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ABSTRACT

Multisymbol receiver is an effective method to demodulate nonco-

herent sequences. However it is necessary to correlate an impor-

tant number of symbols in a noncoherent scheme to reach the per-

formances carried out by optimal coherent Maximum a Posteriori

(MAP) detectors such as BCJR. In this paper, we propose an ad-

vanced multisymbol receiver by adding some memory to the deci-

sion process. The advanced receiver, called here Multisymbol With

Memory (MWM) takes into account the cumulative phase informa-

tion unlike multisymbol algorithm and thus it can be seen as a trun-

cated BCJR. An exact mathematical derivation is performed for this

truncated BCJR. Then an implementation of the MWM detector ap-

plied to a continuous phase frequency shift keying modulation is pre-

sented. Finally an asymptotic analysis is carried out based on the

achievable Symmetric Mutual Information rate. The proposed sys-

tem exhibits good performances compared to classical multisymbol

receivers at the expense of increased complexity and can approach

the performances of a coherent receiver.

Index Terms— Multisymbol, noncoherent, BCJR, continuous

phase modulation, mutual information, channel capacity, continuous

phase frequency shift keying.

1. INTRODUCTION

Continuous phase modulation (CPM) [1],[2], [3] is a particular mod-

ulation characterised by a constant envelop waveform that means the

transmitted carrier power is constant. This special feature leads to

excellent power efficiency. A second important aspect of CPM is

the phase continuity yielding high spectral efficiency. The phase of

a CPM signal for a given symbol is determined by the cumulative

phase of previous transmitted symbols known as the phase memory.

Hence the decision taken on the current symbol must take into ac-

count the previous ones. An other important element of CPM is the

modulation index which could restrain, in a particular case, the set of

the phase memory to a finite set. A well-known type of CPM is the

continuous phase frequency shift keying (CPFSK) [4], [5] described

by a rectangular phase response and a memory of one, meaning that

the new phase is computed only from one previous symbol. In the

coherent case, an efficient method is proposed by Cheng based on

the well-knwon BCJR [7]. Cheng [8] implemented the BCJR al-

gorithm for CPFSK. The trellis consists of Q states where Q is the

cardinal of the set composed of all possible values taken by the phase

memory. Q is also the denominator of the CPFSK modulation index

h= P
Q

. To get a coherent detector with a finite set of phase memory,

it is mandatory having h rational. In noncoherent channel, symbol

detection is done through a multisymbol detector well described by

Valenti [6].

Multisymbol receiver proposed by Valenti [6] does the correla-

tion between the block of received symbols and all existing combi-

nations of same length blocks. The condition required to use this

method is the absence of phase shift between symbols belonging to

the same block. As well, in this paper perfect frequency and time

synchronisation is assumed. We suppose the phase shift is stable

over a block of N symbols. It exists MN possible combinations

for a block of size N (with M the modulation order). The process is

conducted as follows. The incoming signal is filtered by a bank ofM

matched filters. Then the conditional probability of the transmitted

symbols block of size N under the condition of one of the possible

combination is done for each existing combination. Eventually, the

demodulator computes the log-likelihood ratio (LLR) for each bit of

the block based on the conditional probability. The literal analytical

expression of the conditional probability, given by Valenti, is inde-

pendent of the initial phase of the block, moreover an other extra

advantage of the multisymbol receiver is that it can work for any

value of h. It reveals the robustness of the detector against untimely

channel phase shift.

In this paper, we propose an advanced multisymbol receiver tak-

ing into account the phase memory. Block of symbols and accumu-

lated phase are henceforth included in states. The transition from one

state to another is done by the phase memory at the beginning of each

state. It can be seen as a truncated BCJR. In [9], Giulio Colavope

suggested a decomposition of BCJR states close to the model pro-

posed in this paper. Here, we adopt another point of view starting

from the multisymbol classical receiver and adding memory lead-

ing to a windowed multisymbol receiver with memory. It conducts

to different expressions of the BCJR recursions and a different state

space model.

The remainder of this paper is organized as follows. In the next

section, we describe the system model. Then, in section III, we carry

out an analysis of our model. Thereafter the derivation of the MWM

algorithm is given in section IV. An implementation of the MWM

applied to CPFSK is presented section V. Finally, the mutual infor-

mation rate of the system is derived and subsequently used to com-

pute the channel capacity. Section VII will conclude the paper.



2. SYSTEM MODEL

Let U={u0, ..., uK−1} be a set of K independent and identi-

cally distributed (i.i.d) symbols belonging to a M-ary alphabet

{0, ...,M − 1}. Symbols are then sent to a modulator comprised

of a memoryless modulator and a continuous phase encoder (CPE).

