74 research outputs found

    Emerging Approaches for THz Array Imaging: A Tutorial Review and Software Tool

    Full text link
    Accelerated by the increasing attention drawn by 5G, 6G, and Internet of Things applications, communication and sensing technologies have rapidly evolved from millimeter-wave (mmWave) to terahertz (THz) in recent years. Enabled by significant advancements in electromagnetic (EM) hardware, mmWave and THz frequency regimes spanning 30 GHz to 300 GHz and 300 GHz to 3000 GHz, respectively, can be employed for a host of applications. The main feature of THz systems is high-bandwidth transmission, enabling ultra-high-resolution imaging and high-throughput communications; however, challenges in both the hardware and algorithmic arenas remain for the ubiquitous adoption of THz technology. Spectra comprising mmWave and THz frequencies are well-suited for synthetic aperture radar (SAR) imaging at sub-millimeter resolutions for a wide spectrum of tasks like material characterization and nondestructive testing (NDT). This article provides a tutorial review of systems and algorithms for THz SAR in the near-field with an emphasis on emerging algorithms that combine signal processing and machine learning techniques. As part of this study, an overview of classical and data-driven THz SAR algorithms is provided, focusing on object detection for security applications and SAR image super-resolution. We also discuss relevant issues, challenges, and future research directions for emerging algorithms and THz SAR, including standardization of system and algorithm benchmarking, adoption of state-of-the-art deep learning techniques, signal processing-optimized machine learning, and hybrid data-driven signal processing algorithms...Comment: Submitted to Proceedings of IEE

    Metrics for Emitter Selection for Multistatic Synthetic Aperture Radar

    Get PDF
    A bistatic implementation of synthetic aperture radar (SAR) to form images of the ground from an aircraft makes use of separate emitters and receivers. When not using cooperative emitters, ground based communications systems can provide illumination. One way to improve performance of these waveforms, which are not designed for SAR, is a multistatic implementation, formed from multiple bistatic systems. This leads to the problem of selecting a subset from a potentially large set of emitters to use for image formation. A framework for this selection between sets of emitters is proposed using multiple objective optimization. This approach requires use of objective functions to score the inputs to the selection process. The four objective functions selected to score sets of emitters are: signal to noise ratio, waveform ambiguity function\u27s integrated sidelobes , effective multistatic resolution area, and contrast ratio. To speed calculations, an approximation is found for the point spread function. Simulation is used to compare approximation with theory, showing its utility for emitter selection. Finally a qualitative example of emitter selection is presented

    Low cost passive radar through software defined radio

    Get PDF
    Passive radars utilise existing terrestrial radio signals, such as those produced by radio or television stations, to track objects within their range. This project aims to determine the suitability of low cost USB TV tuners as hardware receivers for a Software Defined Radio (SDR) based passive radar receiver. Subsequently determining its effectiveness in producing inverse synthetic aperture radar images using data collected from Digital Television signals. Since the initial identification of passive radar, Militaries the world over have been using it as a part of electronic warfare. The evolution of SDR has enabled greater access to the technologies required to implement passive radar, with the greatest limitation being the cost of the required hardware. The availability of low cost hardware was therefore investigated to determine its suitability and subsequently the availability of passive radar to a wider audience. Research was conducted into the available SDR receivers, and comparison of specifications was made against the low cost receiver used in the project. A functional hardware platform based around the Realtek RTL2832U chipset has been developed to determine its suitability as a low cost receiver verifying its ability to coherently receive radio signals for target identification. A complex ambiguity function was implemented to interpret sampled data windows, with the output of these windows to be compared to the requirements for an inverse synthetic aperture radar input, thus determining the suitability of the device. Interpretation of the received data has identified that although the hardware is capable, a real time implementation of data processing is not yet possible, impeding the ability to determine the suitability of the receiver as an inverse synthetic aperture receiver. The results of testing show that the hardware is capable of receiving and producing radar images, however due to the bandwidth of DVB-T signals , and the bandwidth limitations inherent in RTL-SDR dongles, they have proven not to be suitable for DVB-T based inverse synthetic aperture radar receivers

    Improvement of detection and tracking techniques in multistatic passive radar systems. (Mejora de técnicas de detección y seguimiento en sistemas radar pasivos multiestáticos)

