

Proceedings PRO 127

Proceedings of the Symposium on Concrete Modelling - CONMOD2018

Edited by Erik Schlangen, Geert de Schutter, Branko Šavija, Hongzhi Zhang, Claudia Romero Rodriguez

RILEM Publications S.A.R.L.

Symposium on Concrete Modelling (CONMOD2018)

Published by RILEM Publications S.A.R.L. 4 avenue du Recteur Poincaré 75016 Paris - France Tel : + 33 1 42 24 64 46 Fax : + 33 9 70 29 51 20 http://www.rilem.net E-mail: dg@rilem.net © 2018 RILEM – Tous droits réservés. e-ISBN: 978-2-35158-216-9

Publisher's note: this book has been produced from electronic files provided by the individual contributors. The publisher makes no representation, express or implied, with regard to the accuracy of the information contained in this book and cannot accept any legal responsibility or liability for any errors or omissions that may be made.

All titles published by RILEM Publications are under copyright protection; said copyrights being the property of their respective holders. All Rights Reserved.

No part of any book may be reproduced or transmitted in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, taping, or by any information storage or retrieval system, without the permission in writing from the publisher.

RILEM, The International Union of Laboratories and Experts in Construction Materials, Systems and Structures, is a non profit-making, non-governmental technical association whose vocation is to contribute to progress in the construction sciences, techniques and industries, essentially by means of the communication it fosters between research and practice. RILEM's activity therefore aims at developing the knowledge of properties of materials and performance of structures, at defining the means for their assessment in laboratory and service conditions and at unifying measurement and testing methods used with this objective.

RILEM was founded in 1947, and has a membership of over 900 in some 70 countries. It forms an institutional framework for co-operation by experts to:

- optimise and harmonise test methods for measuring properties and performance of building and civil engineering materials and structures under laboratory and service environments,
- prepare technical recommendations for testing methods,
- prepare state-of-the-art reports to identify further research needs,
- collaborate with national or international associations in realising these objectives.

RILEM members include the leading building research and testing laboratories around the world, industrial research, manufacturing and contracting interests, as well as a significant number of individual members from industry and universities. RILEM's focus is on construction materials and their use in building and civil engineering structures, covering all phases of the building process from manufacture to use and recycling of materials.

RILEM meets these objectives through the work of its technical committees. Symposia, workshops and seminars are organised to facilitate the exchange of information and dissemination of knowledge. RILEM's primary output consists of technical recommendations. RILEM also publishes the journal *Materials and Structures* which provides a further avenue for reporting the work of its committees. Many other publications, in the form of reports, monographs, symposia and workshop proceedings are produced.

Symposium on Concrete Modelling - CONMOD2018

Delft, Netherlands 27-30 August 2018

Edited by Erik Schlangen, Geert de Schutter, Branko Šavija, Hongzhi Zhang, Claudia Romero Rodriguez

RILEM Publications S.A.R.L.

Conference Chair

Erik Schlangen

Steering Committee

Klaas van Breugel	Geert de Schutter
Veronique Baroghel Bouny	Karen Scrivener
Eddy Koenders	Jacques Marchand
Koichi Maekawa	Jeffrey Bullard

International Scientific Committee

Jan Carmeliet	Kefei Li
Mette Geiker	Leo Pel
Christian Helmich	Ed Garboczi
Tetsuya Ishida	Vit Smilauer
Ole Jensen	Franz Ulm
Jan-Erik Jonasson	Mikael Thiery
Toshiharu Kishi	Nicolas Rousel
Viktor Mechtcherine	Fabrice Bernard
Bernhard Pichler	Farid Benboudjema
Huisu Chen	Ignacio Carol
Pietro Lura	Peter Grassl
Guenther Meschke	Toni Jefferson
Bert Sluys	Johan Vyncke
Barbara Lothenbach	Ravindra Gettu

Local Organizing Committee

Erik Schlangen Geert de Schutter Guang Ye Branko Šavija Claudia Romero Rodriguez Hongzhi Zhang Iris Batterham