As a reminder, CPFSK modulation is assumed meaning the phase

response is rectangular and the memory consists of one symbol.

At the kth symbol interval, the memoryless modulator matches

symbol uk to the signal xuk (t) corresponding to the uth
k element of

X={xi(t), i=0...M − 1} (see [6]) with,

xi(t)=

√

1

T
· ej2π ihtT , t ∈ [0, T ) (1)

where T is the symbol period and h the modulation index.

The CPE ensures the continuity between the transmitted continuous-

time waveforms by accumulating the phase of each modulated sym-

bol.

φk+1=φk + 2πhuk (2)

φk is the accumulated phase at the start of the kth symbol.

It leads to a CPFSK complex baseband representation of the

transmitted continuous-time waveform during the kth symbol time

of the observation interval:

sk(t)=
√
Es · xuk (t) · ejφk (3)

The transmitted signal undergoes a phase rotation θ and it is trans-

mitted over a complex additive white Gaussian noise (AWGN chan-

nel) with noise spectral density N0. θ is assumed to be unknown,

constant over the whole transmission and uniformly distributed

between [0, 2π[. The channel is said to be noncoherent. The corre-

sponding complex-baseband received signal is given by

∀ t ∈ [kT ; (k + 1)T ),

rk(t)=sk(t) · a · ejθ + n(t) (4)

where a is a possible channel attenuation which is assumed known

to the receiver. Without loss of generality, we assume here that a=1.

n(t) in (4) corresponds to the complex AWGN.

Signal rk(t) received during the kth symbol interval is passed

through a bank of M matched filters whose impulse responses are

given by x̄i(t), i=0, ...,M−1 where x̄i(t) is the complex conjugate

of xi(t) (see Fig. 1).

x̄i(t)

...

...

ri,k

x̄0(t) r0,k

x̄M−1(t) rM−1,k

rk(t)

Fig. 1. Complex matched filters of M-CPFSK modulation

Considering a perfect timing synchronisation, ri,k is the element re-

sulting from the correlation between rk(t) and xi(t).

ri,k=

T
∫

0

rk(t)x̄i(t)dt (5)

In the sequel we adopt the following notation rk={r0,k, ..., rM−1,k}
and the set of observations is given by r

K−1
0 ={r0, ..., rK−1}.

3. MULTISYMBOL WITH MEMORY DETECTOR

The proposed MWM detector is based on state trellis representa-

tion allowing us to use a modified version of the BCJR algorithm

to determine the conditional probability p(uk|rK−1
0 ). We denote

δk={φk, uk; ...;uk+N−2} as a state of our MWM detector taking

into account the accumulated phase φk and a series of N − 1 sym-

bols uk+N−2
k . Fig. 2 illustrates the usual BCJR and the way symbols

and accumulated phase are gathered to form a MWM state. In this

figure, we can notice that transition {φk→φk+1} is done such that

φk+1=φk + 2πhuk.

φk φk+1 · · · φk+N−2 φk+N−1 φk+N

uk uk+N−2 uk+N−1

δk={φk, uk; ...;uk+N−2}

δk+1={φk+1, uk+1; ...;uk+N−1}

Fig. 2. State Diagram of the usual BCJR

The transition {δk→δk+1} corresponds to the emitted symbol

uk+N−1. Finally, BCJR metrics have to be recomputed in order to

take into account MWM states.

From Bayes theorem, the conditional probability of sym-

bols given the observations p(uk+N−1|rK−1
0 ) is computed from

p(rK−1
0 |uk+N−1). At first, The conditional probability is devel-

oped as follows.

p(rK−1
0 |uk+N−1)

=p(rk−1
0 , rk+N−1

k , rK−1
k+N |uk+N−1)

=
∑

δk

p(rk−1
0 , rk+N−1

k , rK−1
k+N |δk, uk+N−1)p(δk|uk+N−1)

=
∑

δk

p(rK−1
k+N |rk−1

0 , rk+N−1
k , δk, uk+N−1)p(δk|uk+N−1)

·p(rk−1
0 |rk+N−1

k , δk, uk+N−1)p(r
k+N−1
k |δk, uk+N−1)

=
∑

δk

p(rK−1
k+N |rk+N−1

k+1 , δk+1)p(r
k−1
0 |rk+N−2

k , δk)

·p(rk+N−1
k |δk, uk+N−1)p(δk)

(6)

the classical forward, backward and transition kernel probabilities

(denoted α, β and γ respectively) are identified in (6) as follows.

