219
10.5.5 Meta-Learning . 223
10.5.6 Methods Used in the Challenges 223

10.6 Discussion . 227
10.7 Conclusion . 228

Part I

AutoML Methods

1

Chapter 1

Hyperparameter
Optimization

Matthias Feurer and Frank Hutter

Abstract

Recent interest in complex and computationally expensive machine learn-
ing models with many hyperparameters, such as automated machine learning
(AutoML) frameworks and deep neural networks, has resulted in a resurgence
of research on hyperparameter optimization (HPO). In this chapter, we give an
overview of the most prominent approaches for HPO. We first discuss black-
box function optimization methods based on model-free methods and Bayesian
optimization. Since the high computational demand of many modern machine
learning applications renders pure blackbox optimization extremely costly, we
next focus on modern multi-fidelity methods that use (much) cheaper variants
of the blackbox function to approximately assess the quality of hyperparameter
setting. Lastly, we point to open problems and future research directions.

1.1 Introduction

Every machine learning system has hyperparameters, and the most basic task
in automated machine learning (AutoML) is to automatically set these hyper-
parameters to optimize performance. Especially recent deep neural networks
crucially depend on a wide range of hyperparameter choices about the neural
network’s architecture, regularization, and optimization. Automated hyperpa-
rameter optimization (HPO) has several important use cases; it can

• reduce the human effort necessary for applying machine learning. This is
particularly important in the context of AutoML.

3

4 CHAPTER 1. HYPERPARAMETER OPTIMIZATION

• improve the performance of machine learning algorithms (by tailoring
them to the problem at hand); this has led to new state-of-the-art per-
formances for important machine learning benchmarks in several studies
(e.g. [140, 105]).

• improve the reproducibility and fairness of scientific studies. Automated
HPO is clearly more reproducible than manual search. It facilitates fair
comparisons since different methods can only be compared fairly if they
all receive the same level of tuning for the problem at hand [14, 133].

The problem of HPO has a long history, dating back to the 1990s (e.g., [126,
107, 77, 82]), and it was also established early that different hyperparameter
configurations tend to work best for different datasets [82]. In contrast, it is a
rather new insight that HPO can be used to adapt general-purpose pipelines to
specific application domains [30]. Nowadays, it is also widely acknowledged that
tuned hyperparameters improve over the default setting provided by common
machine learning libraries [149, 100, 130, 116].

Because of the increased usage of machine learning in companies, HPO is
also of substantial commercial interest and plays an ever larger role there, be it
in company-internal tools [45], as part of machine learning cloud services [89, 6],
or as a service by itself [137].

HPO faces several challenges which make it a hard problem in practice:

• Function evaluations can be extremely expensive for large models (e.g., in
deep learning), complex machine learning pipelines, or large datesets.

• The configuration space is often complex (comprising a mix of continuous,
categorical and conditional hyperparameters) and high-dimensional. Fur-
thermore, it is not always clear which of an algorithm’s hyperparameters
need to be optimized, and in which ranges.

• We usually don’t have access to a gradient of the loss function with re-
spect to the hyperparameters. Furthermore, other properties of the target
function often used in classical optimization do not typically apply, such
as convexity and smoothness.

• One cannot directly optimize for generalization performance as training
datasets are of limited size.

We refer the interested reader to other reviews of HPO for further discussions
on this topic [64, 94].

This chapter is structured as follows. First, we define the HPO problem
formally and discuss its variants (Section 1.2). Then, we discuss blackbox opti-
mization algorithms for solving HPO (Section 1.3). Next, we focus on modern
multi-fidelity methods that enable the use of HPO even for very expensive mod-
els, by exploiting approximate performance measures that are cheaper than full
model evaluations (Section 1.4). We then provide an overview of the most
important hyperparameter optimization systems and applications to AutoML
(Section 1.5) and end the chapter with a discussion of open problems (Section
1.6).

1.2. PROBLEM STATEMENT 5

1.2 Problem Statement

Let A denote a machine learning algorithm with N hyperparameters. We denote
the domain of the n-th hyperparameter by Λn and the overall hyperparameter
configuration space as Λ = Λ1 × Λ2 × . . .ΛN . A vector of hyperparameters is
denoted by λ ∈ Λ, and A with its hyperparameters instantiated to λ is denoted
by Aλ.

The domain of a hyperparameter can be real-valued (e.g., learning rate),
integer-valued (e.g., number of layers), binary (e.g., whether to use early stop-
ping or not), or categorical (e.g., choice of optimizer). For integer and real-
valued hyperparameters, the domains are mostly bounded for practical reasons,
with only a few exceptions [12, 136, 113].

Furthermore, the configuration space can contain conditionality, i.e., a hy-
perparameter may only be relevant if another hyperparameter (or some combi-
nation of hyperparameters) takes on a certain value. Conditional spaces take
the form of directed acyclic graphs. Such conditional spaces occur, e.g., in the
automated tuning of machine learning pipelines, where the choice between dif-
ferent preprocessing and machine learning algorithms is modeled as a categorical
hyperparameter, a problem known as Full Model Selection (FMS) or Combined
Algorithm Selection and Hyperparameter (CASH) [30, 149, 83, 34]. They also
occur when optimizing the architecture of a neural network: e.g., the number
of layers can be an integer hyperparameter and the per-layer hyperparameters
of layer i are only active if the network depth is at least i [12, 14, 33].

Given a data set D, our goal is to find

λ∗ = argmin
λ∈Λ

E(Dtrain,Dvalid)∼DV(L,Aλ, Dtrain, Dvalid), (1.1)

where V(L,Aλ, Dtrain, Dvalid) measures the loss of a model generated by al-
gorithm A with hyperparameters λ on training data Dtrain and evaluated on
validation data Dvalid. In practice, we only have access to finite data D ∼ D
and thus need to approximate the expectation in Equation 1.1.

Popular choices for the validation protocol V(·, ·, ·, ·) are the holdout and
cross-validation error for a user-given loss function (such as misclassification
rate); see Bischl et al. [16] for an overview of validation protocols. Several
strategies for reducing the evaluation time have been proposed: It is possible
to only test machine learning algorithms on a subset of folds [149], only on
a subset of data [102, 147, 78], or for a small amount of iterations; we will
discuss some of these strategies in more detail in Section 1.4. Recent work on
multi-task [147] and multi-source [121] optimization introduced further cheap,
auxiliary tasks, which can be queried instead of Equation 1.1. These can provide
cheap information to help HPO, but do not necessarily train a machine learning
model on the dataset of interest and therefore do not yield a usable model as a
side product.

6 CHAPTER 1. HYPERPARAMETER OPTIMIZATION

1.2.1 Alternatives to Optimization: Ensembling and Marginal-
ization

Solving Equation 1.1 with one of the techniques described in the rest of this
chapter usually requires fitting the machine learning algorithm A with multiple
hyperparameter vectors λt. Instead of using the argmin-operator over these,
it is possible to either construct an ensemble (which aims to minimize the loss
for a given validation protocol) or to integrate out all the hyperparameters (if
the model under consideration is a probabilistic model). We refer to Guyon et
al. [50] and the references therein for a comparison of frequentist and Bayesian
model selection.

Only choosing a single hyperparameter configuration can be wasteful when
many good configurations have been identified by HPO, and combining them in
an ensemble can improve performance [109]. This is particularly useful in Au-
toML systems with a large configuration space (e.g., in FMS or CASH), where
good configurations can be very diverse, which increases the potential gains
from ensembling [31, 19, 34, 4]. To further improve performance, Automatic
Frankensteining [155] uses HPO to train a stacking model [156] on the outputs
of the models found with HPO; the 2nd level models are then combined using a
traditional ensembling strategy.

The methods discussed so far applied ensembling after the HPO procedure.
While they improve performance in practice, the base models are not optimized
for ensembling. It is, however, also possible to directly optimize for models
which would maximally improve an existing ensemble [97].

Finally, when dealing with Bayesian models it is often possible to integrate
out the hyperparameters of the machine learning algorithm, for example using
evidence maximization [98], Bayesian model averaging [56], slice sampling [111]
or empirical Bayes [103].

1.2.2 Optimizing for Multiple Objectives

In practical applications it is often necessary to trade off two or more objectives,
such as the performance of a model and resource consumption [65] (see also
Chapter 3) or multiple loss functions [57]. Potential solutions can be obtained
in two ways.

First, if a limit on a secondary performance measure is known (such as
the maximal memory consumption), the problem can be formulated as a con-
strained optimization problem. We will discuss constraint handling in Bayesian
optimization in Section 1.3.2.

Second, and more generally, one can apply multi-objective optimization to
search for the Pareto front, a set of configurations which are optimal tradeoffs
between the objectives in the sense that, for each configuration on the Pareto
front, there is no other configuration which performs better for at least one and
at least as well for all other objectives. The user can then choose a configuration
from the Pareto front. We refer the interested reader to further literature on
this topic [65, 134, 53, 57].

1.3. BLACKBOX HYPERPARAMETER OPTIMIZATION 7

Grid Search
Un

im
po

rta
nt

 p
ar

am
et

er
Random Search

Un
im

po
rta

nt
 p

ar
am

et
er

Important parameter Important parameter
Figure 1.1: Comparison of grid search and random search for minimizing a
function with one important and one unimportant parameter. This figure is
based on the illustration in Figure 1 of Bergstra and Bengio [13].

1.3 Blackbox Hyperparameter Optimization

In general, every blackbox optimization method can be applied to HPO. Due
to the non-convex nature of the problem, global optimization algorithms are
usually preferred, but some locality in the optimization process is useful in order
to make progress within the few function evaluations that are usually available.
We first discuss model-free blackbox HPO methods and then describe blackbox
Bayesian optimization methods.

1.3.1 Model-Free Blackbox Optimization Methods

Grid search is the most basic HPO method, also known as full factorial de-
sign [110]. The user specifies a finite set of values for each hyperparameter,
and grid search evaluates the Cartesian product of these sets. This suffers from
the curse of dimensionality since the required number of function evaluations
grows exponentially with the dimensionality of the configuration space. An ad-
ditional problem of grid search is that increasing the resolution of discretization
substantially increases the required number of function evaluations.

A simple alternative to grid search is random search [13].1 As the name
suggests, random search samples configurations at random until a certain budget
for the search is exhausted. This works better than grid search when some
hyperparameters are much more important than others (a property that holds
in many cases [13, 61]). Intuitively, when run with a fixed budget of B function
evaluations, the number of different values grid search can afford to evaluate

1In some disciplines this is also known as pure random search[158].

8 CHAPTER 1. HYPERPARAMETER OPTIMIZATION

for each of the N hyperparameters is only B1/N , whereas random search will
explore B different values for each; see Figure 1.1 for an illustration.

Further advantages over grid search include easier parallelization (since work-
ers do not need to communicate with each other and failing workers do not leave
holes in the design) and flexible resource allocation (since one can add an arbi-
trary number of random points to a random search design to still yield a random
search design; the equivalent does not hold for grid search).

Random search is a useful baseline because it makes no assumptions on the
machine learning algorithm being optimized, and, given enough resources, will,
in expectation, achieves performance arbitrarily close to the optimum. Interleav-
ing random search with more complex optimization strategies therefore allows to
guarantee a minimal rate of convergence and also adds exploration that can im-
prove model-based search [59, 3]. Random search is also a useful method for ini-
tializing the search process, as it explores the entire configuration space and thus
often finds settings with reasonable performance. However, it is no silver bullet
and often takes far longer than guided search methods to identify one of the
best performing hyperparameter configurations: e.g., when sampling without
replacement from a configuration space with N Boolean hyperparameters with
a good and a bad setting each and no interaction effects, it will require an ex-
pected 2N−1 function evaluations to find the optimum, whereas a guided search
could find the optimum in N + 1 function evaluations as follows: starting from
an arbitrary configuration, loop over the hyperparameters and change one at a
time, keeping the resulting configuration if performance improves and reverting
the change if it doesn’t. Accordingly, the guided search methods we discuss in
the following sections usually outperform random search [12, 14, 153, 90, 33].

Population-based methods, such as genetic algorithms, evolutionary algo-
rithms, evolutionary strategies, and particle swarm optimization are optimiza-
tion algorithms that maintain a population, i.e., a set of configurations, and
improve this population by applying local perturbations (so-called mutations)
and combinations of different members (so-called crossover) to obtain a new
generation of better configurations. These methods are conceptually simple,
can handle different data types, and are embarrassingly parallel [91] since a
population of N members can be evaluated in parallel on N machines.

One of the best known population-based methods is the covariance ma-
trix adaption evolutionary strategy (CMA-ES [51]); this simple evolutionary
strategey samples configurations from a multivariate Gaussian whose mean and
covariance are updated in each generation based on the success of the popula-
tion’s individuals. CMA-ES is one of the most competitive blackbox optimiza-
tion algorithms, regularly dominating the Black-Box Optimization Benchmark-
ing (BBOB) challenge [11].

For further details on population-based methods, we refer to [28, 138]; we
discuss applications to hyperparameter optimization in Section 1.5, applications
to neural architecture search in Chapter 3, and genetic programming for Au-
toML pipelines in Chapter 8.

1.3. BLACKBOX HYPERPARAMETER OPTIMIZATION 9

1.3.2 Bayesian Optimization

Bayesian optimization is a state-of-the-art optimization framework for the global
optimization of expensive blackbox functions, which recently gained traction in
HPO by obtaining new state-of-the-art results in tuning deep neural networks
for image classification [140, 141], speech recognition [22] and neural language
modeling [105], and by demonstrating wide applicability to different problem
settings. For an in-depth introduction to Bayesian optimization, we refer to the
excellent tutorials by Shahriari et al. [135] and Brochu et al. [18].

In this section we first give a brief introduction to Bayesian optimization,
present alternative surrogate models used in it, describe extensions to condi-
tional and constrained configuration spaces, and then discuss several important
applications to hyperparameter optimization.

Many recent advances in Bayesian optimization do not treat HPO as a black-
box any more, for example multi-fidelity HPO (see Section 1.4), Bayesian opti-
mization with meta-learning (see Chapter 2), and Bayesian optimization taking
the pipeline structure into account [160, 159]. Furthermore, many recent devel-
opments in Bayesian optimization do not directly target HPO, but can often
be readily applied to HPO, such as new acquisition functions, new models and
kernels, and new parallelization schemes.

Bayesian Optimization in a Nutshell

Bayesian optimization is an iterative algorithm with two key ingredients: a prob-
abilistic surrogate model and an acquisition function to decide which point to
evaluate next. In each iteration, the surrogate model is fitted to all observations
of the target function made so far. Then the acquisition function, which uses
the predictive distribution of the probabilistic model, determines the utility of
different candidate points, trading off exploration and exploitation. Compared
to evaluating the expensive blackbox function, the acquisition function is cheap
to compute and can therefore be thoroughly optimized.

Although many acquisition functions exist, the expected improvement (EI) [72]:

E[I(λ)] = E[max(fmin − Y, 0)] (1.2)

is common choice since it can be computed in closed form if the model prediction
Y at configuration λ follow a normal distribution:

E[I(λ)] = (fmin − µ(λ)) Φ

(
fmin − µ(λ)

σ

)
+ σφ

(
fmin − µ(λ)

σ

)
, (1.3)

where φ(·) and Φ(·) are the standard normal density and standard normal dis-
tribution function, and fmin is the best observed value so far.

Figure 1.2 illustrates Bayesian optimization optimizing a toy function.

Surrogate Models

Traditionally, Bayesian optimization employs Gaussian processes [124] to model
the target function because of their expressiveness, smooth and well-calibrated

10 CHAPTER 1. HYPERPARAMETER OPTIMIZATION

observation
acquisition max

Iteration 2

acquisition function

objective function

new observation

Iteration 3

posterior mean

posterior uncertainty

Iteration 4

Figure 1.2: Illustration of Bayesian optimization on a 1-d function. Our goal
is to minimize the dashed line using a Gaussian process surrogate (predictions
shown as black line, with blue tube representing the uncertainty) by maximiz-
ing the acquisition function represented by the lower orange curve. (Top) The
acquisition value is low around observations, and the highest acquisition value
is at a point where the predicted function value is low and the predictive un-
certainty is relatively high. (Middle) While there is still a lot of variance to the
left of the new observation, the predicted mean to the right is much lower and
the next observation is conducted there. (Bottom) Although there is almost no
uncertainty left around the location of the true maximum, the next evaluation
is done there due to its expected improvement over the best point so far.

1.3. BLACKBOX HYPERPARAMETER OPTIMIZATION 11

uncertainty estimates and closed-form computability of the predictive distribu-
tion. A Gaussian process G (m(λ), k(λ,λ′)) is fully specified by a mean m(λ)
and a covariance function k(λ,λ′), although the mean function is usually as-
sumed to be constant in Bayesian optimization. Mean and variance predictions
µ(·) and σ2(·) for the noise-free case can be obtained by:

µ(λ) = kT∗K−1y, σ2(λ) = k(λ,λ)− kT∗K−1k∗, (1.4)

where k∗ denotes the vector of covariances between λ and all previous observa-
tions, K is the covariance matrix of all previously evaluated configurations and
y are the observed function values. The quality of the Gaussian process depends
solely on the covariance function. A common choice is the Mátern 5/2 kernel,
with its hyperparameters integrated out by Markov Chain Monte Carlo [140].

One downside of standard Gaussian processes is that they scale cubically
in the number of data points, limiting their applicability when one can afford
many function evaluations (e.g., with many parallel workers, or when function
evaluations are cheap due to the use of lower fidelities). This cubic scaling can be
avoided by scalable Gaussian process approximations, such as sparse Gaussian
processes. These approximate the full Gaussian process by using only a subset
of the original dataset as inducing points to build the kernel matrix K. While
they allowed Bayesian optimization with GPs to scale to tens of thousands
of datapoints for optimizing the parameters of a randomized SAT solver [62],
there are criticism about the calibration of their uncertainty estimates and their
applicability to standard HPO has not been tested [104, 154].

Another downside of Gaussian processes with standard kernels is their poor
scalability to high dimensions. As a result, many extensions have been pro-
posed to efficiently handle intrinsic properties of configuration spaces with large
number of hyperparameters, such as the use of random embeddings [153], us-
ing Gaussian processes on partitions of the configuration space [154], cylindric
kernels [114], and additive kernels [75, 40].

Since some other machine learning models are more scalable and flexible than
Gaussian processes, there is also a large body of research on adapting these mod-
els to Bayesian optimization. Firstly, (deep) neural networks are a very flexible
and scalable models. The simplest way to apply them to Bayesian optimization
is as a feature extractor to preprocess inputs and then use the outputs of the
final hidden layer as basis functions for Bayesian linear regression [141]. A more
complex, fully Bayesian treatment of the network weights, is also possible by
using a Bayesian neural network trained with stochastic gradient Hamiltonian
Monte Carlo [144]. Neural networks tend to be faster than Gaussian processes
for Bayesian optimization after ∼250 function evaluations, which also allows for
large-scale parallelism. The flexibility of deep learning can also enable Bayesian
optimization on more complex tasks. For example, a variational auto-encoder
can be used to embed complex inputs (such as the structured configurations of
the automated statistician, see Chapter 9) into a real-valued vector such that
a regular Gaussian process can handle it [92]. For multi-source Bayesian op-
timization, a neural network architecture built on factorization machines [125]

12 CHAPTER 1. HYPERPARAMETER OPTIMIZATION

can include information on previous tasks [131] and has also been extended to
tackle the CASH problem [132].

Another alternative model for Bayesian optimization are random forests [59].
While GPs perform better than random forests on small, numerical configura-
tion spaces [29], random forests natively handle larger, categorical and condi-
tional configuration spaces where standard GPs do not work well [29, 70, 90].
Furthermore, the computational complexity of random forests scales far bet-
ter to many data points: while the computational complexity of fitting and
predicting variances with GPs for n data points scales as O(n3) and O(n2), re-
spectively, for random forests, the scaling in n is only O(n log n) and O(log n),
respectively. Due to these advantages, the SMAC framework for Bayesian opti-
mization with random forests [59] enabled the prominent AutoML frameworks
Auto-WEKA [149] and Auto-sklearn [34] (which are described in Chapters 4
and 6).

Instead of modeling the probability p(y|λ) of observations y given the config-
urations λ, the Tree Parzen Estimator (TPE [12, 14]) models density functions
p(λ|y < α) and p(λ|y ≥ α). Given a percentile α (usually set to 15%), the
observations are divided in good observations and bad observations and simple

1-d Parzen windows are used to model the two distributions. The ratio p(λ|y<α)
p(λ|y≥α)

is related to the expected improvement acquisition function and is used to pro-
pose new hyperparameter configurations. TPE uses a tree of Parzen estimators
for conditional hyperparameters and demonstrated good performance on such
structured HPO tasks [12, 14, 29, 149, 143, 160, 33], is conceptually simple,
and parallelizes naturally [91]. It is also the workhorse behind the AutoML
framework Hyperopt-sklearn [83] (which is described in Chapter 5).

Finally, we note that there are also surrogate-based approaches which do
not follow the Bayesian optimization paradigm: Hord [67] uses a deterministic
RBF surrogate, and Harmonica [52] uses a compressed sensing technique, both
to tune the hyperparameters of deep neural networks.

Configuration Space Description

Bayesian optimization was originally designed to optimize box-constrained, real-
valued functions. However, for many machine learning hyperparameters, such
as the learning rate in neural networks or regularization in support vector ma-
chines, it is common to optimize the exponent of an exponential term to describe
that changing it, e.g., from 0.001 to 0.01 is expected to have a similarly high
impact as changing it from 0.1 to 1. A technique known as input warping [142]
allows to automatically learn such transformations during the optimization pro-
cess by replacing each input dimension with the two parameters of a Beta dis-
tribution and optimizing these.

One obvious limitation of the box-constraints is that the user needs to de-
fine these upfront. To avoid this, it is possible to dynamically expand the con-
figuration space [136, 113]. Alternatively, the estimation-of-distribution-style
algorithm TPE [12] is able to deal with infinite spaces on which a (typically
Gaussian) prior is placed.

1.4. MULTI-FIDELITY OPTIMIZATION 13

Integers and categorical hyperparameters require special treatment but can
be integrated fairly easily into regular Bayesian optimization by small adapta-
tions of the kernel and the optimization procedure (see Section 12.1.2 of [58], as
well as [42]). Other models, such as factorization machines and random forests,
can also naturally handle these data types.

Conditional hyperparameters are still an active area of research (see Chap-
ters 6 and 5 for depictions of conditional configuration spaces in recent AutoML
systems). They can be handled natively by tree-based methods, such as random
forests [59] and tree Parzen estimators (TPE) [12], but due to the numerous ad-
vantages of Gaussian processes over other models, multiple kernels for structured
configuration spaces have also been proposed [12, 63, 146, 96, 70, 4, 92].

Constrained Bayesian Optimization

In realistic scenarios it is often necessary to satisfy constraints, such as memory
consumption [139, 149], training time [149], prediction time [41, 43], accuracy
of a compressed model [41], energy usage [43] or simply to not fail during the
training procedure [43].

Constraints can be hidden in that only a binary observation (success or
failure) is available [88]. Typical examples in AutoML are memory and time
constraints to allow training of the algorithms in a shared computing system,
and to make sure that a single slow algorithm configuration does not use all the
time available for HPO [149, 34] (see also Chapters 4 and 6).

Constraints can also merely be unknown, meaning that we can observe and
model an auxiliary constraint function, but only know about a constraint viola-
tion after evaluating the target function [46]. An example of this is the prediction
time of a support vector machine, which can only be obtained by training it as
it depends on the number of support vectors selected during training.

The simplest approach to model violated constraints is to define a penalty
value (at least as bad as the worst possible observable loss value) and use it
as the observation for failed runs [59, 149, 34, 45]. More advanced approaches
model the probability of violating one or more constraints and actively search
for configurations with low loss values that are unlikely to violate any of the
given constraints [88, 46, 41, 43].

Bayesian optimization frameworks using information theoretic acquisition
functions allow decoupling the evaluation of the target function and the con-
straints to dynamically choose which of them to evaluate next [43, 55]. This
becomes advantageous when evaluating the function of interest and the con-
straints require vastly different amounts of time, such as evaluating a deep
neural network’s performance and memory consumption [43].

1.4 Multi-Fidelity Optimization

Increasing dataset sizes and increasingly complex models are a major hurdle in
HPO since they make blackbox performance evaluation more expensive. Train-

14 CHAPTER 1. HYPERPARAMETER OPTIMIZATION

ing a single hyperparameter configuration on large datasets can nowadays easily
exceed several hours and take up to several days [85].

A common technique to speed up manual tuning is therefore to probe an al-
gorithm/hyperparameter configuration on a small subset of the data, by training
it only for a few iterations, by running it on a subset of features, by only using
one or a few of the cross-validation folds, or by using down-sampled images in
computer vision. Multi-fidelity methods cast such manual heuristics into for-
mal algorithms, using so-called low fidelity approximations of the actual loss
function to minimize. These approximations introduce a tradeoff between opti-
mization performance and runtime, but in practice, the obtained speedups often
outweigh the approximation error.

First, we review methods which model an algorithm’s learning curve dur-
ing training and can stop the training procedure if adding further resources is
predicted to not help. Second, we discuss simple selection methods which only
choose one of a finite set of given algorithms/hyperparameter configurations.
Third, we discuss multi-fidelity methods which can actively decide which fidelity
will provide most information about finding the optimal hyperparameters. We
also refer to Chapter 2 (which discusses how multi-fidelity methods can be used
across datasets) and Chapter 3 (which describes low-fidelity approximations for
neural architecture search).

1.4.1 Learning Curve-Based Prediction for Early Stop-
ping

We start this section on multi-fidelity methods in HPO with methods that eval-
uate and model learning curves during HPO [82, 123] and then decide whether
to add further resources or stop the training procedure for a given hyperpa-
rameter configuration. Examples of learning curves are the performance of the
same configuration trained on increasing dataset subsets, or the performance of
an iterative algorithm measured for each iteration (or every i-th iteration if the
calculation of the performance is expensive).

Learning curve extrapolation is used in the context of predictive termina-
tion [26], where a learning curve model is used to extrapolate a partially ob-
served learning curve for a configuration, and the training process is stopped if
the configuration is predicted to not reach the performance of the best model
trained so far in the optimization process. Each learning curve is modeled as
a weighted combination of 11 parametric functions from various scientific ar-
eas. These functions’ parameters and their weights are sampled via Markov
chain Monte Carlo to minimize the loss of fitting the partially observed learning
curve. This yields a predictive distribution, which allows to stop training based
on the probability of not beating the best known model. When combined with
Bayesian optimization, the predictive termination criterion enabled lower error
rates than off-the-shelve blackbox Bayesian optimization for optimizing neural
networks. On average, the method sped up the optimization by a factor of
two and was able to find a (then) state-of-the-art neural network for CIFAR-10
(without data augmentation) [26].

1.4. MULTI-FIDELITY OPTIMIZATION 15

While the method above is limited by not sharing information across different
hyperparameter configurations, this can be achieved by using the basis functions
as the output layer of a Bayesian neural network [80]. The parameters and
weights of the basis functions, and thus the full learning curve, can thereby
be predicted for arbitrary hyperparameter configurations. Alternatively, it is
possible to use previous learning curves as basis function extrapolators [21].
While the experimental results are inconclusive on whether the proposed method
is superior to pre-specified learning curves, not having to manually define them
is a clear advantage.

Freeze-Thaw Bayesian optimization [148] is a full integration of learning
curves into the modeling and selection process of Bayesian optimization. In-
stead of terminating a configuration, the machine learning models are trained
iteratively for a few iterations and then frozen. Bayesian optimization can then
decide to thaw one of the frozen models, which means to continue training it.
Alternatively, the method can also decide to start a new configuration. Freeze-
Thaw models the performance of a converged algorithm with a regular Gaussian
process and introduces a special covariance function corresponding to exponen-
tially decaying functions to model the learning curves with per-learning curve
Gaussian processes.

1.4.2 Bandit-Based Algorithm Selection Methods

In this section, we describe methods that try to determine the best algorithm
out of a given finite set of algorithms based on low-fidelity approximations of
their performance; towards its end, we also discuss potential combinations with
adaptive configuration strategies. We focus on variants of the bandit-based
strategies successive halving and Hyperband, since these have shown strong per-
formance, especially for optimizing deep learning algorithms. Strictly speaking,
some of the methods which we will discuss in this subsection also model learn-
ing curves, but they provide no means of selecting new configurations based on
these models.

First, however, we briefly describe the historical evolution of multi-fidelity
algorithm selection methods. In 2000, Petrak [120] noted that simply testing
various algorithms on a small subset of the data is a powerful and cheap mech-
anism to select an algorithm. Later approaches used iterative algorithm elimi-
nation schemes to drop hyperparameter configurations if they perform badly on
subsets of the data [17], if they perform significantly worse than a group of top-
performing configurations [86], if they perform worse than the best configuration
by a user-specified factor [143], or if even an optimistic performance bound for
an algorithm is worse than the best known algorithm [128]. Likewise, it is possi-
ble to drop hyperparameter configurations if they perform badly on one or a few
cross-validation folds [149]. Finally, Jamieson and Talwalkar [69] proposed to
use the successive halving algorithm originally introduced by Karnin et al. [76]
for HPO.

Successive halving is an extremely simple, yet powerful, and therefore pop-
ular strategy for multi-fidelity algorithm selection: for a given initial budget,

16 CHAPTER 1. HYPERPARAMETER OPTIMIZATION

0% 12.5% 25% 50% 100%
budget

0

1

lo
ss

Figure 1.3: Illustration of successive halving for eight algorithms/configurations.
After evaluating all algorithms on 1

8 of the total budget, half of them are dropped
and the budget given to the remaining algorithms is doubled.

query all algorithms for that budget; then, remove the half that performed
worst, double the budget 2 and successively repeat until only a single algorithm
is left. This process is illustrated in Figure 1.3. Jamieson and Talwalkar [69]
benchmarked several common bandit methods and found that successive halv-
ing performs well both in terms of the number of required iterations and in the
required computation time, that the algorithm theoretically outperforms a uni-
form budget allocation strategy if the algorithms converge favorably, and that
it is preferable to many well-known bandit strategies from the literature, such
as UCB and EXP3.

While successive halving is an efficient approach, it suffers from the budget-
vs-number of configurations trade off. Given a total budget, the user has to
decide beforehand whether to try many configurations and only assign a small
budget to each, or to try only a few and assign them a larger budget. Assigning
too small a budget can result in prematurely terminating good configurations,
while assigning too large a budget can result in running poor configurations too
long and thereby wasting resources.

HyperBand [90] is a hedging strategy designed to combat this problem when
selecting from randomly sampled configurations. It divides the total budget into
several combinations of number of configurations vs. budget for each, to then
call successive halving as a subroutine on each set of random configurations. Due
to the hedging strategy which includes running some configurations only on the

2More precisely, drop the worst fraction η−1
η

of algorithms and multiply the budget for

the remaining algorithms by η, where η is a hyperparameter. Its default value was changed
from 2 to 3 with the introduction of HyperBand[90].

1.4. MULTI-FIDELITY OPTIMIZATION 17

maximal budget, in the worst case, HyperBand takes at most a constant factor
more time than vanilla random search on the maximal budget. In practice,
due to its use of cheap low-fidelity evaluations, HyperBand has been shown to
improve over vanilla random search and blackbox Bayesian optimization for data
subsets, feature subsets and iterative algorithms, such as stochastic gradient
descent for deep neural networks.

Despite HyperBand’s success for deep neural networks it is very limiting to
not adapt the configuration proposal strategy to the function evaluations. To
overcome this limitation, the recent approach BOHB [33] combines Bayesian
optimization and HyperBand to achieve the best of both worlds: strong any-
time performance (quick improvements in the beginning by using low fidelities
in HyperBand) and strong final performance (good performance in the long run
by replacing HyperBand’s random search by Bayesian optimization). BOHB
also uses parallel resources effectively and deals with problem domains ranging
from a few to many dozen hyperparameters. BOHB’s Bayesian optimization
component resembles TPE [12], but differs by using multidimensional kernel
density estimators. It only fits a model on the highest fidelity for which at least
|Λ|+ 1 evaluations have been performed (the number of hyperparameters, plus
one). BOHB’s first model is therefore fitted on the lowest fidelity, and over time
models trained on higher fidelities take over, while still using the lower fideli-
ties in successive halving. Empirically, BOHB was shown to outperform several
state-of-the-art HPO methods for tuning support vector machines, neural net-
works and reinforcement learning algorithms, including most methods presented
in this section [33]. Further approaches to combine HyperBand and Bayesian
optimization have also been proposed [15, 151].

Multiple fidelity evaluations can also be combined with HPO in other ways.
Instead of switching between lower fidelities and the highest fidelity, it is possible
to perform HPO on a subset of the original data and extract the best-performing
configurations in order to use them as an initial design for HPO on the full
dataset [152]. To speed up solutions to the CASH problem, it is also possible
to iteratively remove entire algorithms (and their hyperparameters) from the
configuration space based on poor performance on small dataset subsets [159].

1.4.3 Adaptive Choices of Fidelities

All methods in the previous subsection follow a predefined schedule for the fideli-
ties. Alternatively, one might want to actively choose which fidelities to evaluate
given previous observations to prevent a misspecification of the schedule.

Multi-task Bayesian optimization [147] uses a multi-task Gaussian process to
model the performance of related tasks and to automatically learn the tasks’ cor-
relation during the optimization process. This method can dynamically switch
between cheaper, low-fidelity tasks and the expensive, high-fidelity target task
based on a cost-aware information-theoretic acquisition function. In practice,
the proposed method starts exploring the configuration space on the cheaper
task and only switches to the more expensive configuration space in later parts of
the optimization, approximately halving the time required for HPO. Multi-task

18 CHAPTER 1. HYPERPARAMETER OPTIMIZATION

Bayesian optimization can also be used to transfer information from previous
optimization tasks, and we refer to Chapter 2 for further details.

Multi-task Bayesian optimization (and the methods presented in the previ-
ous subsection) requires an upfront specification of a set of fidelities. This can
be suboptimal since these can be misspecified [74, 78] and because the number
of fidelities that can be handled is low (usually five or less). Therefore, and
in order to exploit the typically smooth dependence on the fidelity (such as,
e.g., size of the data subset used), it often yields better results to treat the
fidelity as continuous (and, e.g., choose a continuous percentage of the full data
set to evaluate a configuration on), trading off the information gain and the
time required for evaluation [78]. To exploit the domain knowledge that perfor-
mance typically improves with more data, with diminishing returns, a special
kernel can be constructed for the data subsets [78]. This generalization of multi-
task Bayesian optimization improves performance and can achieve a 10-100 fold
speedup compared to blackbox Bayesian optimization.

Instead of using an information-theoretic acquisition function, Bayesian op-
timization with the Upper Confidence Bound (UCB) acquisition function can
also be extended to multiple fidelities [73, 74]. While the first such approach,
MF-GP-UCB [73], required upfront fidelity definitions, the later BOCA algo-
rithm [74] dropped that requirement. BOCA has also been applied to optimiza-
tion with more than one continuous fidelity, and we expect HPO for more than
one continuous fidelity to be of further interest in the future.

Generally speaking, methods that can adaptively choose their fidelity are
very appealing and more powerful than the conceptually simpler bandit-based
methods discussed in Section 1.4.2, but in practice we caution that strong models
are required to make successful choices about the fidelities. When the models
are not strong (since they do not have enough training data yet, or due to
model mismatch), these methods may spend too much time evaluating higher
fidelities, and the more robust fixed budget schedules discussed in Section 1.4.2
might yield better performance given a fixed time limit.

1.5 Applications to AutoML

In this section, we provide a historical overview of the most important hyperpa-
rameter optimization systems and applications to automated machine learning.

Grid search has been used for hyperparameter optimization since the 1990s [107,
71] and was already supported by early machine learning tools in 2002 [35]. The
first adaptive optimization methods applied to HPO were greedy depth-first
search [82] and pattern search [109], both improving over default hyperparame-
ter configurations, and pattern search improving over grid search, too. Genetic
algorithms were first applied to tuning the two hyperparameters C and γ of an
RBF-SVM in 2004 [119] and resulted in improved classification performance in
less time than grid search. In the same year, an evolutionary algorithm was
used to learn a composition of three different kernels for an SVM, the kernel hy-
perparameters and to jointly select a feature subset; the learned combination of

1.5. APPLICATIONS TO AUTOML 19

kernels was able to outperform every single optimized kernel. Similar in spirit,
also in 2004, a genetic algorithm was used to select both the features used by
and the hyperparameters of either an SVM or a neural network [129].

CMA-ES was first used for hyperparameter optimization in 2005 [38], in that
case to optimize an SVM’s hyperparameters C and γ, a kernel lengthscale li for
each dimension of the input data, and a complete rotation and scaling matrix.
Much more recently, CMA-ES has been demonstrated to be an excellent choice
for parallel HPO, outperforming state-of-the-art Bayesian optimization tools
when optimizing 19 hyperparameters of a deep neural network on 30 GPUs in
parallel [91].

In 2009, Escalante et al. [30] extended the HPO problem to the Full Model
Selection problem, which includes selecting a preprocessing algorithm, a feature
selection algorithm, a classifier and all their hyperparameters. By being able
to construct a machine learning pipeline from multiple off-the-shelf machine
learning algorithms using HPO, the authors empirically found that they can
apply their method to any data set as no domain knowledge is required, and
demonstrated the applicability of their approach to a variety of domains [49,
32]. Their proposed method, particle swarm model selection (PSMS), uses a
modified particle swarm optimizer to handle the conditional configuration space.
To avoid overfitting, PSMS was extended with a custom ensembling strategy
which combined the best solutions from multiple generations [31]. Since particle
swarm optimization was originally designed to work on continuous configuration
spaces, PSMS was later also extended to use a genetic algorithm to optimize
the pipeline structure and only use particle swarm optimization to optimize the
hyperparameters of each pipeline [145].

To the best of our knowledge, the first application of Bayesian optimization
to HPO dates back to 2005, when Frohlich and Zell [39] used an online Gaussian
process together with EI to optimize the hyperparameters of an SVM, achieving
speedups of factor 10 (classification, 2 hyperparameters) and 100 (regression, 3
hyperparameters) over grid search. Tuned Data Mining [84] proposed to tune
the hyperparameters of a full machine learning pipeline using Bayesian optimiza-
tion; specifically, this used a single fixed pipeline and tuned the hyperparameters
of the classifier as well as the per-class classification threshold and class weights.

In 2011, Bergstra et al. [12] were the first to apply Bayesian optimization to
tune the hyperparameters of a deep neural network, outperforming both manual
and random search. Furthermore, they demonstrated that TPE resulted in
better performance than a Gaussian process-based approach. TPE, as well as
Bayesian optimization with random forests, were also successful for joint neural
architecture search and hyperparameter optimization [14, 106].

Another important step in applying Bayesian optimization to HPO was made
by Snoek et al. in the 2012 paper Practical Bayesian Optimization of Machine
Learning Algorithms [140], which describes several tricks of the trade for Gaus-
sian process-based HPO implemented in the Spearmint system and obtained
a new state-of-the-art result for hyperparameter optimization of deep neural
networks.

Independently of the Full Model Selection paradigm, Auto-WEKA [149] (see

20 CHAPTER 1. HYPERPARAMETER OPTIMIZATION

also Chapter 4) introduced the Combined Algorithm Selection and Hyperparam-
eter Optimization (CASH) problem, in which the choice of a classification algo-
rithm is modeled as a categorical variable, the algorithm hyperparameters are
modeled as conditional hyperparameters, and the random-forest based Bayesian
optimization system SMAC [59] is used for joint optimization in the resulting
786-dimensional configuration space.

In recent years, multi-fidelity methods have become very popular, especially
in deep learning. Firstly, using low-fidelity approximations based on data sub-
sets, feature subsets and short runs of iterative algorithms, Hyperband [90]
was shown to outperform blackbox Bayesian optimization methods that did not
take these lower fidelities into account. Finally, most recently, in the 2018 paper
BOHB: Robust and Efficient Hyperparameter Optimization at Scale, Falkner et
al. [33] introduced a robust, flexible, and parallelizable combination of Bayesian
optimization and Hyperband that substantially outperformed both Hyperband
and blackbox Bayesian optimization for a wide range of problems, including
tuning support vector machines, various types of neural networks, and rein-
forcement learning algorithms.

At the time of writing, we make the following recommendations for which
tools we would use in practical applications of HPO:

• If multiple fidelities are applicable (i.e., if it is possible to define substan-
tially cheaper versions of the objective function of interest, such that the
performance for these roughly correlates with the performance for the full
objective function of interest), we recommend BOHB [33] as a robust, ef-
ficient, versatile, and parallelizable default hyperparameter optimization
method.

• If multiple fidelities are not applicable:

– If all hyperparameters are real-valued and one can only afford a few
dozen function evaluations, we recommend the use of a Gaussian
process-based Bayesian optimization tool, such as Spearmint [140].

– For large and conditional configuration spaces we suggest either the
random forest-based SMAC [59] or TPE [14], due to their proven
strong performance on such tasks [29].

– For purely real-valued spaces and relatively cheap objective func-
tions, for which we can afford more than hundreds of evaluations, we
recommend CMA-ES [51].

1.6 Open Problems and Future Research Direc-
tions

We conclude this chapter with a discussion of open problems, current research
questions and potential further developments we expect to have an impact on
HPO in the future. Notably, despite their relevance, we leave out discussions

1.6. OPEN PROBLEMS AND FUTURE RESEARCH DIRECTIONS 21

on hyperparameter importance and configuration space definition as these fall
under the umbrella of meta-learning and can be found in Chapter 2.

Benchmarks and Comparability

Given the breadth of existing HPO methods, a natural question is what are the
strengths and weaknesses of each of them. In order to allow for a fair com-
parison between different HPO approaches, the community needs to design and
agree upon a common set of benchmarks that expands over time, as new HPO
variants, such as multi-fidelity optimization, emerge. As a particular example
for what this could look like we would like to mention the COCO platform
(short for comparing continuous optimizers), which provides benchmark and
analysis tools for continuous optimization and is used as a workbench for the
yearly Black-Box Optimization Benchmarking (BBOB) challenge [11]. Efforts
along similar lines in HPO have already yielded the hyperparameter optimiza-
tion library (HPOlib [29]) and a benchmark collection specifically for Bayesian
optimization methods [25]. However, neither of these has gained similar traction
as the COCO platform.

Additionaly, the community needs clearly defined metrics, but currently dif-
ferent works use different metrics. One important dimension in which evalua-
tions differ is whether they report performance on the validation set used for
optimization or on a separate test set. The former helps to study the strength
of the optimizer in isolation, without the noise that is added in the evaluation
when going from validation to test set; on the other hand, some optimizers may
lead to more overfitting than others, which can only be diagnosed by using the
test set. Another important dimension in which evaluations differ is whether
they report performance after a given number of function evaluations or after
a given amount of time. The latter accounts for the difference in time between
evaluating different hyperparameter configurations and includes optimization
overheads, and therefore reflects what is required in practice; however, the for-
mer is more convenient and aids reproducibility by yielding the same results
irrespective of the hardware used. To aid reproducibility, especially studies that
use time should therefore release an implementation.

We note that it is important to compare against strong baselines when us-
ing new benchmarks, which is another reason why HPO methods should be
published with an accompanying implementation. Unfortunately, there is no
common software library as is, for example, available in deep learning research
that implements all the basic building blocks [2, 117]. As a simple, yet effec-
tive baseline that can be trivially included in empirical studies, Jamieson and
Recht [68] suggest to compare against different parallelization levels of random
search to demonstrate the speedups over regular random search. When com-
paring to other optimization techniques it is important to compare against a
solid implementation, since, e.g., simpler versions of Bayesian optimization have
been shown to yield inferior performance [140, 142, 79].

22 CHAPTER 1. HYPERPARAMETER OPTIMIZATION

Gradient-Based Optimization

In some cases (e.g., least-squares support vector machines and neural networks)
it is possible to obtain the gradient of the model selection criterion with respect
to some of the model hyperparameters. Different to blackbox HPO, in this case
each evaluation of the target function results in an entire hypergradient vector
instead of a single float value, allowing for faster HPO.

Maclaurin et al. [99] described a procedure to compute the exact gradients
of validation performance with respect to all continuous hyperparameters of a
neural network by backpropagating through the entire training procedure of
stochastic gradient descent with momentum (using a novel, memory-efficient
algorithm). Being able to handle many hyperparameters efficiently through
gradient-based methods allows for a new paradigm of hyperparametrizing the
model to obtain flexibility over model classes, regularization, and training meth-
ods. Maclaurin et al. demonstrated the applicability of gradient-based HPO to
many high-dimensional HPO problems, such as optimizing the learning rate of
a neural network for each iteration and layer separately, optimizing the weight
initialization scale hyperparameter for each layer in a neural network, opti-
mizing the l2 penalty for each individual parameter in logistic regression, and
learning completely new training datasets. As a small downside, backpropagat-
ing through the entire training procedure comes at the price of doubling the
time complexity of the training procedure. The described method can also be
generalized to work with other parameter update algorithms [36]. To overcome
the necessity of backpropagating through the complete training procedure, later
work allows to perform hyperparameter updates with respect to a separate val-
idation set interleaved with the training process [93, 36, 37, 5, 10].

Recent examples of gradient-based optimization of simple model’s hyperpa-
rameters [118] and of neural network structures (see Chapter 3) show promising
results, outperforming state-of-the-art Bayesian optimization models. Despite
being highly model-specific, the fact that gradient-based hyperparemeter opti-
mization allows tuning several hundreds of hyperparameters could allow sub-
stantial improvements in HPO.

Scalability

Despite recent successes in multi-fidelity optimization, there are still machine
learning problems which have not been directly tackled by HPO due to their
scale, and which might require novel approaches. Here, scale can mean both the
size of the configuration space and the expense of individual model evaluations.
For example, there has not been any work on HPO for deep neural networks
on the ImageNet challenge dataset [127] yet, mostly because of the high cost of
training even a simple neural network on the dataset. It will be interesting to
see whether methods going beyond the blackbox view from Section 1.3, such as
the multi-fidelity methods described in Section 1.4, gradient-based methods, or
meta-learning methods (described in Chapter 2) allow to tackle such problems.
Chapter 3 describes first successes in learning neural network building blocks

1.6. OPEN PROBLEMS AND FUTURE RESEARCH DIRECTIONS 23

on smaller datasets and applying them to ImageNet, but the hyperparameters
of the training procedure are still set manually.

Given the necessity of parallel computing, we are looking forward to new
methods that fully exploit large-scale compute clusters. While there exists much
work on parallel Bayesian optimization [44, 12, 60, 140, 24, 135, 54, 33], ex-
cept for the neural networks described in Section 1.3.2 [141], so far no method
has demonstrated scalability to hundreds of workers. Despite their popular-
ity, and with a single exception of HPO applied to deep neural networks [91]3,
population-based approaches have not yet been shown to be applicable to hy-
perparameter optimization on datasets larger than a few thousand data points.

Overall, we expect that more sophisticated and specialized methods, leaving
the blackbox view behind, will be needed to further scale hyperparameter to
interesting problems.

Overfitting and Generalization

An open problem in HPO is overfitting. As noted in the problem statement (see
Section 1.2), we usually only have a finite number of data points available for
calculating the validation loss to be optimized and thereby do not necessarily
optimize for generalization to unseen test datapoints. Similarly to overfitting a
machine learning algorithm to training data, this problem is about overfitting
the hyperparameters to the finite validation set; this was also demonstrated to
happen experimentally [81, 20].

A simple strategy to reduce the amount of overfitting is to employ a differ-
ent shuffling of the train and validation split for each function evaluation; this
was shown to improve generalization performance for SVM tuning, both with
a holdout and a cross-validation strategy [95]. The selection of the final con-
figuration can be further robustified by not choosing it according to the lowest
observed value, but according to the lowest predictive mean of the Gaussian
process model used in Bayesian optimization [95].

Another possibility is to use a separate holdout set to assess configurations
found by HPO to avoid bias towards the standard validation set [159, 108].
Different approximations of the generalization performance can lead to different
test performances [108], and there have been reports that several resampling
strategies can result in measurable performance differences for HPO of support
vector machines[150].

A different approach to combat overfitting might be to find stable optima in-
stead of sharp optima of the objective function [112]. The idea is that for stable
optima, the function value around an optimum does not change for slight pertur-
bations of the hyperparameters, whereas it does change for sharp optima. Stable
optima lead to better generalization when applying the found hyperparameters
to a new, unseen set of datapoints (i.e., the test set). An acquisition function
built around this was shown to only slightly overfit for support vector machine
HPO, while regular Bayesian optimization exhibited strong overfitting [112].

3See also Chapter 3 where population-based methods are applied to Neural Architecture
Search problems.

24 CHAPTER 1. HYPERPARAMETER OPTIMIZATION

Further approaches to combat overfitting are the ensemble methods and
Bayesian methods presented in Section 1.2.1. Given all these different tech-
niques, there is no commonly agreed-upon technique for how to best avoid
overfitting, though, and it remains up to the user to find out which strategy
performs best on their particular HPO problem. We note that the best strategy
might actually vary across HPO problems.

Arbitrary-Size Pipeline Construction

All HPO techniques we discussed so far assume a finite set of components for
machine learning pipelines or a finite maximum number of layers in neural net-
works. For machine learning pipelines (see the AutoML systems covered in Part
II of this book) it might be helpful to use more than one feature preprocessing
algorithm and dynamically add them if necessary for a problem, enlarging the
searchspace by a hyperparameter to select an appropriate preprocessing algo-
rithm and its own hyperparameters. While a searchspace for standard blackbox
optimization tools could easily include several extra such preprocessors (and
their hyperparameters) as conditional hyperparameters, an unbounded number
of these would be hard to support.

One approach for handling arbitrary-sized pipelines more natively is the
tree-structured pipeline optimization toolkit (TPOT [115], see also Chapter 8),
which uses genetic programming and describes possible pipelines by a grammar.
TPOT uses multi-objective optimization to trade off pipeline complexity with
performance to avoid generating unnecessarily complex pipelines.

A different pipeline creation paradigm is the usage of hierarchical planning;
the recent ML-Plan [108, 101] uses hierarchical task networks and shows com-
petitive performance compared to Auto-WEKA [149] and Auto-sklearn [34].

So far these approaches are not consistently outperforming AutoML systems
with a fixed pipeline length, but larger pipelines may provide more improvement.
Similarly, neural architecture search yields complex configuration spaces and we
refer to Chapter 3 for a description of methods to tackle them.

Acknowledgments

We would like to thank Luca Franceschi, Raghu Rajan, Stefan Falkner and
Arlind Kadra for valuable feedback on the manuscript.

Bibliography

[1] Proceedings of the International Conference on Learning Representations
(ICLR’18) (2018), published online: iclr.cc

[2] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C.,
Corrado, G., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow,
I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L.,
Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray,

iclr.cc

BIBLIOGRAPHY 25

D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar,
K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O.,
Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow:
Large-scale machine learning on heterogeneous systems (2015), https:

//www.tensorflow.org/

[3] Ahmed, M., Shahriari, B., Schmidt, M.: Do we need “harmless” Bayesian
optimization and “first-order” Bayesian optimization. In: NIPS Workshop
on Bayesian Optimization (BayesOpt’16) (2016)

[4] Alaa, A., van der Schaar, M.: AutoPrognosis: Automated Clinical Prog-
nostic Modeling via Bayesian Optimization with Structured Kernel Learn-
ing. In: Dy and Krause [27], pp. 139–148

[5] Almeida, L.B., Langlois, T., Amaral, J.D., Plakhov, A.: Parameter Adap-
tation in Stochastic Optimization, p. 111–134. Cambridge University Press
(1999)

[6] Amazon: Automatic model tuning (2018), https://docs.aws.amazon.
com/sagemaker/latest/dg/automatic-model-tuning.html

[7] Bach, F., Blei, D. (eds.): Proceedings of the 32nd International Conference
on Machine Learning (ICML’15), vol. 37. Omnipress (2015)

[8] Balcan, M., Weinberger, K. (eds.): Proceedings of the 33rd International
Conference on Machine Learning (ICML’17), vol. 48. Proceedings of Ma-
chine Learning Research (2016)

[9] Bartlett, P., Pereira, F., Burges, C., Bottou, L., Weinberger, K. (eds.):
Proceedings of the 26th International Conference on Advances in Neural
Information Processing Systems (NIPS’12) (2012)

[10] Baydin, A.G., Cornish, R., Rubio, D.M., Schmidt, M., Wood, F.: Online
Learning Rate Adaption with Hypergradient Descent. In: Proceedings of
the International Conference on Learning Representations (ICLR’18) [1],
published online: iclr.cc

[11] BBOBies: Black-box Optimization Benchmarking (BBOB) workshop se-
ries (2018), http://numbbo.github.io/workshops/index.html

[12] Bergstra, J., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-
parameter optimization. In: Shawe-Taylor, J., Zemel, R., Bartlett, P.,
Pereira, F., Weinberger, K. (eds.) Proceedings of the 25th Interna-
tional Conference on Advances in Neural Information Processing Systems
(NIPS’11). pp. 2546–2554 (2011)

[13] Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimiza-
tion. Journal of Machine Learning Research 13, 281–305 (2012)

https://www.tensorflow.org/
https://www.tensorflow.org/
https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning.html
https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning.html
iclr.cc
http://numbbo.github.io/workshops/index.html

26 CHAPTER 1. HYPERPARAMETER OPTIMIZATION

[14] Bergstra, J., Yamins, D., Cox, D.: Making a science of model search:
Hyperparameter optimization in hundreds of dimensions for vision archi-
tectures. In: Dasgupta and McAllester [23], pp. 115–123

[15] Bertrand, H., Ardon, R., Perrot, M., Bloch, I.: Hyperparameter optimiza-
tion of deep neural networks : Combining hyperband with Bayesian model
selection. In: Conférence sur l’Apprentissage Automatique (2017)

[16] Bischl, B., Mersmann, O., Trautmann, H., Weihs, C.: Resampling meth-
ods for meta-model validation with recommendations for evolutionary
computation. Evolutionary Computation 20(2), 249–275 (2012)

[17] Van den Bosch, A.: Wrapped progressive sampling search for optimizing
learning algorithm parameters. In: Proceedings of the sixteenth Belgian-
Dutch Conference on Artificial Intelligence. pp. 219–226 (2004)

[18] Brochu, E., Cora, V., de Freitas, N.: A tutorial on Bayesian optimization
of expensive cost functions, with application to active user modeling and
hierarchical reinforcement learning. arXiv:1012.2599v1 [cs.LG] (2010)

[19] Bürger, F., Pauli, J.: A Holistic Classification Optimization Framework
with Feature Selection, Preprocessing, Manifold Learning and Classifiers.,
pp. 52–68. Springer (2015)

[20] Cawley, G., Talbot, N.: On Overfitting in Model Selection and Subsequent
Selection Bias in Performance Evaluation. Journal of Machine Learning
Research 11 (2010)

[21] Chandrashekaran, A., Lane, I.: Speeding up Hyper-parameter Optimiza-
tion by Extrapolation of Learning Curves using Previous Builds. In: Ceci,
M., Hollmen, J., Todorovski, L., Vens, C., Džeroski, S. (eds.) Machine
Learning and Knowledge Discovery in Databases (ECML/PKDD’17). Lec-
ture Notes in Computer Science, vol. 10534. Springer (2017)

[22] Dahl, G., Sainath, T., Hinton, G.: Improving deep neural networks for
LVCSR using rectified linear units and dropout. In: Adams, M., Zhao, V.
(eds.) International Conference on Acoustics, Speech and Signal Process-
ing (ICASSP’13). pp. 8609–8613. IEEE Computer Society Press (2013)

[23] Dasgupta, S., McAllester, D. (eds.): Proceedings of the 30th International
Conference on Machine Learning (ICML’13). Omnipress (2014)

[24] Desautels, T., Krause, A., Burdick, J.: Parallelizing exploration-
exploitation tradeoffs in Gaussian process bandit optimization. Journal
of Machine Learning Research 15, 4053–4103 (2014)

[25] Dewancker, I., McCourt, M., Clark, S., Hayes, P., Johnson, A., Ke, G.: A
stratified analysis of Bayesian optimization methods. arXiv:1603.09441v1
[cs.LG] (2016)

BIBLIOGRAPHY 27

[26] Domhan, T., Springenberg, J.T., Hutter, F.: Speeding up automatic hy-
perparameter optimization of deep neural networks by extrapolation of
learning curves. In: Yang, Q., Wooldridge, M. (eds.) Proceedings of the
25th International Joint Conference on Artificial Intelligence (IJCAI’15).
pp. 3460–3468 (2015)

[27] Dy, J., Krause, A. (eds.): Proceedings of the 35th International Conference
on Machine Learning (ICML’18), vol. 80. Proceedings of Machine Learning
Research (2018)

[28] Eberhart, R., Shi, Y.: Comparison between genetic algorithms and parti-
cle swarm optimization. In: Porto, V., Saravanan, N., Waagen, D., Eiben,
A. (eds.) 7th International conference on evolutionary programming. pp.
611–616. Springer (1998)

[29] Eggensperger, K., Feurer, M., Hutter, F., Bergstra, J., Snoek, J., Hoos,
H., Leyton-Brown, K.: Towards an empirical foundation for assess-
ing Bayesian optimization of hyperparameters. In: NIPS Workshop on
Bayesian Optimization in Theory and Practice (BayesOpt’13) (2013)

[30] Escalante, H., Montes, M., Sucar, E.: Particle Swarm Model Selection.
Journal of Machine Learning Research 10, 405–440 (2009)

[31] Escalante, H., Montes, M., Sucar, E.: Ensemble particle swarm model
selection. In: Proceedings of the 2010 IEEE International Joint Conference
on Neural Networks (IJCNN). pp. 1–8. IEEE Computer Society Press
(2010)

[32] Escalante, H., Montes, M., Villaseñor, L.: Particle swarm model selec-
tion for authorship verification. In: Bayro-Corrochano, E., Eklundh, J.O.
(eds.) Progress in Pattern Recognition, Image Analysis, Computer Vision,
and Applications. pp. 563–570 (2009)

[33] Falkner, S., Klein, A., Hutter, F.: BOHB: Robust and Efficient Hyperpa-
rameter Optimization at Scale. In: Dy and Krause [27], pp. 1437–1446

[34] Feurer, M., Klein, A., Eggensperger, K., Springenberg, J.T., Blum, M.,
Hutter, F.: Efficient and robust automated machine learning. In: Cortes,
C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings
of the 29th International Conference on Advances in Neural Information
Processing Systems (NIPS’15). pp. 2962–2970 (2015)

[35] Fischer, S., Klinkenberg, R., Mierswa, I., Ritthoff, O.: Yale: Yet another
learning environment – tutorial. Tech. rep., University of Dortmund (2002)

[36] Franceschi, L., Donini, M., Frasconi, P., Pontil, M.: Forward and Reverse
Gradient-Based Hyperparameter Optimization. In: Precup and Teh [122],
pp. 1165–1173

28 CHAPTER 1. HYPERPARAMETER OPTIMIZATION

[37] Franceschi, L., Frasconi, P., Salzo, S., Grazzi, R., Pontil, M.: Bilevel
Programming for Hyperparameter Optimization and Meta-Learning. In:
Dy and Krause [27], pp. 1568–1577

[38] Friedrichs, F., Igel, C.: Evolutionary tuning of multiple SVM parameters.
Neurocomputing 64, 107–117 (2005)

[39] Frohlich, H., Zell, A.: Efficient parameter selection for support vector
machines in classification and regression via model-based global optimiza-
tion. In: Prokhorov, D., Levine, D., Ham, F., Howell, W. (eds.) Proceed-
ings of the 2005 IEEE International Joint Conference on Neural Networks
(IJCNN). pp. 1431–1436. IEEE Computer Society Press (2005)

[40] Gardner, J., Guo, C., Weinberger, K., Garnett, R., Grosse, R.: Discov-
ering and Exploiting Additive Structure for Bayesian Optimization. In:
Singh, A., Zhu, J. (eds.) Proceedings of the Seventeenth International
Conference on Artificial Intelligence and Statistics (AISTATS). vol. 54,
pp. 1311–1319. Proceedings of Machine Learning Research (2017)

[41] Gardner, J., Kusner, M., Xu, Z., Weinberger, K., Cunningham, J.:
Bayesian Optimization with Inequality Constraints. In: Xing and Jebara
[157], pp. 937–945

[42] Garrido-Merchán, E., Hernández-Lobato, D.: Dealing with integer-
valued variables in Bayesian optimization with Gaussian processes.
arXiv:1706.03673v2 [stats.ML] (2017)

[43] Gelbart, M., Snoek, J., Adams, R.: Bayesian optimization with unknown
constraints. In: Zhang, N., Tian, J. (eds.) Proceedings of the 30th confer-
ence on Uncertainty in Artificial Intelligence (UAI’14). AUAI Press (2014)

[44] Ginsbourger, D., Le Riche, R., Carraro, L.: Kriging Is Well-Suited to Par-
allelize Optimization. In: Computational Intelligence in Expensive Opti-
mization Problems, pp. 131–162. Springer (2010)

[45] Golovin, D., Solnik, B., Moitra, S., Kochanski, G., Karro, J., Sculley, D.:
Google Vizier: A service for black-box optimization. In: Matwin, S., Yu,
S., Farooq, F. (eds.) Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD). pp. 1487–
1495. ACM Press (2017)

[46] Gramacy, R., Lee, H.: Optimization under unknown constraints. Bayesian
Statistics 9(9), 229–246 (2011)

[47] Gretton, A., Robert, C. (eds.): Proceedings of the Seventeenth Inter-
national Conference on Artificial Intelligence and Statistics (AISTATS),
vol. 51. Proceedings of Machine Learning Research (2016)

BIBLIOGRAPHY 29

[48] Guyon, I., vn Luxburg, U., Bengio, S., Wallach, H., Fergus, R., Vish-
wanathan, S., Garnett, R. (eds.): Proceedings of the 31st Interna-
tional Conference on Advances in Neural Information Processing Systems
(NIPS’17) (2017)

[49] Guyon, I., Saffari, A., Dror, G., Cawley, G.: Analysis of the IJCNN 2007
agnostic learning vs. prior knowledge challenge. Neural Networks 21(2),
544–550 (2008)

[50] Guyon, I., Saffari, A., Dror, G., Cawley, G.: Model Selection: Beyond the
Bayesian/Frequentist Divide. Journal of Machine Learning Research 11,
61–87 (2010)

[51] Hansen, N.: The CMA evolution strategy: A tutorial. arXiv:1604.00772v1
[cs.LG] (2016)

[52] Hazan, E., Klivans, A., Yuan, Y.: Hyperparameter optimization: A spec-
tral approach. In: Proceedings of the International Conference on Learn-
ing Representations (ICLR’18) [1], published online: iclr.cc

[53] Hernandez-Lobato, D., Hernandez-Lobato, J., Shah, A., Adams, R.: Pre-
dictive Entropy Search for Multi-objective Bayesian Optimization. In:
Balcan and Weinberger [8], pp. 1492–1501

[54] Hernández-Lobato, J., Requeima, J., Pyzer-Knapp, E., Aspuru-Guzik, A.:
Parallel and distributed Thompson sampling for large-scale accelerated
exploration of chemical space. In: Precup and Teh [122], pp. 1470–1479

[55] Hernández-Lobato, J., Gelbart, M., Adams, R., Hoffman, M., Ghahra-
mani, Z.: A general framework for constrained Bayesian optimization us-
ing information-based search. The Journal of Machine Learning Research
17(1), 5549–5601 (2016)

[56] Hoeting, J., Madigan, D., Raftery, A., Volinsky, C.: Bayesian model av-
eraging: a tutorial. Statistical science pp. 382–401 (1999)

[57] Horn, D., Bischl, B.: Multi-objective parameter configuration of machine
learning algorithms using model-based optimization. In: Likas, A. (ed.)
2016 IEEE Symposium Series on Computational Intelligence (SSCI). pp.
1–8. IEEE Computer Society Press (2016)

[58] Hutter, F.: Automated Configuration of Algorithms for Solving Hard
Computational Problems. Ph.D. thesis, University of British Columbia,
Department of Computer Science, Vancouver, Canada (2009)

[59] Hutter, F., Hoos, H., Leyton-Brown, K.: Sequential model-based opti-
mization for general algorithm configuration. In: Coello, C. (ed.) Pro-
ceedings of the Fifth International Conference on Learning and Intelligent
Optimization (LION’11). Lecture Notes in Computer Science, vol. 6683,
pp. 507–523. Springer (2011)

iclr.cc

30 CHAPTER 1. HYPERPARAMETER OPTIMIZATION

[60] Hutter, F., Hoos, H., Leyton-Brown, K.: Parallel algorithm configuration.
In: Hamadi, Y., Schoenauer, M. (eds.) Proceedings of the Sixth Interna-
tional Conference on Learning and Intelligent Optimization (LION’12).
Lecture Notes in Computer Science, vol. 7219, pp. 55–70. Springer (2012)

[61] Hutter, F., Hoos, H., Leyton-Brown, K.: An efficient approach for assess-
ing hyperparameter importance. In: Xing and Jebara [157], pp. 754–762

[62] Hutter, F., Hoos, H., Leyton-Brown, K., Murphy, K.: Time-bounded se-
quential parameter optimization. In: Blum, C. (ed.) Proceedings of the
Fourth International Conference on Learning and Intelligent Optimization
(LION’10). Lecture Notes in Computer Science, vol. 6073, pp. 281–298.
Springer (2010)

[63] Hutter, F., Osborne, M.: A kernel for hierarchical parameter spaces.
arXiv:1310.5738v1 [stats.ML] (2013)

[64] Hutter, F., Lücke, J., Schmidt-Thieme, L.: Beyond Manual Tuning of
Hyperparameters. KI - Künstliche Intelligenz 29(4), 329–337 (2015)

[65] Igel, C.: Multi-objective Model Selection for Support Vector Machines.
In: Coello, C., Aguirre, A., Zitzler, E. (eds.) Evolutionary Multi-Criterion
Optimization. pp. 534–546. Springer (2005)

[66] Ihler, A., Janzing, D. (eds.): Proceedings of the 32nd conference on Un-
certainty in Artificial Intelligence (UAI’16). AUAI Press (2016)

[67] Ilievski, I., Akhtar, T., Feng, J., Shoemaker, C.: Efficient Hyperparame-
ter Optimization for Deep Learning Algorithms Using Deterministic RBF
Surrogates. In: Sierra, C. (ed.) Proceedings of the 27th International Joint
Conference on Artificial Intelligence (IJCAI’17) (2017)

[68] Jamieson, K., Recht, B.: The news on auto-tuning (2016), http://www.
argmin.net/2016/06/20/hypertuning/

[69] Jamieson, K., Talwalkar, A.: Non-stochastic best arm identification and
hyperparameter optimization. In: Gretton and Robert [47], pp. 240–248

[70] Jenatton, R., Archambeau, C., González, J., Seeger, M.: Bayesian Opti-
mization with Tree-structured Dependencies. In: Precup and Teh [122],
pp. 1655–1664

[71] John, G.: Cross-Validated C4.5: Using Error Estimation for Automatic
Parameter Selection. Tech. Rep. STAN-CS-TN-94-12, Stanford University,
Stanford University (1994)

[72] Jones, D., Schonlau, M., Welch, W.: Efficient global optimization of ex-
pensive black box functions. Journal of Global Optimization 13, 455–492
(1998)

http://www.argmin.net/2016/06/20/hypertuning/
http://www.argmin.net/2016/06/20/hypertuning/

BIBLIOGRAPHY 31

[73] Kandasamy, K., Dasarathy, G., Oliva, J., Schneider, J., Póczos, B.: Gaus-
sian Process Bandit Optimisation with Multi-fidelity Evaluations. In: Lee
et al. [87], pp. 992–1000

[74] Kandasamy, K., Dasarathy, G., Schneider, J., Póczos, B.: Multi-fidelity
Bayesian Optimisation with Continuous Approximations. In: Precup and
Teh [122], pp. 1799–1808

[75] Kandasamy, K., Schneider, J., Póczos, B.: High Dimensional Bayesian
Optimisation and Bandits via Additive Models. In: Bach and Blei [7], pp.
295–304

[76] Karnin, Z., Koren, T., Somekh, O.: Almost optimal exploration in multi-
armed bandits. In: Dasgupta and McAllester [23], pp. 1238–1246

[77] King, R., Feng, C., Sutherland, A.: Statlog: comparison of classification
algorithms on large real-world problems. Applied Artificial Intelligence an
International Journal 9(3), 289–333 (1995)

[78] Klein, A., Falkner, S., Bartels, S., Hennig, P., Hutter, F.: Fast bayesian
hyperparameter optimization on large datasets. In: Electronic Journal of
Statistics. vol. 11 (2017)

[79] Klein, A., Falkner, S., Mansur, N., Hutter, F.: RoBO: A flexible and
robust Bayesian optimization framework in Python. In: NIPS workshop
on Bayesian Optimization (BayesOpt’17) (2017)

[80] Klein, A., Falkner, S., Springenberg, J.T., Hutter, F.: Learning curve
prediction with Bayesian neural networks. In: Proceedings of the Inter-
national Conference on Learning Representations (ICLR’17) (2017), pub-
lished online: iclr.cc

