8 research outputs found

    Multisymbol with memory noncoherent detection of CPFSK

    Get PDF
    Multisymbol receiver is an effective method to demodulate noncoherent sequences. However it is necessary to correlate an important number of symbols in a noncoherent scheme to reach the performances carried out by optimal coherent Maximum a Posteriori (MAP) detectors such as BCJR. In this paper, we propose an advanced multisymbol receiver by adding some memory to the decision process. The advanced receiver, called here Multisymbol With Memory (MWM) takes into account the cumulative phase information unlike multisymbol algorithm and thus it can be seen as a truncated BCJR. An exact mathematical derivation is performed for this truncated BCJR. Then an implementation of the MWM detector applied to a continuous phase frequency shift keying modulation is presented. Finally an asymptotic analysis is carried out based on the achievable Symmetric Mutual Information rate. The proposed system exhibits good performances compared to classical multisymbol receivers at the expense of increased complexity and can approach the performances of a coherent receiver

    Precoding for Non-coherent Detection of Continuous Phase Modulations

    Get PDF
    Non-coherent trellis based receiver (TBR) is an effective method to demodulate noncoherent continuous-phase modulated sequences. However it requires to increase the observation length to reach the performance of classical coherent TBRs. Furthermore it appears that both receivers offers different behaviours when considered in a bit-interleaved coded modulation (BICM) system using iterative decoding. Indeed, trellis based outer coding schemes performing well in coherent regime generate error floors in non-coherent regime. In this paper, we show that precoding of the continuous phase modulation (CPM) encoder can deal with the latter issue. The optimization of this non-coherent precoding relies on different objectives than the existing precoding methods introduced in the coherent case. The optimization relies on some asymptotic arguments enabling an efficient BICM scheme using iterative decoding. Using the proposed precoding approach enables to remove error floors in the non-coherent regime while enabling transparent use in the coherent case

    Nouvelle forme d'onde et récepteur avancé pour la télémesure des futurs lanceurs

    Get PDF
    Les modulations à phase continue (CPMs) sont des méthodes de modulations robuste à la noncohérence du canal de propagation. Dans un contexte spatial, les CPM sont utilisées dans la chaîne de transmission de télémesure de la fusée. Depuis les années 70, la modulation la plus usitée dans les systèmes de télémesures est la modulation CPFSK continuous phase frequency shift keying filtrée. Historiquement, ce type de modulation est concaténée avec un code ReedSolomon (RS) afin d'améliorer le processus de décodage. Côté récepteur, les séquences CPM non-cohérentes sont démodulées par un détecteur Viterbi à sortie dure et un décodeur RS. Néanmoins, le gain du code RS n'est pas aussi satisfaisant que des techniques de codage moderne capables d'atteindre la limite de Shannon. Actualiser la chaîne de communication avec des codes atteignant la limite de Shannon tels que les codes en graphe creux, implique deremanier l’architecture du récepteur usuel pour un détecteur à sortie souple. Ainsi, on propose dans cette étude d' élaborer un détecteur treillis à sortie souple pour démoduler les séquences CPM non-cohérentes. Dans un deuxième temps, on concevra des schémas de pré-codages améliorant le comportement asymptotique du récepteur non-cohérent et dans une dernière étape on élabora des codes de parité à faible densité (LDPC) approchant la limite de Shannon

