8 research outputs found

    Multiscale characterization of chronobiological signals based on the discrete wavelet transform

    Get PDF
    To compensate for the deficiency of conventional frequency-domain or time-domain analysis, this paper presents a multiscale approach to characterize the chronobiological time series (CTS) based on a discrete wavelet transform (DWT). We have shown that the local modulus maxima and zero-crossings of the wavelet coefficients at different scales give a complete characterization of rhythmic activities. We further constructed a tree scheme to represent those interacting activities across scales. Using the bandpass filter property of the DWT in the frequency domain, we also characterized the band-related activities by calculating energy in respective rhythmic bands. Moreover, since there is a fast and easily implemented algorithm for the DWT, this new approach may simplify the signal processing and provide a more efficient and complete study of the temporal-frequency dynamics of the CTS. Preliminary results are presented using the proposed method on the locomotion of mice under altered lighting conditions, verifying its competency for CTS analysis. | To compensate for the deficiency of conventional frequency-domain or time-domain analysis, this paper presents a multiscale approach to characterize the chronobiological time series (CTS) based on a discrete wavelet transform (DWT). We have shown that the local modulus maxima and zero-crossings of the wavelet coefficients at different scales give a complete characterization of rhythmic activities. We further constructed a tree scheme to represent those interacting activities across scales. Using the bandpass filter property of the DWT in the frequency domain, we also characterized the band-related activities by calculating energy in respective rhythmic bands. Moreover, since there is a fast and easily implemented algorithm for the DWT, this next approach may simplify the signal processing and provide a more efficient and complete study of the temporal-frequency dynamics of the CTS. Preliminary results are presented using the proposed method on the locomotion of mice under altered lighting conditions, verifying its competency for CTS analysis.published_or_final_versio

    Wavelet analysis of circadian and ultradian behavioral rhythms

    Get PDF
    We review time-frequency methods that can be useful in quantifying circadian and ultradian patterns in behavioral records. These records typically exhibit details that may not be captured through commonly used measures such as activity onset and so may require alternative approaches. For instance, activity may involve multiple bouts that vary in duration and magnitude within a day, or may exhibit day-to-day changes in period and in ultradian activity patterns. The discrete Fourier transform and other types of periodograms can estimate the period of a circadian rhythm, but we show that they can fail to correctly assess ultradian periods. In addition, such methods cannot detect changes in the period over time. Time-frequency methods that can localize frequency estimates in time are more appropriate for analysis of ultradian periods and of fluctuations in the period. The continuous wavelet transform offers a method for determining instantaneous frequency with good resolution in both time and frequency, capable of detecting changes in circadian period over the course of several days and in ultradian period within a given day. The discrete wavelet transform decomposes a time series into components associated with distinct frequency bands, thereby facilitating the removal of noise and trend or the isolation of a particular frequency band of interest. To demonstrate the wavelet-based analysis, we apply the transforms to a numerically-generated example and also to a variety of hamster behavioral records. When used appropriately, wavelet transforms can reveal patterns that are not easily extracted using other methods of analysis in common use, but they must be applied and interpreted with care

    Mathematics and Digital Signal Processing

    Get PDF
    Modern computer technology has opened up new opportunities for the development of digital signal processing methods. The applications of digital signal processing have expanded significantly and today include audio and speech processing, sonar, radar, and other sensor array processing, spectral density estimation, statistical signal processing, digital image processing, signal processing for telecommunications, control systems, biomedical engineering, and seismology, among others. This Special Issue is aimed at wide coverage of the problems of digital signal processing, from mathematical modeling to the implementation of problem-oriented systems. The basis of digital signal processing is digital filtering. Wavelet analysis implements multiscale signal processing and is used to solve applied problems of de-noising and compression. Processing of visual information, including image and video processing and pattern recognition, is actively used in robotic systems and industrial processes control today. Improving digital signal processing circuits and developing new signal processing systems can improve the technical characteristics of many digital devices. The development of new methods of artificial intelligence, including artificial neural networks and brain-computer interfaces, opens up new prospects for the creation of smart technology. This Special Issue contains the latest technological developments in mathematics and digital signal processing. The stated results are of interest to researchers in the field of applied mathematics and developers of modern digital signal processing systems

    Deep learning for intracellular particle tracking and motion analysis

    Get PDF

    Deep learning for intracellular particle tracking and motion analysis

    Get PDF

    Do bacteria thrive when the ocean acidifies? Results from an off-­shore mesocosm study

