537 research outputs found

    Recent Advances in Image Restoration with Applications to Real World Problems

    Get PDF
    In the past few decades, imaging hardware has improved tremendously in terms of resolution, making widespread usage of images in many diverse applications on Earth and planetary missions. However, practical issues associated with image acquisition are still affecting image quality. Some of these issues such as blurring, measurement noise, mosaicing artifacts, low spatial or spectral resolution, etc. can seriously affect the accuracy of the aforementioned applications. This book intends to provide the reader with a glimpse of the latest developments and recent advances in image restoration, which includes image super-resolution, image fusion to enhance spatial, spectral resolution, and temporal resolutions, and the generation of synthetic images using deep learning techniques. Some practical applications are also included

    Deep learning in remote sensing: a review

    Get PDF
    Standing at the paradigm shift towards data-intensive science, machine learning techniques are becoming increasingly important. In particular, as a major breakthrough in the field, deep learning has proven as an extremely powerful tool in many fields. Shall we embrace deep learning as the key to all? Or, should we resist a 'black-box' solution? There are controversial opinions in the remote sensing community. In this article, we analyze the challenges of using deep learning for remote sensing data analysis, review the recent advances, and provide resources to make deep learning in remote sensing ridiculously simple to start with. More importantly, we advocate remote sensing scientists to bring their expertise into deep learning, and use it as an implicit general model to tackle unprecedented large-scale influential challenges, such as climate change and urbanization.Comment: Accepted for publication IEEE Geoscience and Remote Sensing Magazin

    Towards a Robust Thermal-Visible Heterogeneous Face Recognition Approach Based on a Cycle Generative Adversarial Network

    Get PDF
    Security is a sensitive area that concerns all authorities around the world due to the emerging terrorism phenomenon. Contactless biometric technologies such as face recognition have grown in interest for their capacity to identify probe subjects without any human interaction. Since traditional face recognition systems use visible spectrum sensors, their performances decrease rapidly when some visible imaging phenomena occur, mainly illumination changes. Unlike the visible spectrum, Infrared spectra are invariant to light changes, which makes them an alternative solution for face recognition. However, in infrared, the textural information is lost. We aim, in this paper, to benefit from visible and thermal spectra by proposing a new heterogeneous face recognition approach. This approach includes four scientific contributions. The first one is the annotation of a thermal face database, which has been shared via Github with all the scientific community. The second is the proposition of a multi-sensors face detector model based on the last YOLO v3 architecture, able to detect simultaneously faces captured in visible and thermal images. The third contribution takes up the challenge of modality gap reduction between visible and thermal spectra, by applying a new structure of CycleGAN, called TV-CycleGAN, which aims to synthesize visible-like face images from thermal face images. This new thermal-visible synthesis method includes all extreme poses and facial expressions in color space. To show the efficacy and the robustness of the proposed TV-CycleGAN, experiments have been applied on three challenging benchmark databases, including different real-world scenarios: TUFTS and its aligned version, NVIE and PUJ. The qualitative evaluation shows that our method generates more realistic faces. The quantitative one demonstrates that the proposed TV -CycleGAN gives the best improvement on face recognition rates. Therefore, instead of applying a direct matching from thermal to visible images which allows a recognition rate of 47,06% for TUFTS Database, a proposed TV-CycleGAN ensures accuracy of 57,56% for the same database. It contributes to a rate enhancement of 29,16%, and 15,71% for NVIE and PUJ databases, respectively. It reaches an accuracy enhancement of 18,5% for the aligned TUFTS database. It also outperforms some recent state of the art methods in terms of F1-Score, AUC/EER and other evaluation metrics. Furthermore, it should be mentioned that the obtained visible synthesized face images using TV-CycleGAN method are very promising for thermal facial landmark detection as a fourth contribution of this paper

    Adversarial Virtual Exemplar Learning for Label-Frugal Satellite Image Change Detection

    Full text link
    Satellite image change detection aims at finding occurrences of targeted changes in a given scene taken at different instants. This task is highly challenging due to the acquisition conditions and also to the subjectivity of changes. In this paper, we investigate satellite image change detection using active learning. Our method is interactive and relies on a question and answer model which asks the oracle (user) questions about the most informative display (dubbed as virtual exemplars), and according to the user's responses, updates change detections. The main contribution of our method consists in a novel adversarial model that allows frugally probing the oracle with only the most representative, diverse and uncertain virtual exemplars. The latter are learned to challenge the most the trained change decision criteria which ultimately leads to a better re-estimate of these criteria in the following iterations of active learning. Conducted experiments show the out-performance of our proposed adversarial display model against other display strategies as well as the related work.Comment: arXiv admin note: substantial text overlap with arXiv:2203.1155

    Semi-Supervised Adversarial Domain Adaptation for Seagrass Detection Using Multispectral Images in Coastal Areas

    Get PDF
    Seagrass form the basis for critically important marine ecosystems. Previously, we implemented a deep convolutional neural network (CNN) model to detect seagrass in multispectral satellite images of three coastal habitats in northern Florida. However, a deep CNN model trained at one location usually does not generalize to other locations due to data distribution shifts. In this paper, we developed a semi-supervised domain adaptation method to generalize a trained deep CNN model to other locations for seagrass detection. First, we utilized a generative adversarial network loss to align marginal data distribution between source domain and target domain using unlabeled data from both data domains. Second, we used a few labelled samples from the target domain to align class specific data distributions between the two domains, based on the contrastive semantic alignment loss. We achieved the best results in 28 out of 36 scenarios as compared to other state-of-the-art domain adaptation methods

    Infrared Image Super-Resolution: Systematic Review, and Future Trends

    Full text link
    Image Super-Resolution (SR) is essential for a wide range of computer vision and image processing tasks. Investigating infrared (IR) image (or thermal images) super-resolution is a continuing concern within the development of deep learning. This survey aims to provide a comprehensive perspective of IR image super-resolution, including its applications, hardware imaging system dilemmas, and taxonomy of image processing methodologies. In addition, the datasets and evaluation metrics in IR image super-resolution tasks are also discussed. Furthermore, the deficiencies in current technologies and possible promising directions for the community to explore are highlighted. To cope with the rapid development in this field, we intend to regularly update the relevant excellent work at \url{https://github.com/yongsongH/Infrared_Image_SR_SurveyComment: Submitted to IEEE TNNL
    • …
    corecore