γ(δk→δk+1, r
k+N−1
k ) =p(rk+N−1

k |δk, uk+N−1)

αk(δk) =p(rk−1
0 |rk+N−2

k , δk)p(δk)

βk+1(δk+1) =p(rK−1
k+N |rk+N−1

k+1 , δk+1)

(7)

As with the BCJR algorithm, αk can be calculated as



αk(δk) =p(r
k−1
0 |rk+N−2

k , δk)p(δk)

=p(rk−2
0 , rk−1|rk+N−2

k , δk)p(δk)

=p(δk) ·
∑

δk−1

p(rk−2
0 , rk−1|rk+N−2

k , δk, δk−1)

·p(δk−1|rk+N−2
k , δk)

=
∑

δk−1

p(rk−2
0 |rk+N−3

k−1 , δk−1)p(rk−1|rk+N−2
k , δk, δk−1)

·p(δk−1|rk+N−2
k , δk)p(δk)

(8)

where.

p(rk−1|rk+N−2
k , δk, δk−1) =p(rk−1|rk+N−2

k , uk+N−2, δk−1)

=
p(rk+N−2

k−1
|uk+N−2,δk−1)

p(rk+N−2

k
|uk+N−2,δk−1)

=
γ(δk−1→δk,r

k+N−2

k−1
)

p(rk+N−2

k
|uk+N−2,δk−1)

(9)

(9) is derived from Bayes’ theorem and (7). Moreover, we have

p(δk−1|rk+N−2
k , δk)p(δk) =p(uk+N−2)p(δk−1) (10)

In (10), p(δk−1|rk+N−2
k , δk) is independent of observations rk+N−2

k .

At last, after all terms have been collected, a recursion of α is ob-

tained as follows

αk(δk)=
∑

δk−1

αk−1(δk−1)
γ(δk−1→δk,r

k+N−2

k−1
)

p(rk+N−2

k
|uk+N−2,δk−1)

p(uk+N−2)

(11)

Similarly, β can be calculated using a backward recursion.

βk+1(δk+1)=
∑

δk+2

βk+2(δk+2)
γ(δk+1→δk+2,r

k+N
k+1

)

p(rk+N−1

k+1
|uk+N ,δk+1)

p(uk+N )

(12)

Finally gathering α, β and γ leads to

p(uk+N−1|rK−1
0 )∼

∑

δk

αk(δk)βk+1(δk+1)

·γ(δk→δk+1, r
k+N−1
k )p(uk+N−1)

(13)

4. MULTISYMBOL WITH MEMORY FOR A

NONCOHERENT CPFSK MODULATION

Using sufficient statistics at the output of the filter bank of Fig. 1 we

have [6])

p(rk|uk, a, ψk)∼e
2a

√

Es
N0

ℜ(e−jψk ruk,k
)

(14)

where ℜ(.) is the real part and ψk=φk+θ (with ψ0=θ). The branch

Fig. 3. 4-CPFSK SER with h= 5
7

over an AWGN channel.

metric associated to the MWM requires the computation of the con-

ditional probability related to γ and given in [6]

γ(δk→δk+1, r
k+N−1
k ) =p(rk+N−1

k |δk, uk+N−1, a)

∼e
2a

√

Es
N0

ℜ
(

e−jψkµ(uk+N−1

k
)
)

where,

µ(uk+N−1
k ) =

k+N−1
∑

i=k

rui,ie
−j2πh

i−1
∑

n=k

un

(15)

Averaging over the random phase ψ0 yields the well known zero-

order modified Bessel function

p(rk+N−1
k |δk, uk+N−1, a)∼I0

2a
√
Es

N0

∣

∣

∣
µ(uk+N−1

k )
∣

∣

∣

)

(16)

Then equation (11) and (12) can be rewritten as

αk(δk)∼
∑

δk−1

αk−1(δk−1)
I0

(

2a
√

Es
N0

∣

∣

∣
µ(uk+N−2

k−1
)
∣

∣

∣

)

I0

(

2a
√

Es
N0

∣

∣

∣
µ(uk+N−2

k
)
∣

∣

∣

)p(uk+N−2)

βk(δk) ∼
∑

δk+1

βk+1(δk+1)
I0

(

2a
√

Es
N0

∣

∣

∣
µ(uk+N−1

k
)
∣

∣

∣

)

I0

(

2a
√

Es
N0

∣

∣

∣
µ(uk+N−2

k
)
∣

∣

∣

)p(uk+N−1)

(17)

Symbol error rate (SER) of 4-CPFSK for a given modulation index

using the method highlighted above is shown in Fig. 3. From this

figure, it appears that noncoherent detection done with the MWM

reaches better SER than multisymbol detector. The MWM’s SER

draws near to coherent detection when the number of symbols in

states increases.

5. ASYMPTOTIC PERFORMANCE ANALYSIS

5.1. Mutual Information Rate

The mutual information rate of finite-state machine channels have

been studied in [10] and [11].The mutual information rate between



Fig. 4. MWM and Multisymbol noncoherent detection of 4-CPFSK

with h= 5
7

and N=5.

the channel input source U and the channel output R can be de-

scribed as follows [12].