[81] Koch, P., Konen, W., Flasch, O., Bartz-Beielstein, T.: Optimizing sup-
port vector machines for stormwater prediction. Tech. Rep. TR10-2-007,
Technische Universität Dortmund (2010)

[82] Kohavi, R., John, G.: Automatic Parameter Selection by Minimizing Es-
timated Error. In: Prieditis, A., Russell, S. (eds.) Proceedings of the
Twelfth International Conference on Machine Learning, pp. 304–312. Mor-
gan Kaufmann Publishers (1995)

[83] Komer, B., Bergstra, J., Eliasmith, C.: Hyperopt-sklearn: Automatic
hyperparameter configuration for scikit-learn. In: Hutter, F., Caruana,
R., Bardenet, R., Bilenko, M., Guyon, I., Kégl, B., Larochelle, H. (eds.)
ICML workshop on Automated Machine Learning (AutoML workshop
2014) (2014)

[84] Konen, W., Koch, P., Flasch, O., Bartz-Beielstein, T., Friese, M., Nau-
joks, B.: Tuned data mining: a benchmark study on different tuners. In:

iclr.cc

32 CHAPTER 1. HYPERPARAMETER OPTIMIZATION

Krasnogor, N. (ed.) Proceedings of the 13th Annual Conference on Ge-
netic and Evolutionary Computation (GECCO’11). pp. 1995–2002. ACM
(2011)

[85] Krizhevsky, A., Sutskever, I., Hinton, G.: Imagenet classification with
deep convolutional neural networks. In: Bartlett et al. [9], pp. 1097–1105

[86] Krueger, T., Panknin, D., Braun, M.: Fast cross-validation via sequential
testing. Journal of Machine Learning Research (2015)

[87] Lee, D., Sugiyama, M., von Luxburg, U., Guyon, I., Garnett, R. (eds.):
Proceedings of the 30th International Conference on Advances in Neural
Information Processing Systems (NIPS’16) (2016)

[88] Lee, H., Gramacy, R.: Optimization Subject to Hidden Constraints
via Statistical Emulation. Pacific Journal of Optimization 7(3), 467–478
(2011)

[89] Li, F.F., Li, J.: Cloud AutoML: Making AI accessible to every
business (2018), https://www.blog.google/products/google-cloud/

cloud-automl-making-ai-accessible-every-business/

[90] Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., Talwalkar, A.: Hy-
perband: A novel bandit-based approach to hyperparameter optimization.
Journal of Machine Learning Research 18(185), 1–52 (2018)

[91] Loshchilov, I., Hutter, F.: CMA-ES for hyperparameter optimization of
deep neural networks. In: International Conference on Learning Repre-
sentations Workshop track (2016), published online: iclr.cc

[92] Lu, X., Gonzalez, J., Dai, Z., Lawrence, N.: Structured Variationally
Auto-encoded Optimization. In: Dy and Krause [27], pp. 3273–3281

[93] Luketina, J., Berglund, M., Greff, K., Raiko, T.: Scalable Gradient-Based
Tuning of Continuous Regularization Hyperparameters. In: Balcan and
Weinberger [8], pp. 2952–2960

[94] Luo, G.: A review of automatic selection methods for machine learning
algorithms and hyper-parameter values. Network Modeling Analysis in
Health Informatics and Bioinformatics 5(1) (2016)

[95] Lévesque, J.C.: Bayesian Hyperparameter Optimization: Overfitting, En-
sembles and Conditional Spaces. Ph.D. thesis, Université Laval (2018)

[96] Lévesque, J.C., Durand, A., Gagné, C., Sabourin, R.: Bayesian optimiza-
tion for conditional hyperparameter spaces. In: Howell, B. (ed.) 2017 In-
ternational Joint Conference on Neural Networks (IJCNN). pp. 286–293.
IEEE (2017)

[97] Lévesque, J.C., Gagné, C., Sabourin, R.: Bayesian Hyperparameter Op-
timization for Ensemble Learning. In: Ihler and Janzing [66], pp. 437–446

https://www.blog.google/products/google-cloud/cloud-automl-making-ai-accessible-every-business/
https://www.blog.google/products/google-cloud/cloud-automl-making-ai-accessible-every-business/
iclr.cc

BIBLIOGRAPHY 33

[98] MacKay, D.: Hyperparameters: Optimize, or Integrate Out?, pp. 43–59.
Springer (1996)

[99] Maclaurin, D., Duvenaud, D., Adams, R.: Gradient-based Hyperparame-
ter Optimization through Reversible Learning. In: Bach and Blei [7], pp.
2113–2122

[100] Mantovani, R., Horvath, T., Cerri, R., Vanschoren, J., Carvalho, A.:
Hyper-Parameter Tuning of a Decision Tree Induction Algorithm. In: 2016
5th Brazilian Conference on Intelligent Systems (BRACIS). pp. 37–42.
IEEE Computer Society Press (2016)

[101] Marcel Wever, F.M., Hüllermeier, E.: ML-Plan for unlimited-length ma-
chine learning pipelines. In: Garnett, R., Vanschoren, F.H.J., Brazdil, P.,
Caruana, R., Giraud-Carrier, C., Guyon, I., Kégl, B. (eds.) ICML work-
shop on Automated Machine Learning (AutoML workshop 2018) (2018)

[102] Maron, O., Moore, A.: The racing algorithm: Model selection for lazy
learners. Artificial Intelligence Review 11(1-5), 193–225 (1997)

[103] McInerney, J.: An Empirical Bayes Approach to Optimizing Machine
Learning Algorithms. In: Guyon et al. [48], pp. 2712–2721

[104] McIntire, M., Ratner, D., Ermon, S.: Sparse Gaussian Processes for
Bayesian Optimization. In: Ihler and Janzing [66]

[105] Melis, G., Dyer, C., Blunsom, P.: On the state of the art of evaluation in
neural language models. In: Proceedings of the International Conference
on Learning Representations (ICLR’18) [1], published online: iclr.cc

[106] Mendoza, H., Klein, A., Feurer, M., Springenberg, J., Hutter, F.: Towards
automatically-tuned neural networks. In: ICML 2016 AutoML Workshop
(2016)

[107] Michie, D., Spiegelhalter, D., Taylor, C., Campbell, J. (eds.): Machine
Learning, Neural and Statistical Classification. Ellis Horwood (1994)

[108] Mohr, F., Wever, M., Hüllermeier, E.: ML-Plan: Automated machine
learning via hierarchical planning. Machine Learning 107(8-10), 1495–1515
(2018)

[109] Momma, M., Bennett, K.: A Pattern Search Method for Model Selection
of Support Vector Regression. In: Proceedings of the 2002 SIAM Interna-
tional Conference on Data Mining, pp. 261–274 (2002)

[110] Montgomery, D.: Design and analysis of experiments. John Wiley & Sons,
Inc, eighth edn. (2013)

iclr.cc

34 CHAPTER 1. HYPERPARAMETER OPTIMIZATION

[111] Murray, I., Adams, R.: Slice sampling covariance hyperparameters of la-
tent Gaussian models. In: Lafferty, J., Williams, C., Shawe-Taylor, J.,
Zemel, R., Culotta, A. (eds.) Proceedings of the 24th International Con-
ference on Advances in Neural Information Processing Systems (NIPS’10).
pp. 1732–1740 (2010)

[112] Nguyen, T., Gupta, S., Rana, S., Venkatesh, S.: Stable Bayesian Opti-
mization. In: Kim, J., Shim, K., Cao, L., Lee, J.G., Lin, X., Moon, Y.S.
(eds.) Advances in Knowledge Discovery and Data Mining (PAKDD’17).
Lecture Notes in Artificial Intelligence, vol. 10235, pp. 578–591 (2017)

[113] Nguyen, V., Gupta, S., Rana, S., Li, C., Venkatesh, S.: Filtering Bayesian
optimization approach in weakly specified search space. Knowledge and
Information Systems (2018)

[114] Oh, C., Gavves, E., Welling, M.: BOCK : Bayesian Optimization with
Cylindrical Kernels. In: Dy and Krause [27], pp. 3865–3874

[115] Olson, R., Bartley, N., Urbanowicz, R., Moore, J.: Evaluation of a
Tree-based Pipeline Optimization Tool for Automating Data Science. In:
Friedrich, T. (ed.) Proceedings of the Genetic and Evolutionary Compu-
tation Conference (GECCO’16). pp. 485–492. ACM (2016)

[116] Olson, R., La Cava, W., Mustahsan, Z., Varik, A., Moore, J.: Data-
driven advice for applying machine learning to bioinformatics problems.
In: Proceedings of the Pacific Symposium in Biocomputing 2018. pp. 192–
203 (2018)

[117] Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z.,
Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation
in PyTorch. In: NIPS Autodiff Workshop (2017)

[118] Pedregosa, F.: Hyperparameter optimization with approximate gradient.
In: Balcan and Weinberger [8], pp. 737–746

[119] Peng-Wei Chen, Jung-Ying Wang, Hahn-Ming Lee: Model selection of
SVMs using GA approach. In: Proceedings of the 2004 IEEE International
Joint Conference on Neural Networks (IJCNN). vol. 3, pp. 2035–2040.
IEEE Computer Society Press (2004)

[120] Petrak, J.: Fast subsampling performance estimates for classification al-
gorithm selection. Technical Report TR-2000-07, Austrian Research Insti-
tute for Artificial Intelligence (2000)

[121] Poloczek, M., Wang, J., Frazier, P.: Multi-Information Source Optimiza-
tion. In: Guyon et al. [48], pp. 4288–4298

[122] Precup, D., Teh, Y. (eds.): Proceedings of the 34th International Con-
ference on Machine Learning (ICML’17), vol. 70. Proceedings of Machine
Learning Research (2017)

BIBLIOGRAPHY 35

[123] Provost, F., Jensen, D., Oates, T.: Efficient progressive sampling. In:
Fayyad, U., Chaudhuri, S., Madigan, D. (eds.) The 5th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining
(KDD’99). pp. 23–32. ACM Press (1999)

[124] Rasmussen, C., Williams, C.: Gaussian Processes for Machine Learning.
The MIT Press (2006)

[125] Rendle, S.: Factorization machines. In: Webb, G., Liu, B., Zhang, C.,
Gunopulos, D., Wu, X. (eds.) Proceedings of the 10th IEEE International
Conference on Data Mining (ICDM’06). pp. 995–1000. IEEE Computer
Society Press (2010)

[126] Ripley, B.D.: Statistical aspects of neural networks. Networks and
chaos—statistical and probabilistic aspects 50, 40–123 (1993)

[127] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang,
Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A., Fei-Fei, L.: Im-
agenet large scale visual recognition challenge. International Journal of
Computer Vision 115(3), 211–252 (2015)

[128] Sabharwal, A., Samulowitz, H., Tesauro, G.: Selecting Near-Optimal
Learners via Incremental Data Allocation. In: Schuurmans, D., Wellman,
M. (eds.) Proceedings of the Thirtieth National Conference on Artificial
Intelligence (AAAI’16). AAAI Press (2016)

[129] Samanta, B.: Gear fault detection using artificial neural networks and
support vector machines with genetic algorithms. Mechanical Systems and
Signal Processing 18(3), 625–644 (2004)

[130] Sanders, S., Giraud-Carrier, C.: Informing the Use of Hyperparameter
Optimization Through Metalearning. In: Gottumukkala, R., Ning, X.,
Dong, G., Raghavan, V., Aluru, S., Karypis, G., Miele, L., Wu, X. (eds.)
2017 IEEE International Conference on Big Data (Big Data). IEEE Com-
puter Society Press (2017)

[131] Schilling, N., Wistuba, M., Drumond, L., Schmidt-Thieme, L.: Hyper-
parameter optimization with factorized multilayer perceptrons. In: Ap-
pice, A., Rodrigues, P., Costa, V., Gama, J., Jorge, A., Soares, C. (eds.)
Machine Learning and Knowledge Discovery in Databases (ECML/P-
KDD’15). Lecture Notes in Computer Science, vol. 9285, pp. 87–103.
Springer (2015)

[132] Schilling, N., Wistuba, M., Drumond, L., Schmidt-Thieme, L.: Joint
Model Choice and Hyperparameter Optimization with Factorized Multi-
layer Perceptrons. In: 2015 IEEE 27th International Conference on Tools
with Artificial Intelligence (ICTAI). pp. 72–79. IEEE Computer Society
Press (2015)

36 CHAPTER 1. HYPERPARAMETER OPTIMIZATION

[133] Sculley, D., Snoek, J., Wiltschko, A., Rahimi, A.: Winner’s curse? on
pace, progress, and empirical rigor. In: International Conference on Learn-
ing Representations Workshop track (2018), published online: iclr.cc

[134] Shah, A., Ghahramani, Z.: Pareto Frontier Learning with Expensive Cor-
related Objectives. In: Balcan and Weinberger [8], pp. 1919–1927

[135] Shahriari, B., Swersky, K., Wang, Z., Adams, R., de Freitas, N.: Taking
the human out of the loop: A review of Bayesian optimization. Proceed-
ings of the IEEE 104(1), 148–175 (2016)

[136] Shahriari, B., Bouchard-Cote, A., de Freitas, N.: Unbounded Bayesian
optimization via regularization. In: Gretton and Robert [47], pp. 1168–
1176

[137] SIGOPT: Improve ML models 100x faster (2018), https://sigopt.com/

[138] Simon, D.: Evolutionary optimization algorithms. John Wiley & Sons
(2013)

[139] Snoek, J.: Bayesian optimization and semiparametric models with appli-
cations to assistive technology. PhD Thesis, University of Toronto (2013)

[140] Snoek, J., Larochelle, H., Adams, R.: Practical Bayesian optimization of
machine learning algorithms. In: Bartlett et al. [9], pp. 2960–2968

[141] Snoek, J., Rippel, O., Swersky, K., Kiros, R., Satish, N., Sundaram, N.,
Patwary, M., Prabhat, Adams, R.: Scalable Bayesian optimization using
deep neural networks. In: Bach and Blei [7], pp. 2171–2180

[142] Snoek, J., Swersky, K., Zemel, R., Adams, R.: Input warping for Bayesian
optimization of non-stationary functions. In: Xing and Jebara [157], pp.
1674–1682

[143] Sparks, E., Talwalkar, A., Haas, D., Franklin, M., Jordan, M., Kraska, T.:
Automating model search for large scale machine learning. In: Balazinska,
M. (ed.) Proceedings of the Sixth ACM Symposium on Cloud Computing
- SoCC ’15. pp. 368–380. ACM Press (2015)

[144] Springenberg, J., Klein, A., Falkner, S., Hutter, F.: Bayesian optimization
with robust Bayesian neural networks. In: Lee et al. [87]

[145] Sun, Q., Pfahringer, B., Mayo, M.: Towards a Framework for Designing
Full Model Selection and Optimization Systems. In: Multiple Classifier
Systems, vol. 7872, pp. 259–270. Springer (2013)

[146] Swersky, K., Duvenaud, D., Snoek, J., Hutter, F., Osborne, M.: Raiders of
the lost architecture: Kernels for Bayesian optimization in conditional pa-
rameter spaces. In: NIPS Workshop on Bayesian Optimization in Theory
and Practice (BayesOpt’14) (2014)

iclr.cc
https://sigopt.com/

BIBLIOGRAPHY 37

[147] Swersky, K., Snoek, J., Adams, R.: Multi-task Bayesian optimization.
In: Burges, C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K.
(eds.) Proceedings of the 27th International Conference on Advances in
Neural Information Processing Systems (NIPS’13). pp. 2004–2012 (2013)

[148] Swersky, K., Snoek, J., Adams, R.: Freeze-thaw Bayesian optimization
arXiv:1406.3896v1 [stats.ML] (2014)

[149] Thornton, C., Hutter, F., Hoos, H., Leyton-Brown, K.: Auto-WEKA:
combined selection and hyperparameter optimization of classification al-
gorithms. In: Dhillon, I., Koren, Y., Ghani, R., Senator, T., Bradley,
P., Parekh, R., He, J., Grossman, R., Uthurusamy, R. (eds.) The 19th
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD’13). pp. 847–855. ACM Press (2013)

[150] Wainer, J., Cawley, G.: Empirical Evaluation of Resampling Procedures
for Optimising SVM Hyperparameters. Journal of Machine Learning Re-
search 18, 1–35 (2017)

[151] Wang, J., Xu, J., Wang, X.: Combination of hyperband and
Bayesian optimization for hyperparameter optimization in deep learning.
arXiv:1801.01596v1 [cs.CV] (2018)

[152] Wang, L., Feng, M., Zhou, B., Xiang, B., Mahadevan, S.: Efficient Hyper-
parameter Optimization for NLP Applications. In: Proceedings of the
2015 Conference on Empirical Methods in Natural Language Processing.
pp. 2112–2117. Association for Computational Linguistics (2015)

[153] Wang, Z., Hutter, F., Zoghi, M., Matheson, D., de Feitas, N.: Bayesian
optimization in a billion dimensions via random embeddings. Journal of
Artificial Intelligence Research 55, 361–387 (2016)

[154] Wang, Z., Gehring, C., Kohli, P., Jegelka, S.: Batched Large-scale
Bayesian Optimization in High-dimensional Spaces. In: Storkey, A., Perez-
Cruz, F. (eds.) Proceedings of the 21st International Conference on Artifi-
cial Intelligence and Statistics (AISTATS). vol. 84. Proceedings of Machine
Learning Research (2018)

[155] Wistuba, M., Schilling, N., Schmidt-Thieme, L.: Automatic Frankenstein-
ing: Creating Complex Ensembles Autonomously. In: Proceedings of the
2017 SIAM International Conference on Data Mining (2017)

[156] Wolpert, D.: Stacked generalization. Neural Networks 5(2), 241–259
(1992)

[157] Xing, E., Jebara, T. (eds.): Proceedings of the 31th International Confer-
ence on Machine Learning, (ICML’14). Omnipress (2014)

38 CHAPTER 1. HYPERPARAMETER OPTIMIZATION

[158] Zabinsky, Z.: Pure Random Search and Pure Adaptive Search. In:
Stochastic Adaptive Search for Global Optimization, pp. 25–54. Springer
(2003)

[159] Zeng, X., Luo, G.: Progressive sampling-based Bayesian optimization for
efficient and automatic machine learning model selection. Health Informa-
tion Science and Systems 5(1) (2017)

[160] Zhang, Y., Bahadori, M.T., Su, H., Sun, J.: FLASH: Fast Bayesian Op-
timization for Data Analytic Pipelines. In: Krishnapuram, B., Shah, M.,
Smola, A., Aggarwal, C., Shen, D., Rastogi, R. (eds.) Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD). pp. 2065–2074. ACM Press (2016)

Chapter 2

Meta-Learning

Joaquin Vanschoren

Abstract

Meta-learning, or learning to learn, is the science of systematically observing
how different machine learning approaches perform on a wide range of learning
tasks, and then learning from this experience, or meta-data, to learn new tasks
much faster than otherwise possible. Not only does this dramatically speed up
and improve the design of machine learning pipelines or neural architectures,
it also allows us to replace hand-engineered algorithms with novel approaches
learned in a data-driven way. In this chapter, we provide an overview of the
state of the art in this fascinating and continuously evolving field.

This chapter is based on a very recent survey article [175].

2.1 Introduction

When we learn new skills, we rarely – if ever – start from scratch. We start
from skills learned earlier in related tasks, reuse approaches that worked well
before, and focus on what is likely worth trying based on experience [82]. With
every skill learned, learning new skills becomes easier, requiring fewer examples
and less trial-and-error. In short, we learn how to learn across tasks. Likewise,
when building machine learning models for a specific task, we often build on
experience with related tasks, or use our (often implicit) understanding of the
behavior of machine learning techniques to help make the right choices.

The challenge in meta-learning is to learn from prior experience in a sys-
tematic, data-driven way. First, we need to collect meta-data that describe
prior learning tasks and previously learned models. They comprise the exact
algorithm configurations used to train the models, including hyperparameter set-
tings, pipeline compositions and/or network architectures, the resulting model
evaluations, such as accuracy and training time, the learned model parameters,
such as the trained weights of a neural net, as well as measurable properties

39

40 CHAPTER 2. META-LEARNING

of the task itself, also known as meta-features. Second, we need to learn from
this prior meta-data, to extract and transfer knowledge that guides the search
for optimal models for new tasks. This chapter presents a concise overview of
different meta-learning approaches to do this effectively.

The term meta-learning covers any type of learning based on prior experience
with other tasks. The more similar those previous tasks are, the more types of
meta-data we can leverage, and defining task similarity will be a key overarching
challenge. Perhaps needless to say, there is no free lunch [187, 57]. When a new
task represents completely unrelated phenomena, or random noise, leveraging
prior experience will not be effective. Luckily, in real-world tasks, there are
plenty of opportunities to learn from prior experience.

In the remainder of this chapter, we categorize meta-learning techniques
based on the type of meta-data they leverage, from the most general to the
most task-specific. First, in Section 2.2, we discuss how to learn purely from
model evaluations. These techniques can be used to recommend generally use-
ful configurations and configuration search spaces, as well as transfer knowledge
from empirically similar tasks. In Section 2.3, we discuss how we can character-
ize tasks to more explicitly express task similarity and build meta-models that
learn the relationships between data characteristics and learning performance.
Finally, Section 2.4 covers how we can transfer trained model parameters be-
tween tasks that are inherently similar, e.g. sharing the same input features,
which enables transfer learning [111] and few-shot learning [125].

Note that while multi-task learning [25] (learning multiple related tasks si-
multaneously) and ensemble learning [35] (building multiple models on the same
task), can often be meaningfully combined with meta-learning systems, they do
not in themselves involve learning from prior experience on other tasks.

2.2 Learning from Model Evaluations

Consider that we have access to prior tasks tj ∈ T , the set of all known tasks,
as well as a set of learning algorithms, fully defined by their configurations
θi ∈ Θ; here Θ represents a discrete, continuous, or mixed configuration space
which can cover hyperparameter settings, pipeline components and/or network
architecture components. P is the set of all prior scalar evaluations Pi,j =
P (θi, tj) of configuration θi on task tj , according to a predefined evaluation
measure, e.g. accuracy, and model evaluation technique, e.g. cross-validation.
Pnew is the set of known evaluations Pi,new on a new task tnew. We now want
to train a meta-learner L that predicts recommended configurations Θ∗new for a
new task tnew. The meta-learner is trained on meta-data P∪Pnew. P is usually
gathered beforehand, or extracted from meta-data repositories [173, 176]. Pnew

is learned by the meta-learning technique itself in an iterative fashion, sometimes
warm-started with an initial P

′

new generated by another method.

2.2. LEARNING FROM MODEL EVALUATIONS 41

2.2.1 Task-Independent Recommendations

First, imagine not having access to any evaluations on tnew, hence Pnew = ∅.
We can then still learn a function f : Θ × T → {θ∗k}, k = 1..K, yielding a
set of recommended configurations independent of tnew. These θ∗k can then be
evaluated on tnew to select the best one, or to warm-start further optimization
approaches, such as those discussed in Section 2.2.3.

Such approaches often produce a ranking, i.e. an ordered set θ∗k. This
is typically done by discretizing Θ into a set of candidate configurations θi,
also called a portfolio, evaluated on a large number of tasks tj . We can then
build a ranking per task, for instance using success rates, AUC, or significant
wins [21, 34, 85]. However, it is often desirable that equally good but faster
algorithms are ranked higher, and multiple methods have been proposed to
trade off accuracy and training time [21, 133]. Next, we can aggregate these
single-task rankings into a global ranking, for instance by computing the average
rank [91, 1] across all tasks. When there is insufficient data to build a global
ranking, one can recommend subsets of configurations based on the best known
configurations for each prior task [172, 70], or return quasi-linear rankings [30].

To find the best θ∗ for a task tnew, never before seen, a simple anytime
method is to select the top-K configurations [21], going down the list and eval-
uating each configuration on tnew in turn. This evaluation can be halted after
a predefined value for K, a time budget, or when a sufficiently accurate model
is found. In time-constrained settings, it has been shown that multi-objective
rankings (including training time) converge to near-optimal models much faster
[1, 133], and provide a strong baseline for algorithm comparisons [1, 85].

A very different approach to the one above is to first fit a differentiable
function fj(θi) = Pi,j on all prior evaluations of a specific task tj , and then
use gradient descent to find an optimized configuration θ∗j per prior task [185].
Assuming that some of the tasks tj will be similar to tnew, those θ∗j will be
useful for warm-starting Bayesian optimization approaches.

2.2.2 Configuration Space Design

Prior evaluations can also be used to learn a better configuration space Θ∗.
While again independent from tnew, this can radically speed up the search for
optimal models, since only the more relevant regions of the configuration space
are explored. This is critical when computational resources are limited, and
proves to be an important factor in practical comparisons of AutoML systems
[33].

First, in the functional ANOVA [67] approach, hyperparameters are deemed
important if they explain most of the variance in algorithm performance on a
given task. In [135], this was explored using 250,000 OpenML experiments with
3 algorithms across 100 datasets.

An alternative approach is to first learn an optimal hyperparameter default
setting, and then define hyperparameter importance as the performance gain
that can be achieved by tuning the hyperparameter instead of leaving it at

42 CHAPTER 2. META-LEARNING

that default value. Indeed, even though a hyperparameter may cause a lot
of variance, it may also have one specific setting that always results in good
performance. In [120], this was done using about 500,000 OpenML experiments
on 6 algorithms and 38 datasets. Default values are learned jointly for all
hyperparameters of an algorithm by first training surrogate models for that
algorithm for a large number of tasks. Next, many configurations are sampled,
and the configuration that minimizes the average risk across all tasks is the
recommended default configuration. Finally, the importance (or tunability) of
each hyperparameter is estimated by observing how much improvement can still
be gained by tuning it.

In [182], defaults are learned independently from other hyperparameters, and
defined as the configurations that occur most frequently in the top-K config-
urations for every task. In the case that the optimal default value depends
on meta-features (e.g. the number of training instances or features), simple
functions are learned that include these meta-features. Next, a statistical test
defines whether a hyperparameter can be safely left at this default, based on the
performance loss observed when not tuning a hyperparameter (or a set of hy-
perparameters), while all other parameters are tuned. This was evaluated using
118,000 OpenML experiments with 2 algorithms (SVMs and Random Forests)
across 59 datasets.

2.2.3 Configuration Transfer

If we want to provide recommendations for a specific task tnew, we need addi-
tional information on how similar tnew is to prior tasks tj . One way to do this
is to evaluate a number of recommended (or potentially random) configurations
on tnew, yielding new evidence Pnew. If we then observe that the evaluations
Pi,new are similar to Pi,j , then tj and tnew can be considered intrinsically sim-
ilar, based on empirical evidence. We can include this knowledge to train a
meta-learner that predicts a recommended set of configurations Θ∗new for tnew.
Moreover, every selected θ∗new can be evaluated and included in Pnew, repeating
the cycle and collecting more empirical evidence to learn which tasks are similar
to each other.

Relative Landmarks

A first measure for task similarity considers the relative (pairwise) performance
differences, also called relative landmarks, RLa,b,j = Pa,j − Pb,j between two
configurations θa and θb on a particular task tj [53]. Active testing [85] leverages
these as follows: it warm-starts with the globally best configuration (see Section
2.2.1), calls it θbest, and proceeds in a tournament-style fashion. In each round, it
selects the ‘competitor’ θc that most convincingly outperforms θbest on similar
tasks. It deems tasks to be similar if the relative landmarks of all evaluated
configurations are similar, i.e., if the configurations perform similarly on both tj
and tnew then the tasks are deemed similar. Next, it evaluates the competitor
θc, yielding Pc,new, updates the task similarities, and repeats. A limitation of

2.2. LEARNING FROM MODEL EVALUATIONS 43

this method is that it can only consider configurations θi that were evaluated
on many prior tasks.

Surrogate Models

A more flexible way to transfer information is to build surrogate models sj(θi) =
Pi,j for all prior tasks tj , trained using all available P. One can then define task
similarity in terms of the error between sj(θi) and Pi,new: if the surrogate model
for tj can generate accurate predictions for tnew, then those tasks are intrinsi-
cally similar. This is usually done in combination with Bayesian optimization
(see Chapter 1) to determine the next θi.

Wistuba et al. [186] train surrogate models based on Gaussian Processes
(GPs) for every prior task, plus one for tnew, and combine them into a weighted,
normalized sum, with the (new) mean µ defined as the weighted sum of the
individual µj ’s (obtained from prior tasks tj). The weights of the µj ’s are
computed using the Nadaraya-Watson kernel-weighted average, where each task
is represented as a vector of relative landmarks, and the Epanechnikov quadratic
kernel [104] is used to measure the similarity between the relative landmark
vectors of tj and tnew. The more similar tj is to tnew, the larger the weight sj ,
increasing the influence of the surrogate model for tj .

Feurer et al. [45] propose to combine the predictive distributions of the indi-
vidual Gaussian processes, which makes the combined model a Gaussian process
again. The weights are computed following the agnostic Bayesian ensemble of
Lacoste et al. [81], which weights predictors according to an estimate of their
generalization performance.

Meta-data can also be transferred in the acquisition function rather than
the surrogate model [186]. The surrogate model is only trained on Pi,new, but
the next θi to evaluate is provided by an acquisition function which is the
weighted average of the expected improvement [69] on Pi,new and the predicted
improvements on all prior Pi,j . The weights of the prior tasks can again be
defined via the accuracy of the surrogate model or via relative landmarks. The
weight of the expected improvement component is gradually increased with
every iteration as more evidence Pi,new is collected.

Warm-Started Multi-task Learning

Another approach to relate prior tasks tj is to learn a joint task representation
using P. In [114], task-specific Bayesian linear regression [20] surrogate models
sj(θi) are trained and combined in a feedforward Neural Network NN(θi) which
learns a joint task representation that can accurately predict Pi,new. The sur-
rogate models are pre-trained on OpenML meta-data to provide a warm-start
for optimizing NN(θi) in a multi-task learning setting. Earlier work on multi-
task learning [165] assumed that we already have a set of ‘similar’ source tasks
tj . It transfers information between these tj and tnew by building a joint GP
model for Bayesian optimization that learns and exploits the exact relationship
between the tasks. Learning a joint GP tends to be less scalable than building

44 CHAPTER 2. META-LEARNING

one GP per task, though. Springenberg et al. [160] also assumes that the tasks
are related and similar, but learns the relationship between tasks during the
optimization process using Bayesian Neural Networks. As such, their method is
somewhat of a hybrid of the previous two approaches. Golovin et al. [58] assume
a sequence order (e.g., time) across tasks. It builds a stack of GP regressors,
one per task, training each GP on the residuals relative to the regressor below
it. Hence, each task uses the tasks before it as its priors.

Other Techniques

Multi-armed bandits [138] provide yet another approach to find the source tasks
tj most related to tnew [124]. In this analogy, each tj is one arm, and the
(stochastic) reward for selecting (pulling) a particular prior task (arm) is defined
in terms of the error in the predictions of a GP-based Bayesian optimizer that
models the prior evaluations of tj as noisy measurements and combines them
with the existing evaluations on tnew. The cubic scaling of the GP makes this
approach less scalable, though.

Another way to define task similarity is to take the existing evaluations Pi,j ,
use Thompson Sampling [166] to obtain the optima distribution ρjmax, and then
measure the KL-divergence [80] between ρjmax and ρnewmax [123]. These distri-
butions are then merged into a mixture distribution based on the similarities
and used to build an acquisition function that predicts the next most promising
configuration to evaluate. It is so far only evaluated to tune 2 SVM hyperpa-
rameters using 5 tasks.

Finally, a complementary way to leverage P is to recommend which con-
figurations should not be used. After training surrogate models per task, we
can look up which tj are most similar to tnew, and then use sj(θi) to discover
regions of Θ where performance is predicted to be poor. Excluding these regions
can speed up the search for better-performing ones. Wistuba et al. [184], do
this using a task similarity measure based on the Kendall tau rank correlation
coefficient [73] between the ranks obtained by ranking configurations θi using
Pi,j and Pi,new, respectively.

2.2.4 Learning Curves

We can also extract meta-data about the training process itself, such as how fast
model performance improves as more training data is added. If we divide the
training in steps st, usually adding a fixed number of training examples every
step, we can measure the performance P (θi, tj , st) = Pi,j,t of configuration θi
on task tj after step st, yielding a learning curve across the time steps st. As
discussed in Chapter 1, learning curves are also used to speed up hyperparameter
optimization on a given task. In meta-learning, learning curve information is
transferred across tasks.

While evaluating a configuration on new task tnew, we can halt the training
after a certain number of iterations r < t, and use the partially observed learning
curve to predict how well the configuration will perform on the full dataset based

2.3. LEARNING FROM TASK PROPERTIES 45

on prior experience with other tasks, and decide whether to continue the training
or not. This can significantly speed up the search for good configurations.

One approach is to assume that similar tasks yield similar learning curves.
First, define a distance between tasks based on how similar the partial learning
curves are: dist(ta, tb) = f(Pi,a,t, Pi,b,t) with t = 1, ..., r. Next, find the k most
similar tasks t1..k and use their complete learning curves to predict how well the
configuration will perform on the new complete dataset. Task similarity can be
measured by comparing the shapes of the partial curves across all configurations
tried, and the prediction is made by adapting the ‘nearest’ complete curve(s) to
the new partial curve [83, 84]. This approach was also successful in combination
with active testing [86], and can be sped up further by using multi-objective
evaluation measures that include training time [133].

Interestingly, while several methods aim to predict learning curves during
neural architecture search (see Chapter 3), as of yet none of this work leverages
learning curves previously observed on other tasks.

2.3 Learning from Task Properties

Another rich source of meta-data are characterizations (meta-features) of the
task at hand. Each task tj ∈ T is described with a vectorm(tj) = (mj,1, ...,mj,K)
of K meta-features mj,k ∈ M , the set of all known meta-features. This can be
used to define a task similarity measure based on, for instance, the Euclidean
distance between m(ti) and m(tj), so that we can transfer information from the
most similar tasks to the new task tnew. Moreover, together with prior evalu-
ations P, we can train a meta-learner L to predict the performance Pi,new of
configurations θi on a new task tnew.

2.3.1 Meta-Features

Table 2.1 provides a concise overview of the most commonly used meta-features,
together with a short rationale for why they are indicative of model performance.
Where possible, we also show the formulas to compute them. More complete
surveys can be found in the literature [137, 174, 98, 129, 26].

To build a meta-feature vector m(tj), one needs to select and further process
these meta-features. Studies on OpenML meta-data have shown that the opti-
mal set of meta-features depends on the application [17]. Many meta-features
are computed on single features, or combinations of features, and need to be ag-
gregated by summary statistics (min,max,µ,σ,quartiles,...) or histograms [72].
One needs to systematically extract and aggregate them [117]. When com-
puting task similarity, it is also important to normalize all meta-features [9],
perform feature selection [171], or employ dimensionality reduction techniques
(e.g. PCA) [17]. When learning meta-models, one can also use relational meta-
learners [172] or case-based reasoning methods [92, 63, 71].

Beyond these general-purpose meta-features, many more specific ones were
formulated. For streaming data one can use streaming landmarks [134, 136],

46 CHAPTER 2. META-LEARNING

Name Formula Rationale Variants

Nr instances n Speed, Scalability [99] p/n, log(n), log(n/p)
Nr features p Curse of dimensionality [99] log(p), % categorical
Nr classes c Complexity, imbalance [99] ratio min/maj class
Nr missing values m Imputation effects [70] % missing
Nr outliers o Data noisiness [140] o/n

Skewness
E(X−µX)3

σ3
X

Feature normality [99] min,max,µ,σ,q1, q3

Kurtosis
E(X−µX)4

σ4
X

Feature normality [99] min,max,µ,σ,q1, q3

Correlation ρX1X2
Feature interdependence [99] min,max,µ,σ,ρXY [157]

Covariance covX1X2 Feature interdependence [99] min,max,µ,σ,covXY
Concentration τX1X2

Feature interdependence [72] min,max,µ,σ,τXY
Sparsity sparsity(X) Degree of discreteness [142] min,max,µ,σ
Gravity gravity(X) Inter-class dispersion [5]
ANOVA p-value pvalX1X2

Feature redundancy [70] pvalXY [157]

Coeff. of variation σY
µY

Variation in target [157]

PCA ρλ1

√
λ1

1+λ1
Variance in first PC [99] λ1∑

i λi
[99]

PCA skewness Skewness of first PC [48] PCA kurtosis [48]

PCA 95%
dim95%var

p
Intrinsic dimensionality [9]

Class probability P (C) Class distribution [99] min,max,µ,σ

Class entropy H(C) Class imbalance [99]

Norm. entropy
H(X)
log2n

Feature informativeness [26] min,max,µ,σ

Mutual inform. MI(C, X) Feature importance [99] min,max,µ,σ

Uncertainty coeff.
MI(C,X)
H(C)

Feature importance [3] min,max,µ,σ

Equiv. nr. feats
H(C)

MI(C,X)
Intrinsic dimensionality [99]

Noise-signal ratio
H(X)−MI(C,X)

MI(C,X)
Noisiness of data [99]

Fisher’s discrimin.
(µc1−µc2)2

σ2
c1−σ

2
c2

Separability classes c1, c2 [64] See [64]

Volume of overlap Class distribution overlap [64] See [64]
Concept variation Task complexity [179] See [178, 179]
Data consistency Data quality [76] See [76]

Nr nodes, leaves |η|, |ψ| Concept complexity [113] Tree depth
Branch length Concept complexity [113] min,max,µ,σ
Nodes per feature |ηX | Feature importance [113] min,max,µ,σ

Leaves per class
|ψc|
|ψ| Class complexity [49] min,max,µ,σ

Leaves agreement
nψi
n

Class separability [16] min,max,µ,σ
Information gain Feature importance [16] min,max,µ,σ, gini

Landmarker(1NN) P (θ1NN , tj) Data sparsity [115] Elite 1NN [115]
Landmarker(Tree) P (θTree, tj) Data separability [115] Stump,RandomTree
Landmarker(Lin) P (θLin, tj) Linear separability [115] Lin.Disciminant
Landmarker(NB) P (θNB , tj) Feature independence [115] More models [14, 88]
Relative LM Pa,j − Pb,j Probing performance [53]
Subsample LM P (θi, tj , st) Probing performance [159]

Table 2.1: Overview of commonly used meta-features. Groups from top to
bottom: simple, statistical, information-theoretic, complexity, model-based,
and landmarkers. Continuous features X and target Y have mean µX , stdev
σX , variance σ2

X . Categorical features X and class C have categorical values
πi, conditional probabilities πi|j , joint probabilities πi,j , marginal probabilities
πi+ =

∑
j πij , entropy H(X) = −∑i πi+log2(πi+).

2.3. LEARNING FROM TASK PROPERTIES 47

for time series data one can compute autocorrelation coefficients or the slope of
regression models [7, 121, 146], and for unsupervised problems one can cluster
the data in different ways and extract properties of these clusters [158]. In many
applications, domain-specific information can be leveraged as well [155, 109].

2.3.2 Learning Meta-Features

Instead of manually defining meta-features, we can also learn a joint representa-
tion for groups of tasks. One approach is to build meta-models that generate a
landmark-like meta-feature representation M ′ given other task meta-features M
and trained on performance meta-data P, or f : M 7→M ′. Sun and Pfahringer
[164] do this by evaluating a predefined set of configurations θi on all prior tasks
tj , and generating a binary metafeature mj,a,b ∈ M ′ for every pairwise combi-
nation of configurations θa and θb, indicating whether θa outperformed θb or
not, thus m′(tj) = (mj,a,b,mj,a,c,mj,b,c, ...). To compute mnew,a,b, meta-rules
are learned for every pairwise combination (a,b), each predicting whether θa
will outperform θb on task tj , given its other meta-features m(tj).

We can also learn a joint representation based entirely on the available P
meta-data, i.e. f : P × Θ 7→ M ′. We previously discussed how to do this
with feed-forward neural nets [114] in Section 2.2.3. If the tasks share the
same input space, e.g., they are images of the same resolution, one can also
use Siamese networks to learn a meta-feature representation [75]. These are
trained by feeding the data of two different tasks to two twin networks, and
using the differences between the predicted and observed performance Pi,new as
the error signal. Since the model parameters between both networks are tied
in a Siamese network, two very similar tasks are mapped to the same regions
in the latent meta-feature space. They can be used for warm starting Bayesian
hyperparameter optimization [75] and neural architecture search [2].

2.3.3 Warm-Starting Optimization from Similar Tasks

Meta-features are a very natural way to estimate task similarity and initialize
optimization procedures based on promising configurations on similar tasks.
This is akin to how human experts start a manual search for good models,
given experience on related tasks.

Starting a genetic search algorithm in regions of the search space with
promising solutions can significantly speed up convergence to a good solution.
Gomes et al. [59] recommend initial configurations by finding the k most simi-
lar prior tasks tj based on the L1 distance between vectors m(tj) and m(tnew),
where each m(tj) includes 17 simple and statistical meta-features. For each of
the k most similar tasks, the best configuration is evaluated on tnew, and used
to initialize a genetic search algorithm (Particle Swarm Optimization), as well
as Tabu Search. Reif et al. [128] follow a very similar approach, using 15 simple,
statistical, and landmarking meta-features. They use a forward selection tech-
nique to find the most useful meta-features, and warm-start a standard genetic
algorithm (GAlib) with a modified Gaussian mutation operation. Variants of

48 CHAPTER 2. META-LEARNING

active testing (see Sect. 2.2.3) that use meta-features were also tried [100, 85],
but did not perform better than the approaches based on relative landmarks.

Also model-based optimization approaches can benefit greatly from an initial
set of promising configurations. SCoT [9] trains a single surrogate ranking model
f : M×Θ→ R, predicting the rank of θi on task tj . M contains 4 meta-features
(3 simple ones and one based on PCA). The surrogate model is trained on all
the rankings, including those on tnew. Ranking is used because the scale of
evaluation values can differ greatly between tasks. A GP regression converts
the ranks to probabilities to do Bayesian optimization, and each new Pi,new is
used to retrain the surrogate model after every step.

Schilling et al. [147] use a modified multilayer perceptron as a surrogate
model, of the form sj(θi,m(tj), b(tj)) = Pi,j where m(tj) are the meta-features
and b(tj) is a vector of j binary indications which are 1 if the meta-instance is
from tj and 0 otherwise. The multi-layer perceptron uses a modified activation
function based on factorization machines [131] in the first layer, aimed at learn-
ing a latent representation for each task to model task similarities. Since this
model cannot represent uncertainties, an ensemble of 100 multilayer perceptrons
is trained to get predictive means and simulate variances.

Training a single surrogate model on all prior meta-data is often less scalable.
Yogatama and Mann [189] also build a single Bayesian surrogate model, but only
include tasks similar to tnew, where task similarity is defined as the Euclidean
distance between meta-feature vectors consisting of 3 simple meta-features. The
Pi,j values are standardized to overcome the problem of different scales for
each tj . The surrogate model learns a Gaussian process with a specific kernel
combination on all instances.

Feurer et al. [48] offer a simpler, more scalable method that warm-starts
Bayesian optimization by sorting all prior tasks tj similar to [59], but including
46 simple, statistical, and landmarking meta-features, as well as H(C). The
t best configurations on the d most similar tasks are used to warm-start the
surrogate model. They search over many more hyperparameters than earlier
work, including preprocessing steps. This warm-starting approach was also
used in later work [46], which is discussed in detail in Chapter 6.

Finally, one can also use collaborative filtering to recommend promising con-
figurations [161]. By analogy, the tasks tj (users) provide ratings (Pi,j) for the
configurations θi (items), and matrix factorization techniques are used to pre-
dict unknown Pi,j values and recommend the best configurations for any task.
An important issue here is the cold start problem, since the matrix factorization
requires at least some evaluations on tnew. Yang et al. [188] use a D-optimal
experiment design to sample an initial set of evaluations Pi,new. They predict
both the predictive performance and runtime, to recommend a set of warm-
start configurations that are both accurate and fast. Misir and Sebag [102, 103]
leverage meta-features to solve the cold start problem. Fusi et al. [54] also use
meta-features, following the same procedure as [46], and use a probabilistic ma-
trix factorization approach that allows them to perform Bayesian optimization
to further optimize their pipeline configurations θi. This approach also yields
useful latent embeddings of both the tasks and configurations.

2.3. LEARNING FROM TASK PROPERTIES 49

2.3.4 Meta-Models

We can also learn the complex relationship between a task’s meta-features and
the utility of specific configurations by building a meta-model L that recom-
mends the most useful configurations Θ∗new given the meta-features M of the
new task tnew. There exists a rich body of earlier work [22, 87, 56, 94] on
building meta-models for algorithm selection [15, 115, 70, 19] and hyperparam-
eter recommendation [79, 157, 4, 108]. Experiments showed that boosted and
bagged trees often yielded the best predictions, although much depends on the
exact meta-features used [72, 76].

Ranking

Meta-models can also generate a ranking of the top-K most promising config-
urations. One approach is to build a k-nearest neighbor (kNN) meta-model to
predict which tasks are similar, and then rank the best configurations on these
similar tasks [23, 146]. This is similar to the work discussed in Section 2.3.3,
but without ties to a follow-up optimization approach. Meta-models specifically
meant for ranking, such as predictive clustering trees [170] and label ranking
trees [29] were also shown to work well. Approximate Ranking Trees Forests
(ART Forests) [164], ensembles of fast ranking trees, prove to be especially effec-
tive, since they have ‘built-in’ meta-feature selection, work well even if few prior
tasks are available, and the ensembling makes the method more robust. auto-
Bagging [116] ranks Bagging workflows including four different Bagging hyper-
parameters, using an XGBoost-based ranker, trained on 140 OpenML datasets
and 146 meta-features. Lorena et al. [93] recommends SVM configurations for
regression problems using a kNN meta-model and a new set of meta-features
based on data complexity.

Performance Prediction

Meta-models can also directly predict the performance, e.g. accuracy or training
time, of a configuration on a given task, given its meta-features. This allows
us to estimate whether a configuration will be interesting enough to evaluate
in any optimization procedure. Early work used linear regression or rule-base
regressors to predict the performance of a discrete set of configurations and then
rank them accordingly [14, 77]. Guerra et al. [61] train an SVM meta-regressor
per classification algorithm to predict its accuracy, under default settings, on a
new task tnew given its meta-features. Reif et al. [129] train a similar meta-
regressor on more meta-data to predict its optimized performance. Davis et
al. [32] use a MultiLayer Perceptron based meta-learner instead, predicting the
performance of a specific algorithm configuration.

Instead of predicting predictive performance, a meta-regressor can also be
trained to predict algorithm training/prediction time, for instance, using an
SVM regressor trained on meta-features [127], itself tuned via genetic algo-
rithms [119]. Yang et al. [188] predict configuration runtime using polynomial

50 CHAPTER 2. META-LEARNING

regression, based only on the number of instances and features. Hutter et al. [68]
provide a general treatise on predicting algorithm runtime in various domains.

Most of these meta-models generate promising configurations, but don’t ac-
tually tune these configurations to tnew themselves. Instead, the predictions can
be used to warm-start or guide any other optimization technique, which allows
for all kinds of combinations of meta-models and optimization techniques. In-
deed, some of the work discussed in Section 2.3.3 can be seen as using a distance-
based meta-model to warm-start Bayesian optimization [48, 54] or evolutionary
algorithms [59, 128]. In principle, other meta-models could be used here as well.

Instead of learning the relationship between a task’s meta-features and con-
figuration performance, one can also build surrogate models predicting the per-
formance of configurations on specific tasks[40]. One can then learn how to
combine these per-task predictions to warm-start or guide optimization tech-
niques on a new task tnew [45, 114, 160, 186], as discussed in Section 2.2.3.
While meta-features could also be used to combine per-task predictions based
on task similarity, it is ultimately more effective to gather new observations
Pi,new, since these allow to refine the task similarity estimates with every new
observation [47, 186, 85].

2.3.5 Pipeline Synthesis

When creating entire machine learning pipelines [152], the number of configu-
ration options grows dramatically, making it even more important to leverage
prior experience. One can control the search space by imposing a fixed struc-
ture on the pipeline, fully described by a set of hyperparameters. One can then
use the most promising pipelines on similar tasks to warm-start a Bayesian
optimization [46, 54].

Other approaches give recommendations for certain pipeline steps [118, 162],
and can be leveraged in larger pipeline construction approaches, such as plan-
ning [105, 74, 55, 183] or evolutionary techniques [110, 163]. Nguyen et al. [105]
construct new pipelines using a beam search focussed on components recom-
mended by a meta-learner, and is itself trained on examples of successful prior
pipelines. Bilalli et al. [18] predict which pre-processing techniques are recom-
mended for a given classification algorithm. They build a meta-model per target
classification algorithm that, given the tnew meta-features, predicts which pre-
processing technique should be included in the pipeline. Similarly, Schoenfeld
et al. [151] build meta-models predicting when a preprocessing algorithm will
improve a particular classifier’s accuracy or runtime.

AlphaD3M [38] uses a self-play reinforcement learning approach in which
the current state is represented by the current pipeline, and actions include the
addition, deletion, or replacement of pipeline components. A Monte Carlo Tree
Search (MCTS) generates pipelines, which are evaluated to train a recurrent
neural network (LSTM) that can predict pipeline performance, in turn pro-
ducing the action probabilities for the MCTS in the next round. The state
description also includes meta-features of the current task, allowing the neural
network to learn across tasks.

2.4. LEARNING FROM PRIOR MODELS 51

2.3.6 To Tune or Not to Tune?

To reduce the number of configuration parameters to be optimized, and to save
valuable optimization time in time-constrained settings, meta-models have also
been proposed to predict whether or not it is worth tuning a given algorithm
given the meta-features of the task at hand [132] and how much improvement
we can expect from tuning a specific algorithm versus the additional time in-
vestment [143]. More focused studies on specific learning algorithms yielded
meta-models predicting when it is necessary to tune SVMs [96], what are good
default hyperparameters for SVMs given the task (including interpretable meta-
models) [97], and how to tune decision trees [95].

2.4 Learning from Prior Models

The final type of meta-data we can learn from are prior machine learning models
themselves, i.e., their structure and learned model parameters. In short, we want
to train a meta-learner L that learns how to train a (base-) learner lnew for a new
task tnew, given similar tasks tj ∈ T and the corresponding optimized models
lj ∈ L, where L is the space of all possible models. The learner lj is typically
defined by its model parameters W = {wk}, k = 1..K and/or its configuration
θi ∈ Θ.

2.4.1 Transfer Learning

In transfer learning [169], we take models trained on one or more source tasks
tj , and use them as starting points for creating a model on a similar target task
tnew. This can be done by forcing the target model to be structurally or oth-
erwise similar to the source model(s). This is a generally applicable idea, and
transfer learning approaches have been proposed for kernel methods [41, 42],
parametric Bayesian models [139, 122, 8], Bayesian networks [107], clustering
[167] and reinforcement learning [62, 36]. Neural networks, however, are excep-
tionally suitable for transfer learning because both the structure and the model
parameters of the source models can be used as a good initialization for the
target model, yielding a pre-trained model which can then be further fine-tuned
using the available training data on tnew [168, 11, 13, 24]. In some cases, the
source network may need to be modified before transferring it [154]. We will
focus on neural networks in the remainder of this section.

Especially large image datasets, such as ImageNet [78], have been shown to
yield pre-trained models that transfer exceptionally well to other tasks [37, 153].
However, it has also been shown that this approach doesn’t work well when the
target task is not so similar [190]. Rather than hoping that a pre-trained model
‘accidentally’ transfers well to a new problem, we can purposefully imbue meta-
learners with an inductive bias (learned from many similar tasks) that allows
them to learn new tasks much faster, as we will discuss below.

52 CHAPTER 2. META-LEARNING

2.4.2 Meta-Learning in Neural Networks

An early meta-learning approach is to create recurrent neural networks (RNNs)
able to modify their own weights [148, 149]. During training, they use their own
weights as additional input data and observe their own errors to learn how to
modify these weights in response to the new task at hand. The updating of the
weights is defined in a parametric form that is differentiable end-to-end and can
jointly optimize both the network and training algorithm using gradient descent,
yet is also very difficult to train. Later work used reinforcement learning across
tasks to adapt the search strategy [150] or the learning rate for gradient descent
[31] to the task at hand.

Inspired by the feeling that backpropagation is an unlikely learning mech-
anism for our own brains, Bengio et al. [12] replace backpropagation with
simple biologically-inspired parametric rules (or evolved rules [27]) to update
the synaptic weights. The parameters are optimized, e.g. using gradient de-
scent or evolution, across a set of input tasks. Runarsson and Jonsson [141]
replaced these parametric rules with a single layer neural network. Santoro et
al. [145] instead use a memory-augmented neural network to learn how to store
and retrieve ‘memories’ of prior classification tasks. Hochreiter et al. [65] use
LSTMs [66] as a meta-learner to train multi-layer perceptrons.

Andrychowicz et al. [6] also replace the optimizer, e.g. stochastic gradi-
ent descent, with an LSTM trained on multiple prior tasks. The loss of the
meta-learner (optimizer) is defined as the sum of the losses of the base-learners
(optimizees), and optimized using gradient descent. At every step, the meta-
learner chooses the weight update estimated to reduce the optimizee’s loss the
most, based on the learned model weights {wk} of the previous step as well
as the current performance gradient. Later work generalizes this approach by
training an optimizer on synthetic functions, using gradient descent [28]. This
allows meta-learners to optimize optimizees even if these do not have access to
gradients.

In parallel, Li and Malik [89] proposed a framework for learning optimiza-
tion algorithms from a reinforcement learning perspective. It represents any
particular optimization algorithm as a policy, and then learns this policy via
guided policy search. Follow-up work [90] shows how to leverage this approach
to learn optimization algorithms for (shallow) neural networks.

The field of neural architecture search includes many other methods that
build a model of neural network performance for a specific task, for instance
using Bayesian optimization or reinforcement learning. See Chapter 3 for an
in-depth discussion. However, most of these methods do not (yet) generalize
across tasks and are therefore not discussed here.

2.4.3 Few-Shot Learning

A particularly challenging meta-learning problem is to train an accurate deep
learning model using only a few training examples, given prior experience with
very similar tasks for which we have large training sets available. This is called

2.4. LEARNING FROM PRIOR MODELS 53

few-shot learning. Humans have an innate ability to do this, and we wish to
build machine learning agents that can do the same [82]. A particular example
of this is ‘K-shot N-way’ classification, in which we are given many examples
(e.g., images) of certain classes (e.g., objects), and want to learn a classifier lnew
able to classify N new classes using only K examples of each.

Using prior experience, we can, for instance, learn a common feature rep-
resentation of all the tasks, start training lnew with a better model parameter
initialization Winit and acquire an inductive bias that helps guide the optimiza-
tion of the model parameters, so that lnew can be trained much faster than
otherwise possible.

Earlier work on one-shot learning is largely based on hand-engineered fea-
tures [44, 43, 50, 10]. With meta-learning, however, we hope to learn a common
feature representation for all tasks in an end-to-end fashion.

Vinyals et al. [180] state that, to learn from very little data, one should look
to non-parameteric models (such as k-nearest neighbors), which use a memory
component rather than learning many model parameters. Their meta-learner is
a Matching Network that apply the idea of a memory component in a neural
net. It learns a common representation for the labelled examples, and matches
each new test instance to the memorized examples using cosine similarity. The
network is trained on minibatches with only a few examples of a specific task
each.

Snell et al. [156] propose Prototypical Networks, which map examples to a
p-dimensional vector space such that examples of a given output class are close
together. It then calculates a prototype (mean vector) for every class. New test
instances are mapped to the same vector space and a distance metric is used to
create a softmax over all possible classes. Ren et al. [130] extend this approach
to semi-supervised learning.

Ravi and Larochelle [125] use an LSTM-based meta-learner to learn an up-
date rule for training a neural network learner. With every new example, the
learner returns the current gradient and loss to the LSTM meta-learner, which
then updates the model parameters {wk} of the learner. The meta-learner is
trained across all prior tasks.

Model-Agnostic Meta-Learning (MAML) [51], on the other hand, does not
try to learn an update rule, but instead learns a model parameter initialization
Winit that generalizes better to similar tasks. Starting from a random {wk}, it
iteratively selects a batch of prior tasks, and for each it trains the learner on K
examples to compute the gradient and loss (on a test set). It then backpropa-
gates the meta-gradient to update the weights {wk} in the direction in which
they would have been easier to update. In other words, after each iteration, the
weights {wk} become a better Winit to start finetuning any of the tasks. Finn
and Levine [52] also argue that MAML is able to approximate any learning al-
gorithm when using a sufficiently deep ReLU network and certain losses. They
also conclude that the MAML initializations are more resilient to overfitting on
small samples, and generalize more widely than meta-learning approaches based
on LSTMs.

REPTILE [106] is an approximation of MAML that executes stochastic gra-

54 CHAPTER 2. META-LEARNING

dient descent for K iterations on a given task, and then gradually moves the
initialization weights in the direction of the weights obtained after the K itera-
tions. The intuition is that every task likely has more than one set of optimal
weights {w∗i }, and the goal is to find a Winit that is close to at least one of those
{w∗i } for every task.

Finally, we can also derive a meta-learner from a black-box neural network.
Santoro et al [144] propose Memory-Augmented Neural Networks (MANNs),
which train a Neural Turing Machine (NTM) [60], a neural network with aug-
mented memory capabilities, as a meta-learner. This meta-learner can then
memorize information about previous tasks and leverage that to learn a learner
lnew. SNAIL [101] is a generic meta-learner architecture consisting of interleaved
temporal convolution and causal attention layers. The convolutional networks
learn a common feature vector for the training instances (images) to aggregate
information from past experiences. The causal attention layers learn which
pieces of information to pick out from the gathered experience to generalize to
new tasks.

Overall, the intersection of deep learning and meta-learning proves to be
particular fertile ground for groundbreaking new ideas, and we expect this field
to become more important over time.

2.4.4 Beyond Supervised Learning

Meta-learning is certainly not limited to (semi-)supervised tasks, and has been
successfully applied to solve tasks as varied as reinforcement learning, active
learning, density estimation and item recommendation. The base-learner may
be unsupervised while the meta-learner is supervised, but other combinations
are certainly possible as well.

Duan et al. [39] propose an end-to-end reinforcement learning (RL) ap-
proach consisting of a task-specific fast RL algorithm which is guided by a
general-purpose slow meta-RL algorithm. The tasks are interrelated Markov
Decision Processes (MDPs). The meta-RL algorithm is modeled as an RNN,
which receives the observations, actions, rewards and termination flags. The
activations of the RNN store the state of the fast RL learner, and the RNN’s
weights are learned by observing the performance of fast learners across tasks.

In parallel, Wang et al. [181] also proposed to use a deep RL algorithm
to train an RNN, receiving the actions and rewards of the previous interval in
order to learn a base-level RL algorithm for specific tasks. Rather than using
relatively unstructured tasks such as random MDPs, they focus on structured
task distributions (e.g., dependent bandits) in which the meta-RL algorithm
can exploit the inherent task structure.

Pang et al. [112] offer a meta-learning approach to active learning (AL).
The base-learner can be any binary classifier, and the meta-learner is a deep
RL network consisting of a deep neural network that learns a representation
of the AL problem across tasks, and a policy network that learns the optimal
policy, parameterized as weights in the network. The meta-learner receives the
current state (the unlabeled point set and base classifier state) and reward (the

2.5. CONCLUSION 55

performance of the base classifier), and emits a query probability, i.e. which
points in the unlabeled set to query next.

Reed et al. [126] propose a few-shot approach for density estimation (DE).
The goal is to learn a probability distribution over a small number of images
of a certain concept (e.g., a handwritten letter) that can be used to generate
images of that concept, or compute the probability that an image shows that
concept. The approach uses autoregressive image models which factorize the
joint distribution into per-pixel factors, usually conditioned on (many) examples
of the target concept. Instead, a MAML-based few-shot learner is used, trained
on examples of many other (similar) concepts.

Finally, Vartak et al. [177] address the cold-start problem in matrix factor-
ization. They propose a deep neural network architecture that learns a (base)
neural network whose biases are adjusted based on task information. While
the structure and weights of the neural net recommenders remain fixed, the
meta-learner learns how to adjust the biases based on each user’s item history.

All these recent new developments illustrate that it is often fruitful to look
at problems through a meta-learning lens and find new, data-driven approaches
to replace hand-engineered base-learners.

2.5 Conclusion

Meta-learning opportunities present themselves in many different ways, and can
be embraced using a wide spectrum of learning techniques. Every time we try
to learn a certain task, whether successful or not, we gain useful experience that
we can leverage to learn new tasks. We should never have to start entirely from
scratch. Instead, we should systematically collect our ‘learning exhaust’ and
learn from it to build AutoML systems that continuously improve over time,
helping us tackle new learning problems ever more efficiently. The more new
tasks we encounter, and the more similar those new tasks are, the more we can
tap into prior experience, to the point that most of the required learning has
already been done beforehand. The ability of computer systems to store virtu-
ally infinite amounts of prior learning experiences (in the form of meta-data)
opens up a wide range of opportunities to use that experience in completely
new ways, and we are only starting to learn how to learn from prior experience
effectively. Yet, this is a worthy goal: learning how to learn any task empowers
us far beyond knowing how to learn specific tasks.

Acknowledgments

The author would like to thank Pavel Brazdil, Matthias Feurer, Frank Hutter,
Raghu Rajan, and Jan van Rijn for many invaluable discussions and feedback
on the manuscript.