    Get PDF
    Esta tesis doctoral es el resultado de una intensa actividad investigadora centrada en los sensores radar pasivos para la mejora de las capacidades de detección y seguimiento en escenarios complejos con blancos terrestres y pequeños drones. El trabajo de investigación se ha llevado a cabo en el grupo de investigación coordinado por la Dra. María Pilar Jarabo Amores, dentro del marco diferentes proyectos: IDEPAR (“Improved DEtection techniques for PAssive Radars”), MASTERSAT (“MultichAnnel paSsive radar receiver exploiting TERrestrial and SATellite Illuminators”) y KRIPTON (“A Knowledge based appRoach to passIve radar detection using wideband sPace adapTive prOcessiNg”) financiados por el Ministerio de Economía y Competitividad de España; MAPIS (Multichannel passive ISAR imaging for military applications) y JAMPAR (“JAMmer-based PAssive Radar”), financiados por la Agencia Europea de Defensa (EDA) . El objetivo principal es la mejora de las técnicas de detección y seguimiento en radares pasivos con configuraciones biestáticas y multiestaticas. En el documento se desarrollan algoritmos para el aprovechamiento de señales procedentes de distintos iluminadores de oportunidad (transmisores DVB-T, satélites DVB-S y señales GPS). Las soluciones propuestas han sido integradas en el demostrador tecnológico IDEPAR, desarrollado y actualizado bajo los proyectos mencionados, y validadas en escenarios reales declarados de interés por potenciales usuarios finales (Direccion general de armamento y material, instituto nacional de tecnología aeroespacial y la armada española). Para el desarrollo y evaluación de cadenas de las cadenas de procesado, se plantean dos casos de estudio: blancos terrestres en escenarios semiurbanos edificios y pequeños blancos aéreos en escenarios rurales y costeros. Las principales contribuciones se pueden resumir en los siguientes puntos: • Diseño de técnicas de seguimiento 2D en el espacio de trabajo rango biestático-frecuencia Doppler: se desarrollan técnicas de seguimiento para los dos casos de estudio, localización de blancos terrestres y pequeños drones. Para es último se implementan técnicas capaces de seguir tanto el movimiento del dron como su firma Doppler, lo que permite implementar técnicas de clasificación de blancos. • Diseño de técnicas de seguimiento de blancos capaces de integrar información en el espacio 3D (rango, Doppler y acimut): se diseñan técnicas basadas en procesado en dos etapas, una primera con seguimiento en 2D para el filtrado de falsas alarmas y la segunda para el seguimiento en 3D y la conversión de coordenadas a un plano local cartesiano. Se comparan soluciones basadas en filtros de Kalman para sistemas tanto lineales como no lineales. • Diseño de cadenas de procesado para sistemas multiestáticos: la información estimada del blanco sobre múltiples geometrías biestáticas es utilizada para incremento de las capacidades de localización del blanco en el plano cartesiano local. Se presentan soluciones basadas en filtros de Kalman para sistemas no lineales explotando diferentes medidas biestáticas en el proceso de transformación de coordenadas, analizando las mejoras de precisión en la localización del blanco. • Diseño de etapas de procesado para radares pasivos basados en señales satelitales de las constelaciones GPS DVB-S. Se estudian las características de las señales satelitales identificando sus inconvenientes y proponiendo cadenas de procesado que permitan su utilización para la detección y seguimiento de blancos terrestres. • Estudio del uso de señales DVB-T multicanal con gaps de transmisión entre los diferentes canales en sistemas radares pasivos. Con ello se incrementa la resolución del sistema, y las capacidades de detección, seguimiento y localización. Se estudia el modelo de señal multicanal, sus efectos sobre el procesado coherente y se proponen cadenas de procesado para paliar los efectos adversos de este tipo de señales

    FMCW Signals for Radar Imaging and Channel Sounding

    Get PDF
    A linear / stepped frequency modulated continuous wave (FMCW) signal has for a long time been used in radar and channel sounding. A novel FMCW waveform known as “Gated FMCW” signal is proposed in this thesis for the suppression of strong undesired signals in microwave radar applications, such as: through-the-wall, ground penetrating, and medical imaging radar. In these applications the crosstalk signal between antennas and the reflections form the early interface (wall, ground surface, or skin respectively) are much stronger in magnitude compared to the backscattered signal from the target. Consequently, if not suppressed they overshadow the target’s return making detection a difficult task. Moreover, these strong unwanted reflections limit the radar’s dynamic range and might saturate or block the receiver causing the reflection from actual targets (especially targets with low radar cross section) to appear as noise. The effectiveness of the proposed waveform as a suppression technique was investigated in various radar scenarios, through numerical simulations and experiments. Comparisons of the radar images obtained for the radar system operating with the standard linear FMCW signal and with the proposed Gated FMCW waveform are also made. In addition to the radar work the application of FMCW signals to radio propagation measurements and channel characterisation in the 60 GHz and 2-6 GHz frequency bands in indoor and outdoor environments is described. The data are used to predict the bit error rate performance of the in-house built measurement based channel simulator and the results are compared with the theoretical multipath channel simulator available in Matlab