I(U ,R)= lim
K→∞

1

K
I(uK−1

0 , r
K−1
0 |δ0) (18)

Where I(uK−1
0 , rK−1

0 |δ0) is the mutual information between the

input process uK−1
0 and the output process r

K−1
0 conditioned on

the initial state δ0. The expression of I(uK−1
0 , rK−1

0 |δ0) can be

derived as follows [13]

I(uK−1
0 , rK−1

0 |δ0) =E
[

log

(

p(uK−1

0
|rK−1

0
,δ0)

p(uK−1

0
|δ0)

)

]

=
(

K − (N − 1)
)

log(M)

+E

[

log
(

p(uK−1
0 |rK−1

0 , δ0)
)

]

(19)

To express (19) in terms of bits per channel used, use a base-2

logarithm. The probability function p(uK−1
0 |rK−1

0 , δ0) which ap-

pears in (19) may be reduced to p(uK−1
N−1|rK−1

0 , δ0) since δ0=
{φ0, u0; ...;uN−2}. It may be evaluated as follows.

p(uK−1
N−1|rK−1

0 , δ0) =
K−N
∏

k=0

p(uk+N−1|δk0 , rK−1
0 ) (20)

Computation of p(uk+N−1|δk0 , rK−1
0 ) in (20) has been done in [14].

The idea is to compute the probability of a symbol knowing perfectly

all the previous states from the beginning of the transmission. This

amounts to perform the BCJR algorithm as usual but taking into

account the complete knowledge of the forward recursion. Mean-

ing α is fixed to 1 for the correct state and 0 to all other states. γ

and β remained unchanged beside the traditional BCJR. Comput-

ing p(uk+N−1|δk0 , rK−1
0 ) leads to full determination of the mutual

information as well as the mutual information rate.

The channel capacity C is defined as the supremum of the mutual

information rate in [12].

C= lim
K→∞

sup

[

1

K
· I
(

u
K−1
0 , r

K−1
0 |δ0

)

]

(21)

MWM capacity for CPFSK is shown in Fig. 4 in noncoherent de-

tection. Those curves are compared to the coherent case (θ=0),

as well as to two classical receivers based on a simple multisym-

bol receivers. The first is based on a BICM (bit-interleaved coded

modulation) scheme using iterative decoding (ID) between soft mul-

tisymbol receiver and an outer blockcode. The second one is a re-

ceiver based on serial concatenation of the multisymbol receiver and

an outer channel code without iterative decoding. It appears that

MWM reaches higher capacity than multisymbol detector. Multi-

symbol BICM is added to Fig. 4. The MWM capacity draws near to

the coherent case when states cardinality increases.

6. CONCLUSION

Multisymbol receiver is usually considered to cope with noncoher-

ent channel, trading complexity versus performance. However tradi-

tional approaches do not take into account for the possible memory

that can be used at the receiver side. In this paper, we proposed to

extend these approaches to the case of a multisymbol receiver in-

cluding some memory in the decoding process. It leads to improved

performances but with the expense of an increasing complexity.

7. APPENDIX

A short example is given Fig. 5 to clarify the mathematical reduction

of (22) and (23) essential to section 3.

δk−3

δk−2

δk−1

δk

δk+1

uk

uk

uk

uk−1

uk−1

uk−1

uk−2

uk−2uk−3

uk+1

uk+1

uk+1

uk+2

uk+2

uk+3

Fig. 5. Multisymbol with Memory State Model for N=4

For ease of reading, in the representation illustrated Fig. 5,

states have been depicted without their phase. We can notice uk is

used in the following transition {δk−3→δk−2, δk−2→δk−1, δk−1→
δk, δk→δk+1}. Thus, in a more generic way, uk intervenes only on

states transition involving δk+1
k−(N−1). It comes out from the previous

example,

∀ k ∈ {0, ...,K − 1},

p(rk|rK−1
0 , δ

K−(N−1)
0 ) =p(rk|rk+N−1

k−(N−1), δ
k+1
k−(N−1))

=p(rk|rk+N−1
k−(N−1), u

k+N−1
k , δk−(N−1))

(22)

A much more generic expression of the hypothesis is given,

∀ (i, j) ∈ {0, ...,K − 1}2 such as i≤j

p(rj
i |rK−1

0 , δ
K−(N−1)
0 ) =p(rj

i |rj+N−1
i−(N−1), δ

j+1
i−(N−1))

=p(rj
i |rj+N−1

i−(N−1), u
j+N−1
i , δi−(N−1))

(23)
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