56 CHAPTER 2. META-LEARNING

Bibliography

[1] Abdulrahman, S., Brazdil, P., van Rijn, J., Vanschoren, J.: Speeding
up Algorithm Selection using Average Ranking and Active Testing by
Introducing Runtime. Machine Learning 107, 79–108 (2018)

[2] Afif, I.N.: Warm-Starting Deep Learning Model Construction using Meta-
Learning. Master’s thesis, TU Eindhoven (2018)

[3] Agresti, A.: Categorical Data Analysis. Wiley Interscience (2002)

[4] Ali, S., Smith-Miles, K.A.: Metalearning approach to automatic kernel se-
lection for support vector machines. Neurocomput. 70(1), 173–186 (2006)

[5] Ali, S., Smith-Miles, K.A.: On learning algorithm selection for classifica-
tion. Applied Soft Computing 6(2), 119 – 138 (2006)

[6] Andrychowicz, M., Denil, M., Gomez, S., Hoffman, M.W., Pfau, D.,
Schaul, T., Shillingford, B., De Freitas, N.: Learning to learn by gra-
dient descent by gradient descent. In: Advances in Neural Information
Processing Systems. pp. 3981–3989 (2016)

[7] Arinze, B.: Selecting appropriate forecasting models using rule induction.
Omega 22(6), 647–658 (1994)

[8] Bakker, B., Heskes, T.: Task Clustering and Gating for Bayesian Multi-
task Learning. Journal of Machine Learning Research 4, 83–999 (2003)

[9] Bardenet, R., Brendel, M., Kégl, B., Sebag, M.: Collaborative hyperpa-
rameter tuning. In: Proceedings of ICML 2013. pp. 199–207 (2013)

[10] Bart, E., Ullman, S.: Cross-generalization: Learning novel classes from a
single example by feature replacement. In: CVPR. pp. 672–679 (2005)

[11] Baxter, J.: Learning Internal Representations. In: Advances in Neural
Information Processing Systems, NIPS (1996)

[12] Bengio, S., Bengio, Y., Cloutier, J.: On the search for new learning rules
for anns. Neural Processing Letters 2(4), 26–30 (1995)

[13] Bengio, Y.: Deep learning of representations for unsupervised and transfer
learning. In: ICML Unsupervised and Transfer Learning. pp. 17–36 (2012)

[14] Bensusan, H., Kalousis, A.: Estimating the predictive accuracy of a clas-
sifier. Lecture Notes in Computer Science 2167, 25–36 (2001)

[15] Bensusan, H., Giraud-Carrier, C.: Discovering task neighbourhoods
through landmark learning performances. In: PKDD. pp. 325–330 (2000)

[16] Bensusan, H., Giraud-Carrier, C., Kennedy, C.: A higher-order approach
to meta-learning. In: ILP. pp. 33 – 42 (2000)

BIBLIOGRAPHY 57

[17] Bilalli, B., Abelló, A., Aluja-Banet, T.: On the predictive power of meta-
features in OpenML. International Journal of Applied Mathematics and
Computer Science 27(4), 697 – 712 (2017)

[18] Bilalli, B., Abelló, A., Aluja-Banet, T., Wrembel, R.: Intelligent assistance
for data pre-processing. Computer Standards & Interf. 57, 101 – 109 (2018)

[19] Bischl, B., Kerschke, P., Kotthoff, L., Lindauer, M., Malitsky, Y.,
Fréchette, A., Hoos, H., Hutter, F., Leyton-Brown, K., Tierney, K., Van-
schoren, J.: ASLib: A benchmark library for algorithm selection. Artificial
Intelligence 237, 41–58 (2016)

[20] Bishop, C.M.: Pattern recognition and machine learning. Springer (2006)

[21] Brazdil, P., Soares, C., da Costa, J.P.: Ranking learning algorithms: Using
IBL and meta-learning on accuracy and time results. Machine Learning
50(3), 251–277 (2003)

[22] Brazdil, P., Giraud-Carrier, C., Soares, C., Vilalta, R.: Metalearning:
Applications to Data Mining. Springer-Verlag Berlin Heidelberg (2009)

[23] Brazdil, P.B., Soares, C., Da Coasta, J.P.: Ranking learning algorithms:
Using IBL and meta-learning on accuracy and time results. Machine
Learning 50(3), 251–277 (2003)

[24] Caruana, R.: Learning many related tasks at the same time with back-
propagation. Neural Information Processing Systems pp. 657–664 (1995)

[25] Caruana, R.: Multitask Learning. Machine Learning 28(1), 41–75 (1997)

[26] Castiello, C., Castellano, G., Fanelli, A.M.: Meta-data: Characterization
of input features for meta-learning. In: 2nd International Conference on
Modeling Decisions for Artificial Intelligence (MDAI). pp. 457 – 468 (2005)

[27] Chalmers, D.J.: The evolution of learning: An experiment in genetic
connectionism. In: Connectionist Models, pp. 81–90. Elsevier (1991)

[28] Chen, Y., Hoffman, M.W., Colmenarejo, S.G., Denil, M., Lillicrap, T.P.,
Botvinick, M., de Freitas, N.: Learning to learn without gradient descent
by gradient descent. arXiv preprint arXiv:1611.03824 (2016)

[29] Cheng, W., Hühn, J., Hüllermeier, E.: Decision tree and instance-based
learning for label ranking. In: ICML. pp. 161–168 (2009)

[30] Cook, W.D., Kress, M., Seiford, L.W.: A general framework for distance-
based consensus in ordinal ranking models. European Journal of Opera-
tional Research 96(2), 392–397 (1996)

[31] Daniel, C., Taylor, J., Nowozin, S.: Learning step size controllers for
robust neural network training. In: AAAI. pp. 1519–1525 (2016)

58 CHAPTER 2. META-LEARNING

[32] Davis, C., Giraud-Carrier, C.: Annotative experts for hyperparameter
selection. In: AutoML Workshop at ICML 2018 (2018)

[33] De Sa, A., Pinto, W., Oliveira, L.O., Pappa, G.: RECIPE: A grammar-
based framework for automatically evolving classification pipelines. In:
European Conference on Genetic Programming. pp. 246–261 (2017)

[34] Demšar, J.: Statistical Comparisons of Classifiers over Multiple Data Sets.
Journal of Machine Learning Research 7, 1–30 (2006)

[35] Dietterich, T.: Ensemble methods in machine learning. In: International
workshop on multiple classifier systems. pp. 1–15 (2000)

[36] Dietterich, T., Busquets, D., Lopez de Mantaras, R., Sierra, C.: Action
Refinement in Reinforcement Learning by Probability Smoothing. In: 19th
International Conference on Machine Learning. pp. 107–114 (2002)

[37] Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E.,
Darrell, T.: Decaf: A deep convolutional activation feature for generic
visual recognition. In: ICML. pp. 647–655 (2014)

[38] Drori, I., Krishnamurthy, Y., Rampin, R., de Paula Lourenco, R., Ono,
J.P., Cho, K., Silva, C., Freire, J.: AlphaD3M: Machine learning pipeline
synthesis. In: AutoML Workshop at ICML (2018)

[39] Duan, Y., Schulman, J., Chen, X., Bartlett, P.L., Sutskever, I., Abbeel, P.:
RL2: Fast reinforcement learning via slow reinforcement learning. arXiv
preprint arXiv:1611.02779 (2016)

[40] Eggensperger, K., Lindauer, M., Hoos, H., Hutter, F., Leyton-Brown,
K.: Efficient Benchmarking of Algorithm Configuration Procedures via
Model-Based Surrogates . Machine Learning 107, 15–41 (2018)

[41] Evgeniou, T., Micchelli, C., Pontil, M.: Learning Multiple Tasks with
Kernel Methods. Journal of Machine Learning Research 6, 615–637 (2005)

[42] Evgeniou, T., Pontil, M.: Regularized multi-task learning. In: Tenth Con-
ference on Knowledge Discovery and Data Mining (2004)

[43] Fei-Fei, L.: Knowledge transfer in learning to recognize visual objects
classes. In: Intern. Conf. on Development and Learning. p. Art. 51 (2006)

[44] Fei-Fei, L., Fergus, R., Perona, P.: One-shot learning of object categories.
Pattern analysis and machine intelligence 28(4), 594–611 (2006)

[45] Feurer, M., Letham, B., Bakshy, E.: Scalable meta-learning for Bayesian
optimization. arXiv 1802.02219 (2018)

[46] Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., Hut-
ter, F.: Efficient and robust automated machine learning. In: Advances
in Neural Information Processing Systems 28. pp. 2944–2952 (2015)

BIBLIOGRAPHY 59

[47] Feurer, M., Letham, B., Bakshy, E.: Scalable meta-learning for bayesian
optimization using ranking-weighted gaussian process ensembles. In: Au-
toML Workshop at ICML 2018 (2018)

[48] Feurer, M., Springenberg, J.T., Hutter, F.: Using meta-learning to initial-
ize Bayesian optimization of hypxerparameters. In: International Confer-
ence on Meta-learning and Algorithm Selection. pp. 3 – 10 (2014)

[49] Filchenkov, A., Pendryak, A.: Dataset metafeature description for recom-
mending feature selection. In: ISMW FRUCT. pp. 11–18 (2015)

[50] Fink, M.: Object classification from a single example utilizing class rele-
vance metrics. In: Neural information processing syst. pp. 449–456 (2005)

[51] Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast
adaptation of deep networks. In: ICML. pp. 1126–1135 (2017)

[52] Finn, C., Levine, S.: Meta-learning and universality. arXiv 1710.11622
(2017)

[53] Fürnkranz, J., Petrak, J.: An evaluation of landmarking variants. ECM-
L/PKDD 2001 Workshop on Integrating Aspects of Data Mining, Decision
Support and Meta-Learning pp. 57–68 (2001)

[54] Fusi, N., Sheth, R., Elibol, H.M.: Probabilistic matrix factorization for
automated machine learning. arXiv preprint arXiv:1705.05355 (2017)

[55] Gil, Y., Yao, K.T., Ratnakar, V., Garijo, D., Ver Steeg, G., Szekely, P.,
Brekelmans, R., Kejriwal, M., Luo, F., Huang, I.H.: P4ML: A phased
performance-based pipeline planner for automated machine learning. In:
AutoML Workshop at ICML 2018 (2018)

[56] Giraud-Carrier, C.: Metalearning-a tutorial. In: Tutorial at the Interna-
tional Conference on Machine Learning and Applications. pp. 1–45 (2008)

[57] Giraud-Carrier, C., Provost, F.: Toward a justification of meta-learning:
Is the no free lunch theorem a show-stopper. In: Proceedings of the ICML-
2005 Workshop on Meta-learning. pp. 12–19 (2005)

[58] Golovin, D., Solnik, B., Moitra, S., Kochanski, G., Karro, J., Sculley,
D.: Google vizier: A service for black-box optimization. In: ICDM. pp.
1487–1495 (2017)

[59] Gomes, T.A., Prudêncio, R.B., Soares, C., Rossi, A.L., Carvalho, A.:
Combining meta-learning and search techniques to select parameters for
support vector machines. Neurocomputing 75(1), 3–13 (2012)

[60] Graves, A., Wayne, G., Danihelka, I.: Neural turing machines. arXiv
preprint arXiv:1410.5401 (2014)

60 CHAPTER 2. META-LEARNING

[61] Guerra, S.B., Prudêncio, R.B., Ludermir, T.B.: Predicting the perfor-
mance of learning algorithms using support vector machines as meta-
regressors. In: ICANN. pp. 523–532 (2008)

[62] Hengst, B.: Discovering Hierarchy in Reinforcement Learning with HEXQ.
In: International Conference on Machine Learning. pp. 243–250 (2002)

[63] Hilario, M., Kalousis, A.: Fusion of meta-knowledge and meta-data for
case-based model selection. Lecture Notes in Computer Science 2168, 180–
191 (2001)

[64] Ho, T.K., Basu, M.: Complexity measures of supervised classification
problems. Pattern Analysis and Machine Intellig. 24(3), 289–300 (2002)

[65] Hochreiter, S., Younger, A., Conwell, P.: Learning to learn using gradient
descent. In: Lecture Notes on Computer Science, 2130. pp. 87–94 (2001)

[66] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural com-
putation 9(8), 1735–1780 (1997)

[67] Hutter, F., Hoos, H., Leyton-Brown, K.: An Efficient Approach for As-
sessing Hyperparameter Importance. In: Proceedings of ICML (2014)

[68] Hutter, F., Xu, L., Hoos, H., Leyton-Brown, K.: Algorithm runtime pre-
diction: Methods & evaluation. Artificial Intelligence 206, 79–111 (2014)

[69] Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization
of expensive black-box functions. Journal of Global Optimization 13(4),
455–492 (1998)

[70] Kalousis, A.: Algorithm Selection via Meta-Learning. Ph.D. thesis, Uni-
versity of Geneva, Department of Computer Science (2002)

[71] Kalousis, A., Hilario, M.: Representational issues in meta-learning. Pro-
ceedings of ICML 2003 pp. 313–320 (2003)

[72] Kalousis, A., Hilario, M.: Model selection via meta-learning: a compara-
tive study. Intl Journ. on Artificial Intelligence Tools 10(4), 525–554 (2001)

[73] Kendall, M.G.: A new measure of rank correlation. Biometrika 30(1/2),
81–93 (1938)

[74] Kietz, J.U., Serban, F., Bernstein, A., Fischer, S.: Designing KDD-
workflows via HTN-planning for intelligent discovery assistance. In: 5th
Planning to Learn Workshop at ECAI 2012 (2012)

[75] Kim, J., Kim, S., Choi, S.: Learning to warm-start Bayesian hyperparam-
eter optimization. arXiv preprint arXiv:1710.06219 (2017)

[76] Köpf, C., Iglezakis, I.: Combination of task description strategies and case
base properties for meta-learning. ECML/PKDD Workshop on Integra-
tion and Collaboration Aspects of Data Mining pp. 65–76 (2002)

BIBLIOGRAPHY 61

[77] Köpf, C., Taylor, C., Keller, J.: Meta-analysis: From data characteriza-
tion for meta-learning to meta-regression. In: PKDD Workshop on Data
Mining, Decision Support, Meta-Learning and ILP. pp. 15–26 (2000)

[78] Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with
deep convolutional neural networks. In: Advances in neural information
processing systems. pp. 1097–1105 (2012)

[79] Kuba, P., Brazdil, P., Soares, C., Woznica, A.: Exploiting sampling and
meta-learning for parameter setting support vector machines. In: Pro-
ceedings of IBERAMIA 2002. pp. 217–225 (2002)

[80] Kullback, S., Leibler, R.A.: On information and sufficiency. The annals of
mathematical statistics 22(1), 79–86 (1951)

[81] Lacoste, A., Marchand, M., Laviolette, F., Larochelle, H.: Agnostic
Bayesian learning of ensembles. In: ICML. pp. 611–619 (2014)

[82] Lake, B.M., Ullman, T.D., Tenenbaum, J.B., Gershman, S.J.: Building
machines that learn and think like people. Beh. and Brain Sc. 40 (2017)

[83] Leite, R., Brazdil, P.: Predicting relative performance of classifiers from
samples. Proceedings of ICML pp. 497–504 (2005)

[84] Leite, R., Brazdil, P.: An iterative process for building learning curves and
predicting relative performance of classifiers. Lecture Notes in Computer
Science 4874, 87–98 (2007)

[85] Leite, R., Brazdil, P., Vanschoren, J.: Selecting Classification Algorithms
with Active Testing. Lecture Notes in Artif. Intel. 10934, 117–131 (2012)

[86] Leite, R., Brazdil, P.: Active testing strategy to predict the best clas-
sification algorithm via sampling and metalearning. In: ECAI 2010. pp.
309–314 (2010)

[87] Lemke, C., Budka, M., Gabrys, B.: Metalearning: a survey of trends and
technologies. Artificial intelligence review 44(1), 117–130 (2015)

[88] Ler, D., Koprinska, I., Chawla, S.: Utilizing regression-based landmark-
ers within a meta-learning framework for algorithm selection. Technical
Report 569. University of Sydney pp. 44–51 (2005)

[89] Li, K., Malik, J.: Learning to optimize. arXiv preprint arXiv:1606.01885
(2016)

[90] Li, K., Malik, J.: Learning to optimize neural nets. arXiv preprint
arXiv:1703.00441 (2017)

[91] Lin, S.: Rank aggregation methods. WIREs Computational Statistics 2,
555–570 (2010)

62 CHAPTER 2. META-LEARNING

[92] Lindner, G., Studer, R.: AST: Support for algorithm selection with a CBR
approach. In: ICML Workshop on Recent Advances in Meta-Learning and
Future Work. pp. 38–47. J. Stefan Institute (1999)

[93] Lorena, A.C., Maciel, A.I., de Miranda, P.B.C., Costa, I.G., Prudêncio,
R.B.C.: Data complexity meta-features for regression problems. Machine
Learning 107(1), 209–246 (2018)

[94] Luo, G.: A review of automatic selection methods for machine learning
algorithms and hyper-parameter values. Network Modeling Analysis in
Health Informatics and Bioinformatics 5(1), 18 (2016)

[95] Mantovani, R.G., Horváth, T., Cerri, R., Vanschoren, J., de Carvalho,
A.C.: Hyper-parameter tuning of a decision tree induction algorithm. In:
Brazilian Conference on Intelligent Systems. pp. 37–42 (2016)

[96] Mantovani, R.G., Rossi, A.L., Vanschoren, J., Bischl, B., Carvalho, A.C.:
To tune or not to tune: recommending when to adjust SVM hyper-
parameters via meta-learning. In: Proceedings of IJCNN. pp. 1–8 (2015)

[97] Mantovani, R.G., Rossi, A.L., Vanschoren, J., Carvalho, A.C.: Meta-
learning recommendation of default hyper-parameter values for SVMs in
classifications tasks. In: ECML PKDD Workshop on Meta-Learning and
Algorithm Selection (2015)

[98] Mantovani, R.: Use of meta-learning for hyperparameter tuning of classi-
fication problems. Ph.D. thesis, University of Sao Carlos, Brazil (2018)

[99] Michie, D., Spiegelhalter, D.J., Taylor, C.C., Campbell, J.: Machine
Learning, Neural and Statistical Classification. Ellis Horwood (1994)

[100] Miranda, P., Prudêncio, R.: Active testing for SVM parameter selection.
In: Proceedings of IJCNN. pp. 1–8 (2013)

[101] Mishra, N., Rohaninejad, M., Chen, X., Abbeel, P.: A simple neural
attentive meta-learner. In: Proceedings of ICLR (2018)

[102] Misir, M., Sebag, M.: Algorithm Selection as a Collaborative Filtering
Problem. Research report, INRIA (2013)

[103] Mısır, M., Sebag, M.: Alors: An algorithm recommender system. Artificial
Intelligence 244, 291–314 (2017)

[104] Nadaraya, E.A.: On estimating regression. Theory of Probability & Its
Applications 9(1), 141–142 (1964)

[105] Nguyen, P., Hilario, M., Kalousis, A.: Using meta-mining to support data
mining workflow planning and optimization. Journal of Artificial Intelli-
gence Research 51, 605–644 (2014)

BIBLIOGRAPHY 63

[106] Nichol, A., Achiam, J., Schulman, J.: On first-order meta-learning algo-
rithms. arXiv 1803.02999v2 (2018)

[107] Niculescu-Mizil, A., Caruana, R.: Learning the Structure of Related
Tasks. In: Proceedings of NIPS Workshop on Inductive Transfer (2005)

[108] Nisioti, E., Chatzidimitriou, K., Symeonidis, A.: Predicting hyperparam-
eters from meta-features in binary classification problems. In: AutoML
Workshop at ICML (2018)

[109] Olier, I., Sadawi, N., Bickerton, G., Vanschoren, J., Grosan, C., Solda-
tova, L., King, R.: Meta-QSAR: learning how to learn QSARs. Machine
Learning 107, 285–311 (2018)

[110] Olson, R.S., Bartley, N., Urbanowicz, R.J., Moore, J.H.: Evaluation of
a tree-based pipeline optimization tool for automating data science. In:
Proceedings of GECCO. pp. 485–492 (2016)

[111] Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Transactions on
knowledge and data engineering 22(10), 1345–1359 (2010)

[112] Pang, K., Dong, M., Wu, Y., Hospedales, T.: Meta-learning transfer-
able active learning policies by deep reinforcement learning. In: AutoML
Workshop at ICML (2018)

[113] Peng, Y., Flach, P., Soares, C., Brazdil, P.: Improved dataset characteri-
sation for meta-learning. Lecture Notes in Com. Sc. 2534, 141–152 (2002)

[114] Perrone, V., Jenatton, R., Seeger, M., Archambeau, C.: Multiple adaptive
Bayesian linear regression for scalable Bayesian optimization with warm
start. arXiv preprint arXiv:1712.02902 (2017)

[115] Pfahringer, B., Bensusan, H., Giraud-Carrier, C.G.: Meta-learning by
landmarking various learning algorithms. In: 17th International Confer-
ence on Machine Learning (ICML). pp. 743 – 750 (2000)

[116] Pinto, F., Cerqueira, V., Soares, C., Mendes-Moreira, J.: autoBagging:
Learning to rank bagging workflows with metalearning. arXiv 1706.09367
(2017)

[117] Pinto, F., Soares, C., Mendes-Moreira, J.: Towards automatic generation
of metafeatures. In: Proceedings of PAKDD. pp. 215–226 (2016)

[118] Post, M.J., van der Putten, P., van Rijn, J.N.: Does Feature Selection
Improve Classification? A Large Scale Experiment in OpenML. In: Ad-
vances in Intelligent Data Analysis XV. pp. 158–170 (2016)

[119] Priya, R., De Souza, B.F., Rossi, A., Carvalho, A.: Using genetic algo-
rithms to improve prediction of execution times of ML tasks. In: Lecture
Notes in Comp. Science. vol. 7208, pp. 196–207 (2012)

64 CHAPTER 2. META-LEARNING

[120] Probst, P., Bischl, B., Boulesteix, A.L.: Tunability: Importance of hyper-
parameters of machine learning algorithms. ArXiv 1802.09596 (2018)

[121] Prudêncio, R., Ludermir, T.: Meta-learning approaches to selecting time
series models. Neurocomputing 61, 121–137 (2004)

[122] Raina, R., Ng, A.Y., Koller, D.: Transfer Learning by Constructing In-
formative Priors. In: Proceedings of ICML (2006)

[123] Ramachandran, A., Gupta, S., Rana, S., Venkatesh, S.: Information-
theoretic transfer learning framework for Bayesian optimisation. In: Pro-
ceedings of ECMLPKDD (2018)

[124] Ramachandran, A., Gupta, S., Rana, S., Venkatesh, S.: Selecting optimal
source for transfer learning in Bayesian optimisation. In: Proceedings of
PRICAI. pp. 42–56 (2018)

[125] Ravi, S., Larochelle, H.: Optimization as a model for few-shot learning.
In: Proceedings of ICLR (2017)

[126] Reed, S., Chen, Y., Paine, T., Oord, A.v.d., Eslami, S., Rezende, D.,
Vinyals, O., de Freitas, N.: Few-shot autoregressive density estimation:
Towards learning to learn distributions. arXiv preprint arXiv:1710.10304
(2017)

[127] Reif, M., Shafait, F., Dengel, A.: Prediction of classifier training time
including parameter optimization. In: Proc. of GfKI. pp. 260 – 271 (2011)

[128] Reif, M., Shafait, F., Dengel, A.: Meta-learning for evolutionary parame-
ter optimization of classifiers. Machine learning 87(3), 357–380 (2012)

[129] Reif, M., Shafait, F., Goldstein, M., Breuel, T., Dengel, A.: Automatic
classifier selection for non-experts. Pattern Analysis and Applications
17(1), 83 – 96 (2014)

[130] Ren, M., Triantafillou, E., Ravi, S., Snell, J., Swersky, K., Tenenbaum,
J.B., Larochelle, H., Zemel, R.S.: Meta-learning for semi-supervised few-
shot classification. arXiv 1803.00676 (2018)

[131] Rendle, S.: Factorization machines. In: ICDM 2015. pp. 995–1000 (2010)

[132] Ridd, P., Giraud-Carrier, C.: Using metalearning to predict when param-
eter optimization is likely to improve classification accuracy. In: ECAI
Workshop on Meta-learning and Algorithm Selection. pp. 18–23 (2014)

[133] van Rijn, J., Abdulrahman, S., Brazdil, P., Vanschoren, J.: Fast Algo-
rithm Selection Using Learning Curves. In: Proceedings of IDA (2015)

[134] van Rijn, J., Holmes, G., Pfahringer, B., Vanschoren, J.: The Online
Performance Estimation Framework. Heterogeneous Ensemble Learning
for Data Streams. Machine Learning 107, 149–176 (2018)

BIBLIOGRAPHY 65

[135] van Rijn, J.N., Hutter, F.: Hyperparameter importance across datasets.
In: Proceedings of KDD. pp. 2367–2376 (2018)

[136] van Rijn, J.N., Holmes, G., Pfahringer, B., Vanschoren, J.: Algorithm
selection on data streams. In: Discovery Science. pp. 325–336 (2014)

[137] Rivolli, A., Garcia, L., Soares, C., Vanschoren, J., de Carvalho, A.: To-
wards reproducible empirical research in meta-learning. arXiv preprint
1808.10406 (2018)

[138] Robbins, H.: Some aspects of the sequential design of experiments. In:
Herbert Robbins Selected Papers, pp. 169–177. Springer (1985)

[139] Rosenstein, M.T., Marx, Z., Kaelbling, L.P.: To Transfer or Not To Trans-
fer. In: NIPS Workshop on transfer learning (2005)

[140] Rousseeuw, P.J., Hubert, M.: Robust statistics for outlier detection. Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery 1(1),
73 – 79 (2011)

[141] Runarsson, T.P., Jonsson, M.T.: Evolution and design of distributed
learning rules. In: IEEE Symposium on Combinations of Evolutionary
Computation and Neural Networks. pp. 59–63 (2000)

[142] Salama, M.A., Hassanien, A.E., Revett, K.: Employment of neural net-
work and rough set in meta-learning. Memetic Comp. 5(3), 165–177 (2013)

[143] Sanders, S., Giraud-Carrier, C.: Informing the use of hyperparameter op-
timization through metalearning. In: Proc. ICDM. pp. 1051–1056 (2017)

[144] Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., Lillicrap, T.:
Meta-learning with memory-augmented neural networks. In: International
conference on machine learning. pp. 1842–1850 (2016)

[145] Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., Lillicrap, T.: One-
shot learning with memory-augmented neural networks. arXiv preprint
arXiv:1605.06065 (2016)

[146] dos Santos, P., Ludermir, T., Prudêncio, R.: Selection of time series fore-
casting models based on performance information. 4th International Con-
ference on Hybrid Intelligent Systems pp. 366–371 (2004)

[147] Schilling, N., Wistuba, M., Drumond, L., Schmidt-Thieme, L.: Hyperpa-
rameter optimization with factorized multilayer perceptrons. In: Proceed-
ings of ECML PKDD. pp. 87–103 (2015)

[148] Schmidhuber, J.: Learning to control fast-weight memories: An alterna-
tive to dynamic recurrent networks. Neural Comp. 4(1), 131–139 (1992)

[149] Schmidhuber, J.: A neural network that embeds its own meta-levels. In:
Proceedings of ICNN. pp. 407–412 (1993)

66 CHAPTER 2. META-LEARNING

[150] Schmidhuber, J., Zhao, J., Wiering, M.: Shifting inductive bias with
success-story algorithm, adaptive levin search, and incremental self-
improvement. Machine Learning 28(1), 105–130 (1997)

[151] Schoenfeld, B., Giraud-Carrier, C., Poggeman, M., Christensen, J., Seppi,
K.: Feature selection for high-dimensional data: A fast correlation-based
filter solution. In: AutoML Workshop at ICML (2018)

[152] Serban, F., Vanschoren, J., Kietz, J., Bernstein, A.: A survey of intelligent
assistants for data analysis. ACM Computing Surveys 45(3), Art.31 (2013)

[153] Sharif Razavian, A., Azizpour, H., Sullivan, J., Carlsson, S.: Cnn features
off-the-shelf: an astounding baseline for recognition. In: Proceedings of
CVPR 2014. pp. 806–813 (2014)

[154] Sharkey, N.E., Sharkey, A.J.C.: Adaptive Generalization. Artificial Intel-
ligence Review 7, 313–328 (1993)

[155] Smith-Miles, K.A.: Cross-disciplinary perspectives on meta-learning for
algorithm selection. ACM Computing Surveys 41(1), 1 – 25 (2009)

[156] Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learn-
ing. In: Neural Information Processing Systems. pp. 4077–4087 (2017)

[157] Soares, C., Brazdil, P., Kuba, P.: A meta-learning method to select the
kernel width in support vector regression. Mach. Learn. 54, 195–209 (2004)

[158] Soares, C., Ludermir, T., Carvalho, F.D.: An analysis of meta-learning
techniques for ranking clustering algorithms applied to artificial data. Lec-
ture Notes in Computer Science 5768, 131–140 (2009)

[159] Soares, C., Petrak, J., Brazdil, P.: Sampling based relative landmarks:
Systematically testdriving algorithms before choosing. Lecture Notes in
Computer Science 3201, 250–261 (2001)

[160] Springenberg, J., Klein, A., Falkner, S., Hutter, F.: Bayesian optimization
with robust Bayesian neural networks. In: Advances in Neural Information
Processing Systems (2016)

[161] Stern, D.H., Samulowitz, H., Herbrich, R., Graepel, T., Pulina, L., Tac-
chella, A.: Collaborative expert portfolio management. In: Proceedings
of AAAI. pp. 179–184 (2010)

[162] Strang, B., van der Putten, P., van Rijn, J.N., Hutter, F.: Don’t Rule Out
Simple Models Prematurely. In: Adv. in Intelligent Data Analysis (2018)

[163] Sun, Q., Pfahringer, B., Mayo, M.: Towards a Framework for Designing
Full Model Selection and Optimization Systems. In: International Work-
shop on Multiple Classifier Systems. pp. 259–270 (2013)

BIBLIOGRAPHY 67

[164] Sun, Q., Pfahringer, B.: Pairwise meta-rules for better meta-learning-
based algorithm ranking. Machine Learning 93(1), 141–161 (2013)

[165] Swersky, K., Snoek, J., Adams, R.P.: Multi-task Bayesian optimization.
In: Adv. in neural information processing systems. pp. 2004–2012 (2013)

[166] Thompson, W.R.: On the likelihood that one unknown probability exceeds
another in view of the evidence of two samples. Biometrika 25(3/4), 285–
294 (1933)

[167] Thrun, S.: Lifelong Learning Algorithms. In: Learning to Learn, chap. 8,
pp. 181–209. Kluwer Academic Publishers, MA (1998)

[168] Thrun, S., Mitchell, T.: Learning One More Thing. In: Proceedings of
IJCAI. pp. 1217–1223 (1995)

[169] Thrun, S., Pratt, L.: Learning to Learn: Introduction and Overview. In:
Learning to Learn, pp. 3–17. Kluwer (1998)

[170] Todorovski, L., Blockeel, H., Džeroski, S.: Ranking with predictive clus-
tering trees. Lecture Notes in Artificial Intelligence 2430, 444–455 (2002)

[171] Todorovski, L., Brazdil, P., Soares, C.: Report on the experiments with
feature selection in meta-level learning. PKDD 2000 Workshop on Data
mining, Decision support, Meta-learning and ILP pp. 27–39 (2000)

[172] Todorovski, L., Dzeroski, S.: Experiments in meta-level learning with ILP.
Lecture Notes in Computer Science 1704, 98–106 (1999)

[173] Vanschoren, J., van Rijn, J.N., Bischl, B., Torgo, L.: OpenML: net-
worked science in machine learning. ACM SIGKDD Explorations Newslet-
ter 15(2), 49–60 (2014)

[174] Vanschoren, J.: Understanding Machine Learning Performance with Ex-
periment Databases. Ph.D. thesis, Leuven Univeristy (2010)

[175] Vanschoren, J.: Meta-learning: A survey. arXiv:1810.03548 (2018)

[176] Vanschoren, J., Blockeel, H., Pfahringer, B., Holmes, G.: Experiment
databases. Machine Learning 87(2), 127–158 (2012)

[177] Vartak, M., Thiagarajan, A., Miranda, C., Bratman, J., Larochelle, H.:
A meta-learning perspective on cold-start recommendations for items. In:
Advances in Neural Information Processing Systems. pp. 6904–6914 (2017)

[178] Vilalta, R.: Understanding accuracy performance through concept char-
acterization and algorithm analysis. ICML Workshop on Recent Advances
in Meta-Learning and Future Work (1999)

[179] Vilalta, R., Drissi, Y.: A characterization of difficult problems in classifi-
cation. Proceedings of ICMLA (2002)

68 CHAPTER 2. META-LEARNING

[180] Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.: Matching
networks for one shot learning. In: Advances in Neural Information Pro-
cessing Systems. pp. 3630–3638 (2016)

[181] Wang, J.X., Kurth-Nelson, Z., Tirumala, D., Soyer, H., Leibo, J.Z.,
Munos, R., Blundell, C., Kumaran, D., Botvinick, M.: Learning to re-
inforcement learn. arXiv preprint arXiv:1611.05763 (2016)

[182] Weerts, H., Meuller, M., Vanschoren, J.: Importance of tuning hyperpa-
rameters of machine learning algorithms. Tech. rep., TU Eindhoven (2018)

[183] Wever, M., Mohr, F., Hüllermeier, E.: Ml-plan for unlimited-length ma-
chine learning pipelines. In: AutoML Workshop at ICML 2018 (2018)

[184] Wistuba, M., Schilling, N., Schmidt-Thieme, L.: Hyperparameter search
space pruning, a new component for sequential model-based hyperparam-
eter optimization. In: ECML PKDD 2015. pp. 104–119 (2015)

[185] Wistuba, M., Schilling, N., Schmidt-Thieme, L.: Learning hyperparame-
ter optimization initializations. In: 2015 IEEE International Conference
on Data Science and Advanced Analytics (DSAA). pp. 1–10 (2015)

[186] Wistuba, M., Schilling, N., Schmidt-Thieme, L.: Scalable Gaussian
process-based transfer surrogates for hyperparameter optimization. Ma-
chine Learning 107(1), 43–78 (2018)

[187] Wolpert, D., Macready, W.: No free lunch theorems for search. Tech. Rep.
SFI-TR-95-02-010, The Santa Fe Institute (1996)

[188] Yang, C., Akimoto, Y., Kim, D., Udell, M.: Oboe: Collaborative filtering
for automl initialization. arXiv preprint arXiv:1808.03233 (2018)

[189] Yogatama, D., Mann, G.: Efficient transfer learning method for automatic
hyperparameter tuning. In: AI and Statistics. pp. 1077–1085 (2014)

[190] Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are fea-
tures in deep neural networks? In: Advances in neural information pro-
cessing systems. pp. 3320–3328 (2014)

Chapter 3

Neural Architecture Search

Thomas Elsken and Jan Hendrik Metzen and Frank Hutter

Abstract

Deep Learning has enabled remarkable progress over the last years on a variety
of tasks, such as image recognition, speech recognition, and machine translation.
One crucial aspect for this progress are novel neural architectures. Currently
employed architectures have mostly been developed manually by human experts,
which is a time-consuming and error-prone process. Because of this, there is
growing interest in automated neural architecture search methods. We provide
an overview of existing work in this field of research and categorize them ac-
cording to three dimensions: search space, search strategy, and performance
estimation strategy.

This chapter is based on a very recent survey article [23].

3.1 Introduction

The success of deep learning in perceptual tasks is largely due to its automation
of the feature engineering process: hierarchical feature extractors are learned in
an end-to-end fashion from data rather than manually designed. This success
has been accompanied, however, by a rising demand for architecture engineer-
ing, where increasingly more complex neural architectures are designed manu-
ally. Neural Architecture Search (NAS), the process of automating architecture
engineering, is thus a logical next step in automating machine learning. NAS
can be seen as subfield of AutoML and has significant overlap with hyperparam-
eter optimization and meta-learning (which are described in Chapters 1 and 2
of this book, respectively). We categorize methods for NAS according to three
dimensions: search space, search strategy, and performance estimation strategy:

• Search Space. The search space defines which architectures can be repre-
sented in principle. Incorporating prior knowledge about properties well-
suited for a task can reduce the size of the search space and simplify the

69

70 CHAPTER 3. NEURAL ARCHITECTURE SEARCH

Performance
Estimation
Strategy

Search Space

A
Search Strategy

architecture
A ∈ A

performance
estimate of A

Figure 3.1: Abstract illustration of Neural Architecture Search methods. A
search strategy selects an architecture A from a predefined search space A. The
architecture is passed to a performance estimation strategy, which returns the
estimated performance of A to the search strategy.

search. However, this also introduces a human bias, which may prevent
finding novel architectural building blocks that go beyond the current hu-
man knowledge.

• Search Strategy. The search strategy details how to explore the search
space. It encompasses the classical exploration-exploitation trade-off since,
on the one hand, it is desirable to find well-performing architectures
quickly, while on the other hand, premature convergence to a region of
suboptimal architectures should be avoided.

• Performance Estimation Strategy. The objective of NAS is typically
to find architectures that achieve high predictive performance on unseen
data. Performance Estimation refers to the process of estimating this
performance: the simplest option is to perform a standard training and
validation of the architecture on data, but this is unfortunately compu-
tationally expensive and limits the number of architectures that can be
explored. Much recent research therefore focuses on developing methods
that reduce the cost of these performance estimations.

We refer to Figure 3.1 for an illustration. The chapter is also structured
according to these three dimensions: we start with discussing search spaces in
Section 3.2, cover search strategies in Section 3.3, and outline approaches to
performance estimation in Section 3.4. We conclude with an outlook on future
directions in Section 3.5.

3.2 Search Space

The search space defines which neural architectures a NAS approach might
discover in principle. We now discuss common search spaces from recent works.

A relatively simple search space is the space of chain-structured neural net-
works, as illustrated in Figure 3.2 (left). A chain-structured neural network
architecture A can be written as a sequence of n layers, where the i’th layer Li
receives its input from layer i − 1 and its output serves as the input for layer
i + 1, i.e., A = Ln ◦ . . . L1 ◦ L0. The search space is then parametrized by:

3.2. SEARCH SPACE 71

input

L0

L1

Ln

output

input

L0

L2

L4

L6

L8

L10

L1

L3

L7

L9

L5

output

Ln−1

Figure 3.2: An illustration of different architecture spaces. Each node in the
graphs corresponds to a layer in a neural network, e.g., a convolutional or pooling
layer. Different layer types are visualized by different colors. An edge from
layer Li to layer Lj denotes that Li receives the output of Lj as input. Left: an
element of a chain-structured space. Right: an element of a more complex search
space with additional layer types and multiple branches and skip connections.

(i) the (maximum) number of layers n (possibly unbounded); (ii) the type of
operation every layer can execute , e.g., pooling, convolution, or more advanced
layer types like depthwise separable convolutions [13] or dilated convolutions
[68]; and (iii) hyperparameters associated with the operation, e.g., number of
filters, kernel size and strides for a convolutional layer [4, 59, 10], or simply
number of units for fully-connected networks [41]. Note that the parameters
from (iii) are conditioned on (ii), hence the parametrization of the search space
is not fixed-length but rather a conditional space.

Recent work on NAS [9, 21, 75, 22, 49, 11] incorporate modern design ele-
ments known from hand-crafted architectures such as skip connections, which
allow to build complex, multi-branch networks, as illustrated in Figure 3.2
(right). In this case the input of layer i can be formally described as a function
gi(L

out
i−1, . . . , L

out
0) combining previous layer outputs. Employing such a func-

tion results in significantly more degrees of freedom. Special cases of these
multi-branch architectures are (i) the chain-structured networks (by setting
gi(L

out
i−1, . . . , L

out
0) = Louti−1), (ii) Residual Networks [28], where previous layer

outputs are summed (gi(L
out
i−1, . . . , L

out
0) = Louti−1+Loutj , j < i) and (iii) DenseNets

[29], where previous layer outputs are concatenated (gi(L
out
i−1, . . . , L

out
0) = concat(Louti−1, . . . , L

out
0)).

Motivated by hand-crafted architectures consisting of repeated motifs [62,
28, 29], Zoph et al. [75] and Zhong et al. [71] propose to search for such motifs,
dubbed cells or blocks, respectively, rather than for whole architectures. Zoph
et al. [75] optimize two different kind of cells: a normal cell that preservers
the dimensionality of the input and a reduction cell which reduces the spatial

72 CHAPTER 3. NEURAL ARCHITECTURE SEARCH

input

input

output

output

input

output

Figure 3.3: Illustration of the cell search space. Left: Two different cells, e.g.,
a normal cell (top) and a reduction cell (bottom) [75]. Right: an architecture
built by stacking the cells sequentially. Note that cells can also be combined
in a more complex manner, such as in multi-branch spaces, by simply replacing
layers with cells.

dimension. The final architecture is then built by stacking these cells in a
predefined manner, as illustrated in Figure 3.3. This search space has two
major advantages compared to the ones discussed above:

1. The size of the search space is drastically reduced since cells can be compa-
rably small. For example, Zoph et al. [75] estimate a seven-times speed-up
compared to their previous work [74] while achieving better performance.

2. Cells can more easily be transferred to other datasets by adapting the
number of cells used within a model. Indeed, Zoph et al. [75] transfer
cells optimized on CIFAR-10 to ImageNet and achieve state-of-the-art
performance.

Consequently, this cell-based search space was also successfully employed by
many later works [49, 37, 46, 22, 11, 39, 72]. However, a new design-choice
arises when using a cell-based search space, namely how to choose the meta-
architecture: how many cells shall be used and how should they be connected
to build the actual model? For example, Zoph et al. [75] build a sequential
model from cells, in which each cell receives the outputs of the two preceding
cells as input, while Cai et al. [11] employ the high-level structure of well-
known manually designed architectures, such as DenseNet [29], and use their
cells within these models. In principle, cells can be combined arbitrarily, e.g.,

3.3. SEARCH STRATEGY 73

within the multi-branch space described above by simply replacing layers with
cells. Ideally, the meta-architecture should be optimized automatically as part
of NAS; otherwise one easily ends up doing meta-architecture engineering and
the search for the cell becomes overly simple if most of the complexity is already
accounted for by the meta-architecture.

One step in the direction of optimizing meta-architectures is the hierarchical
search space introduced by Liu et al. [38], which consists of several levels of
motifs. The first level consists of the set of primitive operations, the second
level of different motifs that connect primitive operations via a direct acyclic
graphs, the third level of motifs that encode how to connect second-level motifs,
and so on. The cell-based search space can be seen as a special case of this
hierarchical search space where the number of levels is three, the second level
motifs corresponds to the cells, and the third level is the hard-coded meta-
architecture.

The choice of the search space largely determines the difficulty of the op-
timization problem: even for the case of the search space based on a single
cell with fixed meta-architecture, the optimization problem remains (i) non-
continuous and (ii) relatively high-dimensional (since more complex models tend
to perform better, resulting in more design choices). We note that the archi-
tectures in many search spaces can be written as fixed-length vectors; e.g., the
search space for each of the two cells by Zoph et al. [75] can be written as a
40-dimensional search space with categorical dimensions, each of which chooses
between a small number of different building blocks and inputs. Similarly, un-
bounded search spaces can be constrained to have a maximal depth, giving rise
to fixed-size search spaces with (potentially many) conditional dimensions.

In the next section, we discuss Search Strategies that are well-suited for these
kinds of search spaces.

3.3 Search Strategy

Many different search strategies can be used to explore the space of neural archi-
tectures, including random search, Bayesian optimization, evolutionary meth-
ods, reinforcement learning (RL), and gradient-based methods. Historically,
evolutionary algorithms were already used by many researchers to evolve neural
architectures (and often also their weights) decades ago [see, e.g., 2, 56, 25, 55].
Yao [67] provides a literature review of work earlier than 2000.

Bayesian optimization celebrated several early successes in NAS since 2013,
leading to state-of-the-art vision architectures [7], state-of-the-art performance
for CIFAR-10 without data augmentation [19], and the first automatically-tuned
neural networks to win competition datasets against human experts [41]. NAS
became a mainstream research topic in the machine learning community after
Zoph and Le [74] obtained competitive performance on the CIFAR-10 and Penn
Treebank benchmarks with a search strategy based on reinforcement learning.
While Zoph and Le [74] use vast computational resources to achieve this result
(800 GPUs for three to four weeks), after their work, a wide variety of methods

74 CHAPTER 3. NEURAL ARCHITECTURE SEARCH

have been published in quick succession to reduce the computational costs and
achieve further improvements in performance.

To frame NAS as a reinforcement learning (RL) problem [4, 74, 71, 75],
the generation of a neural architecture can be considered to be the agent’s ac-
tion, with the action space identical to the search space. The agent’s reward is
based on an estimate of the performance of the trained architecture on unseen
data (see Section 3.4). Different RL approaches differ in how they represent the
agent’s policy and how they optimize it: Zoph and Le [74] use a recurrent neural
network (RNN) policy to sequentially sample a string that in turn encodes the
neural architecture. They initially trained this network with the REINFORCE
policy gradient algorithm, but in follow-up work use Proximal Policy Optimiza-
tion (PPO) instead [75]. Baker et al. [4] use Q-learning to train a policy which
sequentially chooses a layer’s type and corresponding hyperparameters. An al-
ternative view of these approaches is as sequential decision processes in which
the policy samples actions to generate the architecture sequentially, the envi-
ronment’s “state” contains a summary of the actions sampled so far, and the
(undiscounted) reward is obtained only after the final action. However, since no
interaction with an environment occurs during this sequential process (no ex-
ternal state is observed, and there are no intermediate rewards), we find it more
intuitive to interpret the architecture sampling process as the sequential genera-
tion of a single action; this simplifies the RL problem to a stateless multi-armed
bandit problem.

A related approach was proposed by Cai et al. [10], who frame NAS as a
sequential decision process: in their approach the state is the current (partially
trained) architecture, the reward is an estimate of the architecture’s perfor-
mance, and the action corresponds to an application of function-preserving mu-
tations, dubbed network morphisms [12, 63], see also Section 3.4, followed by
a phase of training the network. In order to deal with variable-length network
architectures, they use a bi-directional LSTM to encode architectures into a
fixed-length representation. Based on this encoded representation, actor net-
works decide on the sampled action. The combination of these two components
constitute the policy, which is trained end-to-end with the REINFORCE policy
gradient algorithm. We note that this approach will not visit the same state
(architecture) twice so that strong generalization over the architecture space is
required from the policy.

An alternative to using RL are neuro-evolutionary approaches that use evo-
lutionary algorithms for optimizing the neural architecture. The first such ap-
proach for designing neural networks we are aware of dates back almost three
decades: Miller et al. [44] use genetic algorithms to propose architectures and
use backpropagation to optimize their weights. Many neuro-evolutionary ap-
proaches since then [2, 56, 55] use genetic algorithms to optimize both the neu-
ral architecture and its weights; however, when scaling to contemporary neural
architectures with millions of weights for supervised learning tasks, SGD-based
weight optimization methods currently outperform evolutionary ones1. More

1Some recent work shows that evolving even millions of weights is competitive to gradient-

3.3. SEARCH STRATEGY 75

recent neuro-evolutionary approaches [50, 59, 38, 49, 43, 66, 22] therefore again
use gradient-based methods for optimizing weights and solely use evolutionary
algorithms for optimizing the neural architecture itself. Evolutionary algorithms
evolve a population of models, i.e., a set of (possibly trained) networks; in every
evolution step, at least one model from the population is sampled and serves
as a parent to generate offsprings by applying mutations to it. In the context
of NAS, mutations are local operations, such as adding or removing a layer,
altering the hyperparameters of a layer, adding skip connections, as well as
altering training hyperparameters. After training the offsprings, their fitness
(e.g., performance on a validation set) is evaluated and they are added to the
population.

Neuro-evolutionary methods differ in how they sample parents, update pop-
ulations, and generate offsprings. For example, Real et al. [50], Real et al. [49],
and Liu et al. [38] use tournament selection [27] to sample parents, whereas
Elsken et al. [22] sample parents from a multi-objective Pareto front using an
inverse density. Real et al. [50] remove the worst individual from a population,
while Real et al. [49] found it beneficial to remove the oldest individual (which
decreases greediness), and Liu et al. [38] do not remove individuals at all. To
generate offspring, most approaches initialize child networks randomly, while
Elsken et al. [22] employ Lamarckian inheritance, i.e, knowledge (in the form
of learned weights) is passed on from a parent network to its children by using
network morphisms. Real et al. [50] also let an offspring inherit all parameters of
its parent that are not affected by the applied mutation; while this inheritance
is not strictly function-preserving it might also speed up learning compared to
a random initialization. Moreover, they also allow mutating the learning rate
which can be seen as a way for optimizing the learning rate schedule during
NAS.

Real et al. [49] conduct a case study comparing RL, evolution, and random
search (RS), concluding that RL and evolution perform equally well in terms
of final test accuracy, with evolution having better anytime performance and
finding smaller models. Both approaches consistently perform better than RS
in their experiments, but with a rather small margin: RS achieved test errors
of approximately 4% on CIFAR-10, while RL and evolution reached approxi-
mately 3.5% (after “model augmentation” where depth and number of filters
was increased; the difference on the actual, non-augmented search space was
approx. 2%). The difference was even smaller for Liu et al. [38], who reported
a test error of 3.9% on CIFAR-10 and a top-1 validation error of 21.0% on Ima-
geNet for RS, compared to 3.75% and 20.3% for their evolution-based method,
respectively.

Bayesian Optimization (BO, see, e.g., [53]) is one of the most popular meth-
ods for hyperparameter optimization (see also Chapter 1 of this book), but it has
not been applied to NAS by many groups since typical BO toolboxes are based
on Gaussian processes and focus on low-dimensional continuous optimization

based optimization when only high-variance estimates of the gradient are available, e.g., for
reinforcement learning tasks [51, 57, 15]. Nonetheless, for supervised learning tasks gradient-
based optimization is by far the most common approach.

76 CHAPTER 3. NEURAL ARCHITECTURE SEARCH

problems. Swersky et al. [60] and Kandasamy et al. [31] derive kernel functions
for architecture search spaces in order to use classic GP-based BO methods, but
so far without achieving new state-of-the-art performance. In contrast, several
works use tree-based models (in particular, treed Parzen estimators [8], or ran-
dom forests [30]) to effectively search very high-dimensional conditional spaces
and achieve state-of-the-art performance on a wide range of problems, optimiz-
ing both neural architectures and their hyperparameters jointly [7, 19, 41, 69].
While a full comparison is lacking, there is preliminary evidence that these
approaches can also outperform evolutionary algorithms [33].

Architectural search spaces have also been explored in a hierarchical manner,
e.g., in combination with evolution [38] or by sequential model-based optimiza-
tion [37]. Negrinho and Gordon [45] and Wistuba [65] exploit the tree-structure
of their search space and use Monte Carlo Tree Search. Elsken et al. [21] propose
a simple yet well performing hill climbing algorithm that discovers high-quality
architectures by greedily moving in the direction of better performing architec-
tures without requiring more sophisticated exploration mechanisms.

In contrast to the gradient-free optimization methods above, Liu et al. [39]
propose a continuous relaxation of the search space to enable gradient-based op-
timization: instead of fixing a single operation oi (e.g., convolution or pooling)
to be executed at a specific layer, the authors compute a convex combination
from a set of operations {o1, . . . , om}. More specifically, given a layer input x,
the layer output y is computed as y =

∑m
i=1 λioi(x), λi ≥ 0,

∑m
i=1 λi = 1, where

the convex coefficients λi effectively parameterize the network architecture. Liu
et al. [39] then optimize both the network weights and the network architec-
ture by alternating gradient descent steps on training data for weights and on
validation data for architectural parameters such as λ. Eventually, a discrete ar-
chitecture is obtained by choosing the operation i with i = arg maxi λi for every
layer. Shin et al. [54] and Ahmed and Torresani [1] also employ gradient-based
optimization of neural architectures, however they only consider optimizing layer
hyperparameters or connectivity patterns, respectively.

3.4 Performance Estimation Strategy

The search strategies discussed in Section 3.3 aim at finding a neural architecture
A that maximizes some performance measure, such as accuracy on unseen data.
To guide their search process, these strategies need to estimate the performance
of a given architecture A they consider. The simplest way of doing this is
to train A on training data and evaluate its performance on validation data.
However, training each architecture to be evaluated from scratch frequently
yields computational demands in the order of thousands of GPU days for NAS
[74, 50, 75, 49].

To reduce this computational burden, performance can be estimated based
on lower fidelities of the actual performance after full training (also denoted
as proxy metrics). Such lower fidelities include shorter training times [75, 69],
training on a subset of the data [34], on lower-resolution images [14], or with

3.4. PERFORMANCE ESTIMATION STRATEGY 77

less filters per layer [75, 49]. While these low-fidelity approximations reduce the
computational cost, they also introduce bias in the estimate as performance will
typically be underestimated. This may not be problematic as long as the search
strategy only relies on ranking different architectures and the relative ranking
remains stable. However, recent results indicate that this relative ranking can
change dramatically when the difference between the cheap approximations and
the “full” evaluation is too big [69], arguing for a gradual increase in fidelities [35,
24].

Another possible way of estimating an architecture’s performance builds
upon learning curve extrapolation [61, 19, 32, 5, 48]. Domhan et al. [19] pro-
pose to extrapolate initial learning curves and terminate those predicted to
perform poorly to speed up the architecture search process. Swersky et al.
[61], Klein et al. [32], Baker et al. [5], Rawal and Miikkulainen [48] also con-
sider architectural hyperparameters for predicting which partial learning curves
are most promising. Training a surrogate model for predicting the performance
of novel architectures is also proposed by Liu et al. [37], who do not employ
learning curve extrapolation but support predicting performance based on ar-
chitectural/cell properties and extrapolate to architectures/cells with larger size
than seen during training. The main challenge for predicting the performances
of neural architectures is that, in order to speed up the search process, good
predictions in a relatively large search space need to be made based on relatively
few evaluations.

Another approach to speed up performance estimation is to initialize the
weights of novel architectures based on weights of other architectures that have
been trained before. One way of achieving this, dubbed network morphisms
[64], allows modifying an architecture while leaving the function represented
by the network unchanged [10, 11, 21, 22]. This allows increasing capacity of
networks successively and retaining high performance without requiring training
from scratch. Continuing training for a few epochs can also make use of the
additional capacity introduced by network morphisms. An advantage of these
approaches is that they allow search spaces without an inherent upper bound on
the architecture’s size [21]; on the other hand, strict network morphisms can only
make architectures larger and may thus lead to overly complex architectures.
This can be attenuated by employing approximate network morphisms that
allow shrinking architectures [22].

One-Shot Architecture Search is another promising approach for speeding
up performance estimation, which treats all architectures as different subgraphs
of a supergraph (the one-shot model) and shares weights between architectures
that have edges of this supergraph in common [52, 9, 46, 39, 6]. Only the
weights of a single one-shot model need to be trained (in one of various ways),
and architectures (which are just subgraphs of the one-shot model) can then
be evaluated without any separate training by inheriting trained weights from
the one-shot model. This greatly speeds up performance estimation of architec-
tures, since no training is required (only evaluating performance on validation
data). This approach typically incurs a large bias as it underestimates the
actual performance of architectures severely; nevertheless, it allows ranking ar-

78 CHAPTER 3. NEURAL ARCHITECTURE SEARCH

chitectures reliably, since the estimated performance correlates strongly with
the actual performance [6]. Different one-shot NAS methods differ in how the
one-shot model is trained: ENAS [46] learns an RNN controller that samples
architectures from the search space and trains the one-shot model based on ap-
proximate gradients obtained through REINFORCE. DARTS [39] optimizes all
weights of the one-shot model jointly with a continuous relaxation of the search
space obtained by placing a mixture of candidate operations on each edge of the
one-shot model. Bender et al. [6] only train the one-shot model once and show
that this is sufficient when deactivating parts of this model stochastically during
training using path dropout. While ENAS and DARTS optimize a distribution
over architectures during training, the approach of Bender et al. [6] can be seen
as using a fixed distribution. The high performance obtainable by the approach
of Bender et al. [6] indicates that the combination of weight sharing and a fixed
(carefully chosen) distribution might (perhaps surprisingly) be the only required
ingredients for one-shot NAS. Related to these approaches is meta-learning of
hypernetworks that generate weights for novel architectures and thus requires
only training the hypernetwork but not the architectures themselves [9]. The
main difference here is that weights are not strictly shared but generated by the
shared hypernetwork (conditional on the sampled architecture).

A general limitation of one-shot NAS is that the supergraph defined a-priori
restricts the search space to its subgraphs. Moreover, approaches which require
that the entire supergraph resides in GPU memory during architecture search
will be restricted to relatively small supergraphs and search spaces accordingly
and are thus typically used in combination with cell-based search spaces. While
approaches based on weight-sharing have substantially reduced the computa-
tional resources required for NAS (from thousands to a few GPU days), it is
currently not well understood which biases they introduce into the search if
the sampling distribution of architectures is optimized along with the one-shot
model. For instance, an initial bias in exploring certain parts of the search space
more than others might lead to the weights of the one-shot model being better
adapted for these architectures, which in turn would reinforce the bias of the
search to these parts of the search space. This might result in premature con-
vergence of NAS and might be one advantage of a fixed sampling distribution
as used by Bender et al. [6]. In general, a more systematic analysis of biases
introduced by different performance estimators would be a desirable direction
for future work.

3.5 Future Directions

In this section, we discuss several current and future directions for research on
NAS. Most existing work has focused on NAS for image classification. On the
one hand, this provides a challenging benchmark since a lot of manual engineer-
ing has been devoted to finding architectures that perform well in this domain
and are not easily outperformed by NAS. On the other hand, it is relatively
easy to define a well-suited search space by utilizing knowledge from manual en-

3.5. FUTURE DIRECTIONS 79

gineering. This in turn makes it unlikely that NAS will find architectures that
substantially outperform existing ones considerably since the found architec-
tures cannot differ fundamentally. We thus consider it important to go beyond
image classification problems by applying NAS to less explored domains. No-
table first steps in this direction are applying NAS to language modeling [74],
music modeling [48], image restoration [58] and network compression [3]; ap-
plications to reinforcement learning, generative adversarial networks, semantic
segmentation, or sensor fusion could be further promising future directions.

An alternative direction is developing NAS methods for multi-task prob-
lems [36, 42] and for multi-objective problems [22, 20, 73], in which measures
of resource efficiency are used as objectives along with the predictive perfor-
mance on unseen data. Likewise, it would be interesting to extend RL/bandit
approaches, such as those discussed in Section 3.3, to learn policies that are
conditioned on a state that encodes task properties/resource requirements (i.e.,
turning the setting into a contextual bandit). A similar direction was followed
by Ramachandran and Le [47] in extending one-shot NAS to generate different
architectures depending on the task or instance on-the-fly. Moreover, applying
NAS to searching for architectures that are more robust to adversarial examples
[17] is an intriguing recent direction.

Related to this is research on defining more general and flexible search spaces.
For instance, while the cell-based search space provides high transferability be-
tween different image classification tasks, it is largely based on human experience
on image classification and does not generalize easily to other domains where
the hard-coded hierarchical structure (repeating the same cells several times in
a chain-like structure) does not apply (e.g., semantic segmentation or object de-
tection). A search space which allows representing and identifying more general
hierarchical structure would thus make NAS more broadly applicable, see Liu
et al. [38] for first work in this direction. Moreover, common search spaces are
also based on predefined building blocks, such as different kinds of convolutions
and pooling, but do not allow identifying novel building blocks on this level;
going beyond this limitation might substantially increase the power of NAS.

The comparison of different methods for NAS is complicated by the fact
that measurements of an architecture’s performance depend on many factors
other than the architecture itself. While most authors report results on the
CIFAR-10 dataset, experiments often differ with regard to search space, com-
putational budget, data augmentation, training procedures, regularization, and
other factors. For example, for CIFAR-10, performance substantially improves
when using a cosine annealing learning rate schedule [40], data augmentation
by CutOut [18], by MixUp [70] or by a combination of factors [16], and reg-
ularization by Shake-Shake regularization [26] or scheduled drop-path [75]. It
is therefore conceivable that improvements in these ingredients have a larger
impact on reported performance numbers than the better architectures found
by NAS. We thus consider the definition of common benchmarks to be crucial
for a fair comparison of different NAS methods. A first step in this direction is
the definition of a benchmark for joint architecture and hyperparameter search
for a fully connected neural network with two hidden layers [33]. In this bench-

80 CHAPTER 3. NEURAL ARCHITECTURE SEARCH

mark, nine discrete hyperparameters need to be optimized that control both
architecture and optimization/regularization. All 62.208 possible hyperparam-
eter combinations have been pre-evaluated such that different methods can be
compared with low computational resources. However, the search space is still
very simple compared to the spaces employed by most NAS methods. It would
also be interesting to evaluate NAS methods not in isolation but as part of a
full open-source AutoML system, where also hyperparameters [41, 50, 69], and
data augmentation pipeline [16] are optimized along with NAS.

While NAS has achieved impressive performance, so far it provides little in-
sights into why specific architectures work well and how similar the architectures
derived in independent runs would be. Identifying common motifs, providing
an understanding why those motifs are important for high performance, and in-
vestigating if these motifs generalize over different problems would be desirable.

Acknowledgements

We would like to thank Esteban Real, Arber Zela, Gabriel Bender, Kenneth
Stanley and Thomas Pfeil for feedback on earlier versions of this survey. This
work has partly been supported by the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme under
grant no. 716721.

Bibliography

[1] Ahmed, K., Torresani, L.: Maskconnect: Connectivity learning by gradient
descent. In: European Conference on Computer Vision (ECCV) (2018)

[2] Angeline, P.J., Saunders, G.M., Pollack, J.B.: An evolutionary algorithm
that constructs recurrent neural networks. IEEE transactions on neural
networks 5 1, 54–65 (1994)

[3] Ashok, A., Rhinehart, N., Beainy, F., Kitani, K.M.: N2n learning: Network
to network compression via policy gradient reinforcement learning. In:
International Conference on Learning Representations (2018)

[4] Baker, B., Gupta, O., Naik, N., Raskar, R.: Designing neural network
architectures using reinforcement learning. In: International Conference
on Learning Representations (2017)

[5] Baker, B., Gupta, O., Raskar, R., Naik, N.: Accelerating Neural Architec-
ture Search using Performance Prediction. In: NIPS Workshop on Meta-
Learning (2017)

[6] Bender, G., Kindermans, P.J., Zoph, B., Vasudevan, V., Le, Q.: Under-
standing and simplifying one-shot architecture search. In: International
Conference on Machine Learning (2018)

BIBLIOGRAPHY 81

[7] Bergstra, J., Yamins, D., Cox, D.D.: Making a science of model search:
Hyperparameter optimization in hundreds of dimensions for vision archi-
tectures. In: ICML (2013)

[8] Bergstra, J.S., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-
parameter optimization. In: Shawe-Taylor, J., Zemel, R.S., Bartlett, P.L.,
Pereira, F., Weinberger, K.Q. (eds.) Advances in Neural Information Pro-
cessing Systems 24. pp. 2546–2554 (2011)

[9] Brock, A., Lim, T., Ritchie, J.M., Weston, N.: SMASH: one-shot model
architecture search through hypernetworks. In: NIPS Workshop on Meta-
Learning (2017)

[10] Cai, H., Chen, T., Zhang, W., Yu, Y., Wang, J.: Efficient architecture
search by network transformation. In: Association for the Advancement of
Artificial Intelligence (2018)

[11] Cai, H., Yang, J., Zhang, W., Han, S., Yu, Y.: Path-Level Network Trans-
formation for Efficient Architecture Search. In: International Conference
on Machine Learning (Jun 2018)

[12] Chen, T., Goodfellow, I.J., Shlens, J.: Net2net: Accelerating learning via
knowledge transfer. In: International Conference on Learning Representa-
tions (2016)

[13] Chollet, F.: Xception: Deep learning with depthwise separable convolu-
tions. arXiv:1610.02357 (2016)

[14] Chrabaszcz, P., Loshchilov, I., Hutter, F.: A downsampled variant of im-
agenet as an alternative to the CIFAR datasets. CoRR abs/1707.08819
(2017)

[15] Chrabaszcz, P., Loshchilov, I., Hutter, F.: Back to basics: Benchmark-
ing canonical evolution strategies for playing atari. In: Proceedings of the
Twenty-Seventh International Joint Conference on Artificial Intelligence,
IJCAI-18. pp. 1419–1426. International Joint Conferences on Artificial In-
telligence Organization (Jul 2018)

[16] Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., Le, Q.V.: AutoAugment:
Learning Augmentation Policies from Data. In: arXiv:1805.09501 (May
2018)

[17] Cubuk, E.D., Zoph, B., Schoenholz, S.S., Le, Q.V.: Intriguing Properties
of Adversarial Examples. In: arXiv:1711.02846 (Nov 2017)

[18] Devries, T., Taylor, G.W.: Improved regularization of convolutional neural
networks with cutout. arXiv preprint abs/1708.04552 (2017)

82 CHAPTER 3. NEURAL ARCHITECTURE SEARCH

[19] Domhan, T., Springenberg, J.T., Hutter, F.: Speeding up automatic hyper-
parameter optimization of deep neural networks by extrapolation of learn-
ing curves. In: Proceedings of the 24th International Joint Conference on
Artificial Intelligence (IJCAI) (2015)

[20] Dong, J.D., Cheng, A.C., Juan, D.C., Wei, W., Sun, M.: Dpp-net: Device-
aware progressive search for pareto-optimal neural architectures. In: Eu-
ropean Conference on Computer Vision (2018)

[21] Elsken, T., Metzen, J.H., Hutter, F.: Simple And Efficient Architecture
Search for Convolutional Neural Networks. In: NIPS Workshop on Meta-
Learning (2017)

[22] Elsken, T., Metzen, J.H., Hutter, F.: Efficient Multi-objective Neural Ar-
chitecture Search via Lamarckian Evolution. ArXiv e-prints (Apr 2018)

[23] Elsken, T., Metzen, J.H., Hutter, F.: Neural architecture search: A survey.
arXiv:1808.05377 (2018)

[24] Falkner, S., Klein, A., Hutter, F.: BOHB: Robust and efficient hyper-
parameter optimization at scale. In: Dy, J., Krause, A. (eds.) Proceed-
ings of the 35th International Conference on Machine Learning. Proceed-
ings of Machine Learning Research, vol. 80, pp. 1436–1445. PMLR, Stock-
holmsmässan, Stockholm Sweden (10–15 Jul 2018)

[25] Floreano, D., Dürr, P., Mattiussi, C.: Neuroevolution: from architectures
to learning. Evolutionary Intelligence 1(1), 47–62 (2008)

[26] Gastaldi, X.: Shake-shake regularization. In: International Conference on
Learning Representations Workshop (2017)

[27] Goldberg, D.E., Deb, K.: A comparative analysis of selection schemes used
in genetic algorithms. In: Foundations of Genetic Algorithms. pp. 69–93.
Morgan Kaufmann (1991)

[28] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image
Recognition. In: Conference on Computer Vision and Pattern Recognition
(2016)

[29] Huang, G., Liu, Z., Weinberger, K.Q.: Densely Connected Convolutional
Networks. In: Conference on Computer Vision and Pattern Recognition
(2017)

[30] Hutter, F., Hoos, H., Leyton-Brown, K.: Sequential model-based optimiza-
tion for general algorithm configuration. In: LION. pp. 507–523 (2011)

[31] Kandasamy, K., Neiswanger, W., Schneider, J., Poczos, B., Xing, E.: Neu-
ral Architecture Search with Bayesian Optimisation and Optimal Trans-
port. arXiv:1802.07191 (Feb 2018)

BIBLIOGRAPHY 83

[32] Klein, A., Falkner, S., Springenberg, J.T., Hutter, F.: Learning curve pre-
diction with Bayesian neural networks. In: International Conference on
Learning Representations (2017)

[33] Klein, A., Christiansen, E., Murphy, K., Hutter, F.: Towards reproducible
neural architecture and hyperparameter search. In: ICML 2018 Workshop
on Reproducibility in ML (RML 2018) (2018)

[34] Klein, A., Falkner, S., Bartels, S., Hennig, P., Hutter, F.: Fast Bayesian
Optimization of Machine Learning Hyperparameters on Large Datasets. In:
Singh, A., Zhu, J. (eds.) Proceedings of the 20th International Conference
on Artificial Intelligence and Statistics. Proceedings of Machine Learning
Research, vol. 54, pp. 528–536. PMLR, Fort Lauderdale, FL, USA (20–22
Apr 2017)

[35] Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., Talwalkar, A.: Hy-
perband: bandit-based configuration evaluation for hyperparameter opti-
mization. In: International Conference on Learning Representations (2017)

[36] Liang, J., Meyerson, E., Miikkulainen, R.: Evolutionary Architecture
Search For Deep Multitask Networks. In: arXiv:1803.03745 (Mar 2018)

[37] Liu, C., Zoph, B., Neumann, M., Shlens, J., Hua, W., Li, L.J., Fei-Fei, L.,
Yuille, A., Huang, J., Murphy, K.: Progressive Neural Architecture Search.
In: European Conference on Computer Vision (2018)

[38] Liu, H., Simonyan, K., Vinyals, O., Fernando, C., Kavukcuoglu, K.: Hier-
archical Representations for Efficient Architecture Search. In: International
Conference on Learning Representations (2018)

[39] Liu, H., Simonyan, K., Yang, Y.: Darts: Differentiable architecture search.
In: arXiv:1806.09055 (2018)

[40] Loshchilov, I., Hutter, F.: Sgdr: Stochastic gradient descent with warm
restarts. In: International Conference on Learning Representations (2017)

[41] Mendoza, H., Klein, A., Feurer, M., Springenberg, J., Hutter, F.: Towards
Automatically-Tuned Neural Networks. In: International Conference on
Machine Learning, AutoML Workshop (Jun 2016)

[42] Meyerson, E., Miikkulainen, R.: Pseudo-task Augmentation: From Deep
Multitask Learning to Intratask Sharing and Back. In: arXiv:1803.03745
(Mar 2018)

[43] Miikkulainen, R., Liang, J., Meyerson, E., Rawal, A., Fink, D., Francon,
O., Raju, B., Shahrzad, H., Navruzyan, A., Duffy, N., Hodjat, B.: Evolving
Deep Neural Networks. In: arXiv:1703.00548 (Mar 2017)

[44] Miller, G., Todd, P., Hedge, S.: Designing neural networks using ge-
netic algorithms. In: 3rd International Conference on Genetic Algorithms
(ICGA’89) (1989)

84 CHAPTER 3. NEURAL ARCHITECTURE SEARCH

[45] Negrinho, R., Gordon, G.: DeepArchitect: Automatically Designing and
Training Deep Architectures. arXiv:1704.08792 (2017)

[46] Pham, H., Guan, M.Y., Zoph, B., Le, Q.V., Dean, J.: Efficient neural
architecture search via parameter sharing. In: International Conference on
Machine Learning (2018)

[47] Ramachandran, P., Le, Q.V.: Dynamic Network Architectures. In: Au-
toML 2018 (ICML workshop) (2018)

[48] Rawal, A., Miikkulainen, R.: From Nodes to Networks: Evolving Recurrent
Neural Networks. In: arXiv:1803.04439 (Mar 2018)

[49] Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized Evolution for
Image Classifier Architecture Search. In: arXiv:1802.01548 (Feb 2018)

[50] Real, E., Moore, S., Selle, A., Saxena, S., Suematsu, Y.L., Le, Q.V., Ku-
rakin, A.: Large-scale evolution of image classifiers. International Confer-
ence on Machine Learning (2017)

[51] Salimans, T., Ho, J., Chen, X., Sutskever, I.: Evolution strategies as a
scalable alternative to reinforcement learning. arXiv preprint (2017)

[52] Saxena, S., Verbeek, J.: Convolutional neural fabrics. In: Lee, D.D.,
Sugiyama, M., Luxburg, U.V., Guyon, I., Garnett, R. (eds.) Advances in
Neural Information Processing Systems 29, pp. 4053–4061. Curran Asso-
ciates, Inc. (2016)

[53] Shahriari, B., Swersky, K., Wang, Z., Adams, R.P., de Freitas, N.: Taking
the human out of the loop: A review of bayesian optimization. Proceedings
of the IEEE 104(1), 148–175 (Jan 2016)

[54] Shin, R., Packer, C., Song, D.: Differentiable neural network architecture
search. In: International Conference on Learning Representations Work-
shop (2018)

[55] Stanley, K.O., D’Ambrosio, D.B., Gauci, J.: A hypercube-based encoding
for evolving large-scale neural networks. Artif. Life 15(2), 185–212 (Apr
2009), http://dx.doi.org/10.1162/artl.2009.15.2.15202

[56] Stanley, K.O., Miikkulainen, R.: Evolving neural networks through aug-
menting topologies. Evolutionary Computation 10, 99–127 (2002)

[57] Such, F.P., Madhavan, V., Conti, E., Lehman, J., Stanley, K.O., Clune, J.:
Deep neuroevolution: Genetic algorithms are a competitive alternative for
training deep neural networks for reinforcement learning. arXiv preprint
(2017)

http://dx.doi.org/10.1162/artl.2009.15.2.15202

BIBLIOGRAPHY 85

[58] Suganuma, M., Ozay, M., Okatani, T.: Exploiting the potential of standard
convolutional autoencoders for image restoration by evolutionary search.
In: Dy, J., Krause, A. (eds.) Proceedings of the 35th International Con-
ference on Machine Learning. Proceedings of Machine Learning Research,
vol. 80, pp. 4771–4780. PMLR, Stockholmsmässan, Stockholm Sweden (10–
15 Jul 2018)

[59] Suganuma, M., Shirakawa, S., Nagao, T.: A genetic programming approach
to designing convolutional neural network architectures. In: Genetic and
Evolutionary Computation Conference (2017)

[60] Swersky, K., Duvenaud, D., Snoek, J., Hutter, F., Osborne, M.: Raiders
of the lost architecture: Kernels for bayesian optimization in conditional
parameter spaces. In: NIPS Workshop on Bayesian Optimization in Theory
and Practice (2013)

[61] Swersky, K., Snoek, J., Adams, R.P.: Freeze-thaw bayesian optimization
(2014)

[62] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the
Inception Architecture for Computer Vision. In: Conference on Computer
Vision and Pattern Recognition (2016)

[63] Wei, T., Wang, C., Chen, C.W.: Modularized morphing of neural networks.
arXiv:1701.03281 (2017)

[64] Wei, T., Wang, C., Rui, Y., Chen, C.W.: Network morphism. In: Interna-
tional Conference on Machine Learning (2016)

[65] Wistuba, M.: Finding Competitive Network Architectures Within a Day
Using UCT. In: arXiv:1712.07420 (Dec 2017)

[66] Xie, L., Yuille, A.: Genetic CNN. In: International Conference on Com-
puter Vision (2017)

[67] Yao, X.: Evolving artificial neural networks. Proceedings of the IEEE
87(9), 1423–1447 (Sept 1999)

[68] Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions
(2016)

[69] Zela, A., Klein, A., Falkner, S., Hutter, F.: Towards automated deep learn-
ing: Efficient joint neural architecture and hyperparameter search. In:
ICML 2018 Workshop on AutoML (AutoML 2018) (2018)

[70] Zhang, H., Cissé, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: Beyond em-
pirical risk minimization. arXiv preprint abs/1710.09412 (2017)

[71] Zhong, Z., Yan, J., Wu, W., Shao, J., Liu, C.L.: Practical block-wise neural
network architecture generation. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. pp. 2423–2432 (2018)

86 CHAPTER 3. NEURAL ARCHITECTURE SEARCH

[72] Zhong, Z., Yang, Z., Deng, B., Yan, J., Wu, W., Shao, J., Liu, C.L.: Block-
qnn: Efficient block-wise neural network architecture generation. arXiv
preprint (2018)

[73] Zhou, Y., Ebrahimi, S., Arık, S., Yu, H., Liu, H., Diamos, G.: Resource-
efficient neural architect. In: arXiv:1806.07912 (2018)

[74] Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning.
In: International Conference on Learning Representations (2017)

[75] Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable ar-
chitectures for scalable image recognition. In: Conference on Computer
Vision and Pattern Recognition (2018)

Part II

AutoML Systems

87

Chapter 4

Auto-WEKA: Automatic
model selection
and hyperparameter
optimization in WEKA

Lars Kotthoff and Chris Thornton and Holger H. Hoos and Frank Hutter and
Kevin Leyton-Brown

Abstract

Many different machine learning algorithms exist; taking into account each algo-
rithm’s hyperparameters, there is a staggeringly large number of possible alter-
natives overall. We consider the problem of simultaneously selecting a learning
algorithm and setting its hyperparameters. We show that this problem can
be addressed by a fully automated approach, leveraging recent innovations in
Bayesian optimization. Specifically, we consider feature selection techniques and
all machine learning approaches implemented in WEKA’s standard distribution,
spanning 2 ensemble methods, 10 meta-methods, 28 base learners, and hyper-
parameter settings for each learner. On each of 21 popular datasets from the
UCI repository, the KDD Cup 09, variants of the MNIST dataset and CIFAR-
10, we show performance often much better than using standard selection and
hyperparameter optimization methods. We hope that our approach will help
non-expert users to more effectively identify machine learning algorithms and
hyperparameter settings appropriate to their applications, and hence to achieve
improved performance.