    Get PDF
    Marine bacteria are the main consumers of the freshly produced organic matter. In order to meet their carbon demand, bacteria release hydrolytic extracellular enzymes that break down large polymers into small usable subunits. Accordingly, rates of enzymatic hydrolysis have a high potential to affect bacterial organic matter recycling and carbon turnover in the ocean. Many of these enzymatic processes were shown to be pH sensitive in previous studies. Due to the continuous rise in atmospheric CO2 concentration, seawater pH is presently decreasing at a rate unprecedented during the last 300 million years with so-far unknown consequences for microbial physiology, organic matter cycling and marine biogeochemistry. We studied the effects of elevated seawater pCO2 on a natural plankton community during a large-scale mesocosm study in a Norwegian fjord. Nine 25m-long Kiel Off-Shore Mesocosms for Future Ocean Simulations (KOSMOS) were adjusted to different pCO2 levels ranging from ca. 280 to 3000 µatm by stepwise addition of CO2 saturated seawater. After CO2 addition, samples were taken every second day for 34 days. The first phytoplankton bloom developed around day 5. On day 14, inorganic nutrients were added to the enclosed, nutrient-poor waters to stimulate a second phytoplankton bloom, which occurred around day 20. Our results indicate that marine bacteria benefit directly and indirectly from decreasing seawater pH. During both phytoplankton blooms, more transparent exopolymer particles were formed in the high pCO2 mesocosms. The total and cell-specific activities of the protein-degrading enzyme leucine aminopeptidase were elevated under low pH conditions. The combination of enhanced enzymatic hydrolysis of organic matter and increased availability of gel particles as substrate supported higher bacterial abundance in the high pCO2 treatments. We conclude that ocean acidification has the potential to stimulate the bacterial community and facilitate the microbial recycling of freshly produced organic matter, thus strengthening the role of the microbial loop in the surface ocean

    Spacelab Science Results Study

    Get PDF
    Beginning with OSTA-1 in November 1981 and ending with Neurolab in March 1998, a total of 36 Shuttle missions carried various Spacelab components such as the Spacelab module, pallet, instrument pointing system, or mission peculiar experiment support structure. The experiments carried out during these flights included astrophysics, solar physics, plasma physics, atmospheric science, Earth observations, and a wide range of microgravity experiments in life sciences, biotechnology, materials science, and fluid physics which includes combustion and critical point phenomena. In all, some 764 experiments were conducted by investigators from the U.S., Europe, and Japan. The purpose of this Spacelab Science Results Study is to document the contributions made in each of the major research areas by giving a brief synopsis of the more significant experiments and an extensive list of the publications that were produced. We have also endeavored to show how these results impacted the existing body of knowledge, where they have spawned new fields, and if appropriate, where the knowledge they produced has been applied

    Epidemiology of Injury in English Women's Super league Football: A Cohort Study

    Get PDF
    INTRODUCTION: The epidemiology of injury in male professional football has been well documented (Ekstrand, Hägglund, & Waldén, 2011) and used as a basis to understand injury trends for a number of years. The prevalence and incidence of injuries occurring in womens super league football is unknown. The aim of this study is to estimate the prevalence and incidence of injury in an English Super League Women’s Football squad. METHODS: Following ethical approval from Leeds Beckett University, players (n = 25) signed to a Women’s Super League Football club provided written informed consent to complete a self-administered injury survey. Measures of exposure, injury and performance over a 12-month period was gathered. Participants were classified as injured if they reported a football injury that required medical attention or withdrawal from participation for one day or more. Injuries were categorised as either traumatic or overuse and whether the injury was a new injury and/or re-injury of the same anatomical site RESULTS: 43 injuries, including re-injury were reported by the 25 participants providing a clinical incidence of 1.72 injuries per player. Total incidence of injury was 10.8/1000 h (95% CI: 7.5 to 14.03). Participants were at higher risk of injury during a match compared with training (32.4 (95% CI: 15.6 to 48.4) vs 8.0 (95% CI: 5.0 to 10.85)/1000 hours, p 28 days) of which there were three non-contact anterior cruciate ligament (ACL) injuries. The epidemiological incidence proportion was 0.80 (95% CI: 0.64 to 0.95) and the average probability that any player on this team will sustain at least one injury was 80.0% (95% CI: 64.3% to 95.6%) CONCLUSION: This is the first report capturing exposure and injury incidence by anatomical site from a cohort of English players and is comparable to that found in Europe (6.3/1000 h (95% CI 5.4 to 7.36) Larruskain et al 2017). The number of ACL injuries highlights a potential injury burden for a squad of this size. Multi-site prospective investigations into the incidence and prevalence of injury in women’s football are require
    corecore