Content

KEYNOTE LECTURES	
EFFECT OF SHRINKAGE AND CREEP ON THE BEHAVIOUR OF CONCRETE STRUCTURES	2
F. Benboudjema	
THERMODYNAMIC MODELLING: A TOOL TO UNDERSTAND THE CHEMISTRY OF HYDRATED CEMENTS	10
B. Lothenbach, F. Winnefeld	
MESO-SCALE MODELING FOR CONCRETE UNDER COMBINED EFFECTS OF MECHANICAL LOADINGS AND FROST ATTACK	14
Ueda Tamon	
HYDRATION AND MICROSTURE FORMATION	24
A DYNAMIC NANO-COLLOIDAL MODEL FOR THE EARLY AGE PRECIPITATION AND DENSIFICATION OF C-S-H GEL	25
A. Prabhu, J-C, Gimel, A. Ayuela, J S. Dolado	
A LATTICE BOLTZMANN MODEL OF THE PORE STRUCTURE AROUND THE COARSE AGGREGATE DURING CEMENT HYDRATION	30
H. Li, H. Chen, R. Mu	
A SIMULATOR TO MODEL MICROSTRUCTURE EVOLUTION IN REACTIVE TRANSPORT MODELS	42
F. Georget, J H. Prévost, K. Scrivener	
ATOMISTIC KINETIC MONTE CARLO MODELLING OF CRYSTAL DISSOLUTION: MECHANISMS AND DYNAMICS	47
P. Martín, H. Manzano, J. S. Dolado	
MODELING OF PORE-SOLID STRUCTURE IN CEMENT BASED COMPOSITES: A GEOMETRICAL APPROACH	52
Y. Gao, P. Feng, J. Jiang	
MODELLING OF HYDRATION AND MICROSTRUCTURE FORMATION OF IRREGULAR-SHAPED CEMENT	62
C. Liu, M. Zhang	
MODELLING THE EFFECT OF ALKALIS ON THE EARLY AGE HYDRATION KINETICS OF ALITE	70
S. Joseph, S. Bishnoi, K. Van Balen,Ö. Cizer	
MULTISCALE MODELING OF CEMENTS EMPLOYING NANO-COLLOIDAL HYDRATION MODELS	77
A. Prabhu, J - C Gimel, A. Ayuela, S. Arrese-Igor, P. Martin, J. José Gaitero, J S. Dolado	

THE EVOLUTION OF PORE STRUCTURE AND PERMEABILITY FOR WHITE CEMENT PASTES DURING CONTINUOUS HYDRATION	82
C. Zhou, F. Ren, W.Wang	
THE NEEDLE MODEL: A NEW MODEL FOR THE MAIN HYDRATION PEAK OF ALITE	89
A R. Ouzia, K. Scrivener	
TOWARDS COUPLING OF THERMODYNAMIC MODELLING OF CEMENT HYDRATION WITH MOISTURE TRANSFER. APPLICATION TO LOW-PH CEMENT SYSTEMS	97
A. Idiart, M. Laviña, J. Olmeda	
TRACING POLYMERIZATION IN CALCIUM SILICATE HYDRATES USING SI ISOTOPIC FRACTIONATION	109
R. Dupuis, J. Surga, J S. Dolado, A. Ayuela	
TWO-PHASE MODEL FOR PREDICTING TEMPERATURE-DEPENDENT POZZOLANIC REACTION OF SILICEOUS FLY ASH IN CEMENT SYSTEMS	118
T. Wang, T, Ishida	
EARLY AGE BEHAVIOUR	121
CFD IMPLEMENTATION OF TIME-DEPENDENT BEHAVIOUR – APPLICATION FOR CONCRETE PUMPING	122
R. De Schryver, K. El Cheikh, K. Lesage, G. De Schutter	
EFFECTS OF CEMENT-MARBLE WASTE POWDER PASTE VOLUME ON THE REHOLOGY OF SELF-COMPACTING CONCRETE	131
R. Alyousef, M A. Khadimallah, O. Benjeddou, C. Soussi, A M. Mohamed	
AGEING BASIC CREEP OF VERCORS CONCRETE: EXPERIMENTAL MEASUREMENTS AND MICROMECHANICAL MODELLING OF CEMENTITIOUS MATERIALS	141
S. Huang, J. Sanahuja, L. Dormieux, B. Bary, E. Lemarchand, L. Charpin, R. Thion	
FINITE ELEMENT SIMULATION OF AUTOGENOUS DEFORMATION OF CEMENT PASTES	146
Z. Hu, A. Hilaire, M. Wyrzykowski, K.Scrivener, P. Lura	
HYGRO-MECHANICAL MODELLING OF SELF INDUCED STRESSES: THE CASE OF VERCORS GUSSET	150
F. Soleilhet, F. Benboudjema, X. Jourdain, F. Gatuingt	
INFLUENCE OF CONCRETE DRYING RATE ON ITS DELAYED STRAINS: ANALYSIS OF DAY 1984 EXPERIMENT AND COMPARISON TO MODELS	161
J. Kinda, L. Charpin, J-L Adia, F. Benboudjema, S. Michel-Ponnelle	
MODELING OF DRYING SHRINKAGE IN CONCRETE - A MULTISCALE POROMECHANICS APPROACH	165