This chapter is based on two previous papers, published in the proceedings
of KDD 2013 [31] and in the journal of machine learning research (JMLR) in
2017 [20].

89

90 CHAPTER 4. AUTO-WEKA

4.1 Introduction

Increasingly, users of machine learning tools are non-experts who require off-the-
shelf solutions. The machine learning community has much aided such users by
making available a wide variety of sophisticated learning algorithms and feature
selection methods through open source packages, such as WEKA [15] and mlr [7].
Such packages ask a user to make two kinds of choices: selecting a learning algo-
rithm and customizing it by setting hyperparameters (which also control feature
selection, if applicable). It can be challenging to make the right choice when
faced with these degrees of freedom, leaving many users to select algorithms
based on reputation or intuitive appeal, and/or to leave hyperparameters set
to default values. Of course, adopting this approach can yield performance far
worse than that of the best method and hyperparameter settings.

This suggests a natural challenge for machine learning: given a dataset, au-
tomatically and simultaneously choosing a learning algorithm and setting its
hyperparameters to optimize empirical performance. We dub this the combined
algorithm selection and hyperparameter optimization (CASH) problem; we for-
mally define it in Section 4.3. There has been considerable past work separately
addressing model selection, e.g., [1, 6, 8, 9, 11, 24, 25, 33], and hyperparameter
optimization, e.g., [3, 4, 5, 14, 28, 30, 23]. In contrast, despite its practical
importance, we are surprised to find only limited variants of the CASH problem
in the literature; furthermore, these consider a fixed and relatively small number
of parameter configurations for each algorithm, see e.g., [22].

A likely explanation is that it is very challenging to search the combined
space of learning algorithms and their hyperparameters: the response function
is noisy and the space is high dimensional, involves both categorical and continu-
ous choices, and contains hierarchical dependencies (e.g., , the hyperparameters
of a learning algorithm are only meaningful if that algorithm is chosen; the al-
gorithm choices in an ensemble method are only meaningful if that ensemble
method is chosen; etc). Another related line of work is on meta-learning pro-
cedures that exploit characteristics of the dataset, such as the performance of
so-called landmarking algorithms, to predict which algorithm or hyperparame-
ter configuration will perform well [2, 22, 26, 32]. While the CASH algorithms
we study in this chapter start from scratch for each new dataset, these meta-
learning procedures exploit information from previous datasets, which may not
always be available.

In what follows, we demonstrate that CASH can be viewed as a single hi-
erarchical hyperparameter optimization problem, in which even the choice of
algorithm itself is considered a hyperparameter. We also show that—based on
this problem formulation—recent Bayesian optimization methods can obtain
high quality results in reasonable time and with minimal human effort. After
discussing some preliminaries (Section 4.2), we define the CASH problem and
discuss methods for tackling it (Section 4.3). We then define a concrete CASH
problem encompassing a wide range of learners and feature selectors in the open
source package WEKA (Section 4.4), and show that a search in the combined
space of algorithms and hyperparameters yields better-performing models than

4.2. PRELIMINARIES 91

standard algorithm selection and hyperparameter optimization methods (Sec-
tion 4.5). More specifically, we show that the recent Bayesian optimization
procedures TPE [4] and SMAC [16] often find combinations of algorithms and
hyperparameters that outperform existing baseline methods, especially on large
datasets.

4.2 Preliminaries

We consider learning a function f : X 7→ Y, where Y is either finite (for clas-
sification), or continuous (for regression). A learning algorithm A maps a set
{d1, . . . , dn} of training data points di = (xi, yi) ∈ X × Y to such a function,
which is often expressed via a vector of model parameters. Most learning al-
gorithms A further expose hyperparameters λ ∈ Λ, which change the way the
learning algorithm Aλ itself works. For example, hyperparameters are used to
describe a description-length penalty, the number of neurons in a hidden layer,
the number of data points that a leaf in a decision tree must contain to be
eligible for splitting, etc. These hyperparameters are typically optimized in an
“outer loop” that evaluates the performance of each hyperparameter configura-
tion using cross-validation.

4.2.1 Model Selection

Given a set of learning algorithms A and a limited amount of training data
D = {(x1, y1), . . . , (xn, yn)}, the goal of model selection is to determine the
algorithm A∗ ∈ A with optimal generalization performance. Generalization
performance is estimated by splitting D into disjoint training and validation sets

D(i)
train and D(i)

valid, learning functions fi by applying A∗ to D(i)
train, and evaluating

the predictive performance of these functions on D(i)
valid. This allows for the

model selection problem to be written as:

A∗ ∈ argmin
A∈A

1

k

k∑

i=1

L(A,D(i)
train,D

(i)
valid),

where L(A,D(i)
train,D

(i)
valid) is the loss achieved by A when trained on D(i)

train and

evaluated on D(i)
valid.

We use k-fold cross-validation [19], which splits the training data into k

equal-sized partitions D(1)
valid, . . . ,D

(k)
valid, and sets D(i)

train = D \ D(i)
valid for i =

1, . . . , k.1

4.2.2 Hyperparameter Optimization

The problem of optimizing the hyperparameters λ ∈ Λ of a given learning
algorithm A is conceptually similar to that of model selection. Some key dif-

1There are other ways of estimating generalization performance; e.g., we also experimented
with repeated random subsampling validation [19], and obtained similar results.

92 CHAPTER 4. AUTO-WEKA

ferences are that hyperparameters are often continuous, that hyperparameter
spaces are often high dimensional, and that we can exploit correlation structure
between different hyperparameter settings λ1,λ2 ∈ Λ. Given n hyperparame-
ters λ1, . . . , λn with domains Λ1, . . . ,Λn, the hyperparameter space Λ is a subset
of the crossproduct of these domains: Λ ⊂ Λ1 × · · · × Λn. This subset is often
strict, such as when certain settings of one hyperparameter render other hyper-
parameters inactive. For example, the parameters determining the specifics of
the third layer of a deep belief network are not relevant if the network depth
is set to one or two. Likewise, the parameters of a support vector machine’s
polynomial kernel are not relevant if we use a different kernel instead.

More formally, following [17], we say that a hyperparameter λi is condi-
tional on another hyperparameter λj , if λi is only active if hyperparameter λj
takes values from a given set Vi(j) (Λj ; in this case we call λj a parent of
λi. Conditional hyperparameters can in turn be parents of other conditional
hyperparameters, giving rise to a tree-structured space [4] or, in some cases,
a directed acyclic graph (DAG) [17]. Given such a structured space Λ, the
(hierarchical) hyperparameter optimization problem can be written as:

λ∗ ∈ argmin
λ∈Λ

1

k

k∑

i=1

L(Aλ,D(i)
train,D

(i)
valid).

4.3 Combined Algorithm Selection and Hyper-
parameter Optimization (CASH)

Given a set of algorithms A = {A(1), . . . , A(k)} with associated hyperparameter
spaces Λ(1), . . . ,Λ(k), we define the combined algorithm selection and hyperpa-
rameter optimization problem (CASH) as computing

A∗λ∗ ∈ argmin
A(j)∈A,λ∈Λ(j)

1

k

k∑

i=1

L(A
(j)
λ ,D(i)

train,D
(i)
valid). (4.1)

We note that this problem can be reformulated as a single combined hi-
erarchical hyperparameter optimization problem with parameter space Λ =
Λ(1)∪· · ·∪Λ(k)∪{λr}, where λr is a new root-level hyperparameter that selects
between algorithms A(1), . . . , A(k). The root-level parameters of each subspace
Λ(i) are made conditional on λr being instantiated to Ai.

In principle, problem 4.1 can be tackled in various ways. A promising ap-
proach is Bayesian Optimization [10], and in particular Sequential Model-Based
Optimization (SMBO) [16], a versatile stochastic optimization framework that
can work with both categorical and continuous hyperparameters, and that can
exploit hierarchical structure stemming from conditional parameters. SMBO
(outlined in Algorithm 1) first builds a model ML that captures the depen-
dence of loss function L on hyperparameter settings λ (line 1 in Algorithm 1).
It then iterates the following steps: useML to determine a promising candidate

4.3. CASH 93

Algorithm 1 SMBO

1: initialise model ML; H ← ∅
2: while time budget for optimization has not been exhausted do
3: λ← candidate configuration from ML

4: Compute c = L(Aλ,D(i)
train,D

(i)
valid)

5: H ← H∪ {(λ, c)}
6: Update ML given H
7: end while
8: return λ from H with minimal c

configuration of hyperparameters λ to evaluate next (line 3); evaluate the loss
c of λ (line 4); and update the model ML with the new data point (λ, c) thus
obtained (lines 5–6).

In order to select its next hyperparameter configuration λ using modelML,
SMBO uses a so-called acquisition function aML : Λ 7→ R, which uses the pre-
dictive distribution of model ML at arbitrary hyperparameter configurations
λ ∈ Λ to quantify (in closed form) how useful knowledge about λ would be.
SMBO then simply maximizes this function over Λ to select the most useful
configuration λ to evaluate next. Several well-studied acquisition functions ex-
ist [18, 27, 29]; all aim to automatically trade off exploitation (locally optimizing
hyperparameters in regions known to perform well) versus exploration (trying
hyperparameters in a relatively unexplored region of the space) in order to avoid
premature convergence. In this work, we maximized positive expected improve-
ment (EI) attainable over an existing given loss cmin [27]. Let c(λ) denote
the loss of hyperparameter configuration λ. Then, the positive improvement
function over cmin is defined as

Icmin(λ) := max{cmin − c(λ), 0}.

Of course, we do not know c(λ). We can, however, compute its expectation
with respect to the current model ML:

EML [Icmin(λ)] =

∫ cmin

−∞
max{cmin − c, 0} · pML

(c | λ) dc. (4.2)

We briefly review the SMBO approach used in this chapter.

4.3.1 Sequential Model-Based Algorithm Configuration (SMAC)

Sequential model-based algorithm configuration (SMAC) [16] supports a variety
of models p(c | λ) to capture the dependence of the loss function c on hyper-
parameters λ, including approximate Gaussian processes and random forests.
In this chapter we use random forest models, since they tend to perform well
with discrete and high-dimensional input data. SMAC handles conditional pa-
rameters by instantiating inactive conditional parameters in λ to default values
for model training and prediction. This allows the individual decision trees to

94 CHAPTER 4. AUTO-WEKA

include splits of the kind “is hyperparameter λi active?”, allowing them to fo-
cus on active hyperparameters. While random forests are not usually treated as
probabilistic models, SMAC obtains a predictive mean µλ and variance σλ

2 of
p(c | λ) as frequentist estimates over the predictions of its individual trees for
λ; it then models pML(c | λ) as a Gaussian N (µλ, σλ

2).
SMAC uses the expected improvement criterion defined in Equation 4.2,

instantiating cmin to the loss of the best hyperparameter configuration measured
so far. Under SMAC’s predictive distribution pML(c | λ) = N (µλ, σλ

2), this
expectation is the closed-form expression

EML [Icmin(λ)] = σλ · [u · Φ(u) + ϕ(u)],

where u = cmin−µλ

σλ
, and ϕ and Φ denote the probability density function

and cumulative distribution function of a standard normal distribution, respec-
tively [18].

SMAC is designed for robust optimization under noisy function evaluations,
and as such implements special mechanisms to keep track of its best known con-
figuration and assure high confidence in its estimate of that configuration’s per-
formance. This robustness against noisy function evaluations can be exploited
in combined algorithm selection and hyperparameter optimization, since the
function to be optimized in Equation (4.1) is a mean over a set of loss terms

(each corresponding to one pair of D(i)
train and D(i)

valid constructed from the train-
ing set). A key idea in SMAC is to make progressively better estimates of this
mean by evaluating these terms one at a time, thus trading off accuracy and
computational cost. In order for a new configuration to become a new incum-
bent, it must outperform the previous incumbent in every comparison made:
considering only one fold, two folds, and so on up to the total number of folds
previously used to evaluate the incumbent. Furthermore, every time the incum-
bent survives such a comparison, it is evaluated on a new fold, up to the total
number available, meaning that the number of folds used to evaluate the incum-
bent grows over time. A poorly performing configuration can thus be discarded
after considering just a single fold.

Finally, SMAC also implements a diversification mechanism to achieve ro-
bust performance even when its model is misled, and to explore new parts of
the space: every second configuration is selected at random. Because of the
evaluation procedure just described, this requires less overhead than one might
imagine.

4.4 Auto-WEKA

To demonstrate the feasibility of an automatic approach to solving the CASH
problem, we built Auto-WEKA, which solves this problem for the learners and
feature selectors implemented in the WEKA machine learning package [15].
Note that while we have focused on classification algorithms in WEKA, there
is no obstacle to extending our approach to other settings. Indeed, another
successful system that uses the same underlying technology is auto-sklearn [12].

4.4. AUTO-WEKA 95

Base Learners

BayesNet 2

DecisionStump* 0

DecisionTable* 4

GaussianProcesses* 10

IBk* 5

J48 9

JRip 4

KStar* 3

LinearRegression* 3

LMT 9

Logistic 1

M5P 4

M5Rules 4

MultilayerPerceptron* 8

NaiveBayes 2

NaiveBayesMultinomial 0

OneR 1

PART 4

RandomForest 7

RandomTree* 11

REPTree* 6

SGD* 5

SimpleLinearRegression* 0

SimpleLogistic 5

SMO 11

SMOreg* 13

VotedPerceptron 3

ZeroR* 0

Ensemble Methods

Stacking 2 Vote 2

Meta-Methods

LWL 5

AdaBoostM1 6

AdditiveRegression 4

AttributeSelectedClassifier 2

Bagging 4

RandomCommittee 2

RandomSubSpace 3

Feature Selection Methods

BestFirst 2 GreedyStepwise 4

Figure 4.1: Learners and methods supported by Auto-WEKA, along with num-
ber of hyperparameters |Λ|. Every learner supports classification; starred learn-
ers also support regression.

Table 4.1 shows all supported learning algorithms and feature selectors with
the number of hyperparameters. algorithms. Meta-methods take a single base
classifier and its parameters as an input, and the ensemble methods can take
any number of base learners as input. We allowed the meta-methods to use
any base learner with any hyperparameter settings, and allowed the ensemble
methods to use up to five learners, again with any hyperparameter settings. Not
all learners are applicable on all datasets (e.g., due to a classifier’s inability to
handle missing data). For a given dataset, our Auto-WEKA implementation
automatically only considers the subset of applicable learners. Feature selection
is run as a preprocessing phase before building any model.

The algorithms in Table 4.1 have a wide variety of hyperparameters, which
take values from continuous intervals, from ranges of integers, and from other
discrete sets. We associated either a uniform or log uniform prior with each

96 CHAPTER 4. AUTO-WEKA

numerical parameter, depending on its semantics. For example, we set a log
uniform prior for the ridge regression penalty, and a uniform prior for the max-
imum depth for a tree in a random forest. Auto-WEKA works with continuous
hyperparameter values directly up to the precision of the machine. We em-
phasize that this combined hyperparameter space is much larger than a simple
union of the base learners’ hyperparameter spaces, since the ensemble methods
allow up to 5 independent base learners. The meta- and ensemble methods as
well as the feature selection contribute further to the total size of AutoWEKA’s
hyperparameter space.

Auto-WEKA uses the SMAC optimizer described above to solve the CASH
problem and is available to the public through the WEKA package manager;
the source code can be found at https://github.com/automl/autoweka and
the official project website is at http://www.cs.ubc.ca/labs/beta/Projects/
autoweka. For the experiments described in this chapter, we used Auto-WEKA
version 0.5. The results the more recent versions achieve are similar; we did not
replicate the full set of experiments because of the large computational cost.

4.5 Experimental Evaluation

We evaluated Auto-WEKA on 21 prominent benchmark datasets (see Table
4.1): 15 sets from the UCI repository [13]; the ‘convex’, ‘MNIST basic’ and ‘ro-
tated MNIST with background images’ tasks used in [5]; the appentency task
from the KDD Cup ’09; and two versions of the CIFAR-10 image classification
task [21] (CIFAR-10-Small is a subset of CIFAR-10, where only the first 10 000
training data points are used rather than the full 50 000.) Note that in the
experimental evaluation, we focus on classification. For datasets with a prede-
fined training/test split, we used that split. Otherwise, we randomly split the
dataset into 70% training and 30% test data. We withheld the test data from
all optimization method; it was only used once in an offline analysis stage to
evaluate the models found by the various optimization methods.

For each dataset, we ran Auto-WEKA with each hyperparameter optimiza-
tion algorithm with a total time budget of 30 hours. For each method, we
performed 25 runs of this process with different random seeds and then—in
order to simulate parallelization on a typical workstation—used bootstrap sam-
pling to repeatedly select four random runs and report the performance of the
one with best cross-validation performance.

In early experiments, we observed a few cases in which Auto-WEKA’s SMBO
method picked hyperparameters that had excellent training performance, but
turned out to generalize poorly. To enable Auto-WEKA to detect such over-
fitting, we partitioned its training set into two subsets: 70% for use inside the
SMBO method, and 30% of validation data that we only used after the SMBO
method finished.

https://github.com/automl/autoweka
http://www.cs.ubc.ca/labs/beta/Projects/autoweka
http://www.cs.ubc.ca/labs/beta/Projects/autoweka

4.5. EXPERIMENTAL EVALUATION 97

Table 4.1: Datasets used; Num. Discr.. and Num. Cont. refer to the number of
discrete and continuous attributes of elements in the dataset, respectively.

Name
Num Num Num Num Num
Discr. Cont. Classes Training Test

Dexter 20 000 0 2 420 180
GermanCredit 13 7 2 700 300
Dorothea 100 000 0 2 805 345
Yeast 0 8 10 1 038 446
Amazon 10 000 0 49 1 050 450
Secom 0 591 2 1 096 471
Semeion 256 0 10 1 115 478
Car 6 0 4 1 209 519
Madelon 500 0 2 1 820 780
KR-vs-KP 37 0 2 2 237 959
Abalone 1 7 28 2 923 1 254
Wine Quality 0 11 11 3 425 1 469
Waveform 0 40 3 3 500 1 500
Gisette 5 000 0 2 4 900 2 100
Convex 0 784 2 8 000 50 000
CIFAR-10-Small 3 072 0 10 10 000 10 000
MNIST Basic 0 784 10 12 000 50 000
Rot. MNIST + BI 0 784 10 12 000 50 000
Shuttle 9 0 7 43 500 14 500
KDD09-Appentency 190 40 2 35 000 15 000
CIFAR-10 3 072 0 10 50 000 10 000

4.5.1 Baseline Methods

Auto-WEKA aims to aid non-expert users of machine learning techniques. A
natural approach that such a user might take is to perform 10-fold cross vali-
dation on the training set for each technique with unmodified hyperparameters,
and select the classifier with the smallest average misclassification error across
folds. We will refer to this method applied to our set of WEKA learners as
Ex-Def ; it is the best choice that can be made for WEKA with default hyper-
parameters.

For each dataset, the second and third columns in Table 4.2 present the best
and worst “oracle performance” of the default learners when prepared given
all the training data and evaluated on the test set. We observe that the gap
between the best and worst learner was huge, e.g., misclassification rates of
4.93% vs. 99.24% on the Dorothea dataset. This suggests that some form of
algorithm selection is essential for achieving good performance.

9
8

C
H
A
P
T
E
R

4.
A
U
T
O
-W

E
K
A

Table 4.2: Performance on both 10-fold cross-validation and test data. Ex-Def and Grid Search are deterministic. Random
search had a time budget of 120 CPU hours. For Auto-WEKA, we performed 25 runs of 30 hours each. We report results
as mean loss across 100 000 bootstrap samples simulating 4 parallel runs. We determined test loss (misclassification rate) by
training the selected model/hyperparameters on the entire 70% training data and computing accuracy on the previously unused
30% test data. Bold face indicates the lowest error within a block of comparable methods that was statistically significant.

Dataset
Oracle Perf. (%) 10-Fold C.V. Performance (%) Test Performance (%)

Ex-Def Grid Search
Ex-Def Grid

Search
Rand.
Search

Auto-
WEKA

Ex-Def Grid
Search

Rand.
Search

Auto-
WEKABest Worst Best Worst

Dexter 7.78 52.78 3.89 63.33 10.20 5.07 10.60 5.66 8.89 5.00 9.18 7.49
GermanCredit 26.00 38.00 25.00 68.00 22.45 20.20 20.15 17.87 27.33 26.67 29.03 28.24
Dorothea 4.93 99.24 4.64 99.24 6.03 6.73 8.11 5.62 6.96 5.80 5.22 6.21
Yeast 40.00 68.99 36.85 69.89 39.43 39.71 38.74 35.51 40.45 42.47 43.15 40.67
Amazon 28.44 99.33 17.56 99.33 43.94 36.88 59.85 47.34 28.44 20.00 41.11 33.99
Secom 7.87 14.26 7.66 92.13 6.25 6.12 5.24 5.24 8.09 8.09 8.03 8.01
Semeion 8.18 92.45 5.24 92.45 6.52 4.86 6.06 4.78 8.18 6.29 6.10 5.08
Car 0.77 29.15 0.00 46.14 2.71 0.83 0.53 0.61 0.77 0.97 0.01 0.40
Madelon 17.05 50.26 17.05 62.69 25.98 26.46 27.95 20.70 21.38 21.15 24.29 21.12
KR-vs-KP 0.31 48.96 0.21 51.04 0.89 0.64 0.63 0.30 0.31 1.15 0.58 0.31
Abalone 73.18 84.04 72.15 92.90 73.33 72.15 72.03 71.71 73.18 73.42 74.88 73.51
Wine Quality 36.35 60.99 32.88 99.39 38.94 35.23 35.36 34.65 37.51 34.06 34.41 33.95
Waveform 14.27 68.80 13.47 68.80 12.73 12.45 12.43 11.92 14.40 14.66 14.27 14.42
Gisette 2.52 50.91 1.81 51.23 3.62 2.59 4.84 2.43 2.81 2.40 4.62 2.24
Convex 25.96 50.00 19.94 71.49 28.68 22.36 33.31 25.93 25.96 23.45 31.20 23.17
CIFAR-10-Small 65.91 90.00 52.16 90.36 66.59 53.64 67.33 58.84 65.91 56.94 66.12 56.87
MNIST Basic 5.19 88.75 2.58 88.75 5.12 2.51 5.05 3.75 5.19 2.64 5.05 3.64
Rot. MNIST + BI 63.14 88.88 55.34 93.01 66.15 56.01 68.62 57.86 63.14 57.59 66.40 57.04
Shuttle 0.0138 20.8414 0.0069 89.8207 0.0328 0.0361 0.0345 0.0224 0.0138 0.0414 0.0157 0.0130
KDD09-Appentency 1.7400 6.9733 1.6332 54.2400 1.8776 1.8735 1.7510 1.7038 1.7405 1.7400 1.7400 1.7358
CIFAR-10 64.27 90.00 55.27 90.00 65.54 54.04 69.46 62.36 64.27 63.13 69.72 61.15

4.5. EXPERIMENTAL EVALUATION 99

A stronger baseline we will use is an approach that in addition to selecting
the learner, also sets its hyperparameters optimally from a predefined set. More
precisely, this baseline performs an exhaustive search over a grid of hyperpa-
rameter settings for each of the base learners, discretizing numeric parameters
into three points. We refer to this baseline as grid search and note that—as
an optimization approach in the joint space of algorithms and hyperparame-
ter settings—it is a simple CASH algorithm. However, it is quite expensive,
requiring more than 10 000 CPU hours on each of Gisette, Convex, MNIST,
Rot MNIST + BI, and both CIFAR variants, rendering it infeasible to use in
most practical applications. (In contrast, we gave Auto-WEKA only 120 CPU
hours.)

Table 4.2 (columns four and five) shows the best and worst “oracle perfor-
mance” on the test set across the classifiers evaluated by grid search. Comparing
these performances to the default performance obtained using Ex-Def, we note
that in most cases, even WEKA’s best default algorithm could be improved by
selecting better hyperparameter settings, sometimes rather substantially: e.g., ,
in the CIFAR-10 small task, grid search offered a 13% reduction in error over
Ex-Def.

It has been demonstrated in previous work that, holding the overall time
budget constant, grid search is outperformed by random search over the hy-
perparameter space [5]. Our final baseline, random search, implements such
a method, picking algorithms and hyperparameters sampled at random, and
computes their performance on the 10 cross-validation folds until it exhausts its
time budget. For each dataset, we first used 750 CPU hours to compute the
cross-validation performance of randomly sampled combinations of algorithms
and hyperparameters. We then simulated runs of random search by sampling
combinations without replacement from these results that consumed 120 CPU
hours and returning the sampled combination with the best performance.

4.5.2 Results for Cross-Validation Performance

The middle portion of Table 4.2 reports our main results. First, we note that grid
search over the hyperparameters of all base-classifiers yielded better results than
Ex-Def in 17/21 cases, which underlines the importance of not only choosing
the right algorithm but of also setting its hyperparameters well.

However, we note that we gave grid search a very large time budget (often
in excess 10 000 CPU hours for each dataset, in total more than 10 CPU years),
meaning that it would often be infeasible to use in practice.

In contrast, we gave each of the other methods only 4× 30 CPU hours per
dataset; nevertheless, they still yielded substantially better performance than
grid search, outperforming it in 14/21 cases. Random search outperforms grid
search in 9/21 cases, highlighting that even exhaustive grid search with a large
time budget is not always the right thing to do. We note that sometimes Auto-
WEKA’s performance improvements over the baselines were substantial, with
relative reductions of the cross-validation loss (in this case the misclassification
rate) exceeding 10% in 6/21 cases.

100 CHAPTER 4. AUTO-WEKA

4.5.3 Results for Test Performance

The results just shown demonstrate that Auto-WEKA is effective at optimizing
its given objective function; however, this is not sufficient to allow us to conclude
that it fits models that generalize well. As the number of hyperparameters
of a machine learning algorithm grows, so does its potential for overfitting.
The use of cross-validation substantially increases Auto-WEKA’s robustness
against overfitting, but since its hyperparameter space is much larger than that
of standard classification algorithms, it is important to carefully study whether
(and to what extent) overfitting poses a problem.

To evaluate generalization, we determined a combination of algorithm and
hyperparameter settings Aλ by running Auto-WEKA as before (cross-validating
on the training set), trained Aλ on the entire training set, and then evaluated
the resulting model on the test set. The right portion of Table 4.2 reports the
test performance obtained with all methods.

Broadly speaking, similar trends held as for cross-validation performance:
Auto-WEKA outperforms the baselines, with grid search and random search
performing better than Ex-Def. However, the performance differences were
less pronounced: grid search only yields better results than Ex-Def in 15/21
cases, and random search in turn outperforms grid search in 7/21 cases. Auto-
WEKA outperforms the baselines in 15/21 cases. Notably, on 12 of the 13
largest datasets, Auto-WEKA outperforms our baselines; we attribute this to
the fact that the risk of overfitting decreases with dataset size. Sometimes, Auto-
WEKA’s performance improvements over the other methods were substantial,
with relative reductions of the test misclassification rate exceeding 16% in 3/21
cases.

As mentioned earlier, Auto-WEKA only used 70% of its training set during
the optimization of cross-validation performance, reserving the remaining 30%
for assessing the risk of overfitting. At any point in time, Auto-WEKA’s SMBO
method keeps track of its incumbent (the hyperparameter configuration with
the lowest cross-validation misclassification rate seen so far). After its SMBO
procedure has finished, Auto-WEKA extracts a trajectory of these incumbents
from it and computes their generalization performance on the withheld 30%
validation data. It then computes the Spearman rank coefficient between the
sequence of training performances (evaluated by the SMBO method through
cross-validation) and this generalization performance.

4.6 Conclusion

In this work, we have shown that the daunting problem of combined algorithm
selection and hyperparameter optimization (CASH) can be solved by a practi-
cal, fully automated tool. This is made possible by recent Bayesian optimization
techniques that iteratively build models of the algorithm/hyperparameter land-
scape and leverage these models to identify new points in the space that deserve
investigation.

BIBLIOGRAPHY 101

We built a tool, Auto-WEKA, that draws on the full range of learning al-
gorithms in WEKA and makes it easy for non-experts to build high-quality
classifiers for given application scenarios. An extensive empirical comparison
on 21 prominent datasets showed that Auto-WEKA often outperformed stan-
dard algorithm selection and hyperparameter optimization methods, especially
on large datasets.

4.6.1 Community Adoption

Auto-WEKA was the first method to use Bayesian optimization to automati-
cally instantiate a highly parametric machine learning framework at the push
of a button. Since its initial release, it has been adopted by many users in
industry and academia; the 2.0 line, which integrates with the WEKA package
manager, has been downloaded more than 30,000 times, averaging more than
550 downloads a week. It is under active development, with new features added
recently and in the pipeline.

Bibliography

[1] Adankon, M., Cheriet, M.: Model selection for the LS-SVM. application to
handwriting recognition. Pattern Recognition 42(12), 3264–3270 (2009)

[2] Bardenet, R., Brendel, M., Kégl, B., Sebag, M.: Collaborative hyperpa-
rameter tuning. In: Proc. of ICML-13 (2013)

[3] Bengio, Y.: Gradient-based optimization of hyperparameters. Neural Com-
putation 12(8), 1889–1900 (2000)

[4] Bergstra, J., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for Hyper-
Parameter Optimization. In: Proc. of NIPS-11 (2011)

[5] Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization.
JMLR 13, 281–305 (2012)

[6] Biem, A.: A model selection criterion for classification: Application to
HMM topology optimization. In: Proc. of ICDAR-03. pp. 104–108. IEEE
(2003)

[7] Bischl, B., Lang, M., Kotthoff, L., Schiffner, J., Richter, J., Studerus, E.,
Casalicchio, G., Jones, Z.M.: mlr: Machine Learning in R. Journal of Ma-
chine Learning Research 17(170), 1–5 (2016), http://jmlr.org/papers/
v17/15-066.html

[8] Bozdogan, H.: Model selection and Akaike’s information criterion (AIC):
The general theory and its analytical extensions. Psychometrika 52(3), 345–
370 (1987)

http://jmlr.org/papers/v17/15-066.html
http://jmlr.org/papers/v17/15-066.html

102 CHAPTER 4. AUTO-WEKA

[9] Brazdil, P., Soares, C., Da Costa, J.: Ranking learning algorithms: Using
IBL and meta-learning on accuracy and time results. Machine Learning
50(3), 251–277 (2003)

[10] Brochu, E., Cora, V.M., de Freitas, N.: A tutorial on Bayesian optimiza-
tion of expensive cost functions, with application to active user modeling
and hierarchical reinforcement learning. Tech. Rep. UBC TR-2009-23 and
arXiv:1012.2599v1, Department of Computer Science, University of British
Columbia (2009)

[11] Chapelle, O., Vapnik, V., Bengio, Y.: Model selection for small sample
regression. Machine Learning (2001)

[12] Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum,
M., Hutter, F.: Efficient and robust automated machine learning. In:
Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R.
(eds.) Advances in Neural Information Processing Systems 28, pp. 2962–
2970. Curran Associates, Inc. (2015), http://papers.nips.cc/paper/

5872-efficient-and-robust-automated-machine-learning.pdf

[13] Frank, A., Asuncion, A.: UCI machine learning repository (2010), http://
archive.ics.uci.edu/ml, uRL: http://archive.ics.uci.edu/ml. University
of California, Irvine, School of Information and Computer Sciences

[14] Guo, X., Yang, J., Wu, C., Wang, C., Liang, Y.: A novel LS-SVMs hyper-
parameter selection based on particle swarm optimization. Neurocomputing
71(16), 3211–3215 (2008)

[15] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.:
The WEKA data mining software: an update. ACM SIGKDD Explorations
Newsletter 11(1), 10–18 (2009)

[16] Hutter, F., Hoos, H., Leyton-Brown, K.: Sequential model-based optimiza-
tion for general algorithm configuration. In: Proc. of LION-5. pp. 507–523
(2011)

[17] Hutter, F., Hoos, H., Leyton-Brown, K., Stützle, T.: ParamILS: an auto-
matic algorithm configuration framework. JAIR 36(1), 267–306 (2009)

[18] Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of
expensive black box functions. Journal of Global Optimization 13, 455–492
(1998)

[19] Kohavi, R.: A study of cross-validation and bootstrap for accuracy estima-
tion and model selection. In: Proc. of IJCAI-95. pp. 1137–1145 (1995)

[20] Kotthoff, L., Thornton, C., Hoos, H.H., Hutter, F., Leyton-Brown, K.:
Auto-WEKA 2.0: Automatic model selection and hyperparameter opti-
mization in WEKA. Journal of Machine Learning Research 18(25), 1–5
(2017), http://jmlr.org/papers/v18/16-261.html

http://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning.pdf
http://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning.pdf
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://jmlr.org/papers/v18/16-261.html

BIBLIOGRAPHY 103

[21] Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny
images. Master’s thesis, Department of Computer Science, University of
Toronto (2009)

[22] Leite, R., Brazdil, P., Vanschoren, J.: Selecting classification algorithms
with active testing. In: Proc. of MLDM-12. pp. 117–131 (2012)

[23] López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., Birattari, M.:
The irace package, iterated race for automatic algorithm configura-
tion. Tech. Rep. TR/IRIDIA/2011-004, IRIDIA, Université Libre de
Bruxelles, Belgium (2011), http://iridia.ulb.ac.be/IridiaTrSeries/
IridiaTr2011-004.pdf

[24] Maron, O., Moore, A.: Hoeffding races: Accelerating model selection search
for classification and function approximation. In: Proc. of NIPS-94. pp. 59–
66 (1994)

[25] McQuarrie, A., Tsai, C.: Regression and time series model selection. World
Scientific (1998)

[26] Pfahringer, B., Bensusan, H., Giraud-Carrier, C.: Meta-learning by land-
marking various learning algorithms. In: Proc. of ICML-00. pp. 743–750
(2000)

[27] Schonlau, M., Welch, W.J., Jones, D.R.: Global versus local search in con-
strained optimization of computer models. In: Flournoy, N., Rosenberger,
W., Wong, W. (eds.) New Developments and Applications in Experimental
Design, vol. 34, pp. 11–25. Institute of Mathematical Statistics, Hayward,
California (1998)

[28] Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of
machine learning algorithms. In: Proc. of NIPS-12 (2012)

[29] Srinivas, N., Krause, A., Kakade, S., Seeger, M.: Gaussian process op-
timization in the bandit setting: No regret and experimental design. In:
Proc. of ICML-10. pp. 1015–1022 (2010)

[30] Strijov, V., Weber, G.: Nonlinear regression model generation using hy-
perparameter optimization. Computers & Mathematics with Applications
60(4), 981–988 (2010)

[31] Thornton, C., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Auto-WEKA:
Combined selection and hyperparameter optimization of classification al-
gorithms. In: KDD (2013)

[32] Vilalta, R., Drissi, Y.: A perspective view and survey of meta-learning.
Artif. Intell. Rev. 18(2), 77–95 (Oct 2002)

[33] Zhao, P., Yu, B.: On model selection consistency of lasso. JMLR 7, 2541–
2563 (Dec 2006)

http://iridia.ulb.ac.be/IridiaTrSeries/IridiaTr2011-004.pdf
http://iridia.ulb.ac.be/IridiaTrSeries/IridiaTr2011-004.pdf

104 CHAPTER 4. AUTO-WEKA

Chapter 5

Hyperopt-Sklearn

Brent Komer and James Bergstra and Chris Eliasmith

Abstract

Hyperopt-sklearn is a software project that provides automatic algorithm con-
figuration of the Scikit-learn machine learning library. Following Auto-Weka,
we take the view that the choice of classifier and even the choice of preprocessing
module can be taken together to represent a single large hyperparameter opti-
mization problem. We use Hyperopt to define a search space that encompasses
many standard components (e.g. SVM, RF, KNN, PCA, TFIDF) and common
patterns of composing them together. We demonstrate, using search algorithms
in Hyperopt and standard benchmarking data sets (MNIST, 20-Newsgroups,
Convex Shapes), that searching this space is practical and effective. In particu-
lar, we improve on best-known scores for the model space for both MNIST and
Convex Shapes at the time of release.

This chapter is an extended version of our 2014 paper introducing hyperopt-
sklearn, presented at the 2014 ICML Workshop on AutoML [10].

5.1 Introduction

Relative to deep networks, algorithms such as Support Vector Machines (SVMs)
and Random Forests (RFs) have a small-enough number of hyperparameters
that manual tuning and grid or random search provides satisfactory results.
Taking a step back though, there is often no particular reason to use either an
SVM or an RF when they are both computationally viable. A model-agnostic
practitioner may simply prefer to go with the one that provides greater accuracy.
In this light, the choice of classifier can be seen as hyperparameter alongside the
C-value in the SVM and the max-tree-depth of the RF. Indeed the choice and
configuration of preprocessing components may likewise be seen as part of the
model selection / hyperparameter optimization problem.

105

106 CHAPTER 5. HYPEROPT-SKLEARN

The Auto-Weka project [19] was the first to show that an entire library of
machine learning approaches (Weka [8]) can be searched within the scope of a
single run of hyperparameter tuning. However, Weka is a GPL-licensed Java
library, and was not written with scalability in mind, so we feel there is a need
for alternatives to Auto-Weka. Scikit-learn [16] is another library of machine
learning algorithms. It is written in Python (with many modules in C for greater
speed), and is BSD-licensed. Scikit-learn is widely used in the scientific Python
community and supports many machine learning application areas.

This chapter introduces Hyperopt-Sklearn: a project that brings the ben-
efits of automatic algorithm configuration to users of Python and scikit-learn.
Hyperopt-Sklearn uses Hyperopt [3] to describe a search space over possible
configurations of scikit-learn components, including preprocessing, classifica-
tion, and regression modules. One of the main design features of this project
is to provide an interface that is familiar to users of scikit-learn. With very
little changes, hyperparameter search can be applied to an existing code base.
This chapter begins with a background of Hyperopt and the configuration space
it uses within scikit-learn, followed by example usage and experimental results
with this software.

5.2 Background: Hyperopt for Optimization

The Hyperopt library [3] offers optimization algorithms for search spaces that
arise in algorithm configuration. These spaces are characterized by a variety of
types of variables (continuous, ordinal, categorical), different sensitivity profiles
(e.g. uniform vs. log scaling), and conditional structure (when there is a choice
between two classifiers, the parameters of one classifier are irrelevant when the
other classifier is chosen). To use Hyperopt, a user must define/choose three
things:

• A search domain,

• An objective function,

• An optimization algorithm.

The search domain is specified via random variables, whose distributions
should be chosen so that the most promising combinations have high prior
probability. The search domain can include Python operators and functions
that combine random variables into more convenient data structures for the
objective function. Any conditional structure is defined within this domain.
The objective function maps a joint sampling of these random variables to a
scalar-valued score that the optimization algorithm will try to minimize.

An example search domain using Hyperopt is depicted below.

from hyperopt import hp

5.3. SCIKIT-LEARN MODEL SELECTION AS A SEARCH PROBLEM 107

Figure 5.1: An example hyperopt-sklearn search space consisting of a prepro-
cessing step followed by a classifier. There are 6 possible preprocessing modules
and 6 possible classifiers. Choosing a model within this configuration space
means choosing paths in an ancestral sampling process. The highlighted light
blue nodes represent a (PCA, K-Nearest Neighbor) model. The white leaf nodes
at the bottom depict example values for their parent hyperparameters. The
number of active hyperparameters in a model is the sum of parenthetical num-
bers in the selected boxes. For the PCA+KNN combination, 8 hyperparameters
are activated.

space = hp.choice(’my_conditional’,

[

(’case 1’, 1 + hp.lognormal(’c1’, 0, 1)),

(’case 2’, hp.uniform(’c2’, -10, 10))

(’case 3’, hp.choice(’c3’, [’a’, ’b’, ’c’]))

])

Here there are four parameters, one for selecting which case is active, and one
for each of the three cases. The first case contains a positive valued parameter
that is sensitive to log scaling. The second case contains a bounded real valued
parameter. The third case contains a categorical parameter with three options.

Having chosen a search domain, an objective function, and an optimization
algorithm, Hyperopt’s fmin function carries out the optimization, and stores
results of the search to a database (e.g. either a simple Python list or a Mon-
goDB instance). The fmin call carries out the simple analysis of finding the
best-performing configuration, and returns that to the caller. The fmin call can
use multiple workers when using the MongoDB backend, to implement parallel
model selection on a compute cluster.

5.3 Scikit-Learn Model Selection as a Search Prob-
lem

Model selection is the process of estimating which machine learning model per-
forms best from among a possibly infinite set of options. As an optimization

108 CHAPTER 5. HYPEROPT-SKLEARN

problem, the search domain is the set of valid assignments to the configura-
tion parameters (hyperparameters) of the machine learning model.The objec-
tive function is typically the measure of success (e.g. accuracy, F1-Score, etc) on
held-out examples. Often the negative degree of success (loss) is used to set up
the task as a minimization problem, and cross-validation is applied to produce
a more robust final score. Practitioners usually address this optimization by
hand, by grid search, or by random search. In this chapter we discuss solving it
with the Hyperopt optimization library. The basic approach is to set up a search
space with random variable hyperparameters, use scikit-learn to implement the
objective function that performs model training and model validation, and use
Hyperopt to optimize the hyperparameters.

Scikit-learn includes many algorithms for learning from data (classification
or regression), as well as many algorithms for preprocessing data into the vec-
tors expected by these learning algorithms. Classifiers include for example, K-
Nearest-Neighbors, Support Vector Machines, and Random Forest algorithms.
Preprocessing algorithms include transformations such as component-wise Z-
scaling (Normalizer) and Principle Components Analysis (PCA). A full classifi-
cation algorithm typically includes a series of preprocessing steps followed by a
classifier. For this reason, scikit-learn provides a pipeline data structure to rep-
resent and use a sequence of preprocessing steps and a classifier as if they were
just one component (typically with an API similar to the classifier). Although
hyperopt-sklearn does not formally use scikit-learn’s pipeline object, it provides
related functionality. Hyperopt-sklearn provides a parameterization of a search
space over pipelines, that is, of sequences of preprocessing steps and classifiers
or regressors.

The configuration space provided at the time of this writing currently in-
cludes 24 classifiers, 12 regressors, and 7 preprocessing methods. Being an
open-source project, this space is likely to expand in the future as more users
contribute. Upon initial release, only a subset of the search space was available,
consisting of six classifiers and five preprocessing algorithms. This space was
used for initial performance analysis and is illustrated in Figure 5.1. In total,
this parameterization contains 65 hyperparameters: 15 boolean variables, 14
categorical, 17 discrete, and 19 real-valued variables.

Although the total number of hyperparameters in the full configuration space
is large, the number of active hyperparameters describing any one model is much
smaller: a model consisting of PCA and a RandomForest for example, would
have only 12 active hyperparameters (1 for the choice of preprocessing, 2 inter-
nal to PCA, 1 for the choice of classifier and 8 internal to the RF). Hyperopt
description language allows us to differentiate between conditional hyperparam-
eters (which must always be assigned) and non-conditional hyperparameters
(which may remain unassigned when they would be unused). We make use of
this mechanism extensively so that Hyperopt’s search algorithms do not waste
time learning by trial and error that e.g. RF hyperparameters have no effect
on SVM performance. Even internally within classifiers, there are instances
of conditional parameters: KNN has conditional parameters depending on the
distance metric, and LinearSVC has 3 binary parameters (loss , penalty , and

5.4. EXAMPLE USAGE 109

dual) that admit only 4 valid joint assignments. Hyperopt-sklearn also includes a
blacklist of (preprocessing, classifier) pairs that do not work together, e.g. PCA
and MinMaxScaler were incompatible with MultinomialNB, TF-IDF could only
be used for text data, and the tree-based classifiers were not compatible with the
sparse features produced by the TF-IDF preprocessor. Allowing for a 10-way
discretization of real-valued hyperparameters, and taking these conditional hy-
perparameters into account, a grid search of our search space would still require
an infeasible number of evalutions (on the order of 1012).

Finally, the search space becomes an optimization problem when we also de-
fine a scalar-valued search objective. By default, Hyperopt-sklearn uses scikit-
learn’s score method on validation data to define the search criterion. For clas-
sifiers, this is the so-called ”Zero-One Loss”: the number of correct label pre-
dictions among data that has been withheld from the data set used for training
(and also from the data used for testing after the model selection search process).

5.4 Example Usage

Following Scikit-learn’s convention, hyperopt-sklearn provides an Estimator class
with a fit method and a predict method. The fit method of this class performs
hyperparameter optimization, and after it has completed, the predict method
applies the best model to given test data. Each evaluation during optimization
performs training on a large fraction of the training set, estimates test set accu-
racy on a validation set, and returns that validation set score to the optimizer.
At the end of search, the best configuration is retrained on the whole data set
to produce the classifier that handles subsequent predict calls.

One of the important goals of hyperopt-sklearn is that it is easy to learn and
to use. To facilitate this, the syntax for fitting a classifier to data and making
predictions is very similar to scikit-learn. Here is the simplest example of using
this software.

from hpsklearn import HyperoptEstimator

Load data

train_data, train_label, test_data, test_label = load_my_data()

Create the estimator object

estim = HyperoptEstimator()

Search the space of classifiers and preprocessing steps and their

respective hyperparameters in scikit-learn to fit a model to the

data

estim.fit(train_data, train_label)

Make a prediction using the optimized model

prediction = estim.predict(test_data)

110 CHAPTER 5. HYPEROPT-SKLEARN

Report the accuracy of the classifier on a given set of data

score = estim.score(test_data, test_label)

Return instances of the classifier and preprocessing steps

model = estim.best_model()

The HyperoptEstimator object contains the information of what space to
search as well as how to search it. It can be configured to use a variety of
hyperparameter search algorithms and also supports using a combination of
algorithms. Any algorithm that supports the same interface as the algorithms
in hyperopt can be used here. This is also where you, the user, can specify the
maximum number of function evaluations you would like to be run as well as a
timeout (in seconds) for each run.

from hpsklearn import HyperoptEstimator

from hyperopt import tpe

estim = HyperoptEstimator(algo=tpe.suggest,

max_evals=150,

trial_timeout=60)

Each search algorithm can bring its own bias to the search space, and it may
not be clear that one particular strategy is the best in all cases. Sometimes it
can be helpful to use a mixture of search algorithms.

from hpsklearn import HyperoptEstimator

from hyperopt import anneal, rand, tpe, mix

define an algorithm that searches randomly 5% of the time,

uses TPE 75% of the time, and uses annealing 20% of the time

mix_algo = partial(mix.suggest, p_suggest=[

(0.05, rand.suggest),

(0.75, tpe.suggest),

(0.20, anneal.suggest)])

estim = HyperoptEstimator(algo=mix_algo,

max_evals=150,

trial_timeout=60)

Searching effectively over the entire space of classifiers available in scikit-
learn can use a lot of time and computational resources. Sometimes you might
have a particular subspace of models that they are more interested in. With
hyperopt-sklearn it is possible to specify a more narrow search space to allow it
to be be explored in greater depth.

from hpsklearn import HyperoptEstimator, svc

5.4. EXAMPLE USAGE 111

limit the search to only SVC models

estim = HyperoptEstimator(classifier=svc(’my_svc’))

Combinations of different spaces can also be used.

from hpsklearn import HyperoptEstimator, svc, knn

from hyperopt import hp

restrict the space to contain only random forest,

k-nearest neighbors, and SVC models.

clf = hp.choice(’my_name’,

[random_forest(’my_name.random_forest’),

svc(’my_name.svc’),

knn(’my_name.knn’)])

estim = HyperoptEstimator(classifier=clf)

The support vector machine provided by scikit-learn has a number of differ-
ent kernels that can be used (linear, rbf, poly, sigmoid). Changing the kernel
can have a large effect on the performance of the model, and each kernel has its
own unique hyperparameters. To account for this, hyperopt-sklearn treats each
kernel choice as a unique model in the search space. If you already know which
kernel works best for your data, or you are just interested in exploring models
with a particular kernel, you may specify it directly rather than going through
the svc.

from hpsklearn import HyperoptEstimator, svc_rbf

estim = HyperoptEstimator(classifier=svc_rbf(’my_svc’))

It is also possible to specify which kernels you are interested in by passing a
list to the svc.

from hpsklearn import HyperoptEstimator, svc

estim = HyperoptEstimator(

classifier=svc(’my_svc’,

kernels=[’linear’,

’sigmoid’]))

In a similar manner to classifiers, the space of preprocessing modules can be
fine tuned. Multiple successive stages of preprocessing can be specified through
an ordered list. An empty list means that no preprocessing will be done on the
data.

112 CHAPTER 5. HYPEROPT-SKLEARN

from hpsklearn import HyperoptEstimator, pca

estim = HyperoptEstimator(preprocessing=[pca(’my_pca’)])

Combinations of different spaces can be used here as well.

from hpsklearn import HyperoptEstimator, tfidf, pca

from hyperopt import hp

preproc = hp.choice(’my_name’,

[[pca(’my_name.pca’)],

[pca(’my_name.pca’), normalizer(’my_name.norm’)]

[standard_scaler(’my_name.std_scaler’)],

[]])

estim = HyperoptEstimator(preprocessing=preproc)

Some types of preprocessing will only work on specific types of data. For
example, the TfidfVectorizer that scikit-learn provides is designed to work with
text data and would not be appropriate for other types of data. To address
this, hyperopt-sklearn comes with a few pre-defined spaces of classifiers and
preprocessing tailored to specific data types.

from hpsklearn import HyperoptEstimator, \

any_sparse_classifier, \

any_text_preprocessing

from hyperopt import tpe

estim = HyperoptEstimator(

algo=tpe.suggest,

classifier=any_sparse_classifier(’my_clf’)

preprocessing=any_text_preprocessing(’my_pp’)

max_evals=200,

trial_timeout=60)

So far in all of these examples, every hyperparameter available to the model
is being searched over. It is also possible for you to specify the values of specific
hyperparameters, and those parameters will remain constant during the search.
This could be useful, for example, if you knew you wanted to use whitened PCA
data and a degree-3 polynomial kernel SVM.

from hpsklearn import HyperoptEstimator, pca, svc_poly

estim = HyperoptEstimator(

preprocessing=[pca(’my_pca’, whiten=True)],

classifier=svc_poly(’my_poly’, degree=3))

5.4. EXAMPLE USAGE 113

It is also possible to specify ranges of individual parameters. This is done
using the standard hyperopt syntax. These will override the defaults defined
within hyperopt-sklearn.

from hpsklearn import HyperoptEstimator, pca, sgd

from hyperopt import hp

import numpy as np

sgd_loss = hp.pchoice(’loss’,

[(0.50, ’hinge’),

(0.25, ’log’),

(0.25, ’huber’)])

sgd_penalty = hp.choice(’penalty’,

[’l2’, ’elasticnet’])

sgd_alpha = hp.loguniform(’alpha’,

low=np.log(1e-5),

high=np.log(1))

estim = HyperoptEstimator(

classifier=sgd(’my_sgd’,

loss=sgd_loss,

penalty=sgd_penalty,

alpha=sgd_alpha))

All of the components available to the user can be found in the components.py
file. A complete working example of using hyperopt-sklearn to find a model for
the 20 newsgroups data set is shown below.

from hpsklearn import HyperoptEstimator, tfidf, any_sparse_classifier

from sklearn.datasets import fetch_20newsgroups

from hyperopt import tpe

import numpy as np

Download data and split training and test sets

train = fetch_20newsgroups(subset=’train’)

test = fetch_20newsgroups(subset=’test’)

X_train = train.data

y_train = train.target

X_test = test.data

y_test = test.target

estim = HyperoptEstimator(

classifier=any_sparse_classifier(’clf’),

preprocessing=[tfidf(’tfidf’)],

algo=tpe.suggest,

trial_timeout=180)

estim.fit(X_train, y_train)

114 CHAPTER 5. HYPEROPT-SKLEARN

print(estim.score(X_test, y_test))

print(estim.best_model())

5.5 Experiments

We conducted experiments on three data sets to establish that hyperopt-sklearn
can find accurate models on a range of data sets in a reasonable amount of time.
Results were collected on three data sets: MNIST, 20-Newsgroups, and Convex
Shapes. MNIST is a well-known data set of 70K 28x28 greyscale images of
hand-drawn digits [12]. 20-Newsgroups is a 20-way classification data set of 20K
newsgroup messages ([13] , we did not remove the headers for our experiments).
Convex Shapes is a binary classification task of distinguishing pictures of convex
white-colored regions in small (32x32) black-and-white images [11].

Figure 5.2 (left) shows that there was no penalty for searching broadly. We
performed optimization runs of up to 300 function evaluations searching the
subset of the space depicted in Figure 5.1, and compared the quality of solu-
tion with specialized searches of specific classifier types (including best known
classifiers).

Figure 5.2 (right) shows that search could find different, good models. This
figure was constructed by running hyperopt-sklearn with different initial con-
ditions (number of evaluations, choice of optimization algorithm, and random
number seed) and keeping track of what final model was chosen after each run.
Although support vector machines were always among the best, the parameters
of best SVMs looked very different across data sets. For example, on the image
data sets (MNIST and Convex) the SVMs chosen never had a sigmoid or linear
kernel, while on 20 newsgroups the linear and sigmoid kernel were often best.

Sometimes researchers not familiar with machine learning techniques may
simply use the default parameters of the classifiers available to them. To look
at the effectiveness of of hyperopt-sklearn as a drop-in replacement for this
approach, a comparison between the performance of the default scikit-learn pa-
rameters and a small search (25 evaluations) of the default hyperopt-sklearn
space was conducted. The results on the 20 Newsgroups dataset are shown in
Figure 5.3. Improved performance over the baseline is observed in all cases,
which suggests that this search technique is valuable even with a small compu-
tational budget.

5.6 Discussion and Future Work

Table 5.1 lists the test set scores of the best models found by cross-validation, as
well as some points of reference from previous work. Hyperopt-sklearn’s scores
are relatively good on each data set, indicating that with hyperopt-sklearn’s
parameterization, Hyperopt’s optimization algorithms are competitive with hu-
man experts.

5.6. DISCUSSION AND FUTURE WORK 115

MNIST 20 Newsgroups
Approach Accuracy Approach F-Score
Committee of convnets 99.8% CFC 0.928
hyperopt-sklearn 98.7% hyperopt-sklearn 0.856 %
libSVM grid search 98.6% SVMTorch 0.848 %
Boosted trees 98.5% LibSVM 0.843

Convex Shapes
Approach Accuracy
hyperopt-sklearn 88.7%
hp-dbnet 84.6%
dbn-3 81.4%

Table 5.1: Hyperopt-sklearn scores relative to selections from literature on the
three data sets used in our experiments. On MNIST, hyperopt-sklearn is one
of the best-scoring methods that does not use image-specific domain knowledge
(these scores and others may be found at http://yann.lecun.com/exdb/mnist/).
On 20 Newsgroups, hyperopt-sklearn is competitive with similar approaches
from the literature (scores taken from [7]). In the 20 Newsgroups data set, the
score reported for hyperopt-sklearn is the weighted-average F1 score provided
by sklearn. The other approaches shown here use the macro-average F1 score.
On Convex Shapes, hyperopt-sklearn outperforms previous automatic algorithm
configuration approaches [6] and manual tuning [11] .

116 CHAPTER 5. HYPEROPT-SKLEARN

Figure 5.2: Left: Best Model Performance. For each data set, searching the full
configuration space (“Any Classifier”) delivered performance approximately on
par with a search that was restricted to the best classifier type. Each bar rep-
resents the score obtained from a search restricted to that particular classifier.
For the ”Any Classifier” case there is no restriction on the search space. In
all cases 300 hyperparameter evaluations were performed. Score is F1 for 20
Newsgroups, and accuracy for MNIST and Convex Shapes.
Right: Model Selection Distribution. Looking at the best models from all opti-
mization runs performed on the full search space (Any Classifier, using different
initial conditions, and different optimization algorithms) we see that different
data sets are handled best by different classifiers. SVC was the only classifier
ever chosen as the best model for Convex Shapes, and was often found to be
best on MNIST and 20 Newsgroups, however the best SVC parameters were
very different across data sets.

The model with the best performance on the MNIST Digits data set uses
deep artificial neural networks. Small receptive fields of convolutional winner-
take-all neurons build up the large network. Each neural column becomes an
expert on inputs preprocessed in different ways, and the average prediction of
35 deep neural columns to come up with a single final prediction [4]. This model
is much more advanced than those available in scikit-learn. The previously best
known model in the scikit-learn search space is a radial-basis SVM on centered
data that scores 98.6%, and hyperopt-sklearn matches that performance [15].

The CFC model that performed quite well on the 20 newsgroups document
classification data set is a Class-Feature-Centroid classifier. Centroid approaches
are typically inferior to an SVM, due to the centroids found during training
being far from the optimal location. The CFC method reported here uses a
centroid built from the inter-class term index and the inner-class term index.
It uses a novel combination of these indices along with a denormalized cosine
measure to calculate the similarity score between the centroid and a text vector
[7]. This style of model is not currently implemented in hyperopt-sklearn, and
our experiments suggest that existing hyperopt-sklearn components cannot be
assembled to match its level of performance. Perhaps when it is implemented,
Hyperopt may find a set of parameters that provides even greater classification

5.6. DISCUSSION AND FUTURE WORK 117

Figure 5.3: Comparison of F1-Score on the 20 Newsgroups dataset using either
the default parameters of scikit-learn or the default search space of hyperopt-
sklearn. The results from hyperopt-sklearn were obtained from a single run
with 25 evaluations, restricted to either Support Vector Classifier, Stochastic
Gradient Descent, K-Nearest Neighbors, or Multinomial Naive Bayes.

accuracy.
On the Convex Shapes data set, our Hyperopt-sklearn experiments revealed

a more accurate model than was previously believed to exist in any search space,
let alone a search space of such standard components. This result underscores
the difficulty and importance of hyperparameter search.

Hyperopt-sklearn provides many opportunities for future work: more clas-
sifiers and preprocessing modules could be included in the search space, and
there are more ways to combine even the existing components. Other types of
data require different preprocessing, and other prediction problems exist beyond
classification. In expanding the search space, care must be taken to ensure that
the benefits of new models outweigh the greater difficulty of searching a larger
space. There are some parameters that scikit-learn exposes that are more im-
plementation details than actual hyperparameters that affect the fit (such as
algorithm and leaf size in the KNN model). Care should be taken to iden-
tify these parameters in each model and they may need to be treated differently
during exploration.

It is possible for a user to add their own classifier to the search space as long
as it fits the scikit-learn interface. This currently requires some understanding
of how hyperopt-sklearn’s code is structured and it would be nice to improve the
support for this so minimal effort is required by the user. It is also possible for
the user to specify alternate scoring methods besides the default accuracy or F-
measure, as there can be cases where these are not best suited to the particular
problem.

We have shown here that Hyperopt’s random search, annealing search, and
TPE algorithms make Hyperopt-sklearn viable, but the slow convergence in Fig-
ure 5.4 suggests that other optimization algorithms might be more call-efficient.

118 CHAPTER 5. HYPEROPT-SKLEARN

Figure 5.4: Validation loss of models found for each successive parameter eval-
uation using the 20 Newsgroups dataset and the Any Classifier search domain.
Upper Left: Mean validation loss at each step across different random num-
ber seeds for the TPE algorithm. Downward trend indicates more promising
regions are explored more often over time. Upper Right: Mean validation
loss for the random algorithm. Flat trend illustrates no learning from previous
trials. Large variation in performance across evaluations indicates the problem
is very sensitive to hyperparameter tunings. Lower Left: Minimum validation
loss of models found so far for the TPE algorithm. Gradual progress is made
on 20 Newsgroups over 300 iterations and gives no indication of convergence.
Lower Right: Minimum validation loss for the random algorithm. Progress is
initially rapid for the first 40 or so evaluations and then settles for long periods.
Improvement still continues, but becomes less likely as time goes on.

5.7. CONCLUSIONS 119

The development of Bayesian optimization algorithms is an active research area,
and we look forward to looking at how other search algorithms interact with
hyperopt-sklearn’s search spaces. Hyperparameter optimization opens up a new
art of matching the parameterization of search spaces to the strengths of search
algorithms.

Computational wall time spent on search is of great practical importance,
and hyperopt-sklearn currently spends a significant amount of time evaluating
points that are un-promising. Techniques for recognizing bad performers early
could speed up search enormously [18, 5].

5.7 Conclusions

This chapter has introduced Hyperopt-sklearn, a Python package for automatic
algorithm configuration of standard machine learning algorithms provided by
Scikit-Learn. Hyperopt-sklearn provides a unified interface to a large subset of
the machine learning algorithms available in scikit-learn and with the help of
Hyperopt’s optimization functions it is able to both rival and surpass human
experts in algorithm configuration. We hope that it provides practitioners with
a useful tool for the development of machine learning systems, and automatic
machine learning researchers with benchmarks for future work in algorithm
configuration.

Acknowledgements

This research was supported by the NSERC Banting Fellowship program, the
NSERC Engage Program and by D-Wave Systems. Thanks also to Hristijan
Bogoevski for early drafts of a hyperopt-to-scikit-learn bridge.

Bibliography

[1] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kegl. Algorithms for hyper-
parameter optimization, NIPS, 24:2546–2554, 2011.

[2] J. Bergstra, D. Yamins, and D. D. Cox. Making a science of model search:
Hyperparameter optimization in hundreds of dimensions for vision architec-
tures, In Proc. ICML, 2013a.

[3] J. Bergstra, D. Yamins, and D. D. Cox. Hyperopt: A Python library for
optimizing the hyperparameters of machine learning algorithms, SciPy’13,
2013b.

[4] D. Ciresan, U. Meier, and J. Schmidhuber. Multi-column Deep Neural Net-
works for Image Classification, IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 3642-3649. 2012.

120 CHAPTER 5. HYPEROPT-SKLEARN

[5] T. Domhan, T. Springenberg, F. Hutter. Extrapolating Learning Curves of
Deep Neural Networks, ICML AutoML Workshop, 2014.

[6] K. Eggensperger, M. Feurer, F. Hutter, J. Bergstra, J. Snoek, H. Hoos, and
K. Leyton-Brown. Towards an empirical foundation for assessing bayesian
optimization of hyperparameters, NIPS workshop on Bayesian Optimization
in Theory and Practice, 2013.

[7] H. Guan, J. Zhou, and M. Guo. A class-feature-centroid classifier for text
categorization, Proceedings of the 18th international conference on World
wide web, 201-210. ACM, 2009.

[8] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Wit-
ten. The weka data mining software: an update, ACM SIGKDD explorations
newsletter, 11(1):10-18, 2009.

[9] F. Hutter, H. Hoos, and K. Leyton-Brown. Sequential model-based optimiza-
tion for general algorithm configuration, LION-5, 2011. Extended version as
UBC Tech report TR-2010-10.

[10] B. Komer, J. Bergstra, and C. Eliasmith. Hyperopt-sklearn: automatic
hyperparameter configuration for scikit-learn, ICML AutoML Workshop,
2014.

[11] H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio. An
empirical evaluation of deep architectures on problems with many factors of
variation, ICML, 473-480, 2007.

[12] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition, Proceedings of the IEEE, 86(11):2278-
2324, November 1998.

[13] T. Mitchell. 20 newsgroups data set, http://qwone.com/jason/ 20News-
groups/, 1996.

[14] J. Mockus, V. Tiesis, and A. Zilinskas. The application of Bayesian methods
for seeking the extremum, L.C.W. Dixon and G.P. Szego, editors, Towards
Global Optimization, volume 2, pages 117–129. North Holland, New York,
1978.

[15] The MNIST Database of handwritten digits: http://yann.lecun.com/ exd-
b/mnist/

[16] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O.
Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A.
Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-
learn: Machine Learning in Python, Journal of Machine Learning Research,
12:2825–2830, 2011.

BIBLIOGRAPHY 121

[17] J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian optimiza-
tion of machine learning algorithms, Neural Information Processing Systems,
2012.

[18] K. Swersky, J. Snoek, R.P. Adams. Freeze-Thaw Bayesian Optimization,
arXiv:1406.3896, 2014.

[19] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown. AutoWEKA:
Automated selection and hyper-parameter optimization of classification al-
gorithms, KDD 847-855, 2013.

122 CHAPTER 5. HYPEROPT-SKLEARN

Chapter 6

Auto-sklearn: Efficient and
Robust Automated
Machine Learning

Matthias Feurer and Aaron Klein and Katharina Eggensperger and Jost Tobias
Springenberg and Manuel Blum and Frank Hutter

Abstract

The success of machine learning in a broad range of applications has led to an
ever-growing demand for machine learning systems that can be used off the shelf
by non-experts. To be effective in practice, such systems need to automatically
choose a good algorithm and feature preprocessing steps for a new dataset at
hand, and also set their respective hyperparameters. Recent work has started
to tackle this automated machine learning (AutoML) problem with the help
of efficient Bayesian optimization methods. Building on this, we introduce a
robust new AutoML system based on the Python machine learning package
scikit-learn (using 15 classifiers, 14 feature preprocessing methods, and 4 data
preprocessing methods, giving rise to a structured hypothesis space with 110
hyperparameters). This system, which we dub Auto-sklearn, improves on exist-
ing AutoML methods by automatically taking into account past performance
on similar datasets, and by constructing ensembles from the models evaluated
during the optimization. Our system won six out of ten phases of the first
ChaLearn AutoML challenge, and our comprehensive analysis on over 100 di-
verse datasets shows that it substantially outperforms the previous state of the
art in AutoML. We also demonstrate the performance gains due to each of our
contributions and derive insights into the effectiveness of the individual compo-
nents of Auto-sklearn.

This chapter is an extended version of our 2015 paper introducing Auto-
sklearn, published in the proceedings of NIPS 2015 [20].

123

124 CHAPTER 6. AUTO-SKLEARN

6.1 Introduction

Machine learning has recently made great strides in many application areas,
fueling a growing demand for machine learning systems that can be used ef-
fectively by novices in machine learning. Correspondingly, a growing number
of commercial enterprises aim to satisfy this demand (e.g., BigML.com, Wise.io,
H2O.ai, feedzai.com, RapidMiner.com, Prediction.io, DataRobot.com, Microsoft’s
Azure Machine Learning, Google’s Cloud Machine Learning Engine, and Amazon
Machine Learning). At its core, every effective machine learning service needs to
solve the fundamental problems of deciding which machine learning algorithm
to use on a given dataset, whether and how to preprocess its features, and how
to set all hyperparameters. This is the problem we address in this work.

More specifically, we investigate automated machine learning (AutoML), the
problem of automatically (without human input) producing test set predictions
for a new dataset within a fixed computational budget. Formally, this AutoML
problem can be stated as follows:

Definition 1 (AutoML problem) For i = 1, . . . , n+m, let xi denote a fea-
ture vector and yi the corresponding target value. Given a training dataset
Dtrain = {(x1, y1), . . . , (xn, yn)} and the feature vectors xn+1, . . . ,xn+m of a
test dataset Dtest = {(xn+1, yn+1), . . . , (xn+m, yn+m)} drawn from the same
underlying data distribution, as well as a resource budget b and a loss metric
L(·, ·), the AutoML problem is to (automatically) produce accurate test set pre-
dictions ŷn+1, . . . , ŷn+m. The loss of a solution ŷn+1, . . . , ŷn+m to the AutoML
problem is given by 1

m

∑m
j=1 L(ŷn+j , yn+j).

In practice, the budget b would comprise computational resources, such as
CPU and/or wallclock time and memory usage. This problem definition reflects
the setting of the first ChaLearn AutoML challenge [23] (also, see Chapter 10
for a description and analysis of the first AutoML challenge). The AutoML
system we describe here won six out of ten phases of that challenge.

Here, we follow and extend the AutoML approach first introduced by Auto-
WEKA [42]. At its core, this approach combines a highly parametric machine
learning framework F with a Bayesian optimization [7, 40] method for instan-
tiating F well for a given dataset.

The contribution of this paper is to extend this AutoML approach in various
ways that considerably improve its efficiency and robustness, based on principles
that apply to a wide range of machine learning frameworks (such as those used
by the machine learning service providers mentioned above). First, following
successful previous work for low dimensional optimization problems [21, 38, 22],
we reason across datasets to identify instantiations of machine learning frame-
works that perform well on a new dataset and warmstart Bayesian optimization
with them (Section 6.3.1). Second, we automatically construct ensembles of
the models considered by Bayesian optimization (Section 6.3.2). Third, we
carefully design a highly parameterized machine learning framework from high-
performing classifiers and preprocessors implemented in the popular machine

6.2. AUTOML AS A CASH PROBLEM 125

learning framework scikit-learn [36] (Section 6.4). Finally, we perform an ex-
tensive empirical analysis using a diverse collection of datasets to demonstrate
that the resulting Auto-sklearn system outperforms previous state-of-the-art
AutoML methods (Section 6.5), to show that each of our contributions leads to
substantial performance improvements (Section 6.6), and to gain insights into
the performance of the individual classifiers and preprocessors used in Auto-
sklearn (Section 6.7).