    Radar target micro-doppler signature classification

    Get PDF
    This thesis reports on research into the field of Micro-Doppler Signature (μ-DS) based radar Automatic Target Recognition (ATR) with additional contributions to general radar ATR methodology. The μ-DS based part of the research contributes to three distinct areas: time domain classification; frequency domain classification; and multiperspective μ-DS classification that includes the development of a theory for the multistatic μ-DS. The contribution to general radar ATR is the proposal of a methodology to allow better evaluation of potential approaches and to allow comparison between different studies. The proposed methodology is based around a “black box” model of a radar ATR system that, critically, includes a threshold to detect inputs that are previously unknown to the system. From this model a set of five evaluation metrics are defined. The metrics increase the understanding of the classifier’s performance from the common probability of correct classification, that reports how often the classifier correctly identifies an input, to understanding how reliable it is, how capable it is of generalizing from the reference data, and how effective its unknown input detection is. Additionally, the significance of performance prediction is discussed and a preliminary method to estimate how well a classifier should perform is developed. The proposed methodology is then used to evaluate the μ-DS based radar ATR approaches considered. The time domain classification investigation is based around using Dynamic Time Warping (DTW) to identify radar targets based on their μ-DS. DTW is a speech processing technique that classifies data series by comparing them with a pre-classified reference dataset. This is comparable to the common k-Nearest Neighbour (k-NN) algorithm, so k-NN is used as a benchmark against which to evaluate DTW’s performance. The DTW approach is observed to work well. It achieved high probability of correct classification and reliability as well as being able to detect inputs of unknown class. However, the classifier’s ability to generalize from the reference data is less impressive and it performed only slightly better than a random selection from the possible output classes. Difficulties in classifying the μ-DS in the time domain are identified from the k-NN results prompting a change to the frequency domain. Processing the μ-DS in the frequency domain permitted the development of an advanced feature extraction routine to maximize the separation of the target classes and therefore reduce the effort required to classify them. The frequency domain also permitted the use of the performance prediction method developed as part of the radar ATR methodology and the introduction of a na¨ıve Bayesian approach to classification. The results for the DTW and k-NN classifiers in the frequency domain were comparable to the time domain, an unexpected result since it was anticipated that the μ-DS would be easier to classify in the frequency domain. However, the naıve Bayesian classifier produced excellent results that matched with the predicted performance suggesting it could not be bettered. With a successful classifier, that would be suitable for real-world use, developed attention turned to the possibilities offered by the multistatic μ-DS. Multiperspective radar ATR uses data collected from different target aspects simultaneously to improve classification rates. It has been demonstrated successful for some of the alternatives to μ-DS based ATR and it was therefore speculated that it might improve the performance of μ-DS ATR solutions. The multiple perspectives required for the classifier were gathered using a multistatic radar developed at University College London (UCL). The production of a dataset, and its subsequent analysis, resulted in the first reported findings in the novel field of the multistatic μ-DS theory. Unfortunately, the nature of the radar used resulted in limited micro-Doppler being observed in the collected data and this reduced its value for classification testing. An attempt to use DTW to perform multiperspective μ-DS ATR was made but the results were inconclusive. However, consideration of the improvements offered by multiperspective processing in alternative forms of ATR mean it is still expected that μ-DS based ATR would benefit from this processing

    Beyond the spatio-temporal limits of atmospheric radars: inverse problem techniques and MIMO systems

    Get PDF
    The Earth’s upper atmosphere (UA) is a highly dynamic region dominated by atmospheric waves and stratified turbulence covering a wide range of spatio-temporal scales. A comprehensive study of the UA requires measurements over a broad range of frequencies and spatial wavelengths, which are prohibitively costly. To improve the understanding of the UA, an investment in efficient and large observational infrastructures is required. This work investigates remote sensing techniques based on MIMO and inverse problems techniques to improve the capabilities of current atmospheric radars
    corecore