S. Babaei, S. Seetharam, U. Muehlich, Lou Areias, G. Steenackers, B. Craeye	
NUMERICAL ANALYSIS OF EFFECT OF MICRO-CRACKING AND SELFHEALING ON THE LONG-TERM CREEP OF CEMENTITIOUS MATERIALS	169
W. Lyu, E. Schlangen, K. van Breugel	
PLASTIC SHRINKAGE AND CRACKING OF CONCRETE – EXPERIMENTS AND MODELLING WITH POROMECHANICS	179
S. Ghourchian, M.Wyrzykowski, P. Lura	
MECHANICAL BEHAVIOUR	183
AN UPDATED MULTISCALE MODEL OF HYDROSTATIC RESPONSE FOR CEMENT PASTE AND MORTAR	184
S.Zhutovsky, Y S. Karinski, D Z. Yankelevsky, V R. Feldgun	
COMPUTATIONAL ASSESSMENT OF SHCC OVERLAY RETROFITTING OF UNREINFORCED LOAD BEARING MASONRY FOR SEISMIC RESISTANCE	194
D J.A. de Jager, G. P.A.G. van Zijl	
EMPIRICAL AND NUMERICAL MODELLING OF THE DIRECT SHEAR	
BEHAVIOUR OF STEEL FIBRE-REINFORCED CONCRETE UTILISING COMPOSITE AND SINGLE FIBRE TRANSVERSE PULL-OUT DATA	205
S. Zeranka G. P. A. G. van Zijl	
FRACTURE OF REINFORCING STEEL AFTER CORROSION DETERIORATION	217
J. Sanchez	
INTRINSIC ATOMISTIC SCALE INFORMATION FOR MULTISCALE ANALYSIS AND DESIGN OF CEMENTITIOUS COMPOSITE WITH NANO/MICROFIBERS	226
B. S. Sindu, S. Sasmal	
MICROMECHANICAL MODELLING OF CEMENT PASTE USING X-RAY COMPUTED TOMOGRAPHY AND STATISTICAL NANOINDENTATION	231
H. Zhang, B. Šavija, E. Schlangen	
MODELLING OF CONCRETE WEIGHT COATING BASED ON MICROMECHANICAL CHARACTERIZATION	235
Y. Qiu, A. Abdelaziz, K. Peterson, G. Grasselli	
NUMERICAL MODELLING OF ALTERNATIVE MASONRY UNITS	247
W. I. De Villiers, J. Fourie, W P. Boshoff	
NUMERICAL STUDY FOR THE EFFECT OF CARBON FIBER REINFORCED POLYMERS (CFRP) SHEETS ON STRUCTURAL BEHAVIOR OF POSTTENSIONED SLAB SUBJECTED TO IMPACT LOADING	259
A H.Jahami1, Y A.Temsah1, J. Khatib, M. Sonebi	
PHASE-FIELD SIMULATIONS OF THE CRACKING BEHAVIOR OF CONCRETE USING REAL MESOSTRUCTURES FROM CT SCAN IMAGING	268
P. Carrara, R. Kruse and L. De Lorenzis	