6.2 AutoML as a CASH Problem

We first review the formalization of AutoML as a Combined Algorithm Selec-
tion and Hyperparameter optimization (CASH) problem used by Auto-WEKA’s
AutoML approach. Two important problems in AutoML are that (1) no single
machine learning method performs best on all datasets and (2) some machine
learning methods (e.g., non-linear SVMs) crucially rely on hyperparameter op-
timization. The latter problem has been successfully attacked using Bayesian
optimization [7, 40], which nowadays forms a core component of many AutoML
systems. The former problem is intertwined with the latter since the rankings
of algorithms depend on whether their hyperparameters are tuned properly.
Fortunately, the two problems can efficiently be tackled as a single, structured,
joint optimization problem:

Definition 2 (CASH) Let A = {A(1), . . . , A(R)} be a set of algorithms, and
let the hyperparameters of each algorithm A(j) have domain Λ(j). Further,
let Dtrain = {(x1, y1), . . . , (xn, yn)} be a training set which is split into K

cross-validation folds {D(1)
valid, . . . , D

(K)
valid} and {D(1)

train, . . . , D
(K)
train} such that

D
(i)
train = Dtrain\D(i)

valid for i = 1, . . . ,K. Finally, let L(A
(j)
λ , D

(i)
train, D

(i)
valid)

denote the loss that algorithm A(j) achieves on D
(i)
valid when trained on D

(i)
train

with hyperparameters λ. Then, the Combined Algorithm Selection and Hy-
perparameter optimization (CASH) problem is to find the joint algorithm and
hyperparameter setting that minimizes this loss:

A?,λ? ∈ argmin
A(j)∈A,λ∈Λ(j)

1

K

K∑

i=1

L(A
(j)
λ , D

(i)
train, D

(i)
valid). (6.1)

This CASH problem was first tackled by Thornton et al. [42] in the Auto-
WEKA system using the machine learning framework WEKA [25] and tree-
based Bayesian optimization methods [27, 5]. In a nutshell, Bayesian optimiza-
tion [7] fits a probabilistic model to capture the relationship between hyperpa-
rameter settings and their measured performance; it then uses this model to
select the most promising hyperparameter setting (trading off exploration of
new parts of the space vs. exploitation in known good regions), evaluates that
hyperparameter setting, updates the model with the result, and iterates. While
Bayesian optimization based on Gaussian process models (e.g., Snoek et al. [41])
performs best in low-dimensional problems with numerical hyperparameters,

126 CHAPTER 6. AUTO-SKLEARN

AutoML
system

ML framework

{Xtrain, Ytrain,
Xtest, b,L}

meta-
learning

data pre-
processor

feature
preprocessor

classifier
build

ensemble
Ŷtest

Bayesian optimizer

Figure 6.1: Our improved AutoML approach. We add two components to Bayesian
hyperparameter optimization of an ML framework: meta-learning for initializing the
Bayesian optimizer and automated ensemble construction from configurations evalu-
ated during optimization.

tree-based models have been shown to be more successful in high-dimensional,
structured, and partly discrete problems [15] – such as the CASH problem – and
are also used in the AutoML system Hyperopt-sklearn [30]. Among the tree-
based Bayesian optimization methods, Thornton et al. [42] found the random-
forest-based SMAC [27] to outperform the tree Parzen estimator TPE [5], and
we therefore use SMAC to solve the CASH problem in this paper. Next to its
use of random forests [6], SMAC’s main distinguishing feature is that it allows
fast cross-validation by evaluating one fold at a time and discarding poorly-
performing hyperparameter settings early.

6.3 New Methods for Increasing Efficiency and
Robustness of AutoML

We now discuss our two improvements of the AutoML approach. First, we in-
clude a meta-learning step to warmstart the Bayesian optimization procedure,
which results in a considerable boost in efficiency. Second, we include an au-
tomated ensemble construction step, allowing us to use all classifiers that were
found by Bayesian optimization.

Figure 6.1 summarizes the overall AutoML workflow, including both of our
improvements. We note that we expect their effectiveness to be greater for flex-
ible ML frameworks that offer many degrees of freedom (e.g., many algorithms,
hyperparameters, and preprocessing methods).

6.3.1 Meta-Learning for Finding Good Instantiations of
Machine Learning Frameworks

Domain experts derive knowledge from previous tasks: They learn about the
performance of machine learning algorithms. The area of meta-learning (see
Chapter 2) mimics this strategy by reasoning about the performance of learn-
ing algorithms across datasets. In this work, we apply meta-learning to select
instantiations of our given machine learning framework that are likely to per-
form well on a new dataset. More specifically, for a large number of datasets, we
collect both performance data and a set of meta-features, i.e., characteristics of
the dataset that can be computed efficiently and that help to determine which
algorithm to use on a new dataset.

6.3. NEWMETHODS FOR INCREASING EFFICIENCY ANDROBUSTNESS OF AUTOML127

This meta-learning approach is complementary to Bayesian optimization
for optimizing an ML framework. Meta-learning can quickly suggest some in-
stantiations of the ML framework that are likely to perform quite well, but
it is unable to provide fine-grained information on performance. In contrast,
Bayesian optimization is slow to start for hyperparameter spaces as large as
those of entire ML frameworks, but can fine-tune performance over time. We ex-
ploit this complementarity by selecting k configurations based on meta-learning
and use their result to seed Bayesian optimization. This approach of warm-
starting optimization by meta-learning has already been successfully applied
before [21, 38, 22], but never to an optimization problem as complex as that of
searching the space of instantiations of a full-fledged ML framework. Likewise,
learning across datasets has also been applied in collaborative Bayesian opti-
mization methods [4, 45]; while these approaches are promising, they are so far
limited to very few meta-features and cannot yet cope with the high-dimensional
partially discrete configuration spaces faced in AutoML.

More precisely, our meta-learning approach works as follows. In an offline
phase, for each machine learning dataset in a dataset repository (in our case 140
datasets from the OpenML [43] repository), we evaluated a set of meta-features
(described below) and used Bayesian optimization to determine and store an
instantiation of the given ML framework with strong empirical performance for
that dataset. (In detail, we ran SMAC [27] for 24 hours with 10-fold cross-
validation on two thirds of the data and stored the resulting ML framework
instantiation which exhibited best performance on the remaining third). Then,
given a new dataset D, we compute its meta-features, rank all datasets by their
L1 distance to D in meta-feature space and select the stored ML framework
instantiations for the k = 25 nearest datasets for evaluation before starting
Bayesian optimization with their results.

To characterize datasets, we implemented a total of 38 meta-features from
the literature, including simple, information-theoretic and statistical meta-features [33,
29], such as statistics about the number of data points, features, and classes,
as well as data skewness, and the entropy of the targets. All meta-features
are listed in Table 1 of the supplementary material. Notably, we had to ex-
clude the prominent and effective category of landmarking meta-features [37]
(which measure the performance of simple base learners), because they were
computationally too expensive to be helpful in the online evaluation phase. We
note that this meta-learning approach draws its power from the availability of a
repository of datasets; due to recent initiatives, such as OpenML [43], we expect
the number of available datasets to grow ever larger over time, increasing the
importance of meta-learning.

6.3.2 Automated Ensemble Construction of Models Eval-
uated During Optimization

While Bayesian hyperparameter optimization is data-efficient in finding the
best-performing hyperparameter setting, we note that it is a very wasteful pro-
cedure when the goal is simply to make good predictions: all the models it trains

128 CHAPTER 6. AUTO-SKLEARN

during the course of the search are lost, usually including some that perform
almost as well as the best. Rather than discarding these models, we propose
to store them and to use an efficient post-processing method (which can be
run in a second process on-the-fly) to construct an ensemble out of them. This
automatic ensemble construction avoids to commit itself to a single hyperpa-
rameter setting and is thus more robust (and less prone to overfitting) than
using the point estimate that standard hyperparameter optimization yields. To
our best knowledge, we are the first to make this simple observation, which can
be applied to improve any Bayesian hyperparameter optimization method.1

It is well known that ensembles often outperform individual models [24, 31],
and that effective ensembles can be created from a library of models [10, 9].
Ensembles perform particularly well if the models they are based on (1) are
individually strong and (2) make uncorrelated errors [6]. Since this is much
more likely when the individual models are different in nature, ensemble building
is particularly well suited for combining strong instantiations of a flexible ML
framework.

However, simply building a uniformly weighted ensemble of the models found
by Bayesian optimization does not work well. Rather, we found it crucial to
adjust these weights using the predictions of all individual models on a hold-
out set. We experimented with different approaches to optimize these weights:
stacking [44], gradient-free numerical optimization, and the method ensemble
selection [10]. While we found both numerical optimization and stacking to over-
fit to the validation set and to be computationally costly, ensemble selection was
fast and robust. In a nutshell, ensemble selection (introduced by Caruana et
al. [10]) is a greedy procedure that starts from an empty ensemble and then it-
eratively adds the model that minimizes ensemble validation loss (with uniform
weight, but allowing for repetitions). We used this technique in all our experi-
ments – building an ensemble of size 50 using selection with replacement [10].
We calculated the ensemble loss using the same validation set that we use for
Bayesian optimization.

6.4 A Practical Automated Machine Learning
System

To design a robust AutoML system, as our underlying ML framework we chose
scikit-learn [36], one of the best known and most widely used machine learning
libraries. It offers a wide range of well established and efficiently-implemented
ML algorithms and is easy to use for both experts and beginners. Since our
AutoML system closely resembles Auto-WEKA, but – like Hyperopt-sklearn
– is based on scikit-learn, we dub it Auto-sklearn.

1Since the original publication [20] we have learned that Escalante et al. [16] and Bürger
and Pauli [8] applied ensembles as a post-processing step of an AutoML system to improve
generalization as well. However, both works combined the learned models with a pre-defined
strategy and did not adapt the ensemble construction based on the performance of the indi-
vidual models.

6.4. A PRACTICAL AUTOMATED MACHINE LEARNING SYSTEM 129

data
preprocessor

estimatorfeature
preprocessor classifier

AdaBoost· · ·RF kNN

estimatorslearning rate max. depth

preprocessing

· · ·NonePCA fast ICA

rescaling

· · ·min/max standard

one hot enc.

· · ·

imputation

mean · · · median

balancing

weighting None

Figure 6.2: Structured configuration space. Squared boxes denote parent hyperpa-
rameters whereas boxes with rounded edges are leaf hyperparameters. Grey colored
boxes mark active hyperparameters which form an example configuration and machine
learning pipeline. Each pipeline comprises one feature preprocessor, classifier and up
to three data preprocessor methods plus respective hyperparameters.

Figure 6.2 is an illustration Auto-sklearn’s machine learning pipeline and its
components. It comprises 15 classification algorithms, 14 preprocessing meth-
ods, and 4 data preprocessing methods. We parameterized each of them, which
resulted in a space of 110 hyperparameters. Most of these are conditional hy-
perparameters that are only active if their respective component is selected. We
note that SMAC [27] can handle this conditionality natively.

All 15 classification algorithms in Auto-sklearn are listed in Table 6.1. They
fall into different categories, such as general linear models (2 algorithms), sup-
port vector machines (2), discriminant analysis (2), nearest neighbors (1), näıve
Bayes (3), decision trees (1) and ensembles (4). In contrast to Auto-WEKA [42]
(also, see Chapter 4 for a description of Auto-WEKA), we focused our config-
uration space on base classifiers and excluded meta-models and ensembles that
are themselves parameterized by one or more base classifiers. While such en-
sembles increased Auto-WEKA’s number of hyperparameters by almost a factor
of five (to 786), Auto-sklearn “only” features 110 hyperparameters. We instead
construct complex ensembles using our post-hoc method from Section 6.3.2.
Compared to Auto-WEKA, this is much more data-efficient: in Auto-WEKA,
evaluating the performance of an ensemble with 5 components requires the con-
struction and evaluation of 5 models; in contrast, in Auto-sklearn, ensembles
come largely for free, and it is possible to mix and match models evaluated at
arbitrary times during the optimization.

The preprocessing methods for datasets in dense representation in Auto-
sklearn are listed in Table 6.1. They comprise data preprocessors (which change
the feature values and are always used when they apply) and feature preproces-
sors (which change the actual set of features, and only one of which [or none]
is used). Data preprocessing includes rescaling of the inputs, imputation of
missing values, one-hot encoding and balancing of the target classes. The 14
possible feature preprocessing methods can be categorized into feature selec-
tion (2), kernel approximation (2), matrix decomposition (3), embeddings (1),
feature clustering (1), polynomial feature expansion (1) and methods that use
a classifier for feature selection (2). For example, L1-regularized linear SVMs
fitted to the data can be used for feature selection by eliminating features cor-
responding to zero-valued model coefficients.

130 CHAPTER 6. AUTO-SKLEARN

name #λ cat (cond) cont (cond)

AdaBoost (AB) 4 1 (-) 3 (-)
Bernoulli näıve Bayes 2 1 (-) 1 (-)
decision tree (DT) 4 1 (-) 3 (-)
extreml. rand. trees 5 2 (-) 3 (-)
Gaussian näıve Bayes - - -
gradient boosting (GB) 6 - 6 (-)
kNN 3 2 (-) 1 (-)
LDA 4 1 (-) 3 (1)
linear SVM 4 2 (-) 2 (-)
kernel SVM 7 2 (-) 5 (2)
multinomial näıve Bayes 2 1 (-) 1 (-)
passive aggressive 3 1 (-) 2 (-)
QDA 2 - 2 (-)
random forest (RF) 5 2 (-) 3 (-)
Linear Class. (SGD) 10 4 (-) 6 (3)

name #λ cat (cond) cont (cond)

extreml. rand. trees prepr. 5 2 (-) 3 (-)
fast ICA 4 3 (-) 1 (1)
feature agglomeration 4 3 () 1 (-)
kernel PCA 5 1 (-) 4 (3)
rand. kitchen sinks 2 - 2 (-)
linear SVM prepr. 3 1 (-) 2 (-)
no preprocessing - - -
nystroem sampler 5 1 (-) 4 (3)
PCA 2 1 (-) 1 (-)
polynomial 3 2 (-) 1 (-)
random trees embed. 4 - 4 (-)
select percentile 2 1 (-) 1 (-)
select rates 3 2 (-) 1 (-)

one-hot encoding 2 1 (-) 1 (1)
imputation 1 1 (-) -
balancing 1 1 (-) -
rescaling 1 1 (-) -

Table 6.1: Number of hyperparameters for each classifier (top) and feature
preprocessing method (bottom) for a binary classification dataset in dense
representation. Tables for sparse binary classification and sparse/dense multi-
class classification datasets can be found in Section E of the original publications
supplementary material [20], Tables 2a, 3a, 4a, 2b, 3b and 4b. We distinguish
between categorical (cat) hyperparameters with discrete values and continuous
(cont) numerical hyperparameters. Numbers in brackets are conditional hyper-
parameters, which are only relevant when another hyperparameter has a certain
value.

6.5. COMPARING AUTO-SKLEARN TOAUTO-WEKAAND HYPEROPT-SKLEARN131

For detailed descriptions of the machine learning algorithms used in Auto-
sklearn we refer to Section A.1 and A.2 of the original paper’s supplementary
material [20], the scikit-learn documentation [36] and the references therein.

To make the most of our computational power and not get stuck in a very
slow run of a certain combination of preprocessing and machine learning algo-
rithm, we implemented several measures to prevent such long runs. First, we
limited the time for each evaluation of an instantiation of the ML framework.
We also limited the memory of such evaluations to prevent the operating system
from swapping or freezing. When an evaluation went over one of those limits, we
automatically terminated it and returned the worst possible score for the given
evaluation metric. For some of the models we employed an iterative training
procedure; we instrumented these to still return their current performance value
when a limit was reached before they were terminated. To further reduce the
amount of overly long runs, we forbade several combinations of preprocessors
and classification methods: in particular, kernel approximation was forbidden to
be active in conjunction with non-linear and tree-based methods as well as the
KNN algorithm. (SMAC handles such forbidden combinations natively.) For
the same reason we also left out feature learning algorithms, such as dictionary
learning.

Another issue in hyperparameter optimization is overfitting and data re-
sampling since the training data of the AutoML system must be divided into a
dataset for training the ML pipeline (training set) and a dataset used to calcu-
late the loss function for Bayesian optimization (validation set). Here we had to
trade off between running a more robust cross-validation (which comes at little
additional overhead in SMAC) and evaluating models on all cross-validation
folds to allow for ensemble construction with these models. Thus, for the tasks
with a rigid time limit of 1h in Section 6.6, we employed a simple train/test
split. In contrast, we were able to employ ten-fold crossvalidation in our 24h
and 30h runs in Sections 6.5 and 6.7.

Finally, not every supervised learning task (for example classification with
multiple targets), can be solved by all of the algorithms available in Auto-
sklearn. Thus, given a new dataset, Auto-sklearn preselects the methods that
are suitable for the dataset’s properties. Since scikit-learn methods are restricted
to numerical input values, we always transformed data by applying a one-hot
encoding to categorical features. In order to keep the number of dummy features
low, we configured a percentage threshold and a value occurring more rarely than
this percentage was transformed to a special other value [35].

6.5 Comparing Auto-sklearn to Auto-WEKA and
Hyperopt-sklearn

As a baseline experiment, we compared the performance of vanilla Auto-sklearn
(without our improvements meta-learning and ensemble building) to Auto-
WEKA and Hyperopt-sklearn, reproducing the experimental setup with

132 CHAPTER 6. AUTO-SKLEARN

A
b
a
lo

n
e

A
m

a
zo

n

C
a
r

C
if

a
r-

1
0

C
if

a
r-

1
0

S
m

a
ll

C
o
n
v
ex

D
ex

te
r

D
o
ro

th
ea

G
er

m
a
n

C
re

d
it

G
is

et
te

K
D

D
0
9

A
p
p

et
en

cy

AS 73.50 16.00 0.39 51.70 54.81 17.53 5.56 5.51 27.00 1.62 1.74
AW 73.50 30.00 0.00 56.95 56.20 21.80 8.33 6.38 28.33 2.29 1.74
HS 76.21 16.22 0.39 - 57.95 19.18 - - 27.67 2.29 -

K
R

-v
s-

K
P

M
a
d
el

o
n

M
N

IS
T

B
a
si

c

M
R

B
I

S
ec

o
m

S
em

ei
o
n

S
h
u
tt

le

W
av

ef
o
rm

W
in

e
Q

u
a
li
ty

Y
ea

st

AS 0.42 12.44 2.84 46.92 7.87 5.24 0.01 14.93 33.76 40.67
AW 0.31 18.21 2.84 60.34 8.09 5.24 0.01 14.13 33.36 37.75
HS 0.42 14.74 2.82 55.79 - 5.87 0.05 14.07 34.72 38.45

Table 6.2: Test set classification error of Auto-WEKA (AW), vanilla Auto-
sklearn (AS) and Hyperopt-sklearn (HS), as in the original evaluation of
Auto-WEKA [42] (see also Section 4.5). We show median percent test error rate
across 100 000 bootstrap samples (based on 10 runs), each sample simulating
4 parallel runs and always picking the best one according to cross-validation
performance. Bold numbers indicate the best result. Underlined results are not
statistically significantly different from the best according to a bootstrap test
with p = 0.05.

the 21 datasets of the paper introducing Auto-WEKA [42] (see Table 4.1 in
Chapter 4 for a description of the datasets). Following the original setup of
the Auto-WEKApaper, we used the same train/test splits of the datasets [1],
a walltime limit of 30 hours, 10-fold cross validation (where the evaluation of
each fold was allowed to take 150 minutes), and 10 independent optimization
runs with SMAC on each dataset. As in Auto-WEKA, the evaluation is sped up
by SMAC’s intensify procedure, which only schedules runs on new cross valida-
tion folds if the configuration currently being evaluated is likely to outperform
the so far best performing configuration [27]. We did not modify Hyperopt-
sklearnwhich always uses a 80/20 train/test split. All our experiments ran on
Intel Xeon E5-2650 v2 eight-core processors with 2.60GHz and 4GiB of RAM.
We allowed the machine learning framework to use 3GiB and reserved the rest
for SMAC. All experiments used Auto-WEKA 0.5 and scikit-learn 0.16.1.

We present the results of this experiment in Table 6.2. Since our setup
followed exactly that of the original Auto-WEKApaper, as a sanity check we
compared the numbers we achieved for Auto-WEKA ourselves (first line in
Figure 6.2) to the ones presented by the authors of Auto-WEKA (see Chapter 4)
and found that overall the results were reasonable. Furthermore, the table

6.6. EVALUATION OF THE PROPOSED AUTOML IMPROVEMENTS133

shows that Auto-sklearn performed significantly better than Auto-WEKA in
6/21 cases, tied it in 12 cases, and lost against it in 3. For the three datasets
where Auto-WEKA performed best, we found that in more than 50% of its
runs the best classifier it chose is not implemented in scikit-learn (trees with a
pruning component). So far, Hyperopt-sklearn is more of a proof-of-concept
– inviting the user to adapt the configuration space to her own needs – than a
full AutoML system. The current version crashes when presented with sparse
data and missing values. It also crashes on Cifar-10 due to a memory limit
which we set for all optimizers to enable a fair comparison. On the 16 datasets
on which it ran, it statistically tied the best competing AutoML system in 9
cases and lost against it in 7.

6.6 Evaluation of the Proposed AutoML Improve-
ments

In order to evaluate the robustness and general applicability of our proposed
AutoML system on a broad range of datasets, we gathered 140 binary and mul-
ticlass classification datasets from the OpenML repository [43], only selecting
datasets with at least 1000 data points to allow robust performance evaluations.
These datasets cover a diverse range of applications, such as text classification,
digit and letter recognition, gene sequence and RNA classification, advertise-
ment, particle classification for telescope data, and cancer detection in tissue
samples. We list all datasets in Table 7 and 8 in the supplementary material
of the original publication [20] and provide their unique OpenML identifiers
for reproducibility. We randomly split each dataset into a two-thirds training
and a one-thirds test set. Auto-sklearn could only access the training set, and
split this further into two thirds for training and a one third holdout set for
computing the validation loss for SMAC. All in all, we used four-ninths of the
data to train the machine learning models, two-ninths to calculate their val-
idation loss and the final three-ninths to report the test performance of the
different AutoML systems we compared. Since the class distribution in many
of these datasets is quite imbalanced we evaluated all AutoML methods using
a measure called balanced classification error rate (BER). We define balanced
error rate as the average of the proportion of wrong classifications in each class.
In comparison to standard classification error (the average overall error), this
measure (the average of the class-wise error) assigns equal weight to all classes.
We note that balanced error or accuracy measures are often used in machine
learning competitions, such as the AutoML challenge [23], which is described in
Chapter 10.

We performed 10 runs of Auto-sklearn both with and without meta-learning
and with and without ensemble building on each of the datasets. To study
their performance under rigid time constraints, and also due to computational
resource constraints, we limited the CPU time for each run to 1 hour; we also
limited the runtime for evaluating a single model to a tenth of this (6 minutes).

134 CHAPTER 6. AUTO-SKLEARN

500 1000 1500 2000 2500 3000 3500
time [sec]

1.8

2.0

2.2

2.4

2.6

2.8

3.0

a
v
e
ra

g
e
 r

a
n
k

vanilla auto-sklearn

auto-sklearn + ensemble

auto-sklearn + meta-learning

auto-sklearn + meta-learning + ensemble

101 102 103

time [sec]

1.8

2.0

2.2

2.4

2.6

2.8

3.0

a
v
e
ra

g
e
 r

a
n
k

vanilla auto-sklearn

auto-sklearn + ensemble

auto-sklearn + meta-learning

auto-sklearn + meta-learning + ensemble

Figure 6.3: Average rank of all four Auto-sklearn variants (ranked by balanced test
error rate (BER)) across 140 datasets. Note that ranks are a relative measure of perfor-
mance (here, the rank of all methods has to add up to 10), and hence an improvement
in BER of one method can worsen the rank of another. (Top) Data plotted on a linear
x scale. (Bottom) This is the same data as for the upper plot, but on a log x scale.
Due to the small additional overhead that meta-learning and ensemble selection cause,
vanilla Auto-sklearn is able to achieve the best rank within the first 10 seconds as it
produces predictions before the other Auto-sklearn variants finish training their first
model. After this, meta-learning quickly takes off..

To not evaluate performance on data sets already used for meta-learning,
we performed a leave-one-dataset-out validation: when evaluating on dataset
D, we only used meta-information from the 139 other datasets.

Figure 6.3 shows the average ranks over time of the four Auto-sklearn ver-
sions we tested. We observe that both of our new methods yielded substantial
improvements over vanilla Auto-sklearn. The most striking result is that meta-
learning yielded drastic improvements starting with the first configuration it
selected and lasting until the end of the experiment. We note that the im-
provement was most pronounced in the beginning and that over time, vanilla
Auto-sklearn also found good solutions without meta-learning, letting it catch
up on some datasets (thus improving its overall rank).

Moreover, both of our methods complement each other: our automated

6.7. DETAILED ANALYSIS OF AUTO-SKLEARN COMPONENTS 135

ID Name #Cont #Nom #Class Sparse Missing Vals |Training| |Test|
38 Sick 7 22 2 - X 2527 1245
46 Splice 0 60 3 - - 2137 1053
179 adult 2 12 2 - X 32724 16118
184 KROPT 0 6 18 - - 18797 9259
554 MNIST 784 0 10 - - 46900 23100
772 quake 3 0 2 - - 1459 719
917 fri c1 1000 25 (binarized) 25 0 2 - - 670 330
1049 pc4 37 0 2 - - 976 482
1111 KDDCup09 Appetency 192 38 2 - X 33500 16500
1120 Magic Telescope 10 0 2 - - 12743 6277
1128 OVA Breast 10935 0 2 - - 1035 510
293 Covertype (binarized) 54 0 2 X - 389278 191734
389 fbis wc 2000 0 17 X - 1651 812

Table 6.3: Representative datasets for the 13 clusters obtained via g-means
clustering of the 140 datasets’ meta-feature vectors.

ensemble construction improved both vanilla Auto-sklearn and Auto-sklearn
with meta-learning. Interestingly, the ensemble’s influence on the performance
started earlier for the meta-learning version. We believe that this is because
meta-learning produces better machine learning models earlier, which can be
directly combined into a strong ensemble; but when run longer, vanilla Auto-
sklearn without meta-learning also benefits from automated ensemble construc-
tion.

6.7 Detailed Analysis of Auto-sklearn Compo-
nents

We now study Auto-sklearn’s individual classifiers and preprocessors, compared
to jointly optimizing all methods, in order to obtain insights into their peak
performance and robustness. Ideally, we would have liked to study all com-
binations of a single classifier and a single preprocessor in isolation, but with
15 classifiers and 14 preprocessors this was infeasible; rather, when studying
the performance of a single classifier, we still optimized over all preprocessors,
and vice versa. To obtain a more detailed analysis, we focused on a subset of
datasets but extended the configuration budget for optimizing all methods from
one hour to one day and to two days for Auto-sklearn. Specifically, we clustered
our 140 datasets with g-means [26] based on the dataset meta-features and used
one dataset from each of the resulting 13 clusters. We give a basic description
of the datasets in Table 6.3. In total, these extensive experiments required 10.7
CPU years.

Table 6.4 compares the results of the various classification methods against
Auto-sklearn. Overall, as expected, random forests, extremely randomized trees,
AdaBoost, and gradient boosting, showed the most robust performance, and

http://www.openml.org/d/38
http://www.openml.org/d/46
http://www.openml.org/d/179
http://www.openml.org/d/184
http://www.openml.org/d/554
http://www.openml.org/d/772
http://www.openml.org/d/917
http://www.openml.org/d/1049
http://www.openml.org/d/1111
http://www.openml.org/d/1120
http://www.openml.org/d/1128
http://www.openml.org/d/293
http://www.openml.org/d/389

136 CHAPTER 6. AUTO-SKLEARN

O
p
e
n
M

L
d
a
t
a
s
e
t

ID

A
u
t
o
-

sk
l
e
a
r
n

A
d
a
B

o
o
s
t

B
e
r
n
o
u
ll
i

n
ä
ıv

e
B

a
y
e
s

d
e
c
is

io
n

t
r
e
e

e
x
t
r
e
m

l.
r
a
n
d
.

t
r
e
e
s

G
a
u
s
s
ia

n
n
ä
ıv

e
B

a
y
e
s

g
r
a
d
ie

n
t

b
o
o
s
t
in

g

k
N

N

L
D

A

li
n
e
a
r

S
V

M

k
e
r
n
e
l

S
V

M

m
u
lt

in
o
m

ia
l

n
ä
ıv

e
B

a
y
e
s

p
a
s
s
iv

e
a
g
g
r
e
s
iv

e

Q
D

A

r
a
n
d
o
m

fo
r
e
s
t

L
in

e
a
r

C
la

s
s
.

(
S
G

D
)

38 2.15 2.68 50.22 2.15 18.06 11.22 1.77 50.00 8.55 16.29 17.89 46.99 50.00 8.78 2.34 15.82
46 3.76 4.65 - 5.62 4.74 7.88 3.49 7.57 8.67 8.31 5.36 7.55 9.23 7.57 4.20 7.31

179 16.99 17.03 19.27 18.31 17.09 21.77 17.00 22.23 18.93 17.30 17.57 18.97 22.29 19.06 17.24 17.01
184 10.32 10.52 - 17.46 11.10 64.74 10.42 31.10 35.44 15.76 12.52 27.13 20.01 47.18 10.98 12.76
554 1.55 2.42 - 12.00 2.91 10.52 3.86 2.68 3.34 2.23 1.50 10.37 100.00 2.75 3.08 2.50
772 46.85 49.68 47.90 47.75 45.62 48.83 48.15 48.00 46.74 48.38 48.66 47.21 48.75 47.67 47.71 47.93
917 10.22 9.11 25.83 11.00 10.22 33.94 10.11 11.11 34.22 18.67 6.78 25.50 20.67 30.44 10.83 18.33

1049 12.93 12.53 15.50 19.31 17.18 26.23 13.38 23.80 25.12 17.28 21.44 26.40 29.25 21.38 13.75 19.92
1111 23.70 23.16 28.40 24.40 24.47 29.59 22.93 50.30 24.11 23.99 23.56 27.67 43.79 25.86 28.06 23.36
1120 13.81 13.54 18.81 17.45 13.86 21.50 13.61 17.23 15.48 14.94 14.17 18.33 16.37 15.62 13.70 14.66
1128 4.21 4.89 4.71 9.30 3.89 4.77 4.58 4.59 4.58 4.83 4.59 4.46 5.65 5.59 3.83 4.33
293 2.86 4.07 24.30 5.03 3.59 32.44 24.48 4.86 24.40 14.16 100.00 24.20 21.34 28.68 2.57 15.54
389 19.65 22.98 - 33.14 19.38 29.18 19.20 30.87 19.68 17.95 22.04 20.04 20.14 39.57 20.66 17.99

Table 6.4: Median balanced test error rate (BER) of optimizing Auto-sklearn sub-
spaces for each classification method (and all preprocessors), as well as the whole con-
figuration space of Auto-sklearn, on 13 datasets. All optimization runs were allowed
to run for 24 hours except for Auto-sklearn which ran for 48 hours. Bold numbers
indicate the best result; underlined results are not statistically significantly different
from the best according to a bootstrap test using the same setup as for Table 6.2.

O
p
e
n
M

L
d
a
t
a
s
e
t

ID

A
u
t
o
-

sk
l
e
a
r
n

d
e
n
s
if

ie
r

e
x
t
r
e
m

l.
r
a
n
d
.

t
r
e
e
s

p
r
e
p
r
.

fa
s
t

IC
A

fe
a
t
u
r
e

a
g
g
lo

m
e
r
a
t
io

n

k
e
r
n
e
l

P
C

A

r
a
n
d
.

k
it

c
h
e
n

s
in

k
s

li
n
e
a
r

S
V

M
p
r
e
p
r
.

n
o

p
r
e
p
r
o
c
.

n
y
s
t
r
o
e
m

s
a
m

p
le

r

P
C

A

p
o
ly

n
o
m

ia
l

r
a
n
d
o
m

t
r
e
e
s

e
m

b
e
d
.

s
e
le

c
t

p
e
r
-

c
e
n
t
il
e

c
la

s
s
if

ic
a
t
io

n

s
e
le

c
t

r
a
t
e
s

t
r
u
n
c
a
t
e
d
S
V

D

38 2.15 - 4.03 7.27 2.24 5.84 8.57 2.28 2.28 7.70 7.23 2.90 18.50 2.20 2.28 -
46 3.76 - 4.98 7.95 4.40 8.74 8.41 4.25 4.52 8.48 8.40 4.21 7.51 4.17 4.68 -

179 16.99 - 17.83 17.24 16.92 100.00 17.34 16.84 16.97 17.30 17.64 16.94 17.05 17.09 16.86 -
184 10.32 - 55.78 19.96 11.31 36.52 28.05 9.92 11.43 25.53 21.15 10.54 12.68 45.03 10.47 -
554 1.55 - 1.56 2.52 1.65 100.00 100.00 2.21 1.60 2.21 1.65 100.00 3.48 1.46 1.70 -
772 46.85 - 47.90 48.65 48.62 47.59 47.68 47.72 48.34 48.06 47.30 48.00 47.84 47.56 48.43 -
917 10.22 - 8.33 16.06 10.33 20.94 35.44 8.67 9.44 37.83 22.33 9.11 17.67 10.00 10.44 -

1049 12.93 - 20.36 19.92 13.14 19.57 20.06 13.28 15.84 18.96 17.22 12.95 18.52 11.94 14.38 -
1111 23.70 - 23.36 24.69 23.73 100.00 25.25 23.43 22.27 23.95 23.25 26.94 26.68 23.53 23.33 -
1120 13.81 - 16.29 14.22 13.73 14.57 14.82 14.02 13.85 14.66 14.23 13.22 15.03 13.65 13.67 -
1128 4.21 - 4.90 4.96 4.76 4.21 5.08 4.52 4.59 4.08 4.59 50.00 9.23 4.33 4.08 -
293 2.86 24.40 3.41 - - 100.00 19.30 3.01 2.66 20.94 - - 8.05 2.86 2.74 4.05
389 19.65 20.63 21.40 - - 17.50 19.66 19.89 20.87 18.46 - - 44.83 20.17 19.18 21.58

Table 6.5: Like Table 6.4, but instead optimizing subspaces for each preprocessing
method (and all classifiers).

SVMs showed strong peak performance for some datasets. Besides a variety
of strong classifiers, there are also several models which could not compete:
The decision tree, passive aggressive, kNN, Gaussian NB, LDA and QDA were
statistically significantly inferior to the best classifier on most datasets. Finally,
the table indicates that no single method was the best choice for all datasets. As
shown in the table and also visualized for two example datasets in Figure 6.4,
optimizing the joint configuration space of Auto-sklearn led to the most robust
performance. A plot of ranks over time (Figure 2 and 3 in the supplementary
material of the original publication [20]) quantifies this across all 13 datasets,
showing that Auto-sklearn starts with reasonable but not optimal performance
and effectively searches its more general configuration space to converge to the
best overall performance over time.

Table 6.5 compares the results of the various preprocessors against Auto-

http://www.openml.org/d/38
http://www.openml.org/d/46
http://www.openml.org/d/179
http://www.openml.org/d/184
http://www.openml.org/d/554
http://www.openml.org/d/772
http://www.openml.org/d/917
http://www.openml.org/d/1049
http://www.openml.org/d/1111
http://www.openml.org/d/1120
http://www.openml.org/d/1128
http://www.openml.org/d/293
http://www.openml.org/d/389
http://www.openml.org/d/38
http://www.openml.org/d/46
http://www.openml.org/d/179
http://www.openml.org/d/184
http://www.openml.org/d/554
http://www.openml.org/d/772
http://www.openml.org/d/917
http://www.openml.org/d/1049
http://www.openml.org/d/1111
http://www.openml.org/d/1120
http://www.openml.org/d/1128
http://www.openml.org/d/293
http://www.openml.org/d/389

6.7. DETAILED ANALYSIS OF AUTO-SKLEARN COMPONENTS 137

101 102 103 104

time [sec]

0

2

4

6

8

10
B

a
la

n
ce

d
 E

rr
o
r

R
a
te

auto-sklearn

gradient boosting

kernel SVM

random forest

101 102 103 104

time [sec]

15

20

25

30

35

40

45

50

B
a
la

n
ce

d
 E

rr
o
r

R
a
te

auto-sklearn

gradient boosting

kernel SVM

random forest

Figure 6.4: Performance of a subset of classifiers compared to Auto-sklearn over time.
(Top) MNIST (OpenML dataset ID 554). (Bottom) Promise pc4 (OpenML dataset ID
1049). We show median test error rate and the fifth and 95th percentile over time for
optimizing three classifiers separately with optimizing the joint space. A plot with all
classifiers can be found in Figure 4 in the supplementary material. While Auto-sklearn
is inferior in the beginning, in the end its performance is close to the best method.

http://www.openml.org/d/554
http://www.openml.org/d/1049

138 CHAPTER 6. AUTO-SKLEARN

sklearn. As for the comparison of classifiers above, Auto-sklearn showed the
most robust performance: It performed best on three of the datasets and was
not statistically significantly worse than the best preprocessor on another 8 of
13.

6.8 Discussion and Conclusion

Having presented our experimental validation, we now conclude this chapter
with a brief discussion, a simple usage example of Auto-sklearn, a short review
of recent extensions, and concluding remarks.

6.8.1 Discussion

We demonstrated that our new AutoML system Auto-sklearn performs favor-
ably against the previous state of the art in AutoML, and that our meta-learning
and ensemble improvements for AutoML yield further efficiency and robustness.
This finding is backed by the fact that Auto-sklearn won three out of five auto-
tracks, including the final two, in ChaLearn’s first AutoML challenge. In this
paper, we did not evaluate the use of Auto-sklearn for interactive machine learn-
ing with an expert in the loop and weeks of CPU power, but we note that that
mode has led to three first places in the human track of the first ChaLearn Au-
toML challenge (in addition to the auto-tracks; please see Chapter 10 for further
information). As such, we believe that Auto-sklearn is a promising system for
use by both machine learning novices and experts.

Since the publication of the original NIPS paper [20], Auto-sklearn has be-
come a standard baseline for new approaches to automated machine learning,
such as FLASH [46], RECIPE [39], Hyperband [32], AutoPrognosis [3], ML-
PLAN [34], Auto-Stacker [11] and AlphaD3M [13].

6.8.2 Usage

One important outcome of the research on Auto-sklearn is the auto-sklearn
Python package. It is a drop-in replacement for any scikit-learn classifier or
regressor, similar to the classifier provided by Hyperopt-sklearn [30] and
can be used as follows:

import autosklearn.classification

cls = autosklearn.classification.AutoSklearnClassifier()

cls.fit(X_train, y_train)

predictions = cls.predict(X_test)

Auto-sklearn can be used with any loss function and resampling strategy to
estimate the validation loss. Furthermore, it is possible to extend the classifiers
and preprocessors Auto-sklearn can choose from. Since the initial publication
we also added regression support to Auto-sklearn. We develop the package

6.8. DISCUSSION AND CONCLUSION 139

on https://github.com/automl/auto-sklearn and it is available via the Python
packaging index pypi.org . We provide documentation on automl.github.io/auto-
sklearn.

6.8.3 Extensions in PoSH Auto-sklearn

While Auto-sklearn as described in this chapter is limited to handling datasets
of relatively modest size, in the context of the most recent AutoML challenge
(AutoML 2, run in 2018; see Chapter 10), we have extended it towards also
handling large datasets effectively. Auto-sklearn was able to handle datasets of
several hundred thousand datapoints by using a cluster of 25 CPUs for two days,
but not within the 20 minute time budget required by the AutoML 2 challenge.
As described in detail in a recent workshop paper [18], this implied opening up
the methods considered to also include extreme gradient boosting (in particular,
XGBoost [12]), using the multi-fidelity approach of successive halving [28] (also
described in Chapter 1) to solve the CASH problem, and changing our meta-
learning approach. We now briefly describe the resulting system, PoSH Auto-
sklearn (short for Portfolio Successive Halving, combined with Auto-sklearn),
which obtained the best performance in the 2018 challenge.

PoSH Auto-sklearn starts by running successive halving with a fixed portfo-
lio of 16 machine learning pipeline configurations, and if there is time left, it uses
the outcome of these runs to warmstart a combination of Bayesian optimiza-
tion and successive halving. The fixed portfolio of 16 pipelines was obtained
by running greedy submodular function maximization to select a strong set of
complementary configurations to optimize the performance obtained on a set
of 421 datasets; the candidate configurations configured for this optimization
were the 421 configurations found by running SMAC [27] on each of these 421
datasets.

The combination of Bayesian optimization and successive halving we used to
yield robust results within a short time window is an adaptation of the multi-
fidelity hyperparameter optimization method BOHB (Bayesian Optimization
and HyperBand) [17] discussed in Chapter 1. As budgets for this multifidelity
approach, we used the number of iterations for all iterative algorithms, except
for the SVM, where we used dataset size as a budget.

Another extension for large datasets that is currently ongoing is our work on
automated deep learning; this is discussed in the following chapter on Auto-Net.

6.8.4 Conclusion and Future Work

Following the AutoML approach taken by Auto-WEKA, we introduced Auto-
sklearn, which performs favorably against the previous state of the art in Au-
toML. We also showed that our meta-learning and ensemble mechanisms im-
prove its efficiency and robustness further.

While Auto-sklearn handles the hyperparameter tuning for a user, Auto-
sklearn has hyperparameters on its own which influence its performance for a
given time budget, such as the time limits discussed in Sections 6.5, 6.6, and 6.7,

https://github.com/automl/auto-sklearn
https://pypi.org
https://automl.github.io/auto-sklearn/stable/
https://automl.github.io/auto-sklearn/stable/

140 CHAPTER 6. AUTO-SKLEARN

or the resampling strategy used to calculate the loss function. We demonstrated
in preliminary work that the choice of the resampling strategy and the selection
of timeouts can be cast as a meta-learning problem itself [19], but we would like
to extend this to other possible design choices Auto-sklearn users face.

Since the time of writing the original paper, the field of meta-learning has
progressed a lot, giving access to multiple new methods to include meta in-
formation into Bayesian optimization. We expect that using one of the newer
methods discussed in Chapter 2 could substantially improve the optimization
procedure.

Finally, having a fully automated procedure that can test hundreds of hyper-
parameter configurations puts us at increased risk of overfitting to the validation
set. To avoid this overfitting, we would like to combine Auto-sklearn with one of
the techniques discussed in Chapter 1, techniques from differential privacy [14],
or other techniques yet to be developed.

Acknowledgments

This work was supported by the German Research Foundation (DFG), under
Priority Programme Autonomous Learning (SPP 1527, grant HU 1900/3-1),
under Emmy Noether grant HU 1900/2-1, and under the BrainLinks-BrainTools
Cluster of Excellence (grant number EXC 1086).

Bibliography

[1] Auto-WEKA website, http://www.cs.ubc.ca/labs/beta/Projects/

autoweka

[2] Proc. of NIPS’15 (2015)

[3] Ahmed, A., van der Schaar, M.: AutoPrognosis: Automated clinical prog-
nostic modeling via Bayesian optimization with structured kernel learning.
In: Proc. of ICML’18. pp. 139–148 (2018)

[4] Bardenet, R., Brendel, M., Kégl, B., Sebag, M.: Collaborative hyperpa-
rameter tuning. In: Proc. of ICML’13. pp. 199–207 (2014)

[5] Bergstra, J., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-
parameter optimization. In: Proc. of NIPS’11. pp. 2546–2554 (2011)

[6] Breiman, L.: Random forests. MLJ 45, 5–32 (2001)

[7] Brochu, E., Cora, V., de Freitas, N.: A tutorial on Bayesian optimization
of expensive cost functions, with application to active user modeling and
hierarchical reinforcement learning. arXiv:1012.2599v1 [cs.LG] (2010)

[8] Bürger, F., Pauli, J.: A holistic classification optimization framework with
feature selection, preprocessing, manifold learning and classifiers. In: Proc.
of ICPRAM’15. pp. 52–68 (2015)

http://www.cs.ubc.ca/labs/beta/Projects/autoweka
http://www.cs.ubc.ca/labs/beta/Projects/autoweka

BIBLIOGRAPHY 141

[9] Caruana, R., Munson, A., Niculescu-Mizil, A.: Getting the most out of
ensemble selection. In: Proc. of ICDM’06. pp. 828–833 (2006)

[10] Caruana, R., Niculescu-Mizil, A., Crew, G., Ksikes, A.: Ensemble selection
from libraries of models. In: Proc. of ICML’04. p. 18 (2004)

[11] Chen, B., Wu, H., Mo, W., Chattopadhyay, I., Lipson, H.: Autostacker: A
compositional evolutionary learning system. In: Proc. of GECCO’18 (2018)

[12] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In:
Proc. of KDD’16. pp. 785–794 (2016)

[13] Drori, I., Krishnamurthy, Y., Rampin, R., Lourenco, R., One, J., Cho, K.,
Silva, C., Freire, J.: AlphaD3M: Machine learning pipeline synthesis. In:
ICML AutoML workshop (2018)

[14] Dwork, C., Feldman, V., Hardt, M., Pitassi, T., Reingold, O., Roth, A.:
Generalization in adaptive data analysis and holdout reuse. In: Proc. of
NIPS’15 [2], pp. 2350–2358

[15] Eggensperger, K., Feurer, M., Hutter, F., Bergstra, J., Snoek, J., Hoos, H.,
Leyton-Brown, K.: Towards an empirical foundation for assessing Bayesian
optimization of hyperparameters. In: NIPS Workshop on Bayesian Opti-
mization in Theory and Practice (2013)

[16] Escalante, H., Montes, M., Sucar, E.: Ensemble particle swarm model
selection. In: Proc. of IJCNN’10. pp. 1–8. IEEE (Jul 2010)

[17] Falkner, S., Klein, A., Hutter, F.: BOHB: Robust and Efficient Hyper-
parameter Optimization at Scale. In: Proc. of ICML’18. pp. 1437–1446
(2018)

[18] Feurer, M., Eggensperger, K., Falkner, S., Lindauer, M., Hutter, F.: Prac-
tical automated machine learning for the automl challenge 2018. In: ICML
AutoML workshop (2018)

[19] Feurer, M., Hutter, F.: Towards further automation in automl. In: ICML
AutoML workshop (2018)

[20] Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., Hut-
ter, F.: Efficient and robust automated machine learning. In: Proc. of
NIPS’15 [2], pp. 2962–2970

[21] Feurer, M., Springenberg, J., Hutter, F.: Initializing Bayesian hyperparam-
eter optimization via meta-learning. In: Proc. of AAAI’15. pp. 1128–1135
(2015)

[22] Gomes, T., Prudêncio, R., Soares, C., Rossi, A., Carvalho, A.: Combining
meta-learning and search techniques to select parameters for support vector
machines. Neurocomputing 75(1), 3–13 (2012)

142 CHAPTER 6. AUTO-SKLEARN

[23] Guyon, I., Bennett, K., Cawley, G., Escalante, H., Escalera, S., Ho, T.,
N.Macià, Ray, B., Saeed, M., Statnikov, A., Viegas, E.: Design of the 2015
ChaLearn AutoML Challenge. In: Proc. of IJCNN’15 (2015)

[24] Guyon, I., Saffari, A., Dror, G., Cawley, G.: Model selection: Beyond the
Bayesian/Frequentist divide. JMLR 11, 61–87 (2010)

[25] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten,
I.: The WEKA data mining software: An update. ACM SIGKDD Explo-
ratians Newsletter 11(1), 10–18 (2009)

[26] Hamerly, G., Elkan, C.: Learning the k in k-means. In: Proc. of NIPS’04.
pp. 281–288 (2004)

[27] Hutter, F., Hoos, H., Leyton-Brown, K.: Sequential model-based optimiza-
tion for general algorithm configuration. In: Proc. of LION’11. pp. 507–523
(2011)

[28] Jamieson, K., Talwalkar, A.: Non-stochastic best arm identification and
hyperparameter optimization. In: Proc. of AISTATS’16. pp. 240–248 (2016)

[29] Kalousis, A.: Algorithm Selection via Meta-Learning. Ph.D. thesis, Uni-
versity of Geneve (2002)

[30] Komer, B., Bergstra, J., Eliasmith, C.: Hyperopt-sklearn: Automatic hy-
perparameter configuration for scikit-learn. In: ICML workshop on Au-
toML (2014)

[31] Lacoste, A., Marchand, M., Laviolette, F., Larochelle, H.: Agnostic
Bayesian learning of ensembles. In: Proc. of ICML’14. pp. 611–619 (2014)

[32] Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., Talwalkar, A.: Hy-
perband: A novel bandit-based approach to hyperparameter optimization.
JMLR 18(185), 1–52 (2018)

[33] Michie, D., Spiegelhalter, D., Taylor, C., Campbell, J.: Machine Learning,
Neural and Statistical Classification. Ellis Horwood (1994)

[34] Mohr, F., Wever, M., Hüllermeier, E.: Ml-plan: Automated machine learn-
ing via hierarchical planning. Machine Learning (2018)

[35] Niculescu-Mizil, A., Perlich, C., Swirszcz, G., Sindhwani, V., Liu, Y.,
Melville, P., Wang, D., Xiao, J., Hu, J., Singh, M., Shang, W., Zhu, Y.:
Winning the KDD cup orange challenge with ensemble selection. The 2009
Knowledge Discovery in Data Competition pp. 23–34 (2009)

[36] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,
Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vander-
plas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay,
E.: Scikit-learn: Machine learning in Python. JMLR 12, 2825–2830 (2011)

BIBLIOGRAPHY 143

[37] Pfahringer, B., Bensusan, H., Giraud-Carrier, C.: Meta-learning by land-
marking various learning algorithms. In: Proc. of ICML’00. pp. 743–750
(2000)

[38] Reif, M., Shafait, F., Dengel, A.: Meta-learning for evolutionary parameter
optimization of classifiers. Machine Learning 87, 357–380 (2012)

[39] de Sá, A., Pinto, W., Oliveira, L., Pappa, G.: RECIPE: a grammar-based
framework for automatically evolving classification pipelines. In: Proc. of
ECGP’17. pp. 246–261 (2017)

[40] Shahriari, B., Swersky, K., Wang, Z., Adams, R., de Freitas, N.: Taking
the human out of the loop: A review of Bayesian optimization. Proceedings
of the IEEE 104(1), 148–175 (2016)

[41] Snoek, J., Larochelle, H., Adams, R.: Practical Bayesian optimization of
machine learning algorithms. In: Proc. of NIPS’12. pp. 2960–2968 (2012)

[42] Thornton, C., Hutter, F., Hoos, H., Leyton-Brown, K.: Auto-WEKA:
combined selection and hyperparameter optimization of classification al-
gorithms. In: Proc. of KDD’13. pp. 847–855 (2013)

[43] Vanschoren, J., van Rijn, J., Bischl, B., Torgo, L.: OpenML: Networked
science in machine learning. SIGKDD Explorations 15(2), 49–60 (2013)

[44] Wolpert, D.: Stacked generalization. Neural Networks 5, 241–259 (1992)

[45] Yogatama, D., Mann, G.: Efficient transfer learning method for automatic
hyperparameter tuning. In: Proc. of AISTATS’14. pp. 1077–1085 (2014)

[46] Zhang, Y., Bahadori, M., Su, H., Sun, J.: FLASH: Fast Bayesian Opti-
mization for Data Analytic Pipelines. In: Proc. of KDD’16. pp. 2065–2074
(2016)

144 CHAPTER 6. AUTO-SKLEARN

Chapter 7

Towards
Automatically-Tuned Deep
Neural Networks

Hector Mendoza and Aaron Klein and Matthias Feurer and Jost Tobias Sprin-
genberg and Matthias Urban and Michael Burkart and Max Dippel and Marius
Lindauer and Frank Hutter

Abstract

Recent advances in AutoML have led to automated tools that can compete
with machine learning experts on supervised learning tasks. In this work, we
present two versions of Auto-Net, which provide automatically-tuned deep neu-
ral networks without any human intervention. The first version, Auto-Net 1.0,
builds upon ideas from the competition-winning system Auto-sklearn by using
the Bayesian Optimization method SMAC and uses Lasagne as the underlying
deep learning (DL) library. The more recent Auto-Net 2.0 builds upon a recent
combination of Bayesian Optimization and HyperBand, called BOHB, and uses
PyTorch as DL library. To the best of our knowledge, Auto-Net 1.0 was the first
automatically-tuned neural network to win competition datasets against human
experts (as part of the first AutoML challenge). Further empirical results show
that ensembling Auto-Net 1.0 with Auto-sklearn can perform better than either
approach alone, and that Auto-Net 2.0 can perform better yet.

This chapter is an extended version of our 2016 paper introducing Auto-Net,
presented at the 2016 ICML Workshop on AutoML [26].

7.1 Introduction

Neural networks have significantly improved the state of the art on a variety of
benchmarks in recent years and opened many new promising research avenues

145

146CHAPTER 7. TOWARDS AUTOMATICALLY-TUNEDDEEP NEURAL NETWORKS

[22, 39, 41, 27, 36]. However, neural networks are not easy to use for non-experts
since their performance crucially depends on proper settings of a large set of
hyperparameters (e.g., learning rate and weight decay) and architecture choices
(e.g., number of layers and type of activation functions). Here, we present
work towards effective off-the-shelf neural networks based on approaches from
automated machine learning (AutoML).

AutoML aims to provide effective off-the-shelf learning systems to free ex-
perts and non-experts alike from the tedious and time-consuming tasks of select-
ing the right algorithm for a dataset at hand, along with the right preprocessing
method and the various hyperparameters of all involved components. Thornton
et al [43] phrased this AutoML problem as a combined algorithm selection and
hyperparameter optimization (CASH) problem, which aims to identify the com-
bination of algorithm components with the best (cross-)validation performance.

One powerful approach for solving this CASH problem treats this cross-
validation performance as an expensive blackbox function and uses Bayesian
optimization [4, 35] to search for its optimizer. While Bayesian optimization
typically uses Gaussian processes [32], these tend to have problems with the spe-
cial characteristics of the CASH problem (high dimensionality; both categorical
and continuous hyperparameters; many conditional hyperparameters, which are
only relevant for some instantiations of other hyperparameters). Adapting GPs
to handle these characteristics is an active field of research [40, 44], but so far
Bayesian optimization methods using tree-based models [17, 2] work best in the
CASH setting [43, 9].

Auto-Net is modelled after the two prominent AutoML systems Auto-WEKA [43]
and Auto-sklearn [11], discussed in Chapters 4 and 6 of this book, respec-
tively. Both of these use the random forest-based Bayesian optimization method
SMAC [17] to tackle the CASH problem – to find the best instantiation of clas-
sifiers in WEKA [16] and scikit-learn [30], respectively. Auto-sklearn employs
two additional methods to boost performance. Firstly, it uses meta-learning [3]
based on experience on previous datasets to start SMAC from good configura-
tions [12]. Secondly, since the eventual goal is to make the best predictions, it is
wasteful to try out dozens of machine learning models and then only use the sin-
gle best model; instead, Auto-sklearn saves all models evaluated by SMAC and
constructs an ensemble of these with the ensemble selection technique [5]. Even
though both Auto-WEKA and Auto-sklearn include a wide range of supervised
learning methods, neither includes modern neural networks.

Here, we introduce two versions of a system we dub Auto-Net to fill this
gap. Auto-Net 1.0 is based on Theano and has a relatively simple search space,
while the more recent Auto-Net 2.0 is implemented in PyTorch and uses a more
complex space and more recent advances in DL. A further difference lies in their
respective search procedure: Auto-Net 1.0 automatically configures neural net-
works with SMAC [17], following the same AutoML approach as Auto-WEKA
and Auto-sklearn, while Auto-Net 2.0 builds upon BOHB [10], a combination
of Bayesian Optimization (BO) and efficient racing strategies via HyperBand
(HB) [23].

Auto-Net 1.0 achieved the best performance on two datasets in the human

7.2. AUTO-NET 1.0 147

expert track of the recent ChaLearn AutoML Challenge [14]. To the best of
our knowledge, this is the first time that a fully-automatically-tuned neural
network won a competition dataset against human experts. Auto-Net 2.0 further
improves upon Auto-Net 1.0 on large data sets, showing recent progress in the
field.

We describe the configuration space and implementation of Auto-Net 1.0 in
Section 7.2 and of Auto-Net 2.0 in Section 7.3. We then study their performance
empirically in Section 7.4 and conclude in Section 7.5. We omit a thorough
discussion of related work and refer to Chapter 3 of this book for an overview
on the extremely active field of neural architecture search. Nevertheless, we
note that several other recent tools follow Auto-Net’s goal of automating deep
learning, such as Auto-Keras [20], Photon-AI, H2O.ai, DEvol or Google’s Cloud
AutoML service.

7.2 Auto-Net 1.0

We now introduce Auto-Net 1.0 and describe its implementation. We chose to
implement this first version of Auto-Net as an extension of Auto-sklearn [11]
by adding a new classification (and regression) component; the reason for this
choice was that it allows us to leverage existing parts of the machine learning
pipeline: feature preprocessing, data preprocessing and ensemble construction.
Here, we limit Auto-Net to fully-connected feed-forward neural networks, since
they apply to a wide range of different datasets; we defer the extension to other
types of neural networks, such as convolutional or recurrent neural networks, to
future work. To have access to neural network techniques we use the Python
deep learning library Lasagne [6], which is built around Theano [42]. However,
we note that in general our approach is independent of the neural network
implementation.

Following [2] and [7], we distinguish between layer-independent network hy-
perparameters that control the architecture and training procedure and per-layer
hyperparameters that are set for each layer. In total, we optimize 63 hyperpa-
rameters (see Table 7.1), using the same configuration space for all types of
supervised learning (binary, multiclass and multilabel classification, as well as
regression). Sparse datasets also share the same configuration space. (Since
neural networks cannot handle datasets in sparse representation out of the box,
we transform the data into a dense representation on a per-batch basis prior to
feeding it to the neural network.)

The per-layer hyperparameters of layer k are conditionally dependent on
the number of layers being at least k. For practical reasons, we constrain the
number of layers to be between one and six: firstly, we aim to keep the training
time of a single configuration low1, and secondly each layer adds eight per-layer
hyperparameters to the configuration space, such that allowing additional layers
would further complicate the configuration process.

1We aimed to be able to afford the evaluation of several dozens of configurations within a
time budget of two days on a single CPU.

148CHAPTER 7. TOWARDS AUTOMATICALLY-TUNEDDEEP NEURAL NETWORKS

Name Range Default log scale Type Conditional

Network
hyperparam-
eters

batch size [32, 4096] 32 X float -
number of updates [50, 2500] 200 X int -
number of layers [1, 6] 1 - int -
learning rate [10−6, 1.0] 10−2 X float -
L2 regularization [10−7, 10−2] 10−4 X float -
dropout output layer [0.0, 0.99] 0.5 X float -
solver type {SGD, Momentum, Adam, Adadelta, Adagrad, smorm, Nesterov } smorm3s - cat -
lr-policy {Fixed, Inv, Exp, Step} fixed - cat -

Conditioned
on solver
type

β1 [10−4, 10−1] 10−1 X float X
β2 [10−4, 10−1] 10−1 X float X
ρ [0.05, 0.99] 0.95 X float X
momentum [0.3, 0.999] 0.9 X float X

Conditioned
on lr-policy

γ [10−3, 10−1] 10−2 X float X
k [0.0, 1.0] 0.5 - float X
s [2, 20] 2 - int X

Per-layer
hyperparame-
ters

activation-type {Sigmoid, TanH, ScaledTanH, ELU, ReLU, Leaky, Linear} ReLU - cat X
number of units [64, 4096] 128 X int X
dropout in layer [0.0, 0.99] 0.5 - float X
weight initialization {Constant, Normal, Uniform, Glorot-Uniform, Glorot-Normal, He-Normal - cat X

He-Normal, He-Uniform, Orthogonal, Sparse}
std. normal init. [10−7, 0.1] 0.0005 - float X
leakiness [0.01, 0.99] 1

3 - float X
tanh scale in [0.5, 1.0] 2/3 - float X
tanh scale out [1.1, 3.0] 1.7159 X float X

Table 7.1: Configuration space of Auto-Net. The configuration space for the
preprocessing methods can be found in [11].

The most common way to optimize the internal weights of neural networks
is via stochastic gradient descent (SGD) using partial derivatives calculated
with backpropagation. Standard SGD crucially depends on the correct set-
ting of the learning rate hyperparameter. To lessen this dependency, various
algorithms (solvers) for stochastic gradient descent have been proposed. We
include the following well-known methods from the literature in the configura-
tion space of Auto-Net: vanilla stochastic gradient descent (SGD), stochastic
gradient descent with momentum (Momentum), Adam [21], Adadelta [48], Nes-
terov momentum [28] and Adagrad [8]. Additionally, we used a variant of the
vSGD optimizer [33], dubbed “smorm”, in which the estimate of the Hessian is
replaced by an estimate of the squared gradient (calculated as in the RMSprop
procedure). Each of these methods comes with a learning rate α and an own set
of hyperparameters, for example Adam’s momentum vectors β1 and β2. Each
solver’s hyperparameter(s) are only active if the corresponding solver is chosen.

We also decay the learning rate α over time, using the following policies
(which multiply the initial learning rate by a factor αdecay after each epoch
t = 0 . . . T):

• Fixed: αdecay = 1

• Inv: αdecay = (1 + γt)(−k)

• Exp: αdecay = γt

• Step: αdecay = γbt/sc

Here, the hyperparameters k, s and γ are conditionally dependent on the choice
of the policy.

To search for a strong instantiation in this conditional search space of Auto-
Net 1.0, as in Auto-WEKA and Auto-sklearn, we used the random-forest based

7.3. AUTO-NET 2.0 149

Bayesian optimization method SMAC [17]. SMAC is an anytime approach that
keeps track of the best configuration seen so far and outputs this when termi-
nated.

7.3 Auto-Net 2.0

AutoNet 2.0 differs from AutoNet 1.0 mainly in the following three aspects:

• it uses PyTorch [29] instead of Lasagne as a deep learning library

• it uses a larger configuration space including up-to-date deep learning
techniques, modern architectures (such as ResNets) and includes more
compact representations of the search space, and

• it applies BOHB [10] instead of SMAC to obtain a well-performing neural
network more efficiently.

In the following, we will discuss these points in more detail.
Since the development and maintenance of Lasagne ended last year, we chose

a different Python library for Auto-Net 2.0. The most popular deep learning
libraries right now are PyTorch [29] and Tensorflow [1]. These come with quite
similar features and mostly differ in the level of detail they give insight into.
For example, PyTorch offers the user the possibility to trace all computations
during training. While there are advantages and disadvantages for each of these
libraries, we decided to use PyTorch because of its ability to dynamically con-
struct computational graphs.

The search space of AutoNet 2.0 includes both hyperparameters for module
selection (e.g. scheduler type, network architecture) and hyperparameters for
each of the specific modules. It supports different deep learning modules, such
as network type, learning rate scheduler, optimizer and regularization technique,
as described below. Auto-Net 2.0 is also designed to be easily extended; users
can add their own modules to the ones listed below.

Auto-Net 2.0 currently offers four different network types:

Multi-Layer Perceptrons This is a standard implementation of conventional
MLPs extended by dropout layers [38]. Similar as in AutoNet 1.0, each
layer of the MLP is parameterized (e.g., number of units and dropout
rate).

Residual Neural Networks These are deep neural networks that learn resid-
ual functions [47], with the difference that we use fully connected layers
instead of convolutional ones. As is standard with ResNets, the archi-
tecture consists of M groups, each of which stacks N residual blocks in
sequence. While the architecture of each block is fixed, the number M of
groups, the number of blocks N per group, as well as the width of each
group is determined by hyperparameters, as shown in Table 7.2.

150CHAPTER 7. TOWARDS AUTOMATICALLY-TUNEDDEEP NEURAL NETWORKS

Shaped Multi-Layer Perceptrons To avoid that every layer has its own hy-
perparameters (which is an inefficient representation to search), in shaped
MLPs the overall shape of the layers is predetermined, e.g. as a funnel,
long funnel, diamond, hexagon, brick, or triangle. We followed the shapes
from https://mikkokotila.github.io/slate/#shapes; Ilya Loshchilov
also proposed parameterization by such shapes to us before [25].

Shaped Residual Networks A ResNet where the overall shape of the lay-
ers is predetermined (e.g. funnel, long funnel, diamond, hexagon, brick,
triangle).

The network types of ResNets and ShapedResNets can also use any of the
regularization methods of Shake-Shake [13] and ShakeDrop [46]. MixUp [49]
can be used for all networks.

The optimizers currently supported in Auto-Net 2.0 are Adam [21] and SGD
with momentum. Moreover, Auto-Net 2.0 currently offers five different sched-
ulers that change the optimizer’s learning rate over time (as a function of the
number of epochs):

Exponential This multiplies the learning rate with a constant factor in each
epoch.

Step This decays the learning rate by a multiplicative factor after a constant
number of steps.

Cyclic This modifies the learning rate in a certain range, alternating between
increasing and decreasing [37].

Cosine Annealing with Warm Restarts [24] This learning rate schedule
implements multiple phases of convergence. It cools down the learning
rate to zero following a cosine decay [24], and after each convergence phase
heats it up to start a next phase of convergence, often to a better optimum.
The network weights are not modified when heating up the learning rate,
such that the next phase of convergence is warm-started.

OnPlateau This scheduler2 changes the learning rate whenever a metric stops
improving; specifically, it multiplies the current learning rate with a factor
γ if there was no improvement after p epochs.

Similar to Auto-Net 1.0, Auto-Net 2.0 can search over pre-processing techniques.
Auto-Net 2.0 currently supports Nyström [45], Kernel principal component anal-
ysis [34], fast independent component analysis [18], random kitchen sinks [31]
and truncated singular value decomposition [15]. Users can specify a list of
pre-processing techniques to be taken into account and can also choose between
different balancing and normalization strategies (for balancing strategies only
weighting the loss is available, and for normalization strategies, min-max nor-
malization and standardization are supported). In contrast to Auto-Net 1.0,

2Implemented by PyTorch

https://mikkokotila.github.io/slate/#shapes

7.4. EXPERIMENTS 151

Algorithm 2 Example Usage of Auto-Net 2.0

from autonet import AutoNetClassification

cls = AutoNetClassification(min budget=5, max budget=20,
max runtime=120)
cls.fit(X train, Y train)
predictions = cls.predict(X test)

Auto-Net 2.0 does not build an ensemble at the end (although this feature will
likely be added soon). All hyperparameters of Auto-Net 2.0 with their respective
ranges and default values can be found in Table 7.2.

As optimizer for this highly conditional space, we used BOHB (Bayesian
Optimization with HyperBand) [10], which combines conventional Bayesian
optimization with the bandit-based strategy Hyperband [23] to substantially
improve its efficiency. Like Hyperband, BOHB uses repeated runs of Successive
Halving [19] to invest most runtime in promising neural networks and stops
training neural networks with poor performance early. Like in Bayesian op-
timization, BOHB learns which kinds of neural networks yield good results.
Specifically, like the BO method TPE [2], BOHB uses a kernel density estimator
(KDE) to describe regions of high performance in the space of neural networks
(architectures and hyperparameter settings) and trades off exploration versus
exploitation using this KDE. One of the advantages of BOHB is that it is easily
parallelizable, achieving almost linear speedups with an increasing number of
workers [10].

As a budget for BOHB we can either handle epochs or (wallclock) time
in minutes; by default we use runtime, but users can freely adapt the different
budget parameters. An example usage is shown in Algorithm 2. Similar to Auto-
sklearn, Auto-Net is built as a plugin estimator for scikit-learn. Users have to
provide a training set and a performance metric (e.g., accuracy). Optionally,
they might specify a validation and testset. The validation set is used during
training to get a measure for the performance of the network and to train the
KDE models of BOHB.

7.4 Experiments

We now empirically evaluate our methods. Our implementations of Auto-Net
run on both CPUs and GPUs, but since neural networks heavily employ matrix
operations they run much faster on GPUs. Our CPU-based experiments were
run on a compute cluster, each node of which has two eight-core Intel Xeon
E5-2650 v2 CPUs, running at 2.6GHz, and a shared memory of 64GB. Our
GPU-based experiments were run on a compute cluster, each node of which has
four GeForce GTX TITAN X GPUs.

