244 research outputs found

    Survey on wavelet based image fusion techniques

    Get PDF
    Image fusion is the process of combining multiple images into a single image without distortion or loss of information. The techniques related to image fusion are broadly classified as spatial and transform domain methods. In which, the transform domain based wavelet fusion techniques are widely used in different domains like medical, space and military for the fusion of multimodality or multi-focus images. In this paper, an overview of different wavelet transform based methods and its applications for image fusion are discussed and analysed

    Enhanced DCP filter for Real-World Hazy Scenes

    Get PDF
    Haze is an atmospheric phenomenon that considerably degrades the visibility of out- door scenes. This happens due to atmosphere particles that absorb and disperse the sunshine. This paper introduces a unique single image visibility restoration algorithm that enhances visibility of such corrupted pictures. A unique edge-preserving decomposition-based technique is prepared to estimate transmission map for a haze image. Therefore, haze removal algorithmic rule has been taken from Koschmiedars law that includes a quick replacement-variation approach to dehaze and denoise at the same time. The proposed technique Enhanced DCP Filter (EDCPF) initially estimates a transmission map employing a windows adaptive technique that supported the dark channel. Restoration of foggy images is an important issue for the de-weathering in computer vision. A new method has been introduced for estimating the optical transmission in hazy scenes. Based on this estimation, the scattered light is eliminated to increase scene visibility and recover haze-free scenes

    Ameliorating integrated sensor drift and imperfections: an adaptive "neural" approach

    Get PDF

    Bearing Fault Diagnosis Based on Deep Belief Network and Multisensor Information Fusion

    Get PDF

    Remote Sensing for Non‐Technical Survey

    Get PDF
    This chapter describes the research activities of the Royal Military Academy on remote sensing applied to mine action. Remote sensing can be used to detect specific features that could lead to the suspicion of the presence, or absence, of mines. Work on the automatic detection of trenches and craters is presented here. Land cover can be extracted and is quite useful to help mine action. We present here a classification method based on Gabor filters. The relief of a region helps analysts to understand where mines could have been laid. Methods to be a digital terrain model from a digital surface model are explained. The special case of multi‐spectral classification is also addressed in this chapter. Discussion about data fusion is also given. Hyper‐spectral data are also addressed with a change detection method. Synthetic aperture radar data and its fusion with optical data have been studied. Radar interferometry and polarimetry are also addressed

    The synthesis of multisensor non-destructive testing of civil engineering structural elements with the use of clustering methods

    Get PDF
    In the thesis, clustering-based image fusion of multi-sensor non-destructive (NDT) data is studied. Several hard and fuzzy clustering algorithms are analysed and implemented both at the pixel and feature level fusion. Image fusion of ground penetrating radar (GPR) and infrared\ud thermography (IRT) data is applied on concrete specimens with inbuilt artificial defects, as well as on masonry specimens where defects such as plaster delamination and structural cracking were generated through a shear test. We show that on concrete, the GK clustering algorithm exhibits the best performance since it is not limited to the detection of spherical clusters as are the FCM and PFCM algorithms. We also prove that clustering-based fusion outperforms supervised fusion, especially in situations with very limited knowledge about the material properties\ud and depths of the defects. Complementary use of GPR and IRT on multi-leaf masonry walls enabled the detection of the walls’ morphology, texture, as well as plaster delamination\ud and structural cracking. For improved detection of the latter two, we propose using data fusion at the pixel level for data segmentation. In addition to defect detection, the effect of moisture is analysed on masonry using GPR, ultrasonic and complex resistivity tomographies. Within the\ud thesis, clustering is also successfully applied in a case study where a multi-sensor NDT data set was automatically collected by a self-navigating mobile robot system. Besides, the classification of spectroscopic spatial data from concrete is taken under consideration. In both applications, clustering is used for unsupervised segmentation of data

    Radar and RGB-depth sensors for fall detection: a review

    Get PDF
    This paper reviews recent works in the literature on the use of systems based on radar and RGB-Depth (RGB-D) sensors for fall detection, and discusses outstanding research challenges and trends related to this research field. Systems to detect reliably fall events and promptly alert carers and first responders have gained significant interest in the past few years in order to address the societal issue of an increasing number of elderly people living alone, with the associated risk of them falling and the consequences in terms of health treatments, reduced well-being, and costs. The interest in radar and RGB-D sensors is related to their capability to enable contactless and non-intrusive monitoring, which is an advantage for practical deployment and users’ acceptance and compliance, compared with other sensor technologies, such as video-cameras, or wearables. Furthermore, the possibility of combining and fusing information from The heterogeneous types of sensors is expected to improve the overall performance of practical fall detection systems. Researchers from different fields can benefit from multidisciplinary knowledge and awareness of the latest developments in radar and RGB-D sensors that this paper is discussing
    • 

    corecore