8,211 research outputs found

    The asymptotic homogenization elasticity tensor properties for composites with material discontinuities

    Get PDF
    The classical asymptotic homogenization approach for linear elastic composites with discontinuous material properties is considered as a starting point. The sharp length scale separation between the fine periodic structure and the whole material formally leads to anisotropic elastic-type balance equations on the coarse scale, where the arising fourth rank operator is to be computed solving single periodic cell problems on the fine scale. After revisiting the derivation of the problem, which here explicitly points out how the discontinuity in the individual constituents’ elastic coefficients translates into stress jump interface conditions for the cell problems, we prove that the gradient of the cell problem solution is minor symmetric and that its cell average is zero. This property holds for perfect interfaces only (i.e., when the elastic displacement is continuous across the composite’s interface) and can be used to assess the accuracy of the computed numerical solutions. These facts are further exploited, together with the individual constituents’ elastic coefficients and the specific form of the cell problems, to prove a theorem that characterizes the fourth rank operator appearing in the coarse-scale elastic-type balance equations as a composite material effective elasticity tensor. We both recover known facts, such as minor and major symmetries and positive definiteness, and establish new facts concerning the Voigt and Reuss bounds. The latter are shown for the first time without assuming any equivalence between coarse and fine-scale energies (Hill’s condition), which, in contrast to the case of representative volume elements, does not identically hold in the context of asymptotic homogenization. We conclude with instructive three-dimensional numerical simulations of a soft elastic matrix with an embedded cubic stiffer inclusion to show the profile of the physically relevant elastic moduli (Young’s and shear moduli) and Poisson’s ratio at increasing (up to 100 %) inclusion’s volume fraction, thus providing a proxy for the design of artificial elastic composites

    Diffusion in quantum geometry

    Full text link
    The change of the effective dimension of spacetime with the probed scale is a universal phenomenon shared by independent models of quantum gravity. Using tools of probability theory and multifractal geometry, we show how dimensional flow is controlled by a multiscale fractional diffusion equation, and physically interpreted as a composite stochastic process. The simplest example is a fractional telegraph process, describing quantum spacetimes with a spectral dimension equal to 2 in the ultraviolet and monotonically rising to 4 towards the infrared. The general profile of the spectral dimension of the recently introduced multifractional spaces is constructed for the first time.Comment: 5 pages, 1 figure. v2: title slightly changed, discussion improve

    Proceedings of the Symposium on Concrete Modelling, CONMOD2018

    Get PDF
    CONMOD2018 is a symposium on Concrete Modelling which is jointly organised by Delft University and Ghent University as part of the RILEM week 2018 in Delft, The Netherlands. The symposium is the 5th in a series dealing with all aspects concerning modelling of concrete at various scales. The symposium consist of 3 key-note papers and 62 regular papers presented over 3 days. Parallel to the CONMOD2018 symposium a conference on Service Life Design (SLD4) and a workshop honouring Professor Klaas van Breugel were organised with topics that are related to concrete modelling. In total more than 350 participants took part in the events organised during the RILEM week 2018

    Numerical homogenization of elliptic PDEs with similar coefficients

    Full text link
    We consider a sequence of elliptic partial differential equations (PDEs) with different but similar rapidly varying coefficients. Such sequences appear, for example, in splitting schemes for time-dependent problems (with one coefficient per time step) and in sample based stochastic integration of outputs from an elliptic PDE (with one coefficient per sample member). We propose a parallelizable algorithm based on Petrov-Galerkin localized orthogonal decomposition (PG-LOD) that adaptively (using computable and theoretically derived error indicators) recomputes the local corrector problems only where it improves accuracy. The method is illustrated in detail by an example of a time-dependent two-pase Darcy flow problem in three dimensions

    Tensor-based multiscale method for diffusion problems in quasi-periodic heterogeneous media

    Get PDF
    This paper proposes to address the issue of complexity reduction for the numerical simulation of multiscale media in a quasi-periodic setting. We consider a stationary elliptic diffusion equation defined on a domain DD such that D‾\overline{D} is the union of cells {Di‾}i∈I\{\overline{D_i}\}_{i\in I} and we introduce a two-scale representation by identifying any function v(x)v(x) defined on DD with a bi-variate function v(i,y)v(i,y), where i∈Ii \in I relates to the index of the cell containing the point xx and y∈Yy \in Y relates to a local coordinate in a reference cell YY. We introduce a weak formulation of the problem in a broken Sobolev space V(D)V(D) using a discontinuous Galerkin framework. The problem is then interpreted as a tensor-structured equation by identifying V(D)V(D) with a tensor product space RI⊗V(Y)\mathbb{R}^I \otimes V(Y) of functions defined over the product set I×YI\times Y. Tensor numerical methods are then used in order to exploit approximability properties of quasi-periodic solutions by low-rank tensors.Comment: Changed the choice of test spaces V(D) and X (with regard to regularity) and the argumentation thereof. Corrected proof of proposition 3. Corrected wrong multiplicative factor in proposition 4 and its proof (was 2 instead of 1). Added remark 6 at the end of section 2. Extended remark 7. Added references. Some minor improvements (typos, typesetting

    Multiscale asymptotic homogenization analysis of thermo-diffusive composite materials

    Get PDF
    In this paper an asymptotic homogenization method for the analysis of composite materials with periodic microstructure in presence of thermodiffusion is described. Appropriate down-scaling relations correlating the microscopic fields to the macroscopic displacements, temperature and mass concentration are introduced. The effects of the material inhomogeneities are described by perturbation functions derived from the solution of recursive cell problems. Exact expressions for the overall elastic and thermodiffusive constants of the equivalent first order thermodiffusive continuum are derived. The proposed approach is applied to the case of a two-dimensional bi-phase orthotropic layered material, where the effective elastic and thermodiffusive properties can be determined analytically. Considering this illustrative example and assuming periodic body forces, heat and mass sources acting on the medium, the solution performed by the first order homogenization approach is compared with the numerical results obtained by the heterogeneous model.Comment: 40 pages, 13 figure
    • …
    corecore