152CHAPTER 7. TOWARDS AUTOMATICALLY-TUNEDDEEP NEURAL NETWORKS

Name Range Default log scale Type Conditional

General
hyperparameters

batch size [32, 500] 32 X int -
use mixup {True, False} True - bool -
mixup alpha [0.0, 1.0] 1.0 - float X
network {MLP, ResNet, ShapedMLP, ShapedResNet} MLP - cat -
optimizer {Adam, SGD} Adam - cat -
preprocessor {nystroem, kernel pca, fast ica, kitchen sinks, truncated svd} nystroem - cat -
imputation {most frequent, median, mean} most frequent - cat -
use loss weight strategy {True, False} True - cat -
learning rate scheduler {Step, Exponential, OnPlateau, Cyclic, CosineAnnealing} Step - cat -

Preprocessor

Nystroem

coef [−1.0, 1.0] 0.0 - float X
degree [2, 5] 3 - int X
gamma [0.00003, 8.0] 0.1 X float X
kernel {poly, rbf, sigmoid, cosine} rbf - cat X
num components [50, 10000] 100 X int X

Kitchen Sinks
gamma [0.00003, 8.0] 1.0 X float X
num components [50, 10000] 100 X int X

Truncated SVD target dimension [10, 256] 128 - int X

Kernel PCA

coef [−1.0, 1.0] 0.0 - float X
degree [2, 5] 3 - int X
gamma [0.00003, 8.0] 0.1 X float X
kernel {poly, rbf, sigmoid, cosine} rbf - cat X
num components [50, 10000] 100 X int X

Fast ICA

algorithm {parallel, deflation} parallel - cat X
fun {logcosh, exp, cube} logcosh - cat X
whiten {True, False} True - cat X
num components [10, 2000] 1005 - int X

Networks

MLP

activation function {Sigmoid, Tanh, ReLu} Sigmoid - cat X
num layers [1, 15] 9 - int X
num units (for layer i) [10, 1024] 100 X int X
dropout (for layer i) [0.0, 0.5] 0.25 - int X

ResNet

activation function {Sigmoid, Tanh, ReLu} Sigmoid - cat X
residual block groups [1, 9] 4 - int X
blocks per group [1, 4] 2 - int X
num units (for group i) [128, 1024] 200 X int X
use dropout {True, False} True - bool X
dropout (for group i) [0.0, 0.9] 0.5 - int X
use shake drop {True, False} True - bool X
use shake shake {True, False} True - bool X
shake drop βmax [0.0, 1.0] 0.5 - float X

ShapedMLP

activation function {Sigmoid, Tanh, ReLu} Sigmoid - cat X
num layers [3, 15] 9 - int X
max units per layer [10, 1024] 200 X int X
network shape {Funnel, LongFunnel, Diamond, Hexagon, Brick, Triangle, Stairs} Funnel - cat X
max dropout per layer [0.0, 0.6 0.2 - float X
dropout shape {Funnel, LongFunnel, Diamond, Hexagon, Brick, Triangle, Stairs} Funnel - cat X

Shaped ResNet

activation function {Sigmoid, Tanh, ReLu} Sigmoid - cat X
num layers [3, 9] 4 - int X
blocks per layer [1, 4] 2 - int X
use dropout {True, False} True - bool X
max units per layer [10, 1024] 200 X int X
network shape {Funnel, LongFunnel, Diamond, Hexagon, Brick, Triangle, Stairs} Funnel - cat X
max dropout per layer [0.0, 0.6 0.2 - float X
dropout shape {Funnel, LongFunnel, Diamond, Hexagon, Brick, Triangle, Stairs} Funnel - cat X
use shake drop {True, False} True - bool X
use shake shake {True, False} True - bool X
shake drop βmax [0.0, 1.0] 0.5 - float X

Optimizers

Adam
learning rate [0.0001, 0.1] 0.003 X float X
weight decay [0.0001, 0.1] 0.05 - float X

SGD
learning rate [0.0001, 0.1] 0.003 X float X
weight decay [0.0001, 0.1] 0.05 - float X
momentum [0.1, 0.9] 0.3 X float X

Schedulers

Step
γ [0.001, 0.9] 0.4505 - float X
step size [1, 10] 6 - int X

Exponential γ [0.8, 0.9999] 0.89995 - float X

OnPlateau
γ [0.05, 0.5] 0.275 - float X
patience [3, 10] 6 - int X

Cyclic
cycle length [3, 10] 6 - int X
max factor [1.0, 2.0] 1.5 - float X
min factor [0.001, 1.0] 0.5 - float X

Cosine
Annealing

T0 [1, 20] 10 - int X
Tmult [1.0, 2.0] 1.5 - float X

Table 7.2: Configuration space of Auto-Net 2.0. There are 112 hyperparameters
in total.

7.4. EXPERIMENTS 153

103 104 105

time [sec]

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
rr

or

AutoNet-GPU
AutoNet-CPU
AutoNet+Autosklearn
Autosklearn
BestResultCodaLab

(a) newsgroups dataset

102 103 104

time [sec]

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

E
rr

or

AutoNet-GPU
AutoNet-CPU
AutoNet+Autosklearn
Autosklearn
BestResultCodaLab

(b) dorothea dataset

Figure 7.1: Results for the 4 methods on 2 datasets from Tweakathon0 of the
AutoML challenge. We show errors on the competition’s validation set (not the
test set since its true labels are not available), with our methods only having
access to the training set. To avoid clutter, we plot mean error ± 1/4 standard
deviations over the 10 runs of each method.

7.4.1 Baseline Evaluation of Auto-Net 1.0 and Auto-sklearn

In our first experiment, we compare different instantiations of Auto-Net 1.0
on the five datasets of phase 0 of the AutoML challenge. First, we use the
CPU-based and GPU-based versions to study the difference of running NNs on
different hardware. Second, we allow the combination of neural networks with
the models from Auto-sklearn. Third, we also run Auto-sklearn without neural
networks as a baseline. On each dataset, we performed 10 one-day runs of each
method, allowing up to 100 minutes for the evaluation of a single configuration
by 5-fold cross-validation on the training set. For each time step of each run,
following [11] we constructed an ensemble from the models it had evaluated so
far and plot the test error of that ensemble over time. In practice, we would
either use a separate process to calculate the ensembles in parallel or compute
them after the optimization process.

Figure 7.1 shows the results on two of the five datasets. First, we note
that the GPU-based version of Auto-Net was consistently about an order of
magnitude faster than the CPU-based version. Within the given fixed compute
budget, the CPU-based version consistently performed worst, whereas the GPU-
based version performed best on the newsgroups dataset (see Figure 7.1(a)),
tied with Auto-sklearn on 3 of the other datasets, and performed worse on one.
Despite the fact that the CPU-based Auto-Net was very slow, in 3/5 cases
the combination of Auto-sklearn and CPU-based Auto-Net still improved over
Auto-sklearn; this can, for example, be observed for the dorothea dataset in
Figure 7.1(b).

154CHAPTER 7. TOWARDS AUTOMATICALLY-TUNEDDEEP NEURAL NETWORKS

(a) alexis dataset (b) yolanda dataset (c) tania dataset

Figure 7.2: Official AutoML human expert track competition results for the
three datasets for which we used Auto-Net. We only show the top 10 entries.

7.4.2 Results for AutoML Competition Datasets

Having developed Auto-Net 1.0 during the first AutoML challenge, we used a
combination of Auto-sklearn and GPU-based Auto-Net for the last two phases
to win the respective human expert tracks. Auto-sklearn has been developed
for much longer and is much more robust than Auto-Net, so for 4/5 datasets in
the 3rd phase and 3/5 datasets in the 4th phase Auto-sklearn performed best
by itself and we only submitted its results. Here, we discuss the three datasets
for which we used Auto-Net. Figure 7.2 shows the official AutoML human
expert track competition results for the three datasets for which we used Auto-
Net. The alexis dataset was part of the 3rd phase (“advanced phase”) of the
challenge. For this, we ran Auto-Net on five GPUs in parallel (using SMAC in
shared-model mode) for 18 hours. Our submission included an automatically-
constructed ensemble of 39 models and clearly outperformed all human experts,
reaching an AUC score of 90%, while the best human competitor (Ideal Intel
Analytics) only reached 80%. To our best knowledge, this is the first time
an automatically-constructed neural network won a competition dataset. The
yolanda and tania datasets were part of the 4th phase (“expert phase”) of
the challenge. For yolanda, we ran Auto-Net for 48 hours on eight GPUs and
automatically constructed an ensemble of five neural networks, achieving a close
third place. For tania, we ran Auto-Net for 48 hours on eight GPUs along with
Auto-sklearn on 25 CPUs, and in the end our automated ensembling script
constructed an ensemble of eight 1-layer neural networks, two 2-layer neural
networks, and one logistic regression model trained with SGD. This ensemble
won the first place on the tania dataset.

For the tania dataset, we also repeated the experiments from Section 7.4.1.
Figure 7.3 shows that for this dataset Auto-Net performed clearly better than
Auto-sklearn, even when only running on CPUs. The GPU-based variant of
Auto-Net performed best.

7.4. EXPERIMENTS 155

104 105

time [sec]

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
rr

or

AutoNet-GPU
AutoNet-CPU
AutoNet+Autosklearn
Autosklearn

Figure 7.3: Performance on the tania dataset over time. We show cross-
validation performance on the training set since the true labels for the com-
petition’s validation or test set are not available. To avoid clutter, we plot
mean error ± 1/4 standard deviations over the 10 runs of each method.

newsgroups dorothea

103 sec 104 sec 1 day 103 sec 104 sec 1 day

Auto-Net 1.0 0.99 0.98 0.85 0.38 0.30 0.13
Auto-sklearn + Auto-Net 1.0 0.94 0.76 0.47 0.29 0.13 0.13

Auto-Net 2.0: 1 worker 1.0 0.67 0.55 0.88 0.17 0.16
Auto-Net 2.0: 4 workers 0.89 0.57 0.44 0.22 0.17 0.14

Table 7.3: Error metric of different Auto-Net versions, run for different times,
all on CPU. We compare Auto-Net 1.0, ensembles of Auto-Net 1.0 and Auto-
sklearn, Auto-Net 2.0 with one worker, and Auto-Net 2.0 with four workers. All
results are means across 10 runs of each system. We show errors on the com-
petition’s validation set (not the test set since its true labels are not available),
with our methods only having access to the training set.

7.4.3 Comparing AutoNet 1.0 and 2.0

Finally, we show an illustrative comparison between Auto-Net 1.0 and 2.0. We
note that Auto-Net 2.0 has a much more comprehensive search space than Auto-
Net 1.0, and we therefore expect it to perform better on large datasets given
enough time. We also expect that searching the larger space is harder than
searching Auto-Net 1.0’s smaller space; however, since Auto-Net 2.0 uses the
efficient multi-fidelity optimizer BOHB to terminate poorly-performing neural
networks early on, it may nevertheless obtain strong anytime performance. On
the other hand, Auto-Net 2.0 so far does not implement ensembling, and due to
this missing regularization component and its larger hypothesis space, it may
be more prone to overfitting than Auto-Net 1.0.

In order to test these expectations about performance on different-sized
datasets, we used a medium-sized dataset (newsgroups, with 13k training data
points) and a small one (dorothea, with 800 training data points). The results

156CHAPTER 7. TOWARDS AUTOMATICALLY-TUNEDDEEP NEURAL NETWORKS

are presented in Table 7.3.
On the medium-sized dataset newsgroups, Auto-Net 2.0 performed much

better than Auto-Net 1.0, and using four workers also led to strong speedups on
top of this, making Auto-Net 2.0 competitive to the ensemble of Auto-sklearn
and Auto-Net 1.0. We found that despite Auto-Net 2.0’s larger search space its
anytime performance (using the multi-fidelity method BOHB) was better than
that of Auto-Net 1.0 (using the blackbox optimization method SMAC). On the
small dataset dorothea, Auto-Net 2.0 also performed better than Auto-Net 1.0
early on, but given enough time Auto-Net 1.0 performed slightly better. We
attribute this to the lack of ensembling in Auto-Net 2.0, combined with its larger
search space.

7.5 Conclusion

We presented Auto-Net, which provides automatically-tuned deep neural net-
works without any human intervention. Even though neural networks show
superior performance on many datasets, for traditional data sets with manually-
defined features they do not always perform best. However, we showed that,
even in cases where other methods perform better, combining Auto-Net with
Auto-sklearn to an ensemble often leads to an equal or better performance than
either approach alone.

Finally, we reported results on three datasets from the AutoML challenge’s
human expert track, for which Auto-Net won one third place and two first
places. We showed that ensembles of Auto-sklearn and Auto-Net can get users
the best of both worlds and quite often improve over the individual tools. First
experiments on the new Auto-Net 2.0 showed that using a more comprehensive
search space, combined with BOHB as an optimizer yields promising results.

In future work, we aim to extend Auto-Net to more general neural network
architectures, including convolutional and recurrent neural networks.

Acknowledgements

This work has partly been supported by the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme
under grant no. 716721.

Bibliography

[1] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M.,
Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga,
R., Moore, S., Murray, D., Steiner, B., Tucker, P., Vasudevan, V., Warden,
P., Wicke, M., Yu, Y., Zheng, X.: Tensorflow: A system for large-scale
machine learning. In: 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16). pp. 265–283 (2016), https://www.
usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf

https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf

BIBLIOGRAPHY 157

[2] Bergstra, J., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-
parameter optimization. In: Shawe-Taylor, J., Zemel, R., Bartlett, P.,
Pereira, F., Weinberger, K. (eds.) Proceedings of the 25th Interna-
tional Conference on Advances in Neural Information Processing Systems
(NIPS’11). pp. 2546–2554 (2011)

[3] Brazdil, P., Giraud-Carrier, C., Soares, C., Vilalta, R.: Metalearning: Ap-
plications to Data Mining. Springer Publishing Company, Incorporated, 1
edn. (2008)

[4] Brochu, E., Cora, V., de Freitas, N.: A tutorial on Bayesian optimization of
expensive cost functions, with application to active user modeling and hier-
archical reinforcement learning. Computing Research Repository (CoRR)
abs/1012.2599 (2010)

[5] Caruana, R., Niculescu-Mizil, A., Crew, G., Ksikes, A.: Ensemble selec-
tion from libraries of models. In: In Proceedings of the 21st International
Conference on Machine Learning. pp. 137–144. ACM Press (2004)

[6] Dieleman, S., Schlüter, J., Raffel, C., Olson, E., Sønderby, S., Nouri, D.,
Maturana, D., Thoma, M., Battenberg, E., Kelly, J., Fauw, J.D., Heil-
man, M., diogo149, McFee, B., Weideman, H., takacsg84, peterderivaz,
Jon, instagibbs, Rasul, K., CongLiu, Britefury, Degrave, J.: Lasagne: First
release. (Aug 2015), http://dx.doi.org/10.5281/zenodo.27878

[7] Domhan, T., Springenberg, J.T., Hutter, F.: Speeding up automatic hy-
perparameter optimization of deep neural networks by extrapolation of
learning curves. In: Yang, Q., Wooldridge, M. (eds.) Proceedings of the
25th International Joint Conference on Artificial Intelligence (IJCAI’15).
pp. 3460–3468 (2015)

[8] Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online
learning and stochastic optimization. J. Mach. Learn. Res. 12, 2121–2159
(Jul 2011)

[9] Eggensperger, K., Feurer, M., Hutter, F., Bergstra, J., Snoek, J., Hoos, H.,
Leyton-Brown, K.: Towards an empirical foundation for assessing Bayesian
optimization of hyperparameters. In: NIPS Workshop on Bayesian Opti-
mization in Theory and Practice (BayesOpt’13) (2013)

[10] Falkner, S., Klein, A., Hutter, F.: Combining hyperband and bayesian
optimization. In: NIPS 2017 Bayesian Optimization Workshop (Dec 2017)

[11] Feurer, M., Klein, A., Eggensperger, K., Springenberg, J.T., Blum, M.,
Hutter, F.: Efficient and robust automated machine learning. In: Cortes,
C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings
of the 29th International Conference on Advances in Neural Information
Processing Systems (NIPS’15) (2015)

http://dx.doi.org/10.5281/zenodo.27878

158CHAPTER 7. TOWARDS AUTOMATICALLY-TUNEDDEEP NEURAL NETWORKS

[12] Feurer, M., Springenberg, T., Hutter, F.: Initializing Bayesian hyperpa-
rameter optimization via meta-learning. In: Bonet, B., Koenig, S. (eds.)
Proceedings of the Twenty-nineth National Conference on Artificial Intel-
ligence (AAAI’15). pp. 1128–1135. AAAI Press (2015)

[13] Gastaldi, X.: Shake-shake regularization. CoRR abs/1705.07485 (2017)

[14] Guyon, I., Bennett, K., Cawley, G., Escalante, H.J., Escalera, S., Ho, T.K.,
Macià, N., Ray, B., Saeed, M., Statnikov, A., Viegas, E.: Design of the
2015 chalearn automl challenge. In: 2015 International Joint Conference
on Neural Networks (IJCNN). pp. 1–8 (July 2015)

[15] Halko, N., Martinsson, P., Tropp, J.: Finding structure with randomness:
Stochastic algorithms for constructing approximate matrix decompositions
(2009)

[16] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten,
I.: The WEKA data mining software: An update. SIGKDD Explorations
11(1), 10–18 (2009)

[17] Hutter, F., Hoos, H., Leyton-Brown, K.: Sequential model-based optimiza-
tion for general algorithm configuration. In: Coello, C. (ed.) Proceedings of
the Fifth International Conference on Learning and Intelligent Optimiza-
tion (LION’11). Lecture Notes in Computer Science, vol. 6683, pp. 507–523.
Springer-Verlag (2011)

[18] Hyvärinen, A., Oja, E.: Independent component analysis: algorithms and
applications. Neural networks 13(4-5), 411–430 (2000)

[19] Jamieson, K., Talwalkar, A.: Non-stochastic best arm identification and hy-
perparameter optimization. In: Gretton, A., Robert, C. (eds.) Proceedings
of the 19th International Conference on Artificial Intelligence and Statis-
tics, AISTATS. JMLR Workshop and Conference Proceedings, vol. 51, pp.
240–248. JMLR.org (2016)

[20] Jin, H., Song, Q., Hu, X.: Efficient neural architecture search with network
morphism. CoRR abs/1806.10282 (2018)

[21] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In:
Proceedings of the International Conference on Learning Representations
(2015)

[22] Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet classification with
deep convolutional neural networks. In: Bartlett, P., Pereira, F., Burges,
C., Bottou, L., Weinberger, K. (eds.) Proceedings of the 26th Interna-
tional Conference on Advances in Neural Information Processing Systems
(NIPS’12). pp. 1097–1105 (2012)

BIBLIOGRAPHY 159

[23] Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., Talwalkar, A.: Hy-
perband: A novel bandit-based approach to hyperparameter optimization.
Journal of Machine Learning Research 18, 185:1–185:52 (2017)

[24] Loshchilov, I., Hutter, F.: Sgdr: Stochastic gradient descent with warm
restarts. In: International Conference on Learning Representations (ICLR)
2017 Conference Track (2017)

[25] Loshchilov, I.: Personal communication (2017)

[26] Mendoza, H., Klein, A., Feurer, M., Springenberg, J., Hutter, F.: Towards
automatically-tuned neural networks. In: ICML 2016 AutoML Workshop
(2016)

[27] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare,
M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., Petersen,
S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra,
D., Legg, S., Hassabis, D.: Human-level control through deep reinforcement
learning. Nature 518, 529–533 (2015)

[28] Nesterov, Y.: A method of solving a convex programming problem with
convergence rate O(1/sqr(k)). Soviet Mathematics Doklady 27, 372–376
(1983)

[29] Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z.,
Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in
pytorch. In: Autodiff Workshop at NIPS (2017)

[30] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,
Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vander-
plas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay,
E.: Scikit-learn: Machine learning in Python. Journal of Machine Learning
Research 12, 2825–2830 (2011)

[31] Rahimi, A., Recht, B.: Weighted sums of random kitchen sinks: Replac-
ing minimization with randomization in learning. In: Advances in neural
information processing systems. pp. 1313–1320 (2009)

[32] Rasmussen, C., Williams, C.: Gaussian Processes for Machine Learning.
The MIT Press (2006)

[33] Schaul, T., Zhang, S., LeCun, Y.: No More Pesky Learning Rates. In:
Dasgupta, S., McAllester, D. (eds.) Proceedings of the 30th International
Conference on Machine Learning (ICML’13). Omnipress (2014)

[34] Schölkopf, B., Smola, A., Müller, K.: Kernel principal component analysis.
In: International Conference on Artificial Neural Networks. pp. 583–588.
Springer (1997)

160CHAPTER 7. TOWARDS AUTOMATICALLY-TUNEDDEEP NEURAL NETWORKS

[35] Shahriari, B., Swersky, K., Wang, Z., Adams, R., de Freitas, N.: Taking
the human out of the loop: A Review of Bayesian Optimization. Proc. of
the IEEE 104(1) (12/2015 2016)

[36] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., van den Driess-
che, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot,
M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I.,
Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T., Hassabis, D.: Mas-
tering the game of go with deep neural networks and tree search. Nature
529, 484–503 (2016)

[37] Smith, L.N.: Cyclical learning rates for training neural networks. In: Ap-
plications of Computer Vision (WACV), 2017 IEEE Winter Conference on.
pp. 464–472. IEEE (2017)

[38] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov,
R.: Dropout: a simple way to prevent neural networks from overfitting.
The Journal of Machine Learning Research 15(1), 1929–1958 (2014)

[39] Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with
neural networks. CoRR abs/1409.3215 (2014), http://arxiv.org/abs/

1409.3215

[40] Swersky, K., Duvenaud, D., Snoek, J., Hutter, F., Osborne, M.: Raiders
of the lost architecture: Kernels for Bayesian optimization in conditional
parameter spaces. In: NIPS Workshop on Bayesian Optimization in Theory
and Practice (BayesOpt’13) (2013)

[41] Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: Deepface: Closing the
gap to human-level performance in face verification. In: Proceedings of
the International Conference on Computer Vision and Pattern Recognition
(CVPR’14). pp. 1701–1708. IEEE Computer Society Press (2014)

[42] Theano Development Team: Theano: A Python framework for fast com-
putation of mathematical expressions. Computing Research Repository
(CoRR) abs/1605.02688 (may 2016)

[43] Thornton, C., Hutter, F., Hoos, H., Leyton-Brown, K.: Auto-WEKA:
combined selection and hyperparameter optimization of classification al-
gorithms. In: I.Dhillon, Koren, Y., Ghani, R., Senator, T., Bradley, P.,
Parekh, R., He, J., Grossman, R., Uthurusamy, R. (eds.) The 19th ACM
SIGKDD International Conference on Knowledge Discovery and Data Min-
ing (KDD’13). pp. 847–855. ACM Press (2013)

[44] Wang, Z., Hutter, F., Zoghi, M., Matheson, D., de Feitas, N.: Bayesian
optimization in a billion dimensions via random embeddings. Journal of
Artificial Intelligence Research 55, 361–387 (2016)

http://arxiv.org/abs/1409.3215
http://arxiv.org/abs/1409.3215

BIBLIOGRAPHY 161

[45] Williams, C., Seeger, M.: Using the nyström method to speed up kernel
machines. In: Advances in neural information processing systems. pp. 682–
688 (2001)

[46] Yamada, Y., Iwamura, M., Kise, K.: Shakedrop regularization. CoRR
abs/1802.02375 (2018)

[47] Zagoruyko, S., Komodakis, N.: Wide residual networks. CoRR
abs/1605.07146 (2016)

[48] Zeiler, M.: ADADELTA: an adaptive learning rate method. CoRR
abs/1212.5701 (2012), http://arxiv.org/abs/1212.5701

[49] Zhang, H., Cissé, M., Dauphin, Y., Lopez-Paz, D.: mixup: Beyond empir-
ical risk minimization. CoRR abs/1710.09412 (2017)

http://arxiv.org/abs/1212.5701

162CHAPTER 7. TOWARDS AUTOMATICALLY-TUNEDDEEP NEURAL NETWORKS

Chapter 8

TPOT: A Tree-based
Pipeline Optimization Tool
for Automating Machine
Learning

Randal S. Olson and Jason H. Moore

Abstract

As data science becomes increasingly mainstream, there will be an ever-growing
demand for data science tools that are more accessible, flexible, and scalable.
In response to this demand, automated machine learning (AutoML) researchers
have begun building systems that automate the process of designing and opti-
mizing machine learning pipelines. In this chapter we present TPOT v0.3, an
open source genetic programming-based AutoML system that optimizes a series
of feature preprocessors and machine learning models with the goal of maximiz-
ing classification accuracy on a supervised classification task. We benchmark
TPOT on a series of 150 supervised classification tasks and find that it signifi-
cantly outperforms a basic machine learning analysis in 21 of them, while expe-
riencing minimal degradation in accuracy on 4 of the benchmarks—all without
any domain knowledge nor human input. As such, genetic programming-based
AutoML systems show considerable promise in the AutoML domain.

This chapter is an extended version of our 2016 paper introducing TPOT,
presented at the 2016 ICML Workshop on AutoML [15].

8.1 Introduction

Machine learning is commonly described as a “field of study that gives comput-
ers the ability to learn without being explicitly programmed” [19]. Despite this

163

164 CHAPTER 8. TPOT

common claim, experienced machine learning practitioners know that design-
ing effective machine learning pipelines is often a tedious endeavor, and typi-
cally requires considerable experience with machine learning algorithms, expert
knowledge of the problem domain, and time-intensive brute force search to ac-
complish [13]. Thus, contrary to what machine learning enthusiasts would have
us believe, machine learning still requires considerable explicit programming.

In response to this challenge, several automated machine learning methods
have been developed over the years [10]. Over the past several years, we have
been developing a Tree-based Pipeline Optimization Tool (TPOT) that auto-
matically designs and optimizes machine learning pipelines for a given problem
domain [16], without any need for human intervention. In short, TPOT opti-
mizes machine learning pipelines using a version of genetic programming (GP), a
well-known evolutionary computation technique for automatically constructing
computer programs [1]. Previously, we demonstrated that combining GP with
Pareto optimization enables TPOT to automatically construct high-accuracy
and compact pipelines that consistently outperform basic machine learning anal-
yses [13]. In this chapter, we extend that benchmark to include 150 supervised
classification tasks and evaluate TPOT in a wide variety of application domains
ranging from genetic analyses to image classification and more.

8.2 Methods

In the following sections, we provide an overview of the Tree-based Pipeline Op-
timization Tool (TPOT) v0.3, including the machine learning operators used as
genetic programming (GP) primitives, the tree-based pipelines used to combine
the primitives into working machine learning pipelines, and the GP algorithm
used to evolve said tree-based pipelines. We follow with a description of the
datasets used to evaluate the latest version of TPOT in this chapter. TPOT
is an open source project on GitHub, and the underlying Python code can be
found at https://github.com/rhiever/tpot.

8.2.1 Machine Learning Pipeline Operators

At its core, TPOT is a wrapper for the Python machine learning package, scikit-
learn [17]. Thus, each machine learning pipeline operator (i.e., GP primitive) in
TPOT corresponds to a machine learning algorithm, such as a supervised clas-
sification model or standard feature scaler. All implementations of the machine
learning algorithms listed below are from scikit-learn (except XGBoost), and
we refer to the scikit-learn documentation [17] and [9] for detailed explanations
of the machine learning algorithms used in TPOT.

Supervised Classification Operators. DecisionTree, RandomForest, eX-
treme Gradient Boosting Classifier (from XGBoost, [3]), LogisticRegression, and
KNearestNeighborClassifier. Classification operators store the classifier’s pre-
dictions as a new feature as well as the classification for the pipeline.

https://github.com/rhiever/tpot

8.2. METHODS 165

Entire Data Set PCA

Entire Data Set
Polynomial
Features

Combine
Features

Select k
Best

Features

Modified data set
flows through the
pipeline operators

The final classification
is performed on the

final feature set

Multiple copies of the
data set can enter the
pipeline for analysis

Pipeline operators
modify the features

Logistic
Regression

Figure 8.1: An example tree-based pipeline from TPOT. Each circle corresponds
to a machine learning operator, and the arrows indicate the direction of the data
flow.

Feature Preprocessing Operators. StandardScaler, RobustScaler, Min-
MaxScaler, MaxAbsScaler, RandomizedPCA [12], Binarizer, and Polynomi-
alFeatures. Preprocessing operators modify the dataset in some way and return
the modified dataset.

Feature Selection Operators. VarianceThreshold, SelectKBest, Select-
Percentile, SelectFwe, and Recursive Feature Elimination (RFE). Feature selec-
tion operators reduce the number of features in the dataset using some criteria
and return the modified dataset.

We also include an operator that combines disparate datasets, as demon-
strated in Figure 8.1, which allows multiple modified variants of the dataset to
be combined into a single dataset. Additionally, TPOT v0.3 does not include
missing value imputation operators, and therefore does not support datasets
with missing data. Lastly, we provide integer and float terminals to parameter-
ize the various operators, such as the number of neighbors k in the k-Nearest
Neighbors Classifier.

8.2.2 Constructing Tree-Based Pipelines

To combine these operators into a machine learning pipeline, we treat them
as GP primitives and construct GP trees from them. Figure 8.1 shows an ex-
ample tree-based pipeline, where two copies of the dataset are provided to the
pipeline, modified in a successive manner by each operator, combined into a sin-
gle dataset, and finally used to make classifications. Other than the restriction
that every pipeline must have a classifier as its final operator, it is possible to
construct arbitrarily shaped machine learning pipelines that can act on multiple
copies of the dataset. Thus, GP trees provide an inherently flexible representa-
tion of machine learning pipelines.

166 CHAPTER 8. TPOT

In order for these tree-based pipelines to operate, we store three additional
variables for each record in the dataset. The “class” variable indicates the true
label for each record, and is used when evaluating the accuracy of each pipeline.
The “guess” variable indicates the pipeline’s latest guess for each record, where
the predictions from the final classification operator in the pipeline are stored
as the “guess”. Finally, the “group” variable indicates whether the record is to
be used as a part of the internal training or testing set, such that the tree-based
pipelines are only trained on the training data and evaluated on the testing
data. We note that the dataset provided to TPOT as training data is further
split into an internal stratified 75%/25% training/testing set.

8.2.3 Optimizing Tree-Based Pipelines

To automatically generate and optimize these tree-based pipelines, we use a ge-
netic programming (GP) algorithm [1] as implemented in the Python package
DEAP [7]. The TPOT GP algorithm follows a standard GP process: To be-
gin, the GP algorithm generates 100 random tree-based pipelines and evaluates
their balanced cross-validation accuracy on the dataset. For every generation of
the GP algorithm, the algorithm selects the top 20 pipelines in the population
according to the NSGA-II selection scheme [4], where pipelines are selected to
simultaneously maximize classification accuracy on the dataset while minimiz-
ing the number of operators in the pipeline. Each of the top 20 selected pipelines
produce five copies (i.e., offspring) into the next generation’s population, 5% of
those offspring cross over with another offspring using one-point crossover, then
90% of the remaining unaffected offspring are randomly changed by a point,
insert, or shrink mutation (1/3 chance of each). Every generation, the algo-
rithm updates a Pareto front of the non-dominated solutions [4] discovered at
any point in the GP run. The algorithm repeats this evaluate-select-crossover-
mutate process for 100 generations—adding and tuning pipeline operators that
improve classification accuracy and pruning operators that degrade classification
accuracy—at which point the algorithm selects the highest-accuracy pipeline
from the Pareto front as the representative “best” pipeline from the run.

8.2.4 Benchmark Data

We compiled 150 supervised classification benchmarks1 from a wide variety of
sources, including the UCI machine learning repository [11], a large preexist-
ing benchmark repository from [18], and simulated genetic analysis datasets
from [20]. These benchmark datasets range from 60 to 60,000 records, few
to hundreds of features, and include binary as well as multi-class supervised
classification problems. We selected datasets from a wide range of application
domains, including genetic analysis, image classification, time series analysis,
and many more. Thus, this benchmark—called the Penn Machine Learning
Benchmark (PMLB) [14]—represents a comprehensive suite of tests with which
to evaluate automated machine learning systems.

1Benchmark data at https://github.com/EpistasisLab/penn-ml-benchmarks

https://github.com/EpistasisLab/penn-ml-benchmarks

8.3. RESULTS 167

8.3 Results

To evaluate TPOT, we ran 30 replicates of it on each of the 150 benchmarks,
where each replicate had 8 hours to complete 100 generations of optimization
(i.e., 100 × 100 = 10, 000 pipeline evaluations). In each replicate, we divided
the dataset into a stratified 75%/25% training/testing split and used a distinct
random number generator seed for each split and subsequent TPOT run.

In order to provide a reasonable control as a baseline comparison, we sim-
ilarly evaluated 30 replicates of a Random Forest with 500 trees on the 150
benchmarks, which is meant to represent a basic machine learning analysis that
a novice practitioner would perform. We also ran 30 replicates of a version of
TPOT that randomly generates and evaluates the same number of pipelines
(10,000), which is meant to represent a random search in the TPOT pipeline
space. In all cases, we measured accuracy of the resulting pipelines or models as
balanced accuracy [21], which corrects for class frequency imbalances in datasets
by computing the accuracy on a per-class basis then averaging the per-class ac-
curacies. In the remainder of this chapter, we refer to “balanced accuracy” as
simply “accuracy.”

Shown in Figure 8.2, the average performance of TPOT and a Random
Forest with 500 trees is similar on most of the datasets. Overall, TPOT dis-
covered pipelines that perform statistically significantly better than a Random
Forest on 21 benchmarks, significantly worse on 4 benchmarks, and had no
statistically significant difference on 125 benchmarks. (We determined statisti-
cal significance using a Wilcoxon rank-sum test, where we used a conservative
Bonferroni-corrected p-value threshold of < 0.000333 (0.05

150) for significance.) In
Figure 8.3, we show the distributions of accuracies on the 25 benchmarks that
had significant differences, where the benchmarks are sorted by the difference
in median accuracy between the two experiments.

Notably, the majority of TPOT’s improvements on the benchmarks are quite
large, with several ranging from 10%–60% median accuracy improvement over
a Random Forest analysis. In contrast, the 4 benchmarks where TPOT experi-
enced a degradation in median accuracy ranged from only 2–5% accuracy degra-
dation. In some cases, TPOT’s improvements were made by discovering useful
feature preprocessors that allow the models to better classify the data2, e.g.,
TPOT discovered that applying a RandomizedPCA feature preprocessor prior
to modeling the “Hill valley” benchmarks allows Random Forests to classify the
dataset with near-perfect accuracy. In other cases, TPOT’s improvements were
made by applying a different model to the benchmark, e.g., TPOT discovered
that a k-nearest-neighbor classifier with k = 10 neighbors can classify the “par-
ity5” benchmark, whereas a Random Forest consistently achieved 0% accuracy
on the same benchmark.

When we compared TPOT to a version of TPOT that uses random search
(“TPOT Random” in Figure 8.3), we found that random search typically dis-
covered pipelines that achieve comparable accuracy to pipelines discovered by

2Full list: https://gist.github.com/rhiever/578cc9c686ffd873f46bca29406dde1d

https://gist.github.com/rhiever/578cc9c686ffd873f46bca29406dde1d

168 CHAPTER 8. TPOT

0% 20% 40% 60% 80% 100%
Median Random Forest Balanced Accuracy

0%

20%

40%

60%

80%

100%

M
ed

ia
n

TP
O

T
B

al
an

ce
d

A
cc

ur
ac

y

Figure 8.2: Scatter plot showing the median balanced accuracies of TPOT and
a Random Forest with 500 trees on the 150 benchmark datasets. Each dot
represents the accuracies on one benchmark dataset, and the diagonal line rep-
resents the line of parity (i.e., when both algorithms achieve the same accuracy
score). Dots above the line represent datasets where TPOT performed bet-
ter than the Random Forest, and dots below the line represent datasets where
Random Forests performed better.

8.3. RESULTS 169

Random
Forest

TPOT TPOT
Random

 0%

 20%

 40%

 60%

 80%

100%

B
al

an
ce

d
A

cc
ur

ac
y

parity5

Random
Forest

TPOT TPOT
Random

 40%

 60%

 80%

100%
parity5+5

Random
Forest

TPOT TPOT
Random

 60%

 80%

100%
Hill_Valley_without_noise

Random
Forest

TPOT TPOT
Random

 40%

 60%

 80%

100%
Hill_Valley_with_noise

Random
Forest

TPOT TPOT
Random

 20%

 40%

 60%

 80%

100%
dis

Random
Forest

TPOT TPOT
Random

 70%

 80%

 90%

100%

B
al

an
ce

d
A

cc
ur

ac
y

balance-scale

Random
Forest

TPOT TPOT
Random

 20%

 40%

 60%

 80%
analcatdata_happiness

Random
Forest

TPOT TPOT
Random

 40%

 60%

 80%

100%
cloud

Random
Forest

TPOT TPOT
Random

 70%

 80%

 90%

100%
allhypo

Random
Forest

TPOT TPOT
Random

 80%

 85%

 90%

 95%

100%
monk2

Random
Forest

TPOT TPOT
Random

 45%

 50%

 55%

 60%

 65%

B
al

an
ce

d
A

cc
ur

ac
y

analcatdata_germangss

Random
Forest

TPOT TPOT
Random

 60%

 80%

100%
tic-tac-toe

Random
Forest

TPOT TPOT
Random

 70%

 80%

 90%

100%
prnn_crabs

Random
Forest

TPOT TPOT
Random

 60%

 80%

100%
cars

Random
Forest

TPOT TPOT
Random

 55%

 60%

 65%

 70%

 75%
GAMETES_Het_75_25

Random
Forest

TPOT TPOT
Random

 40%

 60%

 80%

100%

B
al

an
ce

d
A

cc
ur

ac
y

vehicle

Random
Forest

TPOT TPOT
Random

 55%

 60%

 65%

 70%

 75%
GAMETES_Het_50_50

Random
Forest

TPOT TPOT
Random

 92%

 94%

 96%

 98%

100%
collins

Random
Forest

TPOT TPOT
Random

 85%

 90%

 95%

100%
car-evaluation

Random
Forest

TPOT TPOT
Random

 90%

 92%

 94%

 96%

 98%

100%
monk1

Random
Forest

TPOT TPOT
Random

 92%

 94%

 96%

 98%

100%

B
al

an
ce

d
A

cc
ur

ac
y

car

Random
Forest

TPOT TPOT
Random

 40%

 50%

 60%

 70%

 80%
breast-cancer

Random
Forest

TPOT TPOT
Random

 40%

 50%

 60%

 70%

 80%
pima

Random
Forest

TPOT TPOT
Random

 60%

 70%

 80%

 90%

100%
ecoli

Random
Forest

TPOT TPOT
Random

 40%

 60%

 80%

100%
wine-recognition

Figure 8.3: Box plots showing the distribution of balanced accuracies for the
25 benchmarks with a significant difference in median accuracy between TPOT
and a Random Forest with 500 trees. Each box plot represents 30 replicates,
the inner line shows the median, the notches represent the bootstrapped 95%
confidence interval of the median, the ends of the box represent the first and
third quartiles, and the dots represent outliers.

170 CHAPTER 8. TPOT

TPOT, except in the “dis” benchmark where TPOT consistently discovered
better-performing pipelines. For 17 of the presented benchmarks, none of the
random search runs finished within 24 hours, which we indicated by leaving the
box plot blank in Figure 8.3. We found that random search often generated
needlessly complex pipelines for the benchmark problems, even when a simple
pipeline with a tuned model was sufficient to classify the benchmark problem.
Thus, even if random search can sometimes perform as well as TPOT in terms
of accuracy, performing a guided search for pipelines that achieve high accuracy
with as few pipeline operations as possible still offers considerable advantages
in terms of search run-time, model complexity, and model interpretability.

8.4 Conclusions and Future Work

We benchmarked the Tree-based Pipeline Optimization Tool (TPOT) v0.3 on
150 supervised classification datasets and found that it discovers machine learn-
ing pipelines that can outperform a basic machine learning analysis on several
benchmarks. In particular, we note that TPOT discovered these pipelines with-
out any domain knowledge nor human input. As such, TPOT shows consid-
erable promise in the automated machine learning (AutoML) domain and we
will continue to refine TPOT until it consistently discovers human-competitive
machine learning pipelines. We discuss some of these future refinements below.

First, we will explore methods to provide sensible initialization [8] for genetic
programming (GP)-based AutoML systems such as TPOT. For example, we
can use meta-learning techniques to intelligently match pipeline configurations
that may work well on the particular problem being solved [6]. In brief, meta-
learning harnesses information from previous machine learning runs to predict
how well each pipeline configuration will work on a particular dataset. To place
datasets on a standard scale, meta-learning algorithms compute meta-features
from the datasets, such as dataset size, the number of features, and various
aspects about the features, which are then used to map dataset meta-features
to corresponding pipeline configurations that may work well on datasets with
those meta-features. Such an intelligent meta-learning algorithm is likely to
improve the TPOT sensible initialization process.

Furthermore, we will attempt to characterize the ideal “shape” of a machine
learning pipeline. In auto-sklearn, [5] imposed a short and fixed pipeline struc-
ture of a data preprocessor, a feature preprocessor, and a model. In another
GP-based AutoML system, [22] allowed the GP algorithm to design arbitrarily-
shaped pipelines and found that complex pipelines with several preprocessors
and models were useful for signal processing problems. Thus, it may be vital
to allow AutoML systems to design arbitrarily-shaped pipelines if they are to
achieve human-level competitiveness.

Finally, genetic programming (GP) optimization methods are typically crit-
icized for optimizing a large population of solutions, which can sometimes be
slow and wasteful for certain optimization problems. Instead, it is possible to
turn GP’s purported weakness into a strength by creating an ensemble out of

BIBLIOGRAPHY 171

the GP populations. [2] explored one such population ensemble method previ-
ously with a standard GP algorithm and showed that it significantly improved
performance, and it is a natural extension to create ensembles out of TPOT’s
population of machine learning pipelines.

In conclusion, these experiments demonstrate that there is much to be gained
from taking a model-agnostic approach to machine learning and allowing the
machine to automatically discover what series of preprocessors and models work
best for a given problem domain. As such, AutoML stands to revolutionize data
science by automating some of the most tedious—yet most important—aspects
of machine learning.

Bibliography

[1] Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic Program-
ming: An Introduction. Morgan Kaufmann, San Meateo, CA, USA (1998)

[2] Bhowan, U., Johnston, M., Zhang, M., Yao, X.: Evolving diverse ensembles
using genetic programming for classification with unbalanced data. Trans.
Evol. Comp 17(3), 368–386 (Jun 2013)

[3] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Pro-
ceedings of the 22Nd ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining. pp. 785–794. KDD ’16, ACM, New York,
NY, USA (2016)

[4] Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multi-
objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary
Computation 6, 182–197 (2002)

[5] Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., Hut-
ter, F.: Efficient and robust automated machine learning. In: Cortes, C.,
Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Advances in Neu-
ral Information Processing Systems 28, pp. 2944–2952. Curran Associates,
Inc. (2015)

[6] Feurer, M., Springenberg, J.T., Hutter, F.: Initializing bayesian hyperpa-
rameter optimization via meta-learning. In: Proceedings of the 29th AAAI
Conference on Artificial Intelligence, January 25-30, 2015, Austin, Texas,
USA. pp. 1128–1135 (2015)

[7] Fortin, F.A., De Rainville, F.M., Gardner, M.A., Parizeau, M., Gagné, C.:
DEAP: Evolutionary Algorithms Made Easy. Journal of Machine Learning
Research 13, 2171–2175 (2012)

[8] Greene, C.S., White, B.C., Moore, J.H.: An expert knowledge-guided mu-
tation operator for genome-wide genetic analysis using genetic program-
ming. In: Pattern Recognition in Bioinformatics, pp. 30–40. Springer Berlin
Heidelberg (2007)

172 CHAPTER 8. TPOT

[9] Hastie, T.J., Tibshirani, R.J., Friedman, J.H.: The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. Springer, New York,
NY, USA (2009)

[10] Hutter, F., Lücke, J., Schmidt-Thieme, L.: Beyond Manual Tuning of Hy-
perparameters. KI - Künstliche Intelligenz 29, 329–337 (2015)

[11] Lichman, M.: UCI machine learning repository (2013), http://archive.
ics.uci.edu/ml

[12] Martinsson, P.G., Rokhlin, V., Tygert, M.: A randomized algorithm for the
decomposition of matrices. Applied and Computational Harmonic Analysis
30, 47–68 (2011)

[13] Olson, R.S., Bartley, N., Urbanowicz, R.J., Moore, J.H.: Evaluation of a
tree-based pipeline optimization tool for automating data science. In: Pro-
ceedings of the Genetic and Evolutionary Computation Conference 2016.
pp. 485–492. GECCO ’16, ACM, New York, NY, USA (2016)

[14] Olson, R.S., La Cava, W., Orzechowski, P., Urbanowicz, R.J., Moore, J.H.:
PMLB: A Large Benchmark Suite for Machine Learning Evaluation and
Comparison. arXiv e-print. https://arxiv.org/abs/1703.00512 (2017)

[15] Olson, R.S., Moore, J.H.: Tpot: A tree-based pipeline optimization tool
for automating machine learning. In: Hutter, F., Kotthoff, L., Vanschoren,
J. (eds.) Proceedings of the Workshop on Automatic Machine Learning.
Proceedings of Machine Learning Research, vol. 64, pp. 66–74. PMLR, New
York, New York, USA (24 Jun 2016), http://proceedings.mlr.press/
v64/olson_tpot_2016.html

[16] Olson, R.S., Urbanowicz, R.J., Andrews, P.C., Lavender, N.A., Kidd, L.C.,
Moore, J.H.: Applications of Evolutionary Computation: 19th European
Conference, EvoApplications 2016, Porto, Portugal, March 30 — April
1, 2016, Proceedings, Part I, chap. Automating Biomedical Data Science
Through Tree-Based Pipeline Optimization, pp. 123–137. Springer Inter-
national Publishing (2016)

[17] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,
Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vander-
plas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay,
E.: Scikit-learn: Machine learning in Python. Journal of Machine Learning
Research 12, 2825–2830 (2011)

[18] Reif, M.: A comprehensive dataset for evaluating approaches of various
meta-learning tasks. In: First International Conference on Pattern Recog-
nition and Methods (ICPRAM) (2012)

[19] Simon, P.: Too big to ignore: the business case for big data. Wiley & SAS
Business Series, Wiley, New Delhi (2013)

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://proceedings.mlr.press/v64/olson_tpot_2016.html
http://proceedings.mlr.press/v64/olson_tpot_2016.html

BIBLIOGRAPHY 173

[20] Urbanowicz, R.J., Kiralis, J., Sinnott-Armstrong, N.A., Heberling, T.,
Fisher, J.M., Moore, J.H.: GAMETES: a fast, direct algorithm for gen-
erating pure, strict, epistatic models with random architectures. BioData
Mining 5 (2012)

[21] Velez, D.R., White, B.C., Motsinger, A.A., Bush, W.S., Ritchie, M.D.,
Williams, S.M., Moore, J.H.: A balanced accuracy function for epistasis
modeling in imbalanced datasets using multifactor dimensionality reduc-
tion. Genetic Epidemiology 31(4), 306–315 (2007)

[22] Zutty, J., Long, D., Adams, H., Bennett, G., Baxter, C.: Multiple objec-
tive vector-based genetic programming using human-derived primitives. In:
Proceedings of the 2015 Annual Conference on Genetic and Evolutionary
Computation. pp. 1127–1134. GECCO ’15, ACM, New York, NY, USA
(2015)

174 CHAPTER 8. TPOT

Chapter 9

The Automatic Statistician

Christian Steinruecken and Emma Smith and David Janz and James Lloyd and
Zoubin Ghahramani

Abstract

The Automatic Statistician project aims to automate data science, producing
predictions and human-readable reports from raw datasets with minimal human
intervention. Alongside basic graphs and statistics, the generated reports con-
tain a curation of high-level insights about the dataset, that are obtained from
(1) an automated construction of models for the dataset, (2) a comparison of
these models, and (3) a software component that turns these results into natural
language descriptions. This chapter describes the common architecture of such
Automatic Statistician systems, and discusses some of the design decisions and
technical challenges.

9.1 Introduction

Machine learning and data science are closely related fields of research devel-
oping and deploying algorithms for learning from data. These algorithms also
underpin many of the recent advances in artificial intelligence (AI), which have
had a tremendous impact in industry, ushering in a new golden age of AI. How-
ever, many of the current approaches to machine learning, data science, and AI,
suffer from a set of important but related limitations.

Firstly, many of the approaches used are complicated black-boxes that are
difficult to interpret, understand, debug, and trust. This lack of interpretabil-
ity hampers the deployment of ML systems. For example, consider the major
legal, technical and ethical consequences of using an uninterpretable black-box
system that arrives at a prediction or decision related to a medical condition, a
criminal justice setting, or in a self-driving car. The realisation that black-box
ML methods are severely limited in such settings has led to major efforts to
“explainable AI”, “interpretability”, and “trust and transparency”.

175

176 CHAPTER 9. THE AUTOMATIC STATISTICIAN

Secondly, the development of ML systems has turned into a cottage industry
where ML experts tackle problems by hand-designing solutions that more often
than not reflect a set of ad-hoc manual decisions, and the preferences and biases
of the expert. It is ironic that machine learning, a field dedicated to building
systems that automatically learn from data, is so dependent on human experts
and manual tuning of models and learning algorithms. Manual search over
possible models and methods can result in solutions that are sub-optimal across
any number of metrics. Moreover, the tremendous imbalance between the supply
of experts and the demand for data science and ML solutions, is likely resulting
in many missed opportunities for applications that could have a major benefit
for society.

The vision of the Automatic Statistician is to automate many aspects of data
analysis, model discovery, and explanation. In a sense, the goal is to develop
an AI for data science – a system that can reason about patterns in data and
explain them to the user. Ideally, given some raw data, such a system should
be able to:

• automate the process of feature selection and transformation,

• deal with the messiness of real data, including missing values, outliers,
and different types and encodings of variables,

• search over a large space of models so as to automatically discover a good
model that captures any reliable patterns in the data,

• find such a model while avoiding both overfitting and underfitting,

• explain the patterns that have been found to the user, ideally by having
a conversation with the user about the data, and

• do all of this in a manner that is efficient and robust with respect to
constraints on compute time, memory, amount of data, and other relevant
resources.

While this agenda is obviously a very ambitious one, the work to date on the Au-
tomatic Statistician project has made progress on many of the above desiderata.
In particular, the ability to discover plausible models from data and to explain
these discoveries in plain English, is one of the distinguishing features of the
Automatic Statistician [18]. Such a feature could be useful to almost any field
of endeavour that is reliant on extracting knowledge from data.

In contrast to much of the machine learning literature that has been fo-
cused on extracting increasing performance improvements on pattern recogni-
tion problems (using techniques such as kernel methods, random forests, or deep
learning), the Automatic Statistician needs to build models that are composed
of interpretable components, and to have a principled way of representing un-
certainty about model structures given data. It also needs to be able to give
reasonable answers not just for big data sets but also for small ones.

9.2. BASIC ANATOMY OF AN AUTOMATIC STATISTICIAN 177

Data Search Model

Explanation

Prediction

Checking

Language of models

Evaluation

Report

Figure 9.1: A simplified flow diagram outlining the operation of a report-writing
Automatic Statistician. Models for the data are automatically constructed (from
the open-ended language of models), and evaluated on the data. This evaluation
is done in a way that allows models to be compared to each other. The best
models are then inspected to produce a report. Each model can be used to make
extrapolations or predictions from the data, and the construction blue-print of
the model can be turned into a human-readable description. For some models,
it is also possible to generate model criticism, and report on where the modelling
assumptions do not match the data well.

9.2 Basic Anatomy of an Automatic Statistician

At the heart of the Automatic Statistician is the idea that a good solution to the
above challenges can be obtained by working in the framework of model-based
machine learning [2, 9]. In model-based ML, the basic idea is that probabilistic
models are explanations for patterns in data, and that the probabilistic frame-
work (or Bayesian Occam’s razor) can be used to discover models that avoid
both overfitting and underfitting [21]. Bayesian approaches provide an elegant
way of trading off the complexity of the model and the complexity of the data,
and probabilistic models are compositional and interpretable as described previ-
ously. Moreover, the model-based philosophy maintains that tasks such as data
pre-processing and transformation are all parts of the model and should ideally
all be conducted at once [35].

An Automatic Statistician contains the following key ingredients:

1. An open-ended language of models – expressive enough to capture
real-world phenomena, and to allow applying the techniques used by hu-
man statisticians and data scientists.

2. A search procedure to efficiently explore the language of models.

3. A principled method of evaluating models, trading off complexity,
fit to data, and resource usage.

4. A procedure to automatically explain the models, making the as-
sumptions of the models explicit in a way that is simultaneously accurate
and intelligible to non-experts.

Figure 9.1 shows a high-level overview of how these components could be used

178 CHAPTER 9. THE AUTOMATIC STATISTICIAN

to produce a basic version of a report-writing Automatic Statistician.

As will be discussed later in this chapter, it is possible to build Automatic
Statistician systems that exchange ingredient 4 for procedures that produce
other desirable outputs, for example raw predictions or decisions. In such cases,
the language, search, and evaluation components may be modified appropriately
to prioritise the chosen objective.

9.2.1 Related Work

Important earlier work includes statistical expert systems [37, 11], and equation
learning [26, 27]. The Robot Scientist [16] integrates machine learning and scien-
tific discovery in a closed loop with an experimental platform in microbiology to
automate the design and execution of new experiments. Auto-WEKA [33, 17]
and Auto-sklearn [6] are projects that automate learning classifiers, making
heavy use of Bayesian optimisation techniques. Efforts to automate the appli-
cation of machine learning methods to data have recently gained momentum,
and may ultimately result in practical AI systems for data science.

9.3 An Automatic Statistician for Time Series
Data

Automatic Statistician systems can be defined for a variety of different objec-
tives, and can be based on different underlying model families. We’ll start by
describing one such system, and discuss the wider taxonomy later, with com-
ments on common design elements and general architecture.

An early Automatic Statistician for one-dimensional regression tasks was
described by Lloyd et al. [18]. Their system, called Automatic Bayesian Co-
variance Discovery (ABCD), uses an open-ended language of Gaussian process
models through a compositional grammar over kernels. A Gaussian process
(GP) defines a distribution over functions, and the parameters of the GP – its
mean and its kernel – determine the properties of the functions [25]. There
is a broad choice of available kernels that induce function distributions with
particular properties; for example distributions over functions that are linear,
polynomial, periodic, or uncorrelated noise. A pictorial overview of this system
is shown in Figure 9.2.

9.3.1 The Grammar Over Kernels

As mentioned above, a grammar over GP kernels makes it possible to repre-
sent many interesting properties of functions, and gives a systematic way of
constructing distributions over such functions. This grammer over kernels is
compositional: it comprises a set of fixed base kernels, and kernel operators

9.3. AN AUTOMATIC STATISTICIAN FOR TIME SERIES DATA 179

that make it possible to compose new kernels from existing ones. This gram-
mar was carefully chosen to be interpretable: each expression in the grammar
defines a kernel that can be described with a simple but descriptive set of words
in human language.

The base kernels in the grammar are: C (constant) Lin (linear), SE (squared
exponential), Per (periodic), and WN (white noise). The kernel operators are:
+ (addition), × (multiplication), and CP (a change point operator), defined as
follows:

(k1 + k2)(x, x′) = k1(x, x′) + k2(x, x′)

(k1 × k2)(x, x′) = k1(x, x′)× k2(x, x′)

CP(k1, k2)(x, x′) = k1(x, x′)σ(x)σ(x′) + k2(x, x′) (1− σ(x)) (1− σ(x′))

where σ(x) = 1
2

(
1 + tanh l−x

s

)
is a sigmoidal function, and l and s are param-

eters of the change point. The base kernels can be arbitrarily combined using
the above operators to produce new kernels.

The infinite space of kernels defined by this grammar allows a large class of
interesting distributions over functions to be searched, evaluated, and described
in an automated way. This type of grammar was first described in [10] for
matrix factorization problems, and then refined in [5] and [18] for GP models.

9.3.2 The Search and Evaluation Procedure

ABCD performs a greedy search over the space of models (as defined by the
grammar). The kernel parameters of each proposed model are optimised by a
conjugate-gradient method; the model with optimised parameters is then eval-
uated using the Bayesian Information Criterion [29]:

BIC(M) = −2 log p(D‖M) + |M | logN (9.1)

where M is the optimised model, p(D‖M) is the marginal likelihood of the
model integrating out the latent GP function, |M | is the number of kernel
parameters in M , and N is the size of the dataset. The Bayesian Information
Criterion trades off model complexity and fit to the data, and approximates
the full marginal likelihood (which integrates out both latent functions and
hyperparameters).

The best-scoring model in each round is used to construct new proposed
models, either by: (1) expanding the kernel with production rules from the
grammar, such as introducing a sum, product, or change point; or (2) mutating
the kernel by swapping out a base kernel for a different one. The new set of
proposed kernels is then evaluated in the next round. It is possible with the
above rules that a kernel expression gets proposed several times, but a well-
implemented system will keep records and only ever evaluate each expression
once. The search and evaluation procedure stops either when the score of all
newly proposed models is worse than the best model from the previous round,
or when a pre-defined search depth is exceeded.

180 CHAPTER 9. THE AUTOMATIC STATISTICIAN

An automatic report for the dataset : 10-sulphuric

The Automatic Statistician

Abstract

This report was produced by the Automatic Bayesian Covariance Discovery
(ABCD) algorithm.

1 Executive summary

The raw data and full model posterior with extrapolations are shown in figure 1.

Raw data

1960 1965 1970 1975 1980 1985 1990 1995
0

50

100

150

200

250

Figure 1: Raw data (left) and model posterior with extrapolation (right)

The structure search algorithm has identified nine additive components in the data. The first 4
additive components explain 90.5% of the variation in the data as shown by the coefficient of de-
termination (R2) values in table 1. The first 8 additive components explain 99.8% of the variation
in the data. After the first 6 components the cross validated mean absolute error (MAE) does not
decrease by more than 0.1%. This suggests that subsequent terms are modelling very short term
trends, uncorrelated noise or are artefacts of the model or search procedure. Short summaries of the
additive components are as follows:

• A very smooth function.
• A constant. This function applies from 1964 until 1990.
• An approximately periodic function with a period of 1.0 years.
• A smooth function. This function applies from 1969 until 1977.
• A smooth function. This function applies from 1964 until 1969 and from 1977 onwards.
• A periodic function with a period of 2.6 years. This function applies until 1964.
• Uncorrelated noise. This function applies until 1964.
• Uncorrelated noise. This function applies from 1964 until 1990.
• Uncorrelated noise. This function applies from 1990 onwards.

Model checking statistics are summarised in table 2 in section 4. These statistics have revealed
statistically significant discrepancies between the data and model in component 1.

The rest of the document is structured as follows. In section 2 the forms of the additive components
are described and their posterior distributions are displayed. In section 3 the modelling assumptions

1

An automatic report for the dataset : 03-mauna

The Automatic Statistician

Abstract

This report was produced by the Automatic Bayesian Covariance Discovery
(ABCD) algorithm.

1 Executive summary

The raw data and full model posterior with extrapolations are shown in figure 1.

Raw data

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005
−30

−20

−10

0

10

20

30

40

Figure 1: Raw data (left) and model posterior with extrapolation (right)

The structure search algorithm has identified five additive components in the data. The first additive
component explains 98.6% of the variation in the data as shown by the coefficient of determination
(R2) values in table 1. The first 2 additive components explain 99.9% of the variation in the data.
After the first 3 components the cross validated mean absolute error (MAE) does not decrease by
more than 0.1%. This suggests that subsequent terms are modelling very short term trends, uncor-
related noise or are artefacts of the model or search procedure. Short summaries of the additive
components are as follows:

• A very smooth monotonically increasing function.

• An approximately periodic function with a period of 1.0 years.

• A smooth function.

• Uncorrelated noise.

• A rapidly varying smooth function.

Model checking statistics are summarised in table 2 in section 4. These statistics have not revealed
any inconsistencies between the model and observed data.

The rest of the document is structured as follows. In section 2 the forms of the additive components
are described and their posterior distributions are displayed. In section 3 the modelling assumptions
of each component are discussed with reference to how this affects the extrapolations made by the
model. Section 4 discusses model checking statistics, with plots showing the form of any detected
discrepancies between the model and observed data.

1

An automatic report for the dataset : 02-solar

The Automatic Statistician

Abstract

This report was produced by the Automatic Bayesian Covariance Discovery
(ABCD) algorithm.

1 Executive summary

The raw data and full model posterior with extrapolations are shown in figure 1.

Raw data

1650 1700 1750 1800 1850 1900 1950 2000 2050
1360

1360.5

1361

1361.5

1362

Figure 1: Raw data (left) and model posterior with extrapolation (right)

The structure search algorithm has identified eight additive components in the data. The first 4
additive components explain 92.3% of the variation in the data as shown by the coefficient of de-
termination (R2) values in table 1. The first 6 additive components explain 99.7% of the variation
in the data. After the first 5 components the cross validated mean absolute error (MAE) does not
decrease by more than 0.1%. This suggests that subsequent terms are modelling very short term
trends, uncorrelated noise or are artefacts of the model or search procedure. Short summaries of the
additive components are as follows:

• A constant.
• A constant. This function applies from 1643 until 1716.
• A smooth function. This function applies until 1643 and from 1716 onwards.
• An approximately periodic function with a period of 10.8 years. This function applies until

1643 and from 1716 onwards.
• A rapidly varying smooth function. This function applies until 1643 and from 1716 on-

wards.
• Uncorrelated noise with standard deviation increasing linearly away from 1837. This func-

tion applies until 1643 and from 1716 onwards.
• Uncorrelated noise with standard deviation increasing linearly away from 1952. This func-

tion applies until 1643 and from 1716 onwards.
• Uncorrelated noise. This function applies from 1643 until 1716.

Model checking statistics are summarised in table 2 in section 4. These statistics have revealed
statistically significant discrepancies between the data and model in component 8.

1

Automatic construction and description of nonparametric models
James Robert Lloyd1, David Duvenaud1, Roger Grosse2,

Joshua B. Tenenbaum2, Zoubin Ghahramani1

1: Department of Engineering, University of Cambridge, UK 2: Massachusetts Institute of Technology, USA

This analysis was automatically generated Modelling structure through
Gaussian process kernels

• The kernel specifies which structures are likely under the GP prior
- which determines the generalisation properties of the model.

Squared
Exponential (SE)

Periodic
(Per)

Linear
(Lin)

local variation repeating structure linear functions

• Composite kernels can express many types of structure

Lin⇥ Lin SE⇥ Per Lin + Per SE + Per

quadratic
functions

locally
periodic

periodic
with trend

periodic
with noise

SE⇥ Lin Lin⇥ Per SE1 + SE2 SE1 ⇥ SE2

increasing
variation

growing
amplitude

f1(x1) +f2(x2) f (x1, x2)

• Building composite kernels previously required human expertise

We can build models by a greedy search

No structure

SE Lin

Lin + Per Lin⇥ SE

Lin⇥ SE + SE . . . Lin⇥ (SE + Per)

.

. . .

. . . Lin⇥ Per

Per

Automatically describing model properties

How to automatically describe arbitrarily complex kernels:

• The kernel is distributed into a sum of products

• Sums of kernels are sums of functions so each product is described separately

• Each kernel in a product modifies the model in a consistent way. . .

• . . . so one kernel is described by a noun phrase, and the others modify it

• Text descriptions are complemented by plots of the posterior

Kernels can be distributed into a sum of products

SE⇥
�
Lin + Per + SE

�

becomes (after simplification)

(SE⇥ Lin) + (SE⇥ Per) + (SE).

Sums of kernels correspond to sums of functions

entire signal

= + +

SE⇥ Lin SE⇥ Per SE
smooth trend + periodicity + short-term deviation

If f1(x) ⇠ gp(0, k1) and f2(x) ⇠ gp(0, k2) then f1(x)+f2(x) ⇠ gp(0, k1+k2).
Therefore, a sum of kernels can be described as a sum of independent functions.

Each kernel in a product roughly corresponds to an adjective

Kernel How it modifies the prior

SE functions change smoothly
Per functions repeat
Lin standard deviation varies linearly

Example description

SE|{z}
approximately

⇥ Per|{z}
periodic function

⇥ Lin|{z}
with linearly growing amplitude

Per has been chosen to act as the noun while SE and Lin modify the description

Code available at github.com/jamesrobertlloyd/gpss-research

Automatic construction and description of nonparametric models
James Robert Lloyd1, David Duvenaud1, Roger Grosse2,

Joshua B. Tenenbaum2, Zoubin Ghahramani1

1: Department of Engineering, University of Cambridge, UK 2: Massachusetts Institute of Technology, USA

This analysis was automatically generated Modelling structure through
Gaussian process kernels

• The kernel specifies which structures are likely under the GP prior
- which determines the generalisation properties of the model.

Squared
Exponential (SE)

Periodic
(Per)

Linear
(Lin)

local variation repeating structure linear functions

• Composite kernels can express many types of structure

Lin⇥ Lin SE⇥ Per Lin + Per SE + Per

quadratic
functions

locally
periodic

periodic
with trend

periodic
with noise

SE⇥ Lin Lin⇥ Per SE1 + SE2 SE1 ⇥ SE2

increasing
variation

growing
amplitude

f1(x1) +f2(x2) f (x1, x2)

• Building composite kernels previously required human expertise

We can build models by a greedy search

No structure

SE Lin

Lin + Per Lin⇥ SE

Lin⇥ SE + SE . . . Lin⇥ (SE + Per)

.

. . .

. . . Lin⇥ Per

Per

Automatically describing model properties

How to automatically describe arbitrarily complex kernels:

• The kernel is distributed into a sum of products

• Sums of kernels are sums of functions so each product is described separately

• Each kernel in a product modifies the model in a consistent way. . .

• . . . so one kernel is described by a noun phrase, and the others modify it

• Text descriptions are complemented by plots of the posterior

Kernels can be distributed into a sum of products

SE⇥
�
Lin + Per + SE

�

becomes (after simplification)

(SE⇥ Lin) + (SE⇥ Per) + (SE).

Sums of kernels correspond to sums of functions

entire signal

= + +

SE⇥ Lin SE⇥ Per SE
smooth trend + periodicity + short-term deviation

If f1(x) ⇠ gp(0, k1) and f2(x) ⇠ gp(0, k2) then f1(x)+f2(x) ⇠ gp(0, k1+k2).
Therefore, a sum of kernels can be described as a sum of independent functions.

Each kernel in a product roughly corresponds to an adjective

Kernel How it modifies the prior

SE functions change smoothly
Per functions repeat
Lin standard deviation varies linearly

Example description

SE|{z}
approximately

⇥ Per|{z}
periodic function

⇥ Lin|{z}
with linearly growing amplitude

Per has been chosen to act as the noun while SE and Lin modify the description

Code available at github.com/jamesrobertlloyd/gpss-research

Automatic construction and description of nonparametric models
James Robert Lloyd1, David Duvenaud1, Roger Grosse2,

Joshua B. Tenenbaum2, Zoubin Ghahramani1

1: Department of Engineering, University of Cambridge, UK 2: Massachusetts Institute of Technology, USA

This analysis was automatically generated Modelling structure through
Gaussian process kernels

• The kernel specifies which structures are likely under the GP prior
- which determines the generalisation properties of the model.

Squared
Exponential (SE)

Periodic
(Per)

Linear
(Lin)

local variation repeating structure linear functions

• Composite kernels can express many types of structure

Lin⇥ Lin SE⇥ Per Lin + Per SE + Per

quadratic
functions

locally
periodic

periodic
with trend

periodic
with noise

SE⇥ Lin Lin⇥ Per SE1 + SE2 SE1 ⇥ SE2

increasing
variation

growing
amplitude

f1(x1) +f2(x2) f (x1, x2)

• Building composite kernels previously required human expertise

We can build models by a greedy search

No structure

SE Lin

Lin + Per Lin⇥ SE

Lin⇥ SE + SE . . . Lin⇥ (SE + Per)

.

. . .

. . . Lin⇥ Per

Per

Automatically describing model properties

How to automatically describe arbitrarily complex kernels:

• The kernel is distributed into a sum of products

• Sums of kernels are sums of functions so each product is described separately

• Each kernel in a product modifies the model in a consistent way. . .

• . . . so one kernel is described by a noun phrase, and the others modify it

• Text descriptions are complemented by plots of the posterior

Kernels can be distributed into a sum of products

SE⇥
�
Lin + Per + SE

�

becomes (after simplification)

(SE⇥ Lin) + (SE⇥ Per) + (SE).

Sums of kernels correspond to sums of functions

entire signal

= + +

SE⇥ Lin SE⇥ Per SE
smooth trend + periodicity + short-term deviation

If f1(x) ⇠ gp(0, k1) and f2(x) ⇠ gp(0, k2) then f1(x)+f2(x) ⇠ gp(0, k1+k2).
Therefore, a sum of kernels can be described as a sum of independent functions.

Each kernel in a product roughly corresponds to an adjective

Kernel How it modifies the prior

SE functions change smoothly
Per functions repeat
Lin standard deviation varies linearly

Example description

SE|{z}
approximately

⇥ Per|{z}
periodic function

⇥ Lin|{z}
with linearly growing amplitude

Per has been chosen to act as the noun while SE and Lin modify the description

Code available at github.com/jamesrobertlloyd/gpss-research

that the test statistic was larger in magnitude under the posterior compared to the prior unexpectedly
often.