    Spectral and Energy Efficient Communication Systems and Networks

    Get PDF
    In this thesis, design and analysis of energy- and spectral-efficient communication and cellular systems in micro wave and millimeter wave bands are considered using the following system performance metrics: i) Energy efficiency; ii) Spectral efficiency; iii) Spatial spectral efficiency; iv) Spatial energy efficiency, and v) Bit error rate. Statistical channel distributions, Nakagami-m and Generalized-K, and path loss models, Line of Sight (LOS) and Non-Line of Sight (NLOS), are used to represent the propagation environment in these systems. Adaptive M-QAM and M-CPFSK communication systems are proposed to enhance their efficiency metrics as a function of Signal-to-Noise Ratio (SNR) over the channel. It is observed that in the adaptive M-QAM system energy efficiency can be improved by 0.214 bits/J whereas its spectral efficiency can be enhanced by 40%, for wide range of SNR compared to that of conventional M-QAM system. In case of adaptive M-CPFSK system, spectral and energy efficiencies can be increased by 33% and 76%, respectively. A framework for design and analysis of a cellular system, with omni and sectorized antenna systems at Base Station (BS), using its efficiency metrics and coverage probability is presented assuming wireless channel is Nakagami-m fading coupled with path loss and co-channel interference. It is noted that sectorized antenna system at BS enhances energy and spectral efficiencies by nearly 109% and 1.5 bits/s/Hz, respectively, compared to conventional omni antenna system. A Multi-User MIMO cellular system is then investigated and closed-form expressions for its uplink efficiency metrics are derived for fading and shadowing wireless channel environment. It is observed that increasing number of antennas in MIMO system at BS can significantly improve efficiency metrics of cellular system. Finally, a framework for design and analysis of dense mmWave cellular system, in 28 and 73 GHz bands, is presented for efficient utilization of spectrum and power of the system. The efficiency metrics of the system are evaluated for LOS and NLOS links. It is observed that while 28 GHz band is expedient for indoor cellular systems, the 73 GHz band is appropriate for outdoor systems

    Sparse graph-based coding schemes for continuous phase modulations

    Get PDF
    The use of the continuous phase modulation (CPM) is interesting when the channel represents a strong non-linearity and in the case of limited spectral support; particularly for the uplink, where the satellite holds an amplifier per carrier, and for downlinks where the terminal equipment works very close to the saturation region. Numerous studies have been conducted on this issue but the proposed solutions use iterative CPM demodulation/decoding concatenated with convolutional or block error correcting codes. The use of LDPC codes has not yet been introduced. Particularly, no works, to our knowledge, have been done on the optimization of sparse graph-based codes adapted for the context described here. In this study, we propose to perform the asymptotic analysis and the design of turbo-CPM systems based on the optimization of sparse graph-based codes. Moreover, an analysis on the corresponding receiver will be done

    Multisymbol With Memory Noncoherent Detection of CPFSK

    No full text
    International audienceMultisymbol receiver is an effective method to demodulate noncoherent sequences. However it is necessary to correlate an important number of symbols in a noncoherent scheme to reach the performances carried out by optimal coherent Maximum a Posteriori (MAP) detectors such as BCJR. In this paper, we propose an advanced multisymbol receiver by adding some memory to the decision process. The advanced receiver, called here Multisymbol With Memory (MWM) takes into account the cumulative phase information unlike multisymbol algorithm and thus it can be seen as a truncated BCJR. An exact mathematical derivation is performed for this truncated BCJR. Then an implementation of the MWM detector applied to a continuous phase frequency shift keying modulation is presented. Finally an asymptotic analysis is carried out based on the achievable Symmetric Mutual Information rate. The proposed system exhibits good performances compared to classical multisymbol receivers at the expense of increased complexity and can approach the performances of a coherent receiver

    Multisymbol With Memory Noncoherent Detection of CPFSK

    Get PDF
    International audienceMultisymbol receiver is an effective method to demodulate noncoherent sequences. However it is necessary to correlate an important number of symbols in a noncoherent scheme to reach the performances carried out by optimal coherent Maximum a Posteriori (MAP) detectors such as BCJR. In this paper, we propose an advanced multisymbol receiver by adding some memory to the decision process. The advanced receiver, called here Multisymbol With Memory (MWM) takes into account the cumulative phase information unlike multisymbol algorithm and thus it can be seen as a truncated BCJR. An exact mathematical derivation is performed for this truncated BCJR. Then an implementation of the MWM detector applied to a continuous phase frequency shift keying modulation is presented. Finally an asymptotic analysis is carried out based on the achievable Symmetric Mutual Information rate. The proposed system exhibits good performances compared to classical multisymbol receivers at the expense of increased complexity and can approach the performances of a coherent receiver
    corecore