ACF Periodogram QQ
min min loc max max loc max min
1 0.502 0.582 0.341 0.413 0.341 0.679
2 0.802 0.199 0.558 0.630 0.049 0.785
3 0.251 0.475 0.799 0.447 0.534 0.769
4 0.527 0.503 0.504 0.481 0.430 0.616
5 0.493 0.477 0.503 0.487 0.518 0.381

Table 2: Model checking statistics for each component. Cumulative probabilities for minimum of
autocorrelation function (ACF) and its location. Cumulative probabilities for maximum of peri-
odogram and its location. p-values for maximum and minimum deviations of QQ-plot from straight
line.

The nature of any observed discrepancies is now described and plotted and hypotheses are given for
the patterns in the data that may not be captured by the model.

4.1 Moderately statistically significant discrepancies

4.1.1 Component 2 : An approximately periodic function with a period of 1.0 years

The following discrepancies between the prior and posterior distributions for this component have
been detected.

• The qq plot has an unexpectedly large positive deviation from equality (x = y). This
discrepancy has an estimated p-value of 0.049.

The positive deviation in the qq-plot can indicate heavy positive tails if it occurs at the right of the
plot or light negative tails if it occurs as the left.

QQ uncertainty plot for component 2

−250 −200 −150 −100 −50 0 50 100 150 200 250
−300

−200

−100

0

100

200

300

400

Figure 17: ACF (top left), periodogram (top right) and quantile-quantile (bottom left) uncertainty
plots. The blue line and shading are the pointwise mean and 90% confidence interval of the plots
under the prior distribution for component 2. The green line and green dashed lines are the corre-
sponding quantities under the posterior.

4.2 Model checking plots for components without statistically significant discrepancies

4.2.1 Component 1 : A very smooth monotonically increasing function

No discrepancies between the prior and posterior of this component have been detected

8

2.4 Component 4 : An approximately periodic function with a period of 10.8 years. This
function applies until 1643 and from 1716 onwards

This component is approximately periodic with a period of 10.8 years. Across periods the shape of
this function varies smoothly with a typical lengthscale of 36.9 years. The shape of this function
within each period is very smooth and resembles a sinusoid. This component applies until 1643 and
from 1716 onwards.

This component explains 71.5% of the residual variance; this increases the total variance explained
from 72.8% to 92.3%. The addition of this component reduces the cross validated MAE by 16.82%
from 0.18 to 0.15.

Posterior of component 4

1650 1700 1750 1800 1850 1900 1950 2000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6
Sum of components up to component 4

1650 1700 1750 1800 1850 1900 1950 2000
1360

1360.5

1361

1361.5

1362

Figure 8: Pointwise posterior of component 4 (left) and the posterior of the cumulative sum of
components with data (right)

Figure 9: Pointwise posterior of residuals after adding component 4

that the test statistic was larger in magnitude under the posterior compared to the prior unexpectedly
often.

ACF Periodogram QQ
min min loc max max loc max min
1 0.502 0.582 0.341 0.413 0.341 0.679
2 0.802 0.199 0.558 0.630 0.049 0.785
3 0.251 0.475 0.799 0.447 0.534 0.769
4 0.527 0.503 0.504 0.481 0.430 0.616
5 0.493 0.477 0.503 0.487 0.518 0.381

Table 2: Model checking statistics for each component. Cumulative probabilities for minimum of
autocorrelation function (ACF) and its location. Cumulative probabilities for maximum of peri-
odogram and its location. p-values for maximum and minimum deviations of QQ-plot from straight
line.

The nature of any observed discrepancies is now described and plotted and hypotheses are given for
the patterns in the data that may not be captured by the model.

4.1 Moderately statistically significant discrepancies

4.1.1 Component 2 : An approximately periodic function with a period of 1.0 years

The following discrepancies between the prior and posterior distributions for this component have
been detected.

• The qq plot has an unexpectedly large positive deviation from equality (x = y). This
discrepancy has an estimated p-value of 0.049.

The positive deviation in the qq-plot can indicate heavy positive tails if it occurs at the right of the
plot or light negative tails if it occurs as the left.

Figure 17: ACF (top left), periodogram (top right) and quantile-quantile (bottom left) uncertainty
plots. The blue line and shading are the pointwise mean and 90% confidence interval of the plots
under the prior distribution for component 2. The green line and green dashed lines are the corre-
sponding quantities under the posterior.

4.2 Model checking plots for components without statistically significant discrepancies

4.2.1 Component 1 : A very smooth monotonically increasing function

No discrepancies between the prior and posterior of this component have been detected

8

(a)

(b) (c)

(d)

Figure 9.2: A flow diagram describing a report-writing Automatic Statistician
for time-series data. (a) The input to the system is data, in this case represented
as time series. (b) The system searches over a grammar of models to discover
a good interpretation of the data, using Bayesian inference to score models. (c)
Components of the model discovered are translated into English phrases. (d)
The end result is a report with text, figures and tables, describing in detail what
has been inferred about the data, including a section on model checking and
criticism [8, 20].

This greedy search procedure is not guaranteed to find the best model in
the language for any given dataset: a better model might be hiding in one of
the subtrees that weren’t expanded out. Finding the globally best model isn’t
usually essential, as long as a good interpretable models is found in a reasonable
amount of time. There are other ways of conducting the search and evaluation
of models. For example, Malkomes et al. [22] describe a kernel search procedure
based on Bayesian optimisation. Janz et al. [14] implemented a kernel search
method using particle filtering and Hamiltonian Monte Carlo.

9.3.3 Generating Descriptions in Natural Language

When the search procedure terminates, it produces a list of kernel expressions
and their scores on the dataset. The expression with the best score is then used
to generate a natural-language description. To convert a kernel to a description
in natural language, the kernel is first converted to a canonical form, using the
following process:

1. Nested sums and products are flattened into a sum of products form.

2. Some products of kernels can be simplified into base kernels with modified
parameters, for example: SE × SE → SE∗, C × k → k∗ for any k, and

9.3. AN AUTOMATIC STATISTICIAN FOR TIME SERIES DATA 181

WN× k →WN∗ for any k ∈ {C,SE,WN,Per}.

After applying these rules, the kernel expression is a sum of product terms,
where each product term has the following canonical form:

k ×
∏

m

Lin(m) ×
∏

n

σ(n) (9.2)

where σ(x, x′) = σ(x)σ(x′) is a product of two sigmoid functions, and k has

one of the following forms: 1, WN, C, SE,
∏
j Per

(j), or SE×∏j Per
(j). The

notation
∏
j k

(j) stands for products of kernels, each with separate parameters.

In this canonical form, the kernel is a sum of products, and the number
of terms in the sum is described first: “The structure search algorithm has
identified N additive components in the data.” This sentence is then followed
by a description of each additive component (i.e. each product in the sum),
using the following algorithm:

1. Choose one of the kernels in the product to be the noun descriptor.
A heuristic recommended by Lloyd et al. [18] is to pick according to the

following preference: Per > {C,SE,WN} > ∏j Lin
(j) >

∏
j σ

(j), where
Per is the most preferred.

2. Convert the chosen kernel type to a string using this table:

WN “uncorrelated noise” SE “smooth function”
Per “periodic function” Lin “linear function”

C “constant”
∏
j Lin

(j) “polynomial”

3. The other kernels in the product are converted to post-modifier expres-
sions that are appended to the noun descriptor. The post modifiers are
converted using this table:

SE “whose shape changes smoothly”
Per “modulated by a periodic function”
Lin “with linearly varying amplitude”∏
j Lin

(j) “with polynomially varying amplitude”∏
j σ

(j) “which applies from / until [changepoint]”

4. Further refinements to the description are possible, including insights from
kernel parameters, or extra information calculated from the data. Some
of these refinements are described in [18].

More details on the translation of kernel expressions to natural language can be
found in [18] and [19].

9.3.4 Comparison with Humans

An interesting question to consider is to what extent predictions made by an
Automated Statistician (such as the ABCD algorithm) are human-like, and

182 CHAPTER 9. THE AUTOMATIC STATISTICIAN
2.4 Component 4 : An approximately periodic function with a period of 10.8 years. This

function applies until 1643 and from 1716 onwards

This component is approximately periodic with a period of 10.8 years. Across periods the shape of
this function varies smoothly with a typical lengthscale of 36.9 years. The shape of this function
within each period is very smooth and resembles a sinusoid. This component applies until 1643 and
from 1716 onwards.

This component explains 71.5% of the residual variance; this increases the total variance explained
from 72.8% to 92.3%. The addition of this component reduces the cross validated MAE by 16.82%
from 0.18 to 0.15.

Posterior of component 4

1650 1700 1750 1800 1850 1900 1950 2000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6
Sum of components up to component 4

1650 1700 1750 1800 1850 1900 1950 2000
1360

1360.5

1361

1361.5

1362

Figure 8: Pointwise posterior of component 4 (left) and the posterior of the cumulative sum of
components with data (right)

Residuals after component 4

1650 1700 1750 1800 1850 1900 1950 2000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Figure 9: Pointwise posterior of residuals after adding component 4

Figure 9.3: Extract from an automatically generated report that describes the
model components discovered by ABCD. This part of the report isolates and
describes the approximately 11-year sunspot cycle, also noting its disappearance
during the 16th century, a time period known as the Maunder minimum. This
figure is reproduced from [18].

how they compare to predictions made with other methods that are also based
on Gaussian processes. To answer that question, Schulz et al. [28] presented
participants with the task of extrapolating from a given set of data, and choosing
a preferred extrapolation from a given set. The results were encouraging for
composite kernel search in two ways: Firstly, the participants preferred the
extrapolations made by ABCD over those made with Spectral Kernels [36], and
over those made with a simple RBF (radial basis function) kernel. Secondly,
when human participants were asked to extrapolate the data themselves, their
predictions were most similar to those given by the ABCD’s composite search
procedure.

One of the design goals of a report-writing Automatic Statistician is the
ability to explain its findings in terms that are understandable by humans. The
system described earlier restricts itself to a space of models that can be explained
in human language using simple terms, even though this design choice may come
at the cost of predictive accuracy. In general, it is not straight-forward to mea-
sure the interpretability of machine learning systems; one possible framework is
suggested by Doshi-Velez and Kim [4]. We note in passing that not all machine
learning systems require such functionality. For example, when the results of
a system have little impact on society, especially in terms of social norms and
interactions, it is acceptable to optimise for performance or accuracy instead
(e.g. recognising post codes for automatic mail sorting).

9.4. OTHER AUTOMATIC STATISTICIAN SYSTEMS 183

9.4 Other Automatic Statistician Systems

The ability to generate human-readable reports is perhaps one of the distin-
guishing features of Automatic Statistician systems. But, as mentioned earlier,
software of this nature can serve other purposes as well. For example, users
might be interested in raw predictions from the data (with or without explana-
tions), or they might want to the system to make data-driven decisions directly
on their behalf.

Also, it is possible to build Automatic Statistician systems for model families
that are different from Gaussian processes or grammars. For example, we built
Automated Statistician systems for regression [5, 18], classification [23, 12], uni-
variate and multivariate data; systems based on various different model classes,
and systems with and without intelligent resource control. This section discusses
some of the design elements that are shared across many Automatic Statistician
systems.

9.4.1 Core Components

One of the key tasks that an Automatic Statistician has to perform is to select,
evaluate, and compare models. These types of task can be run concurrently,
but they have interdependencies. For example, the evaluation of a set of models
might influence the selection of the next set of models.

Most generally, the selection strategy component in our system is respon-
sible for choosing models to evaluate: it might choose from a fixed or open-ended
family of models, or it might generate and refine models based on the evaluation
and comparison of previously chosen models. Sometimes, the types of the vari-
ables in the dataset (whether inferred from the data or annotated by the user)
influence which models might be chosen by the selection strategy. For example,
one might want to distinguish continuous and discrete data, and to use different
treatments for categorical and ordinal data.

The model evaluation task trains a given model on part of the user-
supplied dataset, and then produces a score by testing the model on held-out
data. Some models do not require a separate training phase and can produce a
log-likelihood for the entire dataset directly. Model evaluation is probably one
of the most important tasks to parallelise: at any given time, multiple selected
models can be evaluated simultaneously, on multiple CPUs or even multiple
computers.

The report curator component is the piece of software that decides which
results to include in the final report. For example, it might include sections
that describe the best fitting models, along with extrapolations, graphs, or data
tables. Depending on the evaluation results, the report curator might choose to
include additional material, such as data falsification / model criticism sections,
recommendations, or a summary. In some systems the deliverable might be
something other than a report, such as raw predictions, parameter settings, or
model source code.

184 CHAPTER 9. THE AUTOMATIC STATISTICIAN

In interactive systems, a data loading stage provides an instant summary
about the uploaded dataset, and allows the user to correct any assumptions
about the format of the data. The user can make type annotations, remove
columns from the dataset, choose an output variable (e.g. for classification),
and specify the analyses that should be run.

9.4.2 Design Challenges

User Interaction

While the aim of an Automatic Statistician is to automate all aspects of data
handling (from low-level tasks such as formatting and clean-up, to high-level
tasks such as model construction, evaluation, and criticism), it is also useful to
give users the option to interact with the system and influence the choices it
makes. For example, users might want to specify which parts or which aspects
of the data they are interested in, and which parts can be ignored. Some users
might want to choose the family of models that the system will consider in the
model construction or evaluation phase. Finally, the system may want to engage
in a dialogue with the user to explore or explain what it found in the data. Such
interactivity needs to be supported by the underlying system.

Missing and Messy Data

A common problem with real-world datasets is that they may have missing or
corrupt entries, unit or formatting inconsistencies, or other kinds of defects.
These kinds of defects may require some pre-processing of the data, and while
many decisions could be made automatically, some might benefit from interac-
tion with the user. Good models can handle missing data directly, and as long
as the missing data is detected correctly by the data loading stage, everything
should be fine. But there are some data models that cannot handle missing
data natively. In such cases, it might be useful to perform data imputation to
feed these models a version of the dataset that has the missing values filled in.
This imputation task itself is performed by a model that is trained on the data.
Examples of such techniques include e.g. MissForest [31], MissPaLasso [30],
mice [3], KNNimpute [34], and Bayesian approaches [7, 1].

Resource Allocation

Another important aspect of an Automatic Statistician is resource usage. For
example, a user might only have a limited number of CPU cores available, or
might be interested to get the best possible report within a fixed time limit,
e.g. before a given deadline. To make good model selection and evaluation
choices, an intelligent system might take into account such resource constraints.
The ability to do so will affect the overall usability of the system.

9.5. CONCLUSION 185

Even when there are no direct constraints on computation time, CPU cores,
or memory usage, an intelligent system might benefit from allocating resources
to models whose evaluation is promising for the chosen deliverable. Such func-
tionality can be implemented for models that support some form of gradual
evaluation, for example by training incrementally on increasingly large subsets
of the dataset. One of our systems used a variant of Freeze-thaw Bayesian
optimisation [32] for this purpose.

9.5 Conclusion

Our society has entered an era of abundant data. Analysis and exploration of
the data is essential for harnessing the benefits of this growing resource. Un-
fortunately, the growth of data currently outpaces our ability to analyse it,
especially because this task still largely rests on human experts. But many as-
pects of machine learning and data analysis can be automated, and one guiding
principle in pursuit of this goal is to “apply machine learning to itself”.

The Automatic Statistician project aims to automate data science by taking
care of all aspect of data modelling, from data pre-processing, modelling and
evaluation, to the generation of useful and transparent results. All these tasks
should be performed in a way that requires little user expertise, minimises the
amount of user interaction, and makes intelligent and controlled use of compu-
tational resources.

While this aim is ambitious, and a lot of the work still needs to happen,
encouraging progress has been made towards the creation of such automated
systems. Multiple Automatic Statistician systems have been built, each with
slight differences in purpose and underlying technology, but they all share the
same intent and much of the same design philosophy. We hope that the cre-
ation of such instruments will bring the ability to gain insights from data to a
larger group of people, and help empower society to make great use of our data
resources.

Acknowledgements

The authors would like to thank Tameem Adel Hesham, Lars Kotthoff, and
Frank Hutter for helpful feedback.

Bibliography

[1] Allingham, J.U.: Unsupervised automatic dataset repair. Master’s thesis
in advanced computer science, Computer Laboratory, University of Cam-
bridge (2018)

[2] Bishop, C.M.: Pattern recognition and machine learning. Information sci-
ence and statistics, Springer (2006)

186 CHAPTER 9. THE AUTOMATIC STATISTICIAN

[3] van Buuren, S., Groothuis-Oudshoorn, K.: mice: Multivariate imputation
by chained equations in R. Journal of Statistical Software 45(3) (2011)

[4] Doshi-Velez, F., Kim, B.: Towards a rigorous science of interpretable ma-
chine learning (Mar 2017), http://arxiv.org/abs/1702.08608

[5] Duvenaud, D., Lloyd, J.R., Grosse, R., Tenenbaum, J.B., Ghahramani,
Z.: Structure discovery in nonparametric regression through compositional
kernel search. In: Proceedings of the 30th International Conference on
Machine Learning (Jun 2013)

[6] Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., Hut-
ter, F.: Efficient and robust automated machine learning. In: Cortes, C.,
Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in
Neural Information Processing Systems 28, pp. 2962–2970. Curran Asso-
ciates, Inc. (2015)

[7] Garriga Alonso, A.: Probability density imputation of missing data with
Gaussian Mixture Models. MSc thesis, University of Oxford (2017)

[8] Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A., Rubin,
D.B.: Bayesian Data Analysis, Third Edition. Chapman & Hall/CRC Texts
in Statistical Science. Taylor & Francis (2013)

[9] Ghahramani, Z.: Probabilistic machine learning and artificial intelligence.
Nature 521, 452—-459 (2015)

[10] Grosse, R.B., Salakhutdinov, R., Tenenbaum, J.B.: Exploiting composi-
tionality to explore a large space of model structures. In: Uncertainty in
Artificial Intelligence (2012)

[11] Hand, D.J.: Patterns in statistical strategy. In: Gale, W.A. (ed.) Artificial
intelligence and statistics (1986)

[12] He, Q.: The Automatic Statistician for Classification. Master’s thesis,
Department of Engineering, University of Cambridge (May 2016)

[13] Hwang, Y., Tong, A., Choi, J.: Automatic construction of nonparametric
relational regression models for multiple time series. In: Balcan, M.F.,
Weinberger, K.Q. (eds.) ICML 2016: Proceedings of the 33rd International
Conference on Machine Learning. Proceedings of Machine Learning Re-
search, vol. 48, pp. 3030–3039. PLMR (2016)

[14] Janz, D., Paige, B., Rainforth, T., van de Meent, J.W., Wood, F.: Prob-
abilistic structure discovery in time series data (2016), https://arxiv.

org/abs/1611.06863

[15] Kim, H., Teh, Y.W.: Scaling up the Automatic Statistician: Scalable struc-
ture discovery using Gaussian processes. In: Storkey, A., Perez-Cruz, F.

http://arxiv.org/abs/1702.08608
https://arxiv.org/abs/1611.06863
https://arxiv.org/abs/1611.06863

BIBLIOGRAPHY 187

(eds.) Proceedings of the 21st International Conference on Artificial Intel-
ligence and Statistics. Proceedings of Machine Learning Research, vol. 84,
pp. 575–584. PLMR (2018)

[16] King, R.D., Whelan, K.E., Jones, F.M., Reiser, P.G.K., Bryant, C.H.,
Muggleton, S.H., Kell, D.B., Oliver, S.G.: Functional genomic hypothesis
generation and experimentation by a robot scientist. Nature 427(6971),
247––252 (2004)

[17] Kotthoff, L., Thornton, C., Hoos, H.H., Hutter, F., Leyton-Brown, K.:
Auto-WEKA 2.0: Automatic model selection and hyperparameter opti-
mization in WEKA. Journal of Machine Learning Research 18(25), 1–5
(2017)

[18] Lloyd, J.R., Duvenaud, D., Grosse, R., Tenenbaum, J.B., Ghahramani, Z.:
Automatic construction and natural-language description of nonparamet-
ric regression models. In: Twenty-Eighth AAAI Conference on Artificial
Intelligence (AAAI-14) (2014)

[19] Lloyd, J.R.: Representation, learning, description and criticism of proba-
bilistic models with applications to networks, functions and relational data.
Ph.D. thesis, Department of Engineering, University of Cambridge (Dec
2014)

[20] Lloyd, J.R., Ghahramani, Z.: Statistical model criticism using kernel two
sample tests. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M.,
Garnett, R. (eds.) Advances in Neural Information Processing Systems 28.
pp. 829–837. Curran Associates, Inc. (2015)

[21] MacKay, D.J.C.: Bayesian interpolation. Neural Computation 4(3), 415–
447 (1992), see [24] for additional discussion and illustration.

[22] Malkomes, G., Schaff, C., Garnett, R.: Bayesian optimization for auto-
mated model selection. In: Lee, D.D., Sugiyama, M., von Luxburg, U.,
Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing
Systems 29, pp. 2900–2908. Curran Associates, Inc. (2016)

[23] Mrkšić, N.: Kernel Structure Discovery for Gaussian Process Classification.
Master’s thesis, Computer Laboratory, University of Cambridge (Jun 2014)

[24] Murray, I., Ghahramani, Z.: A note on the evidence and Bayesian Oc-
cam’s razor. Tech. Rep. GCNU-TR 2005-003, Gatsby Computational Neu-
roscience Unit, University College London (2005)

[25] Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learn-
ing. MIT Press (2006), http://www.gaussianprocess.org/gpml/

[26] Schmidt, M., Lipson, H.: Distilling free-form natural laws from experimen-
tal data. Science 324(5923), 81–85 (2009)

http://www.gaussianprocess.org/gpml/

188 CHAPTER 9. THE AUTOMATIC STATISTICIAN

[27] Schmidt, M., Lipson, H.: Symbolic regression of implicit equations. In:
Riolo, R., O’Reilly, U.M., McConaghy, T. (eds.) Genetic Programming
Theory and Practice VII, pp. 73–85. Springer, Boston, MA (2010)

[28] Schulz, E., Tenenbaum, J., Duvenaud, D.K., Speekenbrink, M., Gershman,
S.J.: Probing the compositionality of intuitive functions. In: Lee, D.D.,
Sugiyama, M., von Luxburg, U., Guyon, I., Garnett, R. (eds.) Advances in
Neural Information Processing Systems 29, pp. 3729–3737. Curran Asso-
ciates, Inc. (2016)

[29] Schwarz, G.: Estimating the dimension of a model. The Annals of Statistics
6(2), 461–464 (1978)

[30] Städler, N., Stekhoven, D.J., Bühlmann, P.: Pattern alternating maximiza-
tion algorithm for missing data in high-dimensional problems. Journal of
Machine Learning Research 15, 1903–1928 (Jun 2014)

[31] Stekhoven, D.J., Bühlmann, P.: MissForest — non-parametric missing
value imputation for mixed-type data. Bioinformatics 28(1), 112–118 (Nov
2011)

[32] Swersky, K., Snoek, J., Adams, R.P.: Freeze-thaw Bayesian optimization
(Jun 2014), http://arxiv.org/abs/1406.3896

[33] Thornton, C., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Auto-WEKA:
Combined selection and hyperparameter optimization of classification al-
gorithms. In: Proceedings of the 19th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining. pp. 847–855. KDD ’13,
ACM, New York, NY, USA (2013)

[34] Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshi-
rani, R., Botstein, D., Altman, R.B.: Missing value estimation methods for
DNA microarrays. Bioinformatics pp. 520–525 (Jun 2001)

[35] Valera, I., Ghahramani, Z.: Automatic discovery of the statistical types
of variables in a dataset. In: Precup, D., Teh, Y.W. (eds.) ICML 2017:
Proceedings of the 34th International Conference on Machine Learning.
Proceedings of Machine Learning Research, vol. 70, pp. 3521–3529. PLMR
(2017)

[36] Wilson, A.G., Adams, R.P.: Gaussian process kernels for pattern discovery
and extrapolation. In: Dasgupta, S., McAllester, D. (eds.) ICML 2013:
Proceedings of the 30th International Conference on Machine Learning.
JLMR Proceedings, vol. 28, pp. 1067–1075. JLMR.org (Jun 2013)

[37] Wolstenholme, D.E., O’Brien, C.M., Nelder, J.A.: GLIMPSE: a knowledge-
based front end for statistical analysis. Knowledge-Based Systems 1(3),
173–178 (1988)

http://arxiv.org/abs/1406.3896

Part III

AutoML Challenges

189

Chapter 10

Analysis of the AutoML
Challenge series 2015-2018

Isabelle Guyon and Lisheng Sun-Hosoya and Marc Boullé and Hugo Jair Es-
calante and Sergio Escalera and Zhengying Liu and Damir Jajetic and Bisakha
Ray and Mehreen Saeed and Michèle Sebag and Alexander Statnikov and Wei-
Wei Tu and Evelyne Viegas

Abstract

The ChaLearn AutoML Challenge1 (NIPS 2015 - ICML 2016) consisted of
six rounds of a machine learning competition of progressive difficulty, subject
to limited computational resources. It was followed by a one-round AutoML
challenge (PAKDD 2018). The AutoML setting differs from former model
selection/hyper-parameter selection challenges, such as the one we previously
organized for NIPS 2006: the participants aim to develop fully automated and
computationally efficient systems, capable of being trained and tested with-
out human intervention, with code submission. This chapter analyzes the re-
sults of these competitions and provides details about the datasets, which were
not revealed to the participants. The solutions of the winners are systemat-
ically benchmarked over all datasets of all rounds and compared with canon-
ical machine learning algorithms available in scikit-learn. All materials dis-
cussed in this chapter (data and code) have been made publicly available at
http://automl.chalearn.org/.

This chapter is in part based on material that has appeared previously [36,
33, 32, 34].

1The authors are in alphabetical order of last name, except the first author who did most
of the writing and the second author who produced most of the numerical analyses and plots.

191

http://automl.chalearn.org/

192 CHAPTER 10. AUTOML CHALLENGES

10.1 Introduction

Until about ten years ago, machine learning (ML) was a discipline little known
to the public. For ML scientists, it was a “seller’s market”: they were producing
hosts of algorithms in search for applications and were constantly looking for new
interesting datasets. Large internet corporations accumulating massive amounts
of data such as Google, Facebook, Microsoft and Amazon have popularized the
use of ML and data science competitions have engaged a new generation of
young scientists in this wake. Nowadays, government and corporations keep
identifying new applications of ML and with the increased availability of open
data, we have switched to a “buyer’s market”: everyone seems to be in need
of a learning machine. Unfortunately however, learning machines are not yet
fully automatic: it is still difficult to figure out which software applies to which
problem, how to horseshoe-fit data into a software and how to select (hyper-
)parameters properly. The ambition of the ChaLearn AutoML challenge series
is to channel the energy of the ML community to reduce step by step the need
for human intervention in applying ML to a wide variety of practical problems.

Full automation is an unbounded problem since there can always be novel
settings, which have never been encountered before. Our first challenges Au-
toML1 were limited to:

• Supervised learning problems (classification and regression).

• Feature vector representations.

• Homogeneous datasets (same distribution in the training, validation,
and test set).

• Medium size datasets of less than 200 MBytes.

• Limited computer resources with execution times of less than 20 min-
utes per dataset on an 8 core x86 64 machine with 56 GB RAM.

We excluded unsupervised learning, active learning, transfer learning, and causal
discovery problems, which are all very dear to us and have been addressed in past
ChaLearn challenges [31], but which require each a different evaluation setting,
thus making result comparisons very difficult. We did not exclude the treatment
of video, images, text, and more generally time series and the selected datasets
actually contain several instances of such modalities. However, they were first
preprocessed in a feature representation, thus de-emphasizing feature learning.
Still, learning from data pre-processed in feature-based representations already
covers a lot of grounds and a fully automated method resolving this restricted
problem would already be a major advance in the field.

Within this constrained setting, we included a variety of difficulties:

• Different data distributions: the intrinsic/geometrical complexity of
the dataset.

• Different tasks: regression, binary classification, multi-class classifica-
tion, multi-label classification.

10.1. INTRODUCTION 193

• Different scoring metrics: AUC, BAC, MSE, F1, etc. (see Section 10.4.2).

• Class balance: Balanced or unbalanced class proportions.

• Sparsity: Full matrices or sparse matrices.

• Missing values: Presence or absence of missing values.

• Categorical variables: Presence or absence of categorical variables.

• Irrelevant variables: Presence or absence of additional irrelevant vari-
ables (distractors).

• Number Ptr of training examples: Small or large number of training
examples.

• Number N of variables/features: Small or large number of variables.

• Ratio Ptr/N of the training data matrix: Ptr � N,Ptr = N or
Ptr � N .

In this setting, the participants had to face many modeling/hyper-parameter
choices. Some other, equally important, aspects of automating machine learn-
ing were not addressed in this challenge and are left for future research. Those
include data “ingestion” and formatting, pre-processing and feature/represen-
tation learning, detection and handling of skewed/biased data, inhomogeneous,
drifting, multi-modal, or multi-view data (hinging on transfer learning), match-
ing algorithms to problems (which may include supervised, unsupervised, or
reinforcement learning, or other settings), acquisition of new data (active learn-
ing, query learning, reinforcement learning, causal experimentation), manage-
ment of large volumes of data including the creation of appropriately-sized and
stratified training, validation, and test sets, selection of algorithms that satisfy
arbitrary resource constraints at training and run time, the ability to generate
and reuse workflows, and generating meaningful reports.

This challenge series started with the NIPS 2006 “model selection game”2 [37],
where the participants were provided with a machine learning toolbox based on
the Matlab toolkit CLOP [1] built on top of the “Spider” package [69]. The
toolkit provided a flexible way of building models by combining preprocessing,
feature selection, classification and post-processing modules, also enabling the
building of ensembles of classifiers. The goal of the game was to build the
best hyper-model: the focus was on model selection, not on the development of
new algorithms. All problems were feature-based binary classification problems.
Five datasets were provided. The participants had to submit the schema of their
model. The model selection game confirmed the effectiveness of cross-validation
(the winner invented a new variant called cross-indexing) and emphasized the
need to focus more on search effectiveness with the deployment of novel search
techniques such as particle swarm optimization.

New in the 2015/2016 AutoML challenge, we introduced the notion of “task”:
each dataset was supplied with a particular scoring metric to be optimized and
a time budget. We initially intended to vary widely the time budget from

2http://clopinet.com/isabelle/Projects/NIPS2006/

http://clopinet.com/isabelle/Projects/NIPS2006/

194 CHAPTER 10. AUTOML CHALLENGES

dataset to dataset in an arbitrary way. We ended up fixing it to 20 minutes
for practical reasons (except for Round 0 where the time budget ranged from
100 to 300 seconds). However, because the datasets varied in size, this put
pressure on the participants to manage their allotted time. Other elements of
novelty included the freedom of submitting any Linux executable. This was
made possible by using automatic execution on the open-source platform Co-
dalab3. To help the participants we provided a starting kit in Python based on
the scikit-learn library [55]4. This induced many of them to write a wrapper
around scikit-learn. This has been the strategy of the winning entry “auto-
sklearn” [26, 25, 27, 28]5. Following the AutoML challenge, we organized a
“beat auto-sklearn” game on a single dataset (madeline), in which the partic-
ipants could provide hyper-parameters “by hand” to try to beat auto-sklearn.
But nobody could beat auto-sklearn! Not even their designers. The participants
could submit a json file which describes a sklearn model and hyper-parameter
settings, via a GUI interface. This interface allows researchers who want to
compare their search methods with auto-sklearn to use the exact same set of
hyper-models.

A large number of satellite events including bootcamps, summer schools, and
workshops have been organized in 2015/2016 around the AutoML challenge.6

The AutoML challenge was part of the official selection of the competition pro-
gram of IJCNN 2015 and 2016 and the results were discussed at the AutoML
and CiML workshops at ICML and NIPS in 2015 and 2016. Several publica-
tions accompanied these events: in [33] we describe the details of the design of
the AutoML challenge7. In [32] and [34] we review milestone and final results
presented at the ICML 2015 and 2016 AutoML workshops. The 2015/2016
AutoML challenge had 6 rounds introducing 5 datasets each. We also orga-
nized a follow-up event for the PAKDD conference 20188 in only 2 phases, with
5 datasets in the development phase and 5 datasets in the final “blind test”
round.

Going beyond the former published analyses, this chapter presents system-
atic studies of the winning solutions on all the datasets of the challenge and
conducts comparisons with commonly used learning machines implemented in
scikit-learn. It provides unpublished details about the datasets and reflective
analyses.

3http://competitions.codalab.org
4http://scikit-learn.org/
5https://automl.github.io/auto-sklearn/stable/
6 See http://automl.chalearn.org.
7http://codalab.org/AutoML
8https://www.4paradigm.com/competition/pakdd2018

http://competitions.codalab.org
http://scikit-learn.org/
https://automl.github.io/auto-sklearn/stable/
http://automl.chalearn.org
http://codalab.org/AutoML
https://www.4paradigm.com/competition/pakdd2018

10.2. PROBLEM FORMALIZATION AND OVERVIEW 195

10.2 Problem Formalization and Overview

10.2.1 Scope of the Problem

This challenge series focuses on supervised learning in ML and, in particular,
solving classification and regression problems, without any further human in-
tervention, within given constraints. To this end, we released a large number
of datasets pre-formatted in given feature representations (i.e., each example
consists of a fixed number of numerical coefficients; more in Section 10.3).

The distinction between input and output variables is not always made in ML
applications. For instance, in recommender systems, the problem is often stated
as making predictions of missing values for every variable rather than predicting
the values of a particular variable [58]. In unsupervised learning [30], the purpose
is to explain data in a simple and compact way, eventually involving inferred
latent variables (e.g., class membership produced by a clustering algorithm).

We consider only the strict supervised learning setting where data present
themselves as identically and independently distributed input-output pairs. The
models used are limited to fixed-length vectorial representations, excluding
problems of time series prediction. Text, speech, and video processing tasks
included in the challenge have been preprocessed into suitable fixed-length vec-
torial representations.

The difficulty of the proposed tasks lies in the data complexity (class imbal-
ance, sparsity, missing values, categorical variables). The testbed is composed of
data from a wide variety of domains. Although there exist ML toolkits that can
tackle all of these problems, it still requires considerable human effort to find,
for a given dataset, task, evaluation metric, the methods and hyper-parameter
settings that maximize performance subject to a computational constraint. The
participant challenge is to create the perfect black box that removes human in-
teraction, alleviating the shortage of data scientists in the coming decade.

10.2.2 Full Model Selection

We refer to participant solutions as hyper-models to indicate that they are built
from simpler components. For instance, for classification problems, participants
might consider a hyper-model that combines several classification techniques
such as nearest neighbors, linear models, kernel methods, neural networks, and
random forests. More complex hyper-models may also include preprocessing,
feature construction, and feature selection modules.

Generally, a predictive model of the form y = f(x;α) has:
• a set of parameters α = [α0, α1, α2, ..., αn];

• a learning algorithm (referred to as trainer), which serves to optimize the
parameters using training data;

• a trained model (referred to as predictor) of the form y = f(x) produced by
the trainer;

• a clear objective function J(f), which can be used to assess the model’s
performance on test data.

196 CHAPTER 10. AUTOML CHALLENGES

Consider now the model hypothesis space defined by a vector θ = [θ1, θ2, ..., θn]
of hyper-parameters. The hyper-parameter vector may include not only param-
eters corresponding to switching between alternative models, but also modeling
choices such as preprocessing parameters, type of kernel in a kernel method,
number of units and layers in a neural network, or training algorithm regu-
larization parameters [59]. Some authors refer to this problem as full model
selection [24, 62], others as the CASH problem (Combined Algorithm Selection
and Hyperparameter optimization) [65]. We will denote hyper-models as

y = f(x;θ) = f(x;α(θ),θ), (10.1)

where the model parameter vector α is an implicit function of the hyper-
parameter vector θ obtained by using a trainer for a fixed value of θ, and
training data composed of input-output pairs {xi, yi}. The participants have to
devise algorithms capable of training the hyper-parameters θ. This may require
intelligent sampling of the hyper-parameter space and splitting the available
training data into subsets for both training and evaluating the predictive power
of solutions—one or multiple times.

As an optimization problem, model selection is a bi-level optimization pro-
gram [18, 19, 7]; there is a lower objective J1 to train the parameters α of the
model, and an upper objective J2 to train the hyper-parameters θ, both opti-
mized simultaneously (see Figure 10.1). As a statistics problem, model selection
is a problem of multiple testing in which error bars on performance prediction ε
degrade with the number of models/hyper-parameters tried or, more generally,
the complexity of the hyper-model C2(θ). A key aspect of AutoML is to avoid
overfitting the upper-level objective J2 by regularizing it, much in the same way
as lower level objectives J1 are regularized.

The problem setting also lends itself to using ensemble methods, which let
several “simple” models vote to make the final decision [15, 29, 16]. In this case,
the parameters θ may be interpreted as voting weights. For simplicity we lump
all parameters in a single vector, but more elaborate structures, such as trees
or graphs can be used to define the hyper-parameter space [66].

10.2.3 Optimization of Hyper-Parameters

Everyone who has worked with data has had to face some common modeling
choices: scaling, normalization, missing value imputation, variable coding (for
categorical variables), variable discretization, degree of nonlinearity and model
architecture, among others. ML has managed to reduce the number of hyper-
parameters and produce black-boxes to perform tasks such as classification and
regression [40, 21]. Still, any real-world problem requires at least some prepa-
ration of the data before it can be fitted into an “automatic” method, hence
requiring some modeling choices. There has been much progress on end-to-end
automatic ML for more complex tasks such as text, image, video, and speech
processing with deep-learning methods [6]. However, even these methods have
many modeling choices and hyper-parameters.

10.2. PROBLEM FORMALIZATION AND OVERVIEW 197

Input

Output

Hyperparameters

Parameters

(a)

Hyperparameters (θ)

Parameters (α)

αθargminθ Rcv[f(. ; α , θ)] argminα Rtr[f(. ; α , θ)]J2 J1

(b)

Figure 10.1: Bi-level optimization. (a) Representation of a learning ma-
chine with parameters and hyper-parameters to be adjusted. (b) De-coupling
of parameter and hyper-parameter adjustment in two levels. The upper level
objective J2 optimizes the hyper-parameters θ; the lower objective J1 optimizes
the parameters α.

While producing models for a diverse range of applications has been a fo-
cus of the ML community, little effort has been devoted to the optimization
of hyper-parameters. Common practices that include trial and error and grid
search may lead to overfitting models for small datasets or underfitting models
for large datasets. By overfitting we mean producing models that perform well
on training data but perform poorly on unseen data, i.e., models that do not gen-
eralize. By underfitting we mean selecting too simple a model, which does not
capture the complexity of the data, and hence performs poorly both on training
and test data. Despite well-optimized off-the-shelf algorithms for optimizing
parameters, end-users are still responsible for organizing their numerical exper-
iments to identify the best of a number of models under consideration. Due to
lack of time and resources, they often perform model/hyper-parameter selection
with ad hoc techniques. [42, 47] examine fundamental, common mistakes such
as poor construction of training/test splits, inappropriate model complexity,
hyper-parameter selection using test sets, misuse of computational resources,
and misleading test metrics, which may invalidate an entire study. Participants
must avoid these flaws and devise systems that can be blind-tested.

An additional twist of our problem setting is that code is tested with limited
computational resources. That is, for each task an arbitrary limit on execution
time is fixed and a maximum amount of memory is provided. This places a
constraint on the participant to produce a solution in a given time, and hence
to optimize the model search from a computational point of view. In summary,
participants have to jointly address the problem of over-fitting/under-fitting and

198 CHAPTER 10. AUTOML CHALLENGES

000

100 010 001

110 101 011

111

(a) Filter

100

000

010 001

110 101 011

111

(b) Wrapper

000

100 010 001

110 101 011

111

(c) Embedded

Figure 10.2: Approaches to two-level inference. (a) Filter methods
select the hyper-parameters without adjusting the learner parameters. (No
arrows indicates no parameter training.) (b) Wrapper methods select the
hyper-parameters using trained learners, treating them as black-boxes. (c) Em-
bedded methods use knowledge of the learner structure and/or parameters
to guide the hyper-parameter search.

the problem of efficient search for an optimal solution, as stated in [43]. In prac-
tice, the computational contraints have turned out to be far more challenging
to challenge participants than the problem of overfitting. Thus the main contri-
butions have been to devise novel efficient search techniques with cutting-edge
optimization methods.

10.2.4 Strategies of Model Search

Most practitioners use heuristics such as grid search or uniform sampling to
sample θ space, and use k-fold cross-validation as the upper-level objective J2

[20]. In this framework, the optimization of θ is not performed sequentially
[8]. All the parameters are sampled along a regular scheme, usually in linear
or log scale. This leads to a number of possibilities that exponentially increases
with the dimension of θ. k-fold cross-validation consists of splitting the dataset
into k folds; (k − 1) folds are used for training and the remaining fold is used
for testing; eventually, the average of the test scores obtained on the k folds is
reported. Note that some ML toolkits currently support cross-validation. There
is a lack of principled guidelines to determine the number of grid points and the
value of k (with the exception of [20]), and there is no guidance for regularizing
J2, yet this simple method is a good baseline approach.

Efforts have been made to optimize continuous hyper-parameters with bilevel
optimization methods, using either the k-fold cross-validation estimator [7, 50]
or the leave-one-out estimator as the upper-level objective J2. The leave-one-out
estimator may be efficiently computed, in closed form, as a by-product of train-
ing only one predictor on all the training examples (e.g., virtual-leave-one-out
[38]). The method was improved by adding a regularization of J2 [17]. Gradi-
ent descent has been used to accelerate the search, by making a local quadratic

10.2. PROBLEM FORMALIZATION AND OVERVIEW 199

approximation of J2 [44]. In some cases, the full J2(θ) can be computed from
a few key examples [39, 54]. Other approaches minimize an approximation or
an upper bound of the leave-one-out error, instead of its exact form [53, 68].
Nevertheless, these methods are still limited to specific models and continuous
hyper-parameters.

An early attempt at full model selection was the pattern search method
that uses k-fold cross-validation for J2. It explores the hyper-parameter space
by steps of the same magnitude, and when no change in any parameter fur-
ther decreases J2, the step size is halved and the process repeated until the
steps are deemed sufficiently small [49]. [24] addressed the full model selection
problem using Particle Swarm Optimization, which optimizes a problem by hav-
ing a population of candidate solutions (particles), and moving these particles
around the hyper-parameter space using the particle’s position and velocity. k-
fold cross-validation is also used for J2. This approach retrieved the winning
model in ∼ 76% of the cases. Overfitting was controlled heuristically with early
stopping and the proportion of training and validation data was not optimized.
Although progress has been made in experimental design to reduce the risk of
overfitting [42, 47], in particular by splitting data in a principled way [61], to
our knowledge, no one has addressed the problem of optimally splitting data.

While regularizing the second level of inference is a recent addition to the
frequentist ML community, it has been an intrinsic part of Bayesian model-
ing via the notion of hyper-prior. Some methods of multi-level optimization
combine importance sampling and Monte-Carlo Markov Chains [2]. The field
of Bayesian hyper-parameter optimization has rapidly developed and yielded
promising results, in particular by using Gaussian processes to model general-
ization performance [60, 63]. But Tree-structured Parzen Estimator (TPE) ap-
proaches modeling P (x|y) and P (y) rather than modeling P (y|x) directly [10, 9]
have been found to outperform GP-based Bayesian optimization for structured
optimization problems with many hyperparameters including discrete ones [23].
The central idea of these methods is to fit J2(θ) to a smooth function in an
attempt to reduce variance and to estimate the variance in regions of the hyper-
parameter space that are under-sampled to guide the search towards regions
of high variance. These methods are inspirational and some of the ideas can
be adopted in the frequentist setting. For instance, the random-forest-based
SMAC algorithm [41], which has helped speed up both local search and tree
search algorithms by orders of magnitude on certain instance distributions, has
also been found to be very effective for the hyper-parameter optimization of ma-
chine learning algorithms, scaling better to high dimensions and discrete input
dimensions than other algorithms [23]. We also notice that Bayesian optimiza-
tion methods are often combined with other techniques such as meta-learning
and ensemble methods [25] in order to gain advantage in some challenge settings
with a time limit [32]. Some of these methods consider jointly the two-level op-
timization and take time cost as a critical guidance for hyper-parameter search
[64, 45].

Besides Bayesian optimization, several other families of approaches exist in
the literature and have gained much attention with the recent rise of deep learn-

200 CHAPTER 10. AUTOML CHALLENGES

ing. Ideas borrowed from reinforcement learning have recently been used to con-
struct optimal neural network architectures [70, 4]. These approaches formulate
the hyper-parameter optimization problem in a reinforcement learning flavor,
with for example states being the actual hyper-parameter setting (e.g., net-
work architecture), actions being adding or deleting a module (e.g., a CNN
layer or a pooling layer), and reward being the validation accuracy. They can
then apply off-the-shelf reinforcement learning algorithms (e.g., RENFORCE,
Q-learning, Monte-Carlo Tree Search) to solve the problem. Other architec-
ture search methods use evolutionary algorithms [57, 3]. These approaches
consider a set (population) of hyper-parameter settings (individuals), modify
(mutate and reproduce) and eliminate unpromising settings according to their
cross-validation score (fitness). After several generations, the global quality of
the population increases. One important common point of reinforcement learn-
ing and evolutionary algorithms is that they both deal with the exploration-
exploitation trade-off. Despite the impressive results, these approaches require
a huge amount of computational resources and some (especially evolutionary al-
gorithms) are hard to scale. [56] recently proposed weight sharing among child
models to speed up the process considerably [70] while achieving comparable
results.

Note that splitting the problem of parameter fitting into two levels can be
extended to more levels, at the expense of extra complexity—i.e., need for a
hierarchy of data splits to perform multiple or nested cross-validation [22], in-
sufficient data to train and validate at the different levels, and increase of the
computational load.

Table 10.1 shows a typical example of multi-level parameter optimization
in a frequentist setting. We assume that we are using an ML toolbox with
two learning machines: Kridge (kernel ridge regression) and Neural (a neural
network a.k.a. “deep learning” model). At the top level we use a test pro-
cedure to assess the performance of the final model (this is not an inference
level). The top-level inference algorithm Validation({GridCV(Kridge, MSE),
GridCV(Neural, MSE)}, MSE) is decomposed into its elements recursively. Val-
idation uses the data split D = [DTr, DV a] to compare the learning machines
Kridge and Neural (trained using DTr on the validation set DV a, using the
mean-square error (MSE) evaluation function. The algorithm GridCV, a grid
search with 10-fold cross-validation (CV) MSE evaluation function, then opti-
mizes the hyper-parameters θ. Internally, both Kridge and Neural use virtual
leave-one-out (LOO) cross-validation to adjust γ and a classical L2 regularized
risk functional to adjust α.

Borrowing from the conventional classification of feature selection methods
[46, 11, 38], model search strategies can be categorized into filters, wrappers,
and embedded methods (see Figure 10.2). Filters are methods for narrowing
down the model space, without training the learner. Such methods include
preprocessing, feature construction, kernel design, architecture design, choice of
prior or regularizers, choice of noise model, and filter methods for feature selec-
tion. Although some filters use training data, many incorporate human prior
knowledge of the task or knowledge compiled from previous tasks. Recently, [5]

10.2. PROBLEM FORMALIZATION AND OVERVIEW 201

Table 10.1

Typical example of multi-level inference algorithm. The top-level al-
gorithm Validation({GridCV(Kridge, MSE), GridCV(Neural, MSE)}, MSE) is
decomposed into its elements recursively. Calling the method “train” on it us-
ing data DTrV a results in a function f , then tested with test(f,MSE,DTe).
The notation [.]CV indicates that results are averages over multiple data splits
(cross-validation). NA means “not applicable”. A model family F of param-
eters α and hyper-parameters θ is represented as f(θ,α). We derogate to the
usual convention of putting hyper-parameters last, the hyper-parameters are
listed in decreasing order of inference level. F , thought of as a bottom level al-
gorithm, does not perform any training: train(f(θ,α)) just returns the function
f(x;θ,α).

Level Algorithm Parameters Optimization Data
Fixed Varying performed split

NA f All All Performance assessment (no
inference).

DTe

4 Validation None All Final algorithm selection us-
ing validation data.

D =
[DTr, DV a]

3 GridCV model in-
dex i

θ, γ,α 10-fold CV on regularly sam-
pled values of θ.

DTr =
[Dtr, Dva]CV

2 Kridge(θ)
Neural(θ)

i,θ γ,α Virtual LOO CV to select
regularization parameter γ

Dtr =
[D
\{d}
tr , d]CV

1 Kridge(θ, γ)
Neural(θ, γ)

i,θ, γ α Matrix inversion of gradient
descent to compute α.

Dtr

0 Kridge(θ, γ,α)
Neural(θ, γ,α)

All None NA NA

202 CHAPTER 10. AUTOML CHALLENGES

proposed to apply collaborative filtering methods to model search. Wrapper
methods consider learners as a black-box capable of learning from examples
and making predictions once trained. They operate with a search algorithm in
the hyper-parameter space (grid search or stochastic search) and an evaluation
function assessing the trained learner’s performance (cross-validation error or
Bayesian evidence). Embedded methods are similar to wrappers, but they
exploit the knowledge of the machine learning algorithm to make the search
more efficient. For instance, some embedded methods compute the leave-one-
out solution in a closed form, without leaving anything out, i.e., by performing
a single model training on all the training data (e.g., [38]). Other embedded
methods jointly optimize parameters and hyper-parameters [44, 51, 50].

In summary, many authors focus only on the efficiency of search, ignoring
the problem of overfitting the second level objective J2, which is often chosen
to be k-fold cross-validation with an arbitrary value for k. Bayesian methods
introduce techniques of overfitting avoidance via the notion of hyper-priors, but
at the expense of making assumptions on how the data were generated and
without providing guarantees of performance. In all the prior approaches to
full model selection we know of, there is no attempt to treat the problem as
the optimization of a regularized functional J2 with respect to both (1) mod-
eling choices and (2) data split. Much remains to be done to jointly address
statistical and computational issues. The AutoML challenge series offers bench-
marks to compare and contrast methods addressing these problems, free of the
inventor/evaluator bias.

10.3 Data

We gathered a first pool of 70 datasets during the summer 2014 with the help
of numerous collaborators and ended up selecting 30 datasets for the 2015/2016
challenge (see Table 10.2 and the appendix), chosen to illustrate a wide variety
of domains of applications: biology and medicine, ecology, energy and sustain-
ability management, image, text, audio, speech, video and other sensor data
processing, internet social media management and advertising, market analysis
and financial prediction. We preprocessed data to obtain feature representa-
tions (i.e., each example consists of a fixed number of numerical coefficients).
Text, speech, and video processing tasks were included in the challenge, but not
in their native variable-length representations.

For the 2018 challenge, three datasets from the first pool (but unused in the
first challenge) were selected and 7 new datasets collected by the new organizers
and sponsors were added (see Table 10.3 and the appendix).

Some datasets were obtained from public sources, but they were reformatted
into new representations to conceal their identity, except for the final round
of the 2015/2016 challenge and the final phase of the 2018 challenge, which
included completely new data.

In the 2015/2016 challenge, data difficulty progressively increased from round
to round. Round 0 introduced five (public) datasets from previous challenges

10.3. DATA 203
R

n
d

D
A

T
A

S
E

T
T

a
sk

M
et

ri
c

T
im

e
C

C
b

a
l

S
p

a
rs

e
M

is
s

C
a
t

Ir
r

P
te

P
v
a

P
tr

N
P

tr
/
N

0
1

A
D

U
L
T

m
u

lt
il

a
b

el
F

1
3
0
0

3
1

0
.1

6
0
.0

1
1

1
0
.5

9
7
6
8

4
8
8
4

3
4
1
9
0

2
4

1
4
2
4
.5

8
0

2
C

A
D

A
T

A
re

g
re

ss
io

n
R

2
2
0
0

0
N

a
N

0
0

0
0
.5

1
0
6
4
0

5
0
0
0

5
0
0
0

1
6

3
1
2
.5

0
3

D
IG

IT
S

m
u

lt
ic

la
ss

B
A

C
3
0
0

1
0

1
0
.4

2
0

0
0
.5

3
5
0
0
0

2
0
0
0
0

1
5
0
0
0

1
5
6
8

9
.5

7
0

4
D

O
R

O
T

H
E

A
b

in
a
ry

A
U

C
1
0
0

2
0
.4

6
0
.9

9
0

0
0
.5

8
0
0

3
5
0

8
0
0

1
0
0
0
0
0

0
.0

1
0

5
N

E
W

S
G

R
O

U
P

S
m

u
lt

ic
la

ss
P

A
C

3
0
0

2
0

1
1

0
0

0
3
7
5
5

1
8
7
7

1
3
1
4
2

6
1
1
8
8

0
.2

1
1

1
C

H
R

IS
T

IN
E

b
in

a
ry

B
A

C
1
2
0
0

2
1

0
.0

7
1

0
0

0
.5

2
0
8
4

8
3
4

5
4
1
8

1
6
3
6

3
.3

1
1

2
J
A

S
M

IN
E

b
in

a
ry

B
A

C
1
2
0
0

2
1

0
.7

8
0

0
0
.5

1
7
5
6

5
2
6

2
9
8
4

1
4
4

2
0
.7

2
1

3
M

A
D

E
L

IN
E

b
in

a
ry

B
A

C
1
2
0
0

2
1

1
.2

e-
0
6

0
0

0
.9

2
3
2
4
0

1
0
8
0

3
1
4
0

2
5
9

1
2
.1

2
1

4
P

H
IL

IP
P

IN
E

b
in

a
ry

B
A

C
1
2
0
0

2
1

0
.0

0
1
2

0
0

0
.5

4
6
6
4

1
1
6
6

5
8
3
2

3
0
8

1
8
.9

4
1

5
S

Y
L
V

IN
E

b
in

a
ry

B
A

C
1
2
0
0

2
1

0
.0

1
0

0
0
.5

1
0
2
4
4

5
1
2
4

5
1
2
4

2
0

2
5
6
.2

2
1

A
L

B
E

R
T

b
in

a
ry

F
1

1
2
0
0

2
1

0
.0

4
9

0
.1

4
1

0
.5

5
1
0
4
8

2
5
5
2
6

4
2
5
2
4
0

7
8

5
4
5
1
.7

9
2

2
D

IL
B

E
R

T
m

u
lt

ic
la

ss
P

A
C

1
2
0
0

5
1

0
0

0
0
.1

6
9
7
2
0

4
8
6
0

1
0
0
0
0

2
0
0
0

5
2

3
F
A

B
E

R
T

m
u

lt
ic

la
ss

P
A

C
1
2
0
0

7
0
.9

6
0
.9

9
0

0
0
.5

2
3
5
4

1
1
7
7

8
2
3
7

8
0
0

1
0
.3

2
4

R
O

B
E

R
T

m
u

lt
ic

la
ss

B
A

C
1
2
0
0

1
0

1
0
.0

1
0

0
0

5
0
0
0

2
0
0
0

1
0
0
0
0

7
2
0
0

1
.3

9
2

5
V

O
L

K
E

R
T

m
u

lt
ic

la
ss

P
A

C
1
2
0
0

1
0

0
.8

9
0
.3

4
0

0
0

7
0
0
0

3
5
0
0

5
8
3
1
0

1
8
0

3
2
3
.9

4
3

1
A

L
E

X
IS

m
u

lt
il

a
b

el
A

U
C

1
2
0
0

1
8

0
.9

2
0
.9

8
0

0
0

1
5
5
6
9

7
7
8
4

5
4
4
9
1

5
0
0
0

1
0
.9

3
2

D
IO

N
IS

m
u

lt
ic

la
ss

B
A

C
1
2
0
0

3
5
5

1
0
.1

1
0

0
0

1
2
0
0
0

6
0
0
0

4
1
6
1
8
8

6
0

6
9
3
6
.4

7
3

3
G

R
IG

O
R

IS
m

u
lt

il
a
b

el
A

U
C

1
2
0
0

9
1

0
.8

7
1

0
0

0
9
9
2
0

6
4
8
6

4
5
4
0
0

3
0
1
5
6
1

0
.1

5
3

4
J
A

N
N

IS
m

u
lt

ic
la

ss
B

A
C

1
2
0
0

4
0
.8

7
.3

e-
0
5

0
0

0
.5

9
8
5
1

4
9
2
6

8
3
7
3
3

5
4

1
5
5
0
.6

1
3

5
W

A
L

L
IS

m
u

lt
ic

la
ss

A
U

C
1
2
0
0

1
1

0
.9

1
1

0
0

0
8
1
9
6

4
0
9
8

1
0
0
0
0

1
9
3
7
3
1

0
.0

5
4

1
E

V
IT

A
b

in
a
ry

A
U

C
1
2
0
0

2
0
.2

1
0
.9

1
0

0
0
.4

6
1
4
0
0
0

8
0
0
0

2
0
0
0
0

3
0
0
0

6
.6

7
4

2
F

L
O

R
A

re
g
re

ss
io

n
A

B
S

1
2
0
0

0
N

a
N

0
.9

9
0

0
0
.2

5
2
0
0
0

2
0
0
0

1
5
0
0
0

2
0
0
0
0
0

0
.0

8
4

3
H

E
L

E
N

A
m

u
lt

ic
la

ss
B

A
C

1
2
0
0

1
0
0

0
.9

6
e-

0
5

0
0

0
1
8
6
2
8

9
3
1
4

6
5
1
9
6

2
7

2
4
1
4
.6

7
4

4
T

A
N

IA
m

u
lt

il
a
b

el
P

A
C

1
2
0
0

9
5

0
.7

9
1

0
0

0
4
4
6
3
5

2
2
5
1
4

1
5
7
5
9
9

4
7
2
3
6

3
.3

4
4

5
Y

O
L

A
N

D
A

re
g
re

ss
io

n
R

2
1
2
0
0

0
N

a
N

1
e-

0
7

0
0

0
.1

3
0
0
0
0

3
0
0
0
0

4
0
0
0
0
0

1
0
0

4
0
0
0

5
1

A
R

T
U

R
O

m
u

lt
ic

la
ss

F
1

1
2
0
0

2
0

1
0
.8

2
0

0
0
.5

2
7
3
3

1
3
6
6

9
5
6
5

4
0
0

2
3
.9

1
5

2
C

A
R

L
O

b
in

a
ry

P
A

C
1
2
0
0

2
0
.0

9
7

0
.0

0
2
7

0
0

0
.5

1
0
0
0
0

1
0
0
0
0

5
0
0
0
0

1
0
7
0

4
6
.7

3
5

3
M

A
R

C
O

m
u

lt
il

a
b

el
A

U
C

1
2
0
0

2
4

0
.7

6
0
.9

9
0

0
0

2
0
4
8
2

2
0
4
8
2

1
6
3
8
6
0

1
5
2
9
9

1
0
.7

1
5

4
P

A
B

L
O

re
g
re

ss
io

n
A

B
S

1
2
0
0

0
N

a
N

0
.1

1
0

0
0
.5

2
3
5
6
5

2
3
5
6
5

1
8
8
5
2
4

1
2
0

1
5
7
1
.0

3
5

5
W

A
L

D
O

m
u

lt
ic

la
ss

B
A

C
1
2
0
0

4
1

0
.0

2
9

0
1

0
.5

2
4
3
0

2
4
3
0

1
9
4
3
9

2
7
0

7
2

T
ab

le
10

.2
:

D
a
ta

se
ts

o
f

th
e

2
0
1
5
/
2
0
1
6

A
u

to
M

L
ch

a
ll

e
n

g
e
.

C
=

n
u

m
b

er
o
f

cl
a
ss

es
.

C
b

a
l=

cl
a
ss

b
a
la

n
ce

.
S

p
a
rs

e=
sp

a
rs

it
y.

M
is

s=
fr

ac
ti

on
of

m
is

si
n

g
va

lu
es

.
C

a
t=

ca
te

go
ri

ca
l

va
ri

a
b

le
s.

Ir
r=

fr
a
ct

io
n

o
f

ir
re

le
va

n
t

va
ri

a
b

le
s.

P
te

,
P

va
,

P
tr

=
n
u

m
b

er
o
f

ex
am

p
le

s
of

th
e

te
st

,
va

li
d

at
io

n
,

an
d

tr
ai

n
in

g
se

ts
,

re
sp

ec
ti

ve
ly

.
N

=
n
u

m
b

er
o
f

fe
a
tu

re
s.

P
tr

/
N

=
a
sp

ec
t

ra
ti

o
o
f

th
e

d
a
ta

se
t.

204 CHAPTER 10. AUTOML CHALLENGES

Phase DATASET Cbal Sparse Miss Cat Irr Pte Pva Ptr N Ptr/N

1 1 ADA 1 0.67 0 0 0 41471 415 4147 48 86.39
1 2 ARCENE 0.22 0.54 0 0 0 700 100 100 10000 0.01
1 3 GINA 1 0.03 0.31 0 0 31532 315 3153 970 3.25
1 4 GUILLERMO 0.33 0.53 0 0 0 5000 5000 20000 4296 4.65
1 5 RL 0.10 0 0.11 1 0 24803 0 31406 22 1427.5
2 1 PM 0.01 0 0.11 1 0 20000 0 29964 89 224.71
2 2 RH 0.04 0.41 0 1 0 28544 0 31498 76 414.44
2 3 RI 0.02 0.09 0.26 1 0 26744 0 30562 113 270.46
2 4 RICCARDO 0.67 0.51 0 0 0 5000 5000 20000 4296 4.65
2 5 RM 0.001 0 0.11 1 0 26961 0 28278 89 317.73

Table 10.3: Datasets of the 2018 AutoML challenge. All tasks are binary
classification problems. The metric is the AUC for all tasks. The time budget
is also the same for all datasets (1200s). Phase 1 was the development phase
and phase 2 the final “blind test” phase.

illustrating the various difficulties encountered in subsequent rounds:

Novice. Binary classification problems only. No missing data; no categorical
features; moderate number of features (< 2, 000); balanced classes. Challenge
lies in dealing with sparse and full matrices, presence of irrelevant variables, and
various Ptr/N .

Intermediate. Binary and multi-class classification problems. Challenge lies
in dealing with unbalanced classes, number of classes, missing values, categori-
cal variables, and up to 7,000 features.

Advanced. Binary, multi-class, and multi-label classification problems. Chal-
lenge lies in dealing with up to 300,000 features.

Expert. Classification and regression problems. Challenge lies in dealing with
the entire range of data complexity.

Master. Classification and regression problems of all difficulties. Challenge lies
in learning from completely new datasets.

The datasets of the 2018 challenge were all binary classification problems.
Validation partitions were not used because of the design of this challenge, even
when they were available for some tasks. The three reused datasets had similar
difficulty as those of rounds 1 and 2 of the 2015/2016 challenge. However,
the 7 new data sets introduced difficulties that were not present in the former
challenge. Most notably an extreme class imbalance, presence of categorical
features and a temporal dependency among instances that could be exploited
by participants to develop their methods9. The datasets from both challenges
are downloadable from http://automl.chalearn.org/data.

9In RL, PM, RH, RI and RM datasets instances were chronologically sorted, this informa-
tion was made available to participants and could be used for developing their methods.

http://automl.chalearn.org/data

10.4. CHALLENGE PROTOCOL 205

10.4 Challenge Protocol

In this section, we describe design choices we made to ensure the thoroughness
and fairness of the evaluation. As previously indicated, we focus on supervised
learning tasks (classification and regression problems), without any human inter-
vention, within given time and computer resource constraints (Section 10.4.1),
and given a particular metric (Section 10.4.2), which varies from dataset to
dataset. During the challenges, the identity and description of the datasets is
concealed (except in the very first round or phase where sample data is dis-
tributed) to avoid the use of domain knowledge and to push participants to
design fully automated ML solutions. In the 2015/2016 AutoML challenge, the
datasets were introduced in a series of rounds (Section 10.4.3), alternating peri-
ods of code development (Tweakathon phases) and blind tests of code without
human intervention (AutoML phases). Either results or code could be submit-
ted during development phases, but code had to be submitted to be part of the
AutoML “blind test” ranking. In the 2018 edition of the AutoML challenge, the
protocol was simplified. We had only one round in two phases: a development
phase in which 5 datasets were released for practice purposes, and a final “blind
test” phase with 5 new datasets that were never used before.

10.4.1 Time Budget and Computational Resources

The Codalab platform provides computational resources shared by all partici-
pants. We used up to 10 compute workers processing in parallel the queue of
submissions made by participants. Each compute worker was equipped with 8
cores x86 64. Memory was increased from 24 GB to 56 GB after round 3 of
the 2015/2016 AutoML challenge. For the 2018 AutoML challenge computing
resources were reduced, as we wanted to motivate the development of more ef-
ficient yet effective AutoML solutions. We used 6 compute workers processing
in parallel the queue of submissions. Each compute worker was equipped with
2 cores x86 64 and 8 GB of memory.

To ensure fairness, when a code submission was evaluated, a compute worker
was dedicated to processing that submission only, and its execution time was
limited to a given time budget (which may vary from dataset to dataset). The
time budget was provided to the participants with each dataset in its info file.
It was generally set to 1200 seconds (20 minutes) per dataset, for practical
reasons, except in the first phase of the first round. However, the participants
did not know this ahead of time and therefore their code had to be capable to
manage a given time budget. The participants who submitted results instead of
code were not constrained by the time budget since their code was run on their
own platform. This was potentially advantageous for entries counting towards
the Final phases (immediately following a Tweakathon). Participants wishing
to also enter the AutoML (blind testing) phases, which required submitting
code, could submit both results and code (simultaneously). When results were
submitted, they were used as entries in the on-going phase. They did not need
to be produced by the submitted code; i.e., if a participant did not want to share

206 CHAPTER 10. AUTOML CHALLENGES

personal code, he/she could submit the sample code provided by the organizers
together with his/her results. The code was automatically forwarded to the
AutoML phases for “blind testing”. In AutoML phases, result submission was
not possible.

The participants were encouraged to save and submit intermediate results
so we could draw learning curves. This was not exploited during the challenge.
But we study learning curves in this chapter to evaluate the capabilities of
algorithms to quickly attain good performances.

10.4.2 Scoring Metrics

The scores are computed by comparing submitted predictions to reference tar-
get values. For each sample i, i = 1 : P (where P is the size of the validation
set or of the test set), the target value is a continuous numeric coefficient yi for
regression problems, a binary indicator in {0, 1} for two-class problems, or a vec-
tor of binary indicators [yil] in {0, 1} for multi-class or multi-label classification
problems (one per class l). The participants had to submit prediction values
matching as closely as possible the target values, in the form of a continuous nu-
meric coefficient qi for regression problems and a vector of numeric coefficients
[qil] in the range [0, 1] for multi-class or multi-label classification problems (one
per class l).

The provided starting kit contains an implementation in Python of all scoring
metrics used to evaluate the entries. Each dataset has its own scoring criterion
specified in its info file. All scores are normalized such that the expected value
of the score for a random prediction, based on class prior probabilities, is 0
and the optimal score is 1. Multi-label problems are treated as multiple binary
classification problems and are evaluated using the average of the scores of each
binary classification subproblem.

We first define the notation 〈·〉 for the average over all samples P indexed
by i. That is,

〈yi〉 = (1/P)

P∑

i=1

(yi). (10.2)

The score metrics are defined as follows:
R2. The coefficient of determination is used for regression problems only. The
metric is based on the mean squared error (MSE) and the variance (VAR), and
computed as

R2 = 1−MSE/VAR, (10.3)

where MSE = 〈(yi − qi)2〉 and VAR = 〈(yi −m)2〉, with m = 〈yi〉.
ABS. This coefficient is similar to R2 but based on the mean absolute error
(MAE) and the mean absolute deviation (MAD), and computed as

ABS = 1−MAE/MAD , (10.4)

where MAE = 〈abs(yi − qi)〉 and MAD = 〈abs(yi −m)〉.
BAC. Balanced accuracy is the average of class-wise accuracy for classification

10.4. CHALLENGE PROTOCOL 207

problems—and the average of sensitivity (true positive rate) and specificity (true
negative rate) for binary classification:

BAC =





1
2 [TP

P + TN
N], for binary

1
C

C∑
i=1

TPi
Ni

, for multi-class
(10.5)

where P (N) is the number of positive (negative) examples, TP (TN) is the
number of well classified positive (negative) examples, C is the number of classes,
TP i is the number of well classified examples of class i and Ni the number of
examples of class i.

For binary classification problems, the class-wise accuracy is the fraction
of correct class predictions when qi is thresholded at 0.5, for each class. For
multi-label problems, the class-wise accuracy is averaged over all classes. For
multi-class problems, the predictions are binarized by selecting the class with
maximum prediction value arg maxl qil before computing the class-wise accu-
racy.

We normalize the metric as follows:

|BAC | = (BAC −R)/(1−R), (10.6)

where R is the expected value of BAC for random predictions (i.e., R = 0.5 for
binary classification and R = (1/C) for C-class problems).

AUC. The area under the ROC curve is used for ranking and binary classifi-
cation problems. The ROC curve is the curve of sensitivity vs. 1-specificity at
various prediction thresholds. The AUC and BAC values are the same for binary
predictions. The AUC is calculated for each class separately before averaging
over all classes. We normalize the metric as

|AUC| = 2AUC − 1. (10.7)

F1 score. The harmonic mean of precision and recall is computed as

F1 = 2 ∗ (precision ∗ recall)/(precision + recall), (10.8)

precision = true positive/(true positive + false positive) (10.9)

recall = true positive/(true positive + false negative) (10.10)

Prediction thresholding and class averaging is handled similarly as in BAC. We
normalize the metric as follows:

|F1| = (F1−R)/(1−R), (10.11)

where R is the expected value of F1 for random predictions (see BAC).

PAC. Probabilistic accuracy is based on the cross-entropy (or log loss) and
computed as

PAC = exp(−CE), (10.12)

208 CHAPTER 10. AUTOML CHALLENGES

CE =





average
∑
l log(qil), for multi-class

−〈yi log(qi),

+(1− yi) log(1− qi)〉, for binary and multi-label

(10.13)

Class averaging is performed after taking the exponential in the multi-label
case. We normalize the metric as follows:

|PAC | = (PAC −R)/(1−R), (10.14)

where R is the score obtained using qi = 〈yi〉 or qil = 〈yil〉 (i.e., using as
predictions the fraction of positive class examples, as an estimate of the prior
probability).

Note that the normalization of R2, ABS, and PAC uses the average target
value qi = 〈yi〉 or qil = 〈yil〉. In contrast, the normalization of BAC, AUC, and
F1 uses a random prediction of one of the classes with uniform probability.

Only R2 and ABS are meaningful for regression; we compute the other met-
rics for completeness by replacing the target values with binary values after
thresholding them in the mid-range.

Table 10.4: Phases of round n in the 2015/2016 challenge. For each
dataset, one labeled training set is provided and two unlabeled sets (validation
set and test set) are provided for testing.

Phase in Goal Duration Submissions Data Leader- Prizes
round [n] board

scores

* AutoML[n] Blind Short NONE New datasets, Test Yes
test (code not set
of code migrated) downloadable results

Tweakathon[n] Manual Months Code and/ Datasets Validation No
tweaking or results downloadable set results

* Final[n] Results of Short NONE NA Test Yes
Tweakathon (results set
revealed migrated) results

10.4.3 Rounds and Phases in the 2015/2016 Challenge

The 2015/2016 challenge was run in multiple phases grouped in six rounds.
Round 0 (Preparation) was a practice round using publicly available datasets.
It was followed by five rounds of progressive difficulty (Novice, Intermediate,
Advanced, Expert, and Master). Except for rounds 0 and 5, all rounds included
three phases that alternated AutoML and Tweakathons contests. These phases
are described in Table 10.4.

Submissions were made in Tweakathon phases only. The results of the latest
submission were shown on the leaderboard and such submission automatically

10.4. CHALLENGE PROTOCOL 209

migrated to the following phase. In this way, the code of participants who aban-
doned before the end of the challenge had a chance to be tested in subsequent
rounds and phases. New participants could enter at any time. Prizes were
awarded in phases marked with a * during which there was no submission. To
participate in phase AutoML[n], code had to be submitted in Tweakathon[n-1].

In order to encourage participants to try GPUs and deep learning, a GPU
track sponsored by NVIDIA was included in Round 4.

To participate in the Final[n], code or results had to be submitted in Tweakathon[n].
If both code and (well-formatted) results were submitted, the results were used
for scoring rather than rerunning the code in Tweakathon[n] and Final[n]. The
code was executed when results were unavailable or not well formatted. Thus,
there was no disadvantage in submitting both results and code. If a partici-
pant submitted both results and code, different methods could be used to enter
the Tweakathon/Final phases and the AutoML phases. Submissions were made
only during Tweakathons, with a maximum of five submissions per day. Im-
mediate feedback was provided on the leaderboard on validation data. The
participants were ranked on the basis of test performance during the Final and
AutoML phases.

We provided baseline software using the ML library scikit-learn [55]. It
uses ensemble methods, which improve over time by adding more base learners.
Other than the number of base learners, the default hyper-parameter settings
were used. The participants were not obliged to use the Python language nor
the main Python script we gave as an example. However, most participants
found it convenient to use the main python script, which managed the sparse
format, the any-time learning settings and the scoring metrics. Many limited
themselves to search for the best model in the scikit-learn library. This shows
the importance of providing a good starting kit, but also the danger of biasing
results towards particular solutions.

10.4.4 Phases in the 2018 Challenge

The 2015/2016 AutoML challenge was very long and few teams participated
in all rounds. Further, even though there was no obligation to participate in
previous rounds to enter new rounds, new potential participants felt they would
be at a disadvantage. Hence, we believe it is preferable to organize recurrent
yearly events, each with their own workshop and publication opportunity. This
provides a good balance between competition and collaboration.

In 2018, we organized a single round of AutoML competition in two phases.
In this simplified protocol, the participants could practice on five datasets during
the first (development) phase, by either submitting code or results. Their per-
formances were revealed immediately, as they became available, on the leader-
board.

The last submission of the development phase was automatically forwarded
to the second phase: the AutoML “blind test” phase. In this second phase,
which was the only one counting towards the prizes, the participants’ code was
automatically evaluated on five new datasets on the Codalab platform. The

210 CHAPTER 10. AUTOML CHALLENGES

datasets were not revealed to the participants. Hence, submissions that did not
include code capable of being trained and tested automatically were not ranked
in the final phase and could not compete towards the prizes.

We provided the same starting kit as in the AutoML 2015/2016 challenge,
but the participants also had access to the code of the winners of the previous
challenge.

Table 10.5: Results of the 2015/2016 challenge winners. < R >
is the average rank over all five data sets of the round and it was used
to rank the participants. < S > is the average score over the five
data sets of the round. UP is the percent increase in performance be-
tween the average performance of the winners in the AutoML phase and
the Final phase of the same round. The GPU track was run in round
4. Team names are abbreviated as follows: aad=aad freiburg; djaj=djajetic;
marc=marc.boulle; tadej=tadejs; abhi=abhishek4; ideal=ideal.intel.analytics;
mat=matthias.vonrohr; lisheng=lise sun; asml=amsl.intel.com; jlr44 = back-
street.bayes; post = postech.mlg exbrain; ref=reference.

AutoML Final
Rnd Ended Winners < R > < S > Ended Winners < R > < S > UP (%)

1. ideal 1.40 0.8159
0 NA NA NA NA 02/14/15 2. abhi 3.60 0.7764 NA

3. aad 4.00 0.7714
1. aad 2.80 0.6401 1. aad 2.20 0.7479

1 02/15/15 2. jrl44 3.80 0.6226 06/14/15 2. ideal 3.20 0.7324 15
3. tadej 4.20 0.6456 3. amsl 4.60 0.7158
1. jrl44 1.80 0.4320 1. ideal 2.00 0.5180

2 06/15/15 2. aad 3.40 0.3529 11/14/15 2. djaj 2.20 0.5142 35
3. mat 4.40 0.3449 3. aad 3.20 0.4977
1. djaj 2.40 0.0901 1. aad 1.80 0.8071

3 11/15/15 2. NA NA NA 02/19/16 2. djaj 2.00 0.7912 481
3. NA NA NA 3. ideal 3.80 0.7547
1. aad 2.20 0.3881 1. aad 1.60 0.5238

4 02/20/16 2. djaj 2.20 0.3841 05/1/16 2. ideal 3.60 0.4998 31
3. marc 2.60 0.3815 3. abhi 5.40 0.4911

G 1. abhi 5.60 0.4913
P NA NA NA NA 05/1/16 2. djaj 6.20 0.4900 NA
U 3. aad 6.20 0.4884

1. aad 1.60 0.5282
5 05/1/16 2. djaj 2.60 0.5379 NA NA NA NA NA

3. post 4.60 0.4150

10.5 Results

This section provides a brief description of the results obtained during both
challenges, explains the methods used by the participants and their elements of
novelty, and provides the analysis of post-challenge experiments conducted to
answer specific questions on the effectiveness of model search techniques.

10.5. RESULTS 211

Table 10.6: Results of the 2018 challenge winners. Each phase was run
on 5 different datasets. We show the winners of the AutoML (blind test) phase
and for comparison their performances in the Feedback phase. The full tables
can be found at https://competitions.codalab.org/competitions/17767.

2. AutoML phase 1. Feedback phase
Ended Winners < R > < S > Ended Performance < R > < S >

1. aad freiburg 2.80 0.4341 aad freiburg 9.0 0.7422
2. narnars0 3.80 0.4180 narnars0 4.40 0.7324

03/31/18 3. wlWangl 5.40 0.3857 03/12/18 wlWangl 4.40 0.8029
3. thanhdng 5.40 0.3874 thanhdng 14.0 0.6845
3. Malik 5.40 0.3863 Malik 13.8 0.7116

10.5.1 Scores Obtained in the 2015/2016 Challenge

The 2015/2016 challenge lasted 18 months (December 8, 2014 to May 1, 2016).
By the end of the challenge, practical solutions were obtained and open-sourced,
such as the solution of the winners [25].

Table 10.5 presents the results on the test set in the AutoML phases (blind
testing) and the Final phases (one time testing on the test set revealed at the end
of the Tweakathon phases). Ties were broken by giving preference to the partic-
ipant who submitted first. The table only reports the results of the top-ranking
participants. We also show in Figure 10.3 a comparison of the leaderboard
performances of all participants. We plot in Figure 10.3(a) the Tweakathon
performances on the final test set vs. those on the validation set, which re-
veals no significant overfitting to the validation set, except for a few outliers.
In Figure 10.3(b) we report the performance in AutoML result (blind testing)
vs. Tweakathon final test results (manual adjustments possible). We see that
many entries were made in phase 1 (binary classification) and then participation
declined as the tasks became harder. Some participants put a lot of effort in
Tweakathons and far exceeded their AutoML performances (e.g. Djajetic and
AAD Freiburg).

There is still room for improvement, as revealed by the significant differences
remaining between Tweakathon and AutoML (blind testing) results (Table 10.5
and Figure 10.3-b). In Round 3, all but one participant failed to turn in working
solutions during blind testing, because of the introduction of sparse datasets.
Fortunately, the participants recovered, and, by the end of the challenge, sev-
eral submissions were capable of returning solutions on all the datasets of the
challenge. But learning schemas can still be optimized because, even discard-
ing Round 3, there is a 15 to 35% performance gap between AutoML phases
(blind testing with computational constraints) and Tweakathon phases (human
intervention and additional compute power). The GPU track offered (in round
4 only) a platform for trying Deep Learning methods. This allowed the par-
ticipants to demonstrate that, given additional compute power, deep learning

https://competitions.codalab.org/competitions/17767

212 CHAPTER 10. AUTOML CHALLENGES

(a) Leaderboard overfitting? (b) Gap AutoML/Tweakathon?

Figure 10.3: Performances of all participants in the 2015/2016 chal-
lenge. We show the last entry of all participants in all phases of the 2015/2016
challenge on all datasets from the competition leaderboards. The symbols are
color coded by round, as in Table 10.5. (a) Overfitting in Tweakathons? We
plot the performance on the final test set vs. the performance on the validation
set. The validation performances were visible to the participants on the leader-
board while they were tuning their models. The final test set performances were
only revealed at the end of the Tweakathon. Except for a few outliers, most
participants did not overfit the leaderboard. (b) Gap between AutoML and
Tweakathons? We plot the Tweakathons vs. AutoML performance to visual-
ize improvements obtained by manual tweaking and additional computational
resources available in Tweakathons. Points above the diagonal indicate such
improvements.

methods were competitive with the best solutions of the CPU track. However,
no Deep Learning method was competitive with the limited compute power and
time budget offered in the CPU track.

10.5.2 Scores Obtained in the 2018 Challenge

The 2018 challenge lasted 4 months (November 30, 2017 to March 31, 2018). As
in the previous challenge, top-ranked solutions were obtained and open sourced.
Table 10.6 shows the results of both phases of the 2018 challenge. As a reminder,
this challenge had a feedback phase and a blind test phase, the performances of
the winners in each phase are reported.

Performance in this challenge was slightly lower than that observed in the
previous edition. This was due to the difficulty of the tasks (see below) and
the fact that data sets in the feedback phase included three deceiving datasets
(associated to tasks from previous challenges, but not necessarily similar to the

10.5. RESULTS 213

(a) AutoML (test set) (b) Tweakathon (test set)

Figure 10.4: Distribution of performance on the datasets of the
2015/2016 challenge (violin plots). We show for each dataset the per-
formances of participants at the end of AutoML and Tweakathon phases, as
revealed on the leaderboard. The median and quartiles are represented by hori-
zontal notches. The distribution profile (as fitted with a kernel method) and its
mirror image are represented vertically by the gray shaded area. We show in red
the median performance over all datasets and the corresponding quartiles. (a)
AutoML (blind testing). The first 5 datasets were provided for development
purpose only and were not used for blind testing in an AutoML phase. In round
3, the code of many participants failed because of computational limits. (b)
Tweakathon (manual tweaking). The last five datasets were only used for
final blind testing and the data were never revealed for a Tweakathon. Round
3 was not particularly difficult with additional compute power and memory.

data sets used in the blind test phase) out of five. We decided to proceed this
way to emulate a realistic AutoML setting. Although harder, several teams
succeeded at returning submissions performing better than chance.

The winner of the challenge was the same team that won the 2015/2016
AutoML challenge: AAD Freiburg [28]. The 2018 challenge helped to incre-
mentally improve the solution devised by this team in the previous challenge.
Interestingly, the second-placed team in the challenge proposed a solution that
is similar in spirit to that of the winning team. For this challenge, there was a
triple tie in the third place, prizes were split among the tied teams. Among the
winners, two teams used the starting kit. Most of the other teams used either
the starting kit or the solution open sourced by the AAD Freiburg team in the
2015/2016 challenge.

214 CHAPTER 10. AUTOML CHALLENGES

Figure 10.5: Difficulty of tasks in the 2015/2016 challenge. We consider
two indicators of task difficulty (dataset, metric, and time budget are factored
into the task): intrinsic difficulty (estimated by the performance of the winners)
and modeling difficulty (difference between the performance of the winner and
a baseline method, here Selective Naive Bayes (SNB)). The best tasks should
have a relatively low intrinsic difficulty and a high modeling difficulty to separate
participants well.

10.5.3 Difficulty of Datasets/Tasks

In this section, we assess dataset difficulty, or rather task difficulty since the par-
ticipants had to solve prediction problems for given datasets, performance met-
rics, and computational time constraints. The tasks of the challenge presented
a variety of difficulties, but those were not equally represented (Tables 10.2
and 10.3):

• Categorical variables and missing data: Few datasets had categorical
variables in the 2015/2016 challenge (ADULT, ALBERT, and WALDO),
and not very many variables were categorical in those datasets. Likewise,
very few datasets had missing values (ADULT and ALBERT) and those
included only a few missing values. So neither categorical variables nor
missing data presented a real difficulty in this challenge, though ALBERT
turned out to be one of the most difficult datasets because it was also
one of the largest ones. This situation changed drastically for the 2018
challenge where five out of the ten datasets included categorical variables
(RL, PM, RI, RH and RM) and missing values (GINA, PM, RL, RI and

10.5. RESULTS 215

(a) Leaderboard overfitting? (b) Gap AutoML/Tweakathon?

Figure 10.6: Modeling Difficulty vs. intrinsic difficulty. For the AutoML
phases of the 2015/2016 challenge, we plot an indicator of modeling difficulty
vs. and indicator of intrinsic difficulty of datasets (leaderboard highest score).
(a) Modeling difficulty is estimated by the score of the best untuned model (over
KNN, NaiveBayes, RandomForest and SGD(LINEAR)). (b) Modeling difficulty
is estimated by the score of the Selective Naive Bayes (SNB) model. In all cases,
higher scores are better and negative / NaN scores are replaced by zero. The
horizontal and vertical separation lines represent the medians. The lower right
quadrant represents the datasets with low intrinsic difficulty and high modeling
difficulty: those are the best datasets for benchmarking purposes.

RM). These were among the main aspects that caused the low performance
of most methods in the blind test phase.

• Large number of classes. Only one dataset had a large number of
classes (DIONIS with 355 classes). This dataset turned out to be difficult
for participants, particularly because it is also large and has unbalanced
classes. However, datasets with large number of classes are not well repre-
sented in this challenge. HELENA, which has the second largest number
of classes (100 classes), did not stand out as a particularly difficult dataset.
However, in general, multi-class problems were found to be more difficult
than binary classification problems.

• Regression. We had only four regression problems: CADATA, FLORA,
YOLANDA, PABLO.

• Sparse data. A significant number of datasets had sparse data (DOROTHEA,
FABERT, ALEXIS, WALLIS, GRIGORIS, EVITA, FLORA, TANIA, AR-
TURO, MARCO). Several of them turned out to be difficult, particularly
ALEXIS, WALLIS, and GRIGORIS, which are large datasets in sparse for-
mat, which cause memory problems when they were introduced in round

216 CHAPTER 10. AUTOML CHALLENGES

Figure 10.7: Meta-features most predictive of dataset intrinsic difficulty
(2015/2016 challenge data). Meta-feature GINI importances are computed
by a random forest regressor, trained to predict the highest participant leader-
board score using meta-features of datasets. Description of these meta-features
can be found in Table 1 of the supplementary material of [25]. Blue and red
colors respectively correspond to positive and negative correlations (Pearson
correlations between meta features and score medians).

3 of the 2015/2016 challenge. We later increased the amount of memory
on the servers and similar datasets introduced in later phases caused less
difficulty.

• Large datasets. We expected the ratio of the number N of features
over the number Ptr of training examples to be a particular difficulty
(because of the risk of overfitting), but modern machine learning algo-
rithm are robust against overfitting. The main difficulty was rather the
PRODUCT N ∗ Ptr. Most participants attempted to load the entire
dataset in memory and convert sparse matrices into full matrices. This
took very long and then caused loss in performances or program failures.
Large datasets with N ∗ Ptr > 20.106 include ALBERT, ALEXIS, DIO-
NIS, GRIGORIS, WALLIS, EVITA, FLORA, TANIA, MARCO,
GINA, GUILLERMO, PM, RH, RI, RICCARDO, RM. Those overlap
significantly with the datasets with sparse data (in bold). For the 2018
challenge, all data sets in the final phase exceeded this threshold, and this
was the reason of why the code from several teams failed to finish within
the time budget. Only ALBERT and DIONIS were “truly” large (few
features, but over 400,000 training examples).

10.5. RESULTS 217

• Presence of probes: Some datasets had a certain proportion of distrac-
tor features or irrelevant variables (probes). Those were obtained by ran-
domly permuting the values of real features. Two-third of the datasets con-
tained probes ADULT, CADATA, DIGITS, DOROTHEA, CHRISTINE,
JASMINE, MADELINE, PHILIPPINE, SYLVINE, ALBERT, DILBERT,
FABERT, JANNIS, EVITA, FLORA, YOLANDA, ARTURO, CARLO,
PABLO, WALDO. This allowed us in part to make datasets that were in
the public domain less recognizable.

• Type of metric: we used 6 metrics, as defined in section 10.4.2. The
distribution of tasks in which they were used was not uniform: BAC (11),
AUC (6), F1 (3), and PAC (6) for classification, and R2 (2) and ABS (2)
for regression. This is because not all metrics lend themselves naturally
to all types of applications.

• Time budget: Although in round 0 we experimented with giving different
time budgets for the various datasets, we ended up assigning 1200 seconds
(20 min) to all datasets in all other rounds. Because the datasets varied
in size, this put more constraints on large datasets.

• Class imbalance: This was not a difficulty found in the 2015/2016
datasets. However, extreme class imbalance was the main difficulty for the
2018 edition. Imbalance ratios lower or equal to 1 to 10 were present in
RL, PM, RH, RI, and RM datasets, in the latter data set class imbalance
was as extreme as 1 to 1000. This was the reason why the performance of
teams was low.

Figure 10.4 gives a first view of dataset/task difficulty for the 2015/2016
challenge. It captures, in a schematic way, the distribution of the participants’
performance in all rounds on test data, in both AutoML and Tweakathon phases.
One can see that the median performance over all datasets improves between
AutoML and Tweakathon, as can be expected. Correspondingly, the average
spread in performance (quartile) decreases. Let us take a closer look at the
AutoML phases: The “accident” of round 3 in which many methods failed in
blind testing is visible (introduction of sparse matrices and larger datasets)10.
Round 2 (multi-class classification) appears to have also introduced a signifi-
cantly higher degree of difficulty than round 1 (binary classification). In round
4, two regression problems were introduced (FLORA and YOLANDA), but it
does not seem that regression was found significantly harder than multiclass
classification. In round 5 no novelty was introduced. We can observe that,
after round 3, the dataset median scores are scattered around the overall me-
dian. Looking at the corresponding scores in the Tweakathon phases, one can
remark that, once the participants recovered from their surprise, round 3 was
not particularly difficult for them. Rounds 2 and 4 were comparatively more
difficult.

10Examples of sparse datasets were provided in round 0, but they were of smaller size.

218 CHAPTER 10. AUTOML CHALLENGES

For the datasets used in the 2018 challenge, the tasks’ difficulty was clearly
associated with extreme class imbalance, inclusion of categorical variables and
high dimensionality in terms of N × Ptr. However, for the 2015/2016 challenge
data sets we found that it was generally difficult to guess what makes a task easy
or hard, except for dataset size, which pushed participants to the frontier of the
hardware capabilities and forced them to improve the computational efficiency
of their methods. Binary classification problems (and multi-label problems) are
intrinsically “easier” than multiclass problems, for which “guessing” has a lower
probability of success. This partially explains the higher median performance
in rounds 1 and 3, which are dominated by binary and multi-label classification
problems. There is not a large enough number of datasets illustrating each type
of other difficulties to draw other conclusions.

We ventured however to try to find summary statistics capturing overall taks
difficulty. If one assumes that data are generated from an i.i.d.11 process of the
type:

y = F (x, noise)

where y is the target value, x is the input feature vector, F is a function, and
noise is some random noise drawn from an unknown distribution, then the
difficuty of the learning problem can be separated in two aspects:

1. Intrinsic difficulty, linked to the amount of noise or the signal to noise
ratio. Given an infinite amount of data and an unbiased learning machine
F̂ capable of identifying F , the prediction performances cannot exceed a
given maximum value, corresponding to F̂ = F .

2. Modeling difficulty, linked to the bias and variance of estimators F̂ ,
in connection with the limited amount of training data and limited com-
putational resources, and the possibly large number or parameters and
hyper-parameters to estimate.

Evaluating the intrinsic difficulty is impossible unless we know F . Our best
approximation of F is the winners’ solution. We use therefore the winners’
performance as an estimator of the best achievable performance. This
estimator may have both bias and variance: it is possibly biased because the
winners may be under-fitting training data; it may have variance because of the
limited amount of test data. Under-fitting is difficult to test. Its symptoms may
be that the variance or the entropy of the predictions is less than those of the
target values.

Evaluating the modeling difficulty is also impossible unless we know F and
the model class. In the absence of knowledge on the model class, data sci-
entists often use generic predictive models, agnostic with respect to the data
generating process. Such models range from very basic models that are highly
biased towards “simplicity” and smoothness of predictions (e.g., regularized lin-
ear models) to highly versatile unbiased models that can learn any function

11Independently and Identically Distributed samples.

10.5. RESULTS 219

given enough data (e.g., ensembles of decision trees). To indirectly assess mod-
eling difficulty, we resorted to use the difference in performance between the
method of the challenge winner and that of (a) the best of four “untuned” basic
models (taken from classical techniques provided in the scikit-learn library [55]
with default hyper-parameters) or (b) Selective Naive Bayes (SNB) [12, 13], a
highly regularized model (biased towards simplicity), providing a very robust
and simple baseline.

Figures 10.5 and 10.6 give representations of our estimates of intrinsic and
modeling difficulties for the 2015/2016 challenge datasets. It can be seen that
the datasets of round 0 were among the easiest (except perhaps NEWSGROUP).
Those were relatively small (and well-known) datasets. Surprisingly, the datasets
of round 3 were also rather easy, despite the fact that most participants failed on
them when they were introduced (largely because of memory limitations: scikit-
learn algorithms were not optimized for sparse datasets and it was not possible
to fit in memory the data matrix converted to a dense matrix). Two datasets
have a small intrinsic difficulty but a large modeling difficulty: MADELINE and
DILBERT. MADELINE is an artificial dataset that is very non-linear (clusters
or 2 classes positioned on the vertices of a hyper-cube in a 5 dimensional space)
and therefore very difficult for Näıve Bayes. DILBERT is an image recognition
dataset with images of objects rotated in all sorts of positions, also very difficult
for Näıve Bayes. The datasets of the last 2 phases seem to have a large intrinsic
difficulty compared to the modeling difficulty. But this can be deceiving because
the datasets are new to the machine learning community and the performances
of the winners may still be far from the best attainable performance.

We attempted to predict the intrinsic difficulty (as measured by the winners’
performance) from the set of meta features used by AAD Freiburg for meta-
learning [25], which are part of OpenML [67], using a Random Forest classifier
and ranked the meta features in order of importance (most selected by RF).
The list of meta features is provided in the appendix. The three meta-features
that predict dataset difficulty best (Figure 10.7) are:

• LandmarkDecisionTree: performance of a decision tree classifier.

• Landmark1NN: performance of a nearest neighbor classifier.

• SkewnessMin: min over skewness of all features. Skewness measures the
symmetry of a distribution. A positive skewness value means that there
is more weight in the left tail of the distribution.

10.5.4 Hyper-Parameter Optimization

Many participants used the scikit-learn (sklearn) package, including the win-
ning group AAD Freiburg, which produced the auto-sklearn software. We used
the auto-sklearn API to conduct post-challenge systematic studies of the ef-
fectiveness of hyper-parameter optimization. We compared the performances
obtained with default hyper-parameter settings in scikit-learn and with hyper-

220 CHAPTER 10. AUTOML CHALLENGES

parameters optimized with auto-sklearn12, both within the time budgets as im-
posed during the challenge, for four “representative” basic methods: k-nearest
neighbors (KNN), naive Bayes (NB), Random Forest (RF), and a linear model
trained with stochastic gradient descent (SGD-linear13). The results are shown
in Figure 10.8. We see that hyper-parameter optimization usually improves
performance, but not always. The advantage of hyper-parameter tuning comes
mostly from its flexibility of switching the optimization metric to the one im-
posed by the task and from finding hyper-parameters that work well given the
current dataset and metric. However, in some cases it was not possible to per-
form hyper-parameter optimization within the time budget due to the data set
size (score ≤ 0). Thus, there remains future work on how to perform thorough
hyper-parameter tuning given rigid time constraints and huge datasets.

Figure 10.8: Hyper-parameter tuning (2015/2016 challenge data). We

compare the performances obtained with default hyper-parameters and those with

hyper-parameters optimized with auto-sklearn, within the same time budgets as given

during the challenge. The performances of predictors which failed to return results in

the alloted time are replaced by zero. Note that returning a prediction of chance level

also resulted in a score of zero.

We also compared the performances obtained with different scoring metrics
(Figure 10.10). Basic methods do not give a choice of metrics to be optimized,
but auto-sklearn post-fitted the metrics of the challenge tasks. Consequently,
when “common metrics” (BAC and R2) are used, the method of the challenge

12we use sklearn 0.16.1 and auto-sklearn 0.4.0 to mimic the challenge environment
13we set the loss of SGD to be ‘log’ in scikit-learn for these experiments

10.5. RESULTS 221

winners, which is not optimized for BAC/R2, does not usually outperfom basic
methods. Conversely, when the metrics of the challenge are used, there is often
a clear gap between the basic methods and the winners, but not always (RF-
auto usually shows a comparable performance, sometimes even outperforms the
winners).

Figure 10.9: Comparison of metrics (2015/2016 challenge). (a) We used
the normalized balanced accuracy for all classification problems and the R2

metric for regression problems. (b) We used the metrics of the challenge. By
comparing the two figures, we can see that the winner remains top-ranking in
most cases, regardless of the metric. There is no basic method that dominates
all others. Though RF-auto (Random Forest with optimised HP) is very strong,
it is often outperformed by other methods and sometimes by RF-def (Random
Forest with default HP). Generally, under tight computational constraints, op-
timizing HP does not always pay, considering the number of hollow circles that
come on top. For KNN though, time permitting, optimizing HP generally helps
a lot. Interestingly, KNN can win, even over the challenge winners, on some
datasets. Plain linear model SGD-def sometimes wins when common metrics are
used, but the winners perform better with the metrics of the challenge. Overall,
the technique of the winners proved to be effective.

(a) Challenge metrics (b) Common metrics

Figure 10.10: Comparison of metrics (2015/2016 challenge). (a) We used
the metrics of the challenge. (b) We used the normalized balanced accuracy
for all classification problems and the R2 metric for regression problems. By
comparing the two figures, we can see that the winner remains top-ranking in
most cases, regardless of the metric. There is no basic method that dominates all
others. Although RF-auto (Random Forest with optimized HP) is very strong,
it is sometimes outperformed by other methods. Plain linear model SGD-def
sometimes wins when common metrics are used, but the winners perform better
with the metrics of the challenge. Overall, the technique of the winners proved
to be effective.

222 CHAPTER 10. AUTOML CHALLENGES

(a)

(b)

Figure 10.11: Linear Discriminant Analysis. (a) Dataset scatter plot
in principal axes. We have trained a LDA using X=meta features, except
landmarks; y=which model won of four basic models (NB, SGD-linear, KNN,
RF). The performance of the basic models is measured using the common met-
rics. The models were trained with default hyper-parameters. In the space
of the two first LDA components, each point represents one dataset. The col-
ors denote the winning basic models. The opacity reflects the scores of the
corresponding winning model (more opaque is better). (b) Meta feature im-
portances computed as scaling factors of each LDA component.

10.5. RESULTS 223

10.5.5 Meta-Learning

One question is whether meta-learning [14] is possible, that is learning to predict
whether a given classifier will perform well on future datasets (without actually
training it), based on its past performances on other datasets. We investigated
whether it is possible to predict which basic method will perform best based on
the meta-learning features of auto-sklearn (see the appendix). We removed the
“Landmark” features from the set of meta features because those are perfor-
mances of basic predictors (albeit rather poor ones with many missing values),
which would lead to a form of “data leakage”.

We used four basic predictors:

• NB: Naive Bayes

• SGD-linear: Linear model (trained with stochastic gradient descent)

• KNN: K-nearest neighbors

• RF: Random Forest

We used the implementation of the scikit-learn library with default hyper-
parameter settings. In Figure 10.11, we show the two first Linear Discriminant
Analysis (LDA) components, when training an LDA classifier on the meta-
features to predict which basic classifier will perform best. The methods sepa-
rate into three distinct clusters, one of them grouping the non-linear methods
that are poorly separated (KNN and RF) and the two others being NB and
linear-SGD.

The features that are most predictive all have to do with “ClassProbability”
and “PercentageOfMissingValues”, indicating that the class imbalance and/or
large number of classes (in a multi-class problem) and the percentage of missing
values might be important, but there is a high chance of overfitting as indicated
by an unstable ranking of the best features under resampling of the training
data.

10.5.6 Methods Used in the Challenges

A brief description of methods used in both challenges is provided in the
appendix, together with the results of a survey on methods that we conducted
after the challenges. In light of the overview of Section 10.2 and the results pre-
sented in the previous section, we may wonder whether a dominant methodology
for solving the AutoML problem has emerged and whether particular technical
solutions were widely adopted. In this section we call “model space” the set of
all models under consideration. We call “basic models” (also called elsewhere
“simple models”, “individual models”, “base learners”) the member of a library
of models from which our hyper-models of model ensembles are built.

Ensembling: dealing with over-fitting and any-time learning. En-
sembling is the big AutoML challenge series winner since it is used by over
80% of the participants and by all the top-ranking ones. While a few years

224 CHAPTER 10. AUTOML CHALLENGES

ago the hottest issue in model selection and hyper-parameter optimization was
over-fitting, in present days the problem seems to have been largely avoided by
using ensembling techniques. In the 2015/2016 challenge, we varied the ratio of
number of training examples over number of variables (Ptr/N) by several or-
ders of magnitude. Five datasets had a ratio Ptr/N lower than one (dorothea,
newsgroup, grigoris, wallis, and flora), which is a case lending itself particularly
to over-fitting. Although Ptr/N is the most predictive variable of the median
performance of the participants, there is no indication that the datasets with
Ptr/N < 1 were particularly difficult for the participants (Figure 10.5). En-
sembles of predictors have the additional benefit of addressing in a simple way
the “any-time learning” problem by growing progressively a bigger ensemble of
predictors, improving performance over time. All trained predictors are usu-
ally incorporated in the ensemble. For instance, if cross-validation is used, the
predictors of all folds are directly incorporated in the ensemble, which saves
the computational time of retraining a single model on the best HP selected
and may yield more robust solutions (though slightly more biased due to the
smaller sample size). The approaches differ in the way they weigh the contri-
butions of the various predictors. Some methods use the same weight for all
predictors (this is the case of bagging methods such as Random Forest and of
Bayesian methods that sample predictors according to their posterior proba-
bility in model space). Some methods assess the weights of the predictors as
part of learning (this is the case of boosting methods, for instance). One simple
and effective method to create ensembles of heterogeneous models was proposed
by [16]. It was used successfully in several past challenges, e.g., [52] and is the
method implemented by the aad freibug team, one of the strongest participants
in both challenges [25]. The method consists in cycling several times over all
trained model and incorporating in the ensemble at each cycle the model which
most improves the performance of the ensemble. Models vote with weight 1,
but they can be incorporated multiple times, which de facto results in weighting
them. This method permits to recompute very fast the weights of the models if
cross-validated predictions are saved. Moreover, the method allows optimizing
the ensemble for any metric by post-fitting the predictions of the ensemble to
the desired metric (an aspect which was important in this challenge).

Model evaluation: cross-validation or simple validation. Evaluating
the predictive accuracy of models is a critical and necessary building block of
any model selection of ensembling method. Model selection criteria computed
from the predictive accuracy of basic models evaluated from training data, by
training a single time on all the training data (possibly at the expense of minor
additional calculations), such as performance bounds, were not used at all, as
was already the case in previous challenges we organized [35]. Cross-validation
was widely used, particularly K-fold cross-validation. However, basic models
were often “cheaply” evaluated on just one fold to allow quickly discarding
non-promising areas of model space. This is a technique used more and more
frequently to help speed up search. Another speed-up strategy is to train on a
subset of the training examples and monitor the learning curve. The “freeze-
thaw” strategy [64] halts training of models that do not look promising on the

10.5. RESULTS 225

basis of the learning curve, but may restart training them at a later point. This
was used, e.g., by [48] in the 2015/2016 challenge.

Model space: Homogeneous vs. heterogeneous. An unsettled ques-
tion is whether one should search a large or small model space. The challenge
did not allow us to give a definite answer to this question. Most participants
opted for searching a relatively large model space, including a wide variety of
models found in the scikit-learn library. Yet, one of the strongest entrants (the
Intel team) submitted results simply obtained with a boosted decision tree (i.e.,
consisting of a homogeneous set of weak learners/basic models). Clearly, it suf-
fices to use just one machine learning approach that is a universal approximator
to be able to learn anything, given enough training data. So why include sev-
eral? It is a question of rate of convergence: how fast we climb the learning
curve. Including stronger basic models is one way to climb the learning curve
faster. Our post-challenge experiments (Figure 10.10) reveal that the scikit-
learn version of Random Forest (an ensemble of homogeneous basic models –
decision trees) does not usually perform as well as the winners’ version, hinting
that there is a lot of know-how in the Intel solution, which is also based on
ensembles of decision tree, that is not captured by a basic ensemble of decision
trees such as RF. We hope that more principled research will be conducted on
this topic in the future.

Search strategies: Filter, wrapper, and embedded methods. With
the availability of powerful machine learning toolkits like scikit-learn (on which
the starting kit was based), the temptation is great to implement all-wrapper
methods to solve the CASH (or “full model selection”) problem. Indeed, most
participants went that route. Although a number of ways of optimizing hyper-
parameters with embedded methods for several basic classifiers have been
published [35], they each require changing the implementation of the basic
methods, which is time-consuming and error-prone compared to using already
debugged and well-optimized library version of the methods. Hence practition-
ers are reluctant to invest development time in the implementation of embedded
methods. A notable exception is the software of marc.boulle, which offers a self-
contained hyper-parameter free solution based on Naive Bayes, which includes
re-coding of variables (grouping or discretization) and variable selection. See
the appendix.

Multi-level optimization: Another interesting issue is whether multiple
levels of hyper-parameters should be considered for reasons of computational
effectiveness or overfitting avoidance. In the Bayesian setting, for instance, it
is quite feasible to consider a hierarchy of parameters/hyper-parameters and
several levels of priors/hyper-priors. However, it seems that for practical com-
putational reasons, in the AutoML challenges, the participants use a shallow
organization of hyper-parameter space and avoid nested cross-validation loops.

Time management: Exploration vs. exploitation tradeoff: With a
tight time budget, efficient search strategies must be put into place to monitor
the exploration/exploitation tradeoff. To compare strategies, we show in the
appendix learning curves for two top ranking participants who adopted very
different methods: Abhishek and aad freiburg. The former uses heuristic meth-

226 CHAPTER 10. AUTOML CHALLENGES

ods based on prior human experience while the latter initializes search with
models predicted to be best suited by meta-learning, then performs Bayesian
optimization of hyper-parameters. Abhishek seems to often start with a better
solution but explores less effectively. In contrast, aad freiburg starts lower but
often ends up with a better solution. Some elements of randomness in the search
are useful to arrive at better solutions.

Preprocessing and feature selection: The datasets had intrinsic diffi-
culties that could be in part addressed by preprocessing or special modifications
of algorithms: sparsity, missing values, categorical variables, and irrelevant vari-
ables. Yet it appears that among the top-ranking participants, preprocessing
has not been a focus of attention. They relied on the simple heuristics pro-
vided in the starting kit: replacing missing values by the median and adding a
missingness indicator variable, one-hot-encoding of categorical variables. Sim-
ple normalizations were used. The irrelevant variables were ignored by 2/3 of
the participants and no use of feature selection was made by top-ranking par-
ticipants. The methods used that involve ensembling seem to be intrinsically
robust against irrelevant variables. More details from the fact sheets are found
in the appendix.

Unsupervised learning: Despite the recent regain of interest in unsu-
pervised learning spurred by the Deep Learning community, in the AutoML
challenge series, unsupervised learning is not widely used, except for the use of
classical space dimensionality reduction techniques such as ICA and PCA. See
the appendix for more details.

Transfer learning and meta learning: To our knowledge, only aad freiburg
relied on meta-learning to initialize their hyper-parameter search. To that end,
they used datasets of OpenML14. The number of datasets released and the diver-
sity of tasks did not allow the participants to perform effective transfer learning
or meta learning.

Deep learning: The type of computations resources available in AutoML
phases ruled out the use of Deep Learning, except in the GPU track. However,
even in that track, the Deep Learning methods did not come out ahead. One
exception is aad freiburg, who used Deep Learning in Tweakathon rounds three
and four and found it to be helpful for the datasets Alexis, Tania and Yolanda.

Task and metric optimization: There were four types of tasks (regres-
sion, binary classification, multi-class classification, and multi-label classifica-
tion) and six scoring metrics (R2, ABS, BAC, AUC, F1, and PAC). Moreover,
class balance and number of classes varied a lot for classification problems.
Moderate effort has been put into designing methods optimizing specific met-
rics. Rather, generic methods were used and the outputs post-fitted to the
target metrics by cross-validation or through the ensembling method.

Engineering: One of the big lessons of the AutoML challenge series is that
most methods fail to return results in all cases, not a “good” result, but “any”
reasonable result. Reasons for failure include “out of time” and “out of memory”
or various other failures (e.g., numerical instabilities). We are still very far from

14https://www.openml.org/

10.6. DISCUSSION 227

having “basic models” that run on all datasets. One of the strengths of auto-
sklearn is to ignore those models that fail and generally find at least one that
returns a result.

Parallelism: The computers made available had several cores, so in princi-
ple, the participants could make use of parallelism. One common strategy was
just to rely on numerical libraries that internally use such parallelism automati-
cally. The aad freiburg team used the different cores to launch in parallel model
search for different datasets (since each round included 5 datasets). These dif-
ferent uses of computational resources are visible in the learning curves (see the
appendix).

10.6 Discussion

We briefly summarize the main questions we asked ourselves and the main
findings:

1. Was the provided time budget sufficient to complete the tasks
of the challenge? We drew learning curves as a function of time for
the winning solution of aad freiburg (auto-sklearn, see the appendix).
This revealed that for most datasets, performances still improved well
beyond the time limit imposed by the organizers. Although for about
half the datasets the improvement is modest (no more that 20% of the
score obtained at the end of the imposed time limit), for some datasets
the improvement was very large (more than 2x the original score). The
improvements are usually gradual, but sudden performance improvements
occur. For instance, for Wallis, the score doubled suddenly at 3x the
time limit imposed in the challenge. As also noted by the authors of the
auto-sklearn package [25], it has a slow start but in the long run gets
performances close to the best method.

2. Are there tasks that were significantly more difficult than others
for the participants? Yes, there was a very wide range of difficulties
for the tasks as revealed by the dispersion of the participants in terms of
average (median) and variability (third quartile) of their scores. Madeline,
a synthetic dataset featuring a very non-linear task, was very difficult
for many participants. Other difficulties that caused failures to return
a solution included large memory requirements (particularly for methods
that attempted to convert sparse matrices to full matrices), and short
time budgets for datasets with large number of training examples and/or
features or with many classes or labels.

3. Are there meta-features of datasets and methods providing use-
ful insight to recommend certain methods for certain types of
datasets? The aad freiburg team used a subset of 53 meta-features (a
superset of the simple statistics provided with the challenge datasets) to
measure similarity between datasets. This allowed them to conduct hyper-
parameter search more effectively by initializing the search with settings

228 CHAPTER 10. AUTOML CHALLENGES

identical to those selected for similar datasets previously processed (a form
of meta-learning). Our own analysis revealed that it is very difficult to
predict the predictors’ performances from the meta-features, but it is pos-
sible to predict relatively accurately which “basic method” will perform
best. With LDA, we could visualize how datasets recoup in two dimen-
sions and show a clean separation between datasets “preferring” Naive
Bayes, linear SGD, or KNN, or RF. This deserves further investigation.

4. Does hyper-parameter optimization really improve performance
over using default values? The comparison we conducted reveals that
optimizing hyper-parameters rather than choosing default values for a set
of four basic predictive models (K-nearest neighbors, Random Forests,
linear SGD, and Naive Bayes) is generally beneficial. In the majority of
cases (but not always), hyper-parameter optimization (hyper-opt) results
in better performances than default values. Hyper-opt sometimes fails
because of time or memory limitations, which gives room for improvement.

5. How do winner’s solutions compare with basic scikit-learn mod-
els? They compare favorably. For example, the results of basic models
whose parameters have been optimized do not yield generally as good re-
sults as running auto-sklearn. However, a basic model with default HP
sometimes outperforms this same model tuned by auto-sklearn.

10.7 Conclusion

We have analyzed the results of several rounds of AutoML challenges.
Our design of the first AutoML challenge (2015/2016) was satisfactory in

many respects. In particular, we attracted a large number of participants (over
600), attained results that are statistically significant, and advanced the state of
the art to automate machine learning. Publicly available libraries have emerged
as a result of this endeavor, including auto-sklearn.

In particular, we designed a benchmark with a large number of diverse
datasets, with large enough test sets to separate top-ranking participants. It
is difficult to anticipate the size of the test sets needed, because the error bars
depend on the performances attained by the participants, so we are pleased
that we made reasonable guesses. Our simple rule-of-thumb “N=50/E” where
N is the number of test samples and E the error rate of the smallest class
seems to be widely applicable. We made sure that the datasets were neither too
easy nor too hard. This is important to be able to separate participants. To
quantify this, we introduced the notion of “intrinsic difficulty” and “modeling
difficulty”. Intrinsic difficulty can be quantified by the performance of the best
method (as a surrogate for the best attainable performance, i.e., the Bayes rate
for classification problems). Modeling difficulty can be quantified by the spread
in performance between methods. Our best problems have relatively low “in-
trinsic difficulty” and high “modeling difficulty”. However, the diversity of the
30 datasets of our first 2015/2016 challenge is both a feature and a curse: it

10.7. CONCLUSION 229

allows us to test the robustness of software across a variety of situations, but
it makes meta-learning very difficult, if not impossible. Consequently, external
meta-learning data must be used if meta-learning is to be explored. This was
the strategy adopted by the AAD Freiburg team, which used the OpenML data
for meta training. Likewise, we attached different metrics to each dataset. This
contributed to making the tasks more realistic and more difficult, but also made
meta-learning harder. In the second 2018 challenge, we diminished the variety
of datasets and used a single metric.

With respect to task design, we learned that the devil is in the details. The
challenge participants solve exactly the task proposed to the point that their
solution may not be adaptable to seemingly similar scenarios. In the case of
the AutoML challenge, we pondered whether the metric of the challenge should
be the area under the learning curve or one point on the learning curve (the
performance obtained after a fixed maximum computational time elapsed). We
ended up favoring the second solution for practical reasons. Examining after
the challenge the learning curves of some participants, it is quite clear that
the two problems are radically different, particularly with respect to strategies
mitigating “exploration” and “exploitation”. This prompted us to think about
the differences between “fixed time” learning (the participants know in advance
the time limit and are judged only on the solution delivered at the end of that
time) and “any time learning” (the participants can be stopped at any time and
asked to return a solution). Both scenarios are useful: the first one is practical
when models must be delivered continuously at a rapid pace, e.g. for marketing
applications; the second one is practical in environments when computational
resources are unreliable and interruption may be expected (e.g. people working
remotely via an unreliable connection). This will influence the design of future
challenges.

The two versions of AutoML challenge we have run differ in the difficulty of
transfer learning. In the 2015/2016 challenge, round 0 introduced a sample of
all types of data and difficulties (types of targets, sparse data or not, missing
data or not, categorical variables of not, more examples than features or not).
Then each round ramped up difficulty. The datasets of round 0 were relatively
easy. Then at each round, the code of the participants was blind-tested on data
that were one notch harder than in the previous round. Hence transfer was
quite hard. In the 2018 challenge, we had 2 phases, each with 5 datasets of
similar difficulty and the datasets of the first phase were each matched with one
corresponding dataset on a similar task. As a result, transfer was made simpler.

Concerning the starting kit and baseline methods, we provided code that
ended up being the basis of the solution of the majority of participants (with
notable exceptions from industry such as Intel and Orange who used their own
“in house” packages). Thus, we can question whether the software provided
biased the approaches taken. Indeed, all participants used some form of ensem-
ble learning, similarly to the strategy used in the starting kit. However, it can
be argued that this is a “natural” strategy for this problem. But, in general,
the question of providing enough starting material to the participants without
biasing the challenge in a particular direction remains a delicate issue.

230 CHAPTER 10. AUTOML CHALLENGES

From the point of view of challenge protocol design, we learned that it is dif-
ficult to keep teams focused for an extended period of time and go through many
challenge phases. We attained a large number of participants (over 600) over
the whole course of the AutoML challenge, which lasted over a year (2015/2016)
and was punctuated by several events (such as hackathons). However, it may be
preferable to organize yearly events punctuated by workshops. This is a natural
way of balancing competition and cooperation since workshops are a place of
exchange. Participants are naturally rewarded by the recognition they gain via
the system of scientific publications. As a confirmation of this conjecture, the
second instance of the AutoML challenge (2017/2018) lasting only 4 months
attracted nearly 300 participants.

One important novelty of our challenge design was code submission. Having
the code of the participants executed on the same platform under rigorously
similar conditions is a great step towards fairness and reproducibility, as well
as ensuring the viability of solution from the computational point of view. We
required the winners to release their code under an open source licence to win
their prizes. This was good enough an incentive to obtain several software
publications as the “product” of the challenges we organized. In our second
challenge (AutoML 2018), we used Docker. Distributing Docker images makes it
possible for anyone downloading the code of the participants to easily reproduce
the results without stumbling over installation problems due to inconsistencies
in computer environments and libraries. Still the hardware may be different
and we find that, in post-challenge evaluations, changing computers may yield
significant differences in results. Hopefully, with the proliferation of affordable
cloud computing, this will become less of an issue.

The AutoML challenge series is only beginning. Several new avenues are
under study. For instance, we are preparing the NIPS 2018 Life Long Machine
Learning challenge in which participants will be exposed to data whose distri-
bution slowly drifts over time. We are also looking at a challenge of automatic
machine learning where we will focus on transfer from similar domains.

Acknowledgments

Microsoft supported the organization of this challenge and donated the prizes
and cloud computing time on Azure. This project received additional support
from the Laboratoire d’Informatique Fondamentale (LIF, UMR CNRS 7279) of
the University of Aix Marseille, France, via the LabeX Archimede program, the
Laboratoire de Recheche en Informatique of Paris Sud University, and INRIA-
Saclay as part of the TIMCO project, as well as the support from the Paris-
Saclay Center for Data Science (CDS). Additional computer resources were
provided generously by J. Buhmann, ETH Zürich. This work has been par-
tially supported by the Spanish project TIN2016-74946-P (MINECO/FEDER,
UE) and CERCA Programme / Generalitat de Catalunya. The datasets re-
leased were selected among 72 datasets that were donated (or formatted using
data publicly available) by the co-authors and by: Y. Aphinyanaphongs, O.
Chapelle, Z. Iftikhar Malhi, V. Lemaire, C.-J. Lin, M. Madani, G. Stolovitzky,

BIBLIOGRAPHY 231

H.-J. Thiesen, and I. Tsamardinos. Many people provided feedback to early
designs of the protocol and/or tested the challenge platform, including: K. Ben-
nett, C. Capponi, G. Cawley, R. Caruana, G. Dror, T. K. Ho, B. Kégl, H.
Larochelle, V. Lemaire, C.-J. Lin, V. Ponce López, N. Macia, S. Mercer, F.
Popescu, D. Silver, S. Treguer, and I. Tsamardinos. The software developers
who contributed to the implementation of the Codalab platform and the sam-
ple code include E. Camichael, I. Chaabane, I. Judson, C. Poulain, P. Liang,
A. Pesah, L. Romaszko, X. Baro Solé, E. Watson, F. Zhingri, M. Zyskowski.
Some initial analyses of the challenge results were performed by I. Chaabane,
J. Lloyd, N. Macia, and A. Thakur were incorporated in this paper. Katharina
Eggensperger, Syed Mohsin Ali and Matthias Feurer helped with the organiza-
tion of the Beat AutoSKLearn challenge. Matthias Feurer also contributed to
the simulations of running auto-sklearn on 2015-2016 challenge datasets.

Bibliography

[1] Alamdari, A.R.S.A., Guyon, I.: Quick start guide for CLOP. Tech. rep.,
Graz University of Technology and Clopinet (May 2006)

[2] Andrieu, C., Freitas, N.D., Doucet, A.: Sequential MCMC for Bayesian
model selection. In: IEEE Signal Processing Workshop on Higher-Order
Statistics. pp. 130–134 (1999)

[3] Assunção, F., Lourenço, N., Machado, P., Ribeiro, B.: Denser: Deep evolu-
tionary network structured representation. arXiv preprint arXiv:1801.01563
(2018)

[4] Baker, B., Gupta, O., Naik, N., Raskar, R.: Designing neural network
architectures using reinforcement learning. arXiv preprint arXiv:1611.02167
(2016)

[5] Bardenet, R., Brendel, M., Kégl, B., Sebag, M.: Collaborative hyperpa-
rameter tuning. In: 30th International Conference on Machine Learning.
vol. 28, pp. 199–207. JMLR Workshop and Conference Proceedings (May
2013)

[6] Bengio, Y., Courville, A., Vincent, P.: Representation learning: A review
and new perspectives. IEEE Transactions on Pattern Analysis and Machine
Intelligence 35(8), 1798–1828 (2013)

[7] Bennett, K.P., Kunapuli, G., Jing Hu, J.S.P.: Bilevel optimization and ma-
chine learning. In: Computational Intelligence: Research Frontiers, Lecture
Notes in Computer Science, vol. 5050, pp. 25–47. Springer (2008)

[8] Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization.
Journal of Machine Learning Research 13(Feb), 281–305 (2012)

232 CHAPTER 10. AUTOML CHALLENGES

[9] Bergstra, J., Yamins, D., Cox, D.D.: Making a science of model search:
Hyperparameter optimization in hundreds of dimensions for vision archi-
tectures. In: 30th International Conference on Machine Learning. vol. 28,
pp. 115–123 (2013)

[10] Bergstra, J.S., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-
parameter optimization. In: Advances in Neural Information Processing
Systems. pp. 2546–2554 (2011)

[11] Blum, A.L., Langley, P.: Selection of relevant features and examples in
machine learning. Artificial Intelligence 97(1-2), 273–324 (December 1997)

[12] Boullé, M.: Compression-based averaging of selective naive bayes classifiers.
Journal of Machine Learning Research 8, 1659–1685 (2007), http://dl.
acm.org/citation.cfm?id=1314554

[13] Boullé, M.: A parameter-free classification method for large scale learning.
Journal of Machine Learning Research 10, 1367–1385 (2009), http://doi.
acm.org/10.1145/1577069.1755829

[14] Brazdil, P., Carrier, C.G., Soares, C., Vilalta, R.: Metalearning: Applica-
tions to data mining. Springer Science & Business Media (2008)

[15] Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)

[16] Caruana, R., Niculescu-Mizil, A., Crew, G., Ksikes, A.: Ensemble selection
from libraries of models. In: 21st International Conference on Machine
Learning. pp. 18–. ACM (2004)

[17] Cawley, G.C., Talbot, N.L.C.: Preventing over-fitting during model selec-
tion via Bayesian regularisation of the hyper-parameters. Journal of Ma-
chine Learning Research 8, 841–861 (April 2007)

[18] Colson, B., Marcotte, P., Savard, G.: An overview of bilevel programming.
Annals of Operations Research 153, 235–256 (2007)

[19] Dempe, S.: Foundations of bilevel programming. Kluwer Academic Pub-
lishers (2002)

[20] Dietterich, T.G.: Approximate statistical test for comparing supervised
classification learning algorithms. Neural Computation 10(7), 1895–1923
(1998)

[21] Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, 2nd
edn. (2001)

[22] Efron, B.: Estimating the error rate of a prediction rule: Improvement on
cross-validation. Journal of the American Statistical Association 78(382),
316–331 (1983)

http://dl.acm.org/citation.cfm?id=1314554
http://dl.acm.org/citation.cfm?id=1314554
http://doi.acm.org/10.1145/1577069.1755829
http://doi.acm.org/10.1145/1577069.1755829

BIBLIOGRAPHY 233

[23] Eggensperger, K., Feurer, M., Hutter, F., Bergstra, J., Snoek, J., Hoos, H.,
Leyton-Brown, K.: Towards an empirical foundation for assessing bayesian
optimization of hyperparameters. In: NIPS workshop on Bayesian Opti-
mization in Theory and Practice (2013)

[24] Escalante, H.J., Montes, M., Sucar, L.E.: Particle swarm model selection.
Journal of Machine Learning Research 10, 405–440 (2009)

[25] Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., Hut-
ter, F.: Efficient and robust automated machine learning. In: Proceed-
ings of the Neural Information Processing Systems, pp. 2962–2970 (2015),
https://github.com/automl/auto-sklearn

[26] Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., Hut-
ter, F.: Methods for improving bayesian optimization for automl. In: Pro-
ceedings of the International Conference on Machine Learning 2015, Work-
shop on Automatic Machine Learning (2015)

[27] Feurer, M., Springenberg, J., Hutter, F.: Initializing bayesian hyperparam-
eter optimization via meta-learning. In: Proceedings of the AAAI Confer-
ence on Artificial Intelligence. pp. 1128–1135 (2015)

[28] Feurer, M., Eggensperger, K., Falkner, S., Lindauer, M., Hutter, F.: Prac-
tical automated machine learning for the automl challenge 2018. In: In-
ternational Workshop on Automatic Machine Learning at ICML (2018),
https://sites.google.com/site/automl2018icml/

[29] Friedman, J.H.: Greedy function approximation: A gradient boosting ma-
chine. The Annals of Statistics 29(5), 1189–1232 (2001)

[30] Ghahramani, Z.: Unsupervised learning. In: Advanced Lectures on Ma-
chine Learning. Lecture Notes in Computer Science, vol. 3176, pp. 72–112.
Springer Berlin Heidelberg (2004)

[31] Guyon, I.: Challenges in Machine Learning book series. Microtome (2011-
2016), http://www.mtome.com/Publications/CiML/ciml.html

[32] Guyon, I., Bennett, K., Cawley, G., Escalante, H.J., Escalera, S.,
Ho, T.K., Macià, N., Ray, B., Saeed, M., Statnikov, A., Viegas,
E.: AutoML challenge 2015: Design and first results. In: Proc.
of AutoML 2015@ICML (2015), https://drive.google.com/file/d/

0BzRGLkqgrI-qWkpzcGw4bFpBMUk/view

[33] Guyon, I., Bennett, K., Cawley, G., Escalante, H.J., Escalera, S., Ho, T.K.,
Macià, N., Ray, B., Saeed, M., Statnikov, A., Viegas, E.: Design of the 2015
ChaLearn AutoML challenge. In: International Joint Conference on Neural
Networks (2015), http://www.causality.inf.ethz.ch/AutoML/automl_
ijcnn15.pdf

https://github.com/automl/auto-sklearn
https://sites.google.com/site/automl2018icml/
http://www.mtome.com/Publications/CiML/ciml.html
https://drive.google.com/file/d/0BzRGLkqgrI-qWkpzcGw4bFpBMUk/view
https://drive.google.com/file/d/0BzRGLkqgrI-qWkpzcGw4bFpBMUk/view
http://www.causality.inf.ethz.ch/AutoML/automl_ijcnn15.pdf
http://www.causality.inf.ethz.ch/AutoML/automl_ijcnn15.pdf

234 CHAPTER 10. AUTOML CHALLENGES

[34] Guyon, I., Chaabane, I., Escalante, H.J., Escalera, S., Jajetic, D.,
Lloyd, J.R., Maćıa, N., Ray, B., Romaszko, L., Sebag, M., Stat-
nikov, A., Treguer, S., Viegas, E.: A brief review of the ChaLearn
AutoML challenge. In: Proc. of AutoML 2016@ICML (2016),
https://docs.google.com/a/chalearn.org/viewer?a=v&pid=sites&

srcid=Y2hhbGVhcm4ub3JnfGF1dG9tbHxneDoyYThjZjhhNzRjMzI3MTg4

[35] Guyon, I., Alamdari, A.R.S.A., Dror, G., Buhmann, J.: Performance pre-
diction challenge. In: the International Joint Conference on Neural Net-
works. pp. 1649–1656 (2006)

[36] Guyon, I., Bennett, K., Cawley, G., Escalante, H.J., Escalera, S., Ho, T.K.,
Ray, B., Saeed, M., Statnikov, A., Viegas, E.: Automl challenge 2015:
Design and first results (2015)

[37] Guyon, I., Cawley, G., Dror, G.: Hands-On Pattern Recognition: Chal-
lenges in Machine Learning, Volume 1. Microtome Publishing, USA (2011)

[38] Guyon, I., Gunn, S., Nikravesh, M., Zadeh, L. (eds.): Feature extraction,
foundations and applications. Studies in Fuzziness and Soft Computing,
Physica-Verlag, Springer (2006)

[39] Hastie, T., Rosset, S., Tibshirani, R., Zhu, J.: The entire regularization
path for the support vector machine. Journal of Machine Learning Research
5, 1391–1415 (2004)

[40] Hastie, T., Tibshirani, R., Friedman, J.: The elements of statistical learn-
ing: Data mining, inference, and prediction. Springer, 2nd edn. (2001)

[41] Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based opti-
mization for general algorithm configuration. In: Proceedings of the con-
ference on Learning and Intelligent OptimizatioN (LION 5) (2011)

[42] Ioannidis, J.P.A.: Why most published research findings are false. PLoS
Medicine 2(8), e124 (August 2005)

[43] Jordan, M.I.: On statistics, computation and scalability. Bernoulli 19(4),
1378–1390 (September 2013)

[44] Keerthi, S.S., Sindhwani, V., Chapelle, O.: An efficient method for
gradient-based adaptation of hyperparameters in SVM models. In: Ad-
vances in Neural Information Processing Systems (2007)

[45] Klein, A., Falkner, S., Bartels, S., Hennig, P., Hutter, F.: Fast bayesian
hyperparameter optimization on large datasets. In: Electronic Journal of
Statistics. vol. 11 (2017)

[46] Kohavi, R., John, G.H.: Wrappers for feature selection. Artificial Intelli-
gence 97(1-2), 273–324 (December 1997)

https://docs.google.com/a/chalearn.org/viewer?a=v&pid=sites&srcid=Y2hhbGVhcm4ub3JnfGF1dG9tbHxneDoyYThjZjhhNzRjMzI3MTg4
https://docs.google.com/a/chalearn.org/viewer?a=v&pid=sites&srcid=Y2hhbGVhcm4ub3JnfGF1dG9tbHxneDoyYThjZjhhNzRjMzI3MTg4

BIBLIOGRAPHY 235

[47] Langford, J.: Clever methods of overfitting (2005), blog post at
http://hunch.net/?p=22

[48] Lloyd, J.: Freeze Thaw Ensemble Construction. https://github.com/

jamesrobertlloyd/automl-phase-2 (2016)

[49] Momma, M., Bennett, K.P.: A pattern search method for model selection
of support vector regression. In: In Proceedings of the SIAM International
Conference on Data Mining. SIAM (2002)

[50] Moore, G., Bergeron, C., Bennett, K.P.: Model selection for primal SVM.
Machine Learning 85(1-2), 175–208 (October 2011)

[51] Moore, G.M., Bergeron, C., Bennett, K.P.: Nonsmooth bilevel program-
ming for hyperparameter selection. In: IEEE International Conference on
Data Mining Workshops. pp. 374–381 (2009)

[52] Niculescu-Mizil, A., Perlich, C., Swirszcz, G., Sindhwani, V., Liu, Y.,
Melville, P., Wang, D., Xiao, J., Hu, J., Singh, M., et al.: Winning the
kdd cup orange challenge with ensemble selection. In: Proceedings of the
2009 International Conference on KDD-Cup 2009-Volume 7. pp. 23–34.
JMLR. org (2009)

[53] Opper, M., Winther, O.: Gaussian processes and SVM: Mean field results
and leave-one-out, pp. 43–65. MIT (10 2000), massachusetts Institute of
Technology Press (MIT Press) Available on Google Books

[54] Park, M.Y., Hastie, T.: L1-regularization path algorithm for generalized
linear models. Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 69(4), 659–677 (2007)

[55] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,
Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vander-
plas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay,
E.: Scikit-learn: Machine learning in Python. Journal of Machine Learning
Research 12, 2825–2830 (2011)

[56] Pham, H., Guan, M.Y., Zoph, B., Le, Q.V., Dean, J.: Efficient neural
architecture search via parameter sharing. arXiv preprint arXiv:1802.03268
(2018)

[57] Real, E., Moore, S., Selle, A., Saxena, S., Suematsu, Y.L., Le, Q.,
Kurakin, A.: Large-scale evolution of image classifiers. arXiv preprint
arXiv:1703.01041 (2017)

[58] Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.): Recommender Sys-
tems Handbook. Springer (2011)

[59] Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Ma-
chines, Regularization, Optimization, and Beyond. MIT Press (2001)

https://github.com/jamesrobertlloyd/automl-phase-2
https://github.com/jamesrobertlloyd/automl-phase-2

236 CHAPTER 10. AUTOML CHALLENGES

[60] Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of
machine learning algorithms. In: Advances in Neural Information Process-
ing Systems 25, pp. 2951–2959 (2012)

[61] Statnikov, A., Wang, L., Aliferis, C.F.: A comprehensive comparison of
random forests and support vector machines for microarray-based cancer
classification. BMC Bioinformatics 9(1) (2008)

[62] Sun, Q., Pfahringer, B., Mayo, M.: Full model selection in the space of data
mining operators. In: Genetic and Evolutionary Computation Conference.
pp. 1503–1504 (2012)

[63] Swersky, K., Snoek, J., Adams, R.P.: Multi-task Bayesian optimization.
In: Advances in Neural Information Processing Systems 26. pp. 2004–2012
(2013)

[64] Swersky, K., Snoek, J., Adams, R.P.: Freeze-thaw bayesian optimization.
arXiv preprint arXiv:1406.3896 (2014)

[65] Thornton, C., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Auto-weka: Au-
tomated selection and hyper-parameter optimization of classification algo-
rithms. CoRR abs/1208.3719 (2012)

[66] Thornton, C., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Auto-weka:
Combined selection and hyperparameter optimization of classification al-
gorithms. In: 19th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. pp. 847–855. ACM (2013)

[67] Vanschoren, J., Van Rijn, J.N., Bischl, B., Torgo, L.: Openml: networked
science in machine learning. ACM SIGKDD Explorations Newsletter 15(2),
49–60 (2014)

[68] Vapnik, V., Chapelle, O.: Bounds on error expectation for support vector
machines. Neural computation 12(9), 2013–2036 (2000)

[69] Weston, J., Elisseeff, A., BakIr, G., Sinz, F.: Spider (2007), http://mloss.
org/software/view/29/

[70] Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning.
arXiv preprint arXiv:1611.01578 (2016)

http://mloss.org/software/view/29/
http://mloss.org/software/view/29/

	I AutoML Methods
	Hyperparameter Optimization
	Introduction
	Problem Statement
	Alternatives to Optimization: Ensembling and Marginalization
	Optimizing for Multiple Objectives

	Blackbox Hyperparameter Optimization
	Model-Free Blackbox Optimization Methods
	Bayesian Optimization

	Multi-Fidelity Optimization
	Learning Curve-Based Prediction for Early Stopping
	Bandit-Based Algorithm Selection Methods
	Adaptive Choices of Fidelities

	Applications to AutoML
	Open Problems and Future Research Directions

	Meta-Learning
	Introduction
	Learning from Model Evaluations
	Task-Independent Recommendations
	Configuration Space Design
	Configuration Transfer
	Learning Curves

	Learning from Task Properties
	Meta-Features
	Learning Meta-Features
	Warm-Starting Optimization from Similar Tasks
	Meta-Models
	Pipeline Synthesis
	To Tune or Not to Tune?

	Learning from Prior Models
	Transfer Learning
	Meta-Learning in Neural Networks
	Few-Shot Learning
	Beyond Supervised Learning

	Conclusion

	Neural Architecture Search
	Introduction
	Search Space
	Search Strategy
	Performance Estimation Strategy
	Future Directions

	II AutoML Systems
	Auto-WEKA
	Introduction
	Preliminaries
	Model Selection
	Hyperparameter Optimization

	CASH
	Sequential Model-Based Algorithm Configuration (SMAC)

	Auto-WEKA
	Experimental Evaluation
	Baseline Methods
	Results for Cross-Validation Performance
	Results for Test Performance

	Conclusion
	Community Adoption

	Hyperopt-Sklearn
	Introduction
	Background: Hyperopt for Optimization
	Scikit-Learn Model Selection as a Search Problem
	Example Usage
	Experiments
	Discussion and Future Work
	Conclusions

	Auto-sklearn
	Introduction
	AutoML as a CASH Problem
	New Methods for Increasing Efficiency and Robustness of AutoML
	Meta-Learning for Finding Good Instantiations of Machine Learning Frameworks
	Automated Ensemble Construction of Models Evaluated During Optimization

	A Practical Automated Machine Learning System
	Comparing Auto-sklearn to Auto-WEKA and Hyperopt-sklearn
	Evaluation of the Proposed AutoML Improvements
	Detailed Analysis of Auto-sklearn Components
	Discussion and Conclusion
	Discussion
	Usage
	Extensions in PoSH Auto-sklearn
	Conclusion and Future Work

	Towards Automatically-Tuned Deep Neural Networks
	Introduction
	Auto-Net 1.0
	Auto-Net 2.0
	Experiments
	Baseline Evaluation of Auto-Net 1.0 and Auto-sklearn
	Results for AutoML Competition Datasets
	Comparing AutoNet 1.0 and 2.0

	Conclusion

	TPOT
	Introduction
	Methods
	Machine Learning Pipeline Operators
	Constructing Tree-Based Pipelines
	Optimizing Tree-Based Pipelines
	Benchmark Data

	Results
	Conclusions and Future Work

	The Automatic Statistician
	Introduction
	Basic Anatomy of an Automatic Statistician
	Related Work

	An Automatic Statistician for Time Series Data
	The Grammar Over Kernels
	The Search and Evaluation Procedure
	Generating Descriptions in Natural Language
	Comparison with Humans

	Other Automatic Statistician Systems
	Core Components
	Design Challenges

	Conclusion

	III AutoML Challenges
	AutoML Challenges
	Introduction
	Problem Formalization and Overview
	Scope of the Problem
	Full Model Selection
	Optimization of Hyper-Parameters
	Strategies of Model Search

	Data
	Challenge Protocol
	Time Budget and Computational Resources
	Scoring Metrics
	Rounds and Phases in the 2015/2016 Challenge
	Phases in the 2018 Challenge

	Results
	Scores Obtained in the 2015/2016 Challenge
	Scores Obtained in the 2018 Challenge
	Difficulty of Datasets/Tasks
	Hyper-Parameter Optimization
	Meta-Learning
	Methods Used in the Challenges

	Discussion
	Conclusion