THE STUDY ON ASYMMETRY ITZ AROUND STEEL FIBER IN THE ALIGNED STEEL FIBER REINFORCED CEMENT MORTAR	269
X. Sun, H. Chen R. Mu	
MULTISCALE DETERIORATION MODELLING OF REINFORCED CONCRETE STRUCTURES CONSIDERING POLYMORPHIC UNCERTAINTIES	281
K. Kremer, P. Edler, S. Freitag, M. Hofmann, G. Meschke	
TRANSPORT PROCESSES	285
CHARACTERISTICS OF PLATONIC PARTICLES ON THE IONIC DIFFUSION IN GRANULAR MORTAR BASED ON LATTICE BOLTZMANN METHOD	286
J. Lin, H. Chen	
FINITE ELEMENT MODELLING OF THERMO-HYGRAL BEHAVIOUR OF CONCRETE EXPOSED TO FIRE	299
R. Baydoun, F. Meftah, S. Guezouli1, B. Moreau, L. Ballesteros	
MICRO-SCALE THERMAL SIMULATIONS OF CEMENT PASTES CONTAINING MICROENCAPSULATED PHASE CHANGE MATERIALS (MPCM)	311
C. Mankel, A. Caggiano, S. Yang, N. Ukrainczyk, E. A.B. Koenders	
MICROSTRUCTURE-BASED 3D MODELLING OF DIFFUSIVITY IN SOUND AND CRACKED CEMENT PASTE	321
H. Mazaheripour, R. Faria, M. Azenha, G. Ye, E. Schlangen	
MODELLING STRATEGIES FOR THE STUDY OF CRACK SELF-SEALING IN MORTAR WITH SUPERABSORBENT POLYMERS	333
C. Romero Rodríguez, S. Chaves Figueiredo, D. Snoeck, B. Šavija, E. Schlangen	
MULTISCALE MODELING OF ION DIFFUSION IN CEMENT PASTE: ELECTRICAL DOUBLE LAYER EFFECTS	342
Y.Yang, R A. Patel, S V. Churakov, N I. Prasianakis, G. Kosakowski, M.Wang	
PORE-SCALE MODELLING OF TRANSPORT PROPERTIES IN UNSATURATED CEMENTITIOUS MATERIALS USING LATTICE BOLTZMANN METHOD	344
M. Zhang	
THEORETICAL APPROACH FOR OXYGEN GAS DIFFUSIVITY OF CONCRETE	352
I - S. Yoon	
THERMAL CONDUCTIVITY OF RUBBERISED MORTAR BY MESO-SCALE NUMERICAL MODELING	361
S. Yang, N. Ukrainczyk, E. A. B. Koenders	
DEGRADATION MECHANISMS	372
A MODIFIED CARBONATION MODEL FOR CONCRETE SUBJECTED TO VARYING HUMIDITY CONDITIONS	373
R. Gopinath, M. Alexander	

A PROBABILISTIC MODEL TO PREDICT THE EXTENT OF HYDROGEN SULFIDE CORROSION OF CONCRETE IN A GRAVITY SEWER	383
I. Gibb	
A TWO-PHASE INITIAL-TIME MARCHING SCHEME OF BOUNDARY ELEMENT MODEL FOR CHLORIDE DIFFUSION IN CONCRETE	397
Z. Chen, W - Y. Liang, G. Feng, Y. Chen	
COMPREHENSIVE NUMERICAL SYSTEM FOR PREDICTING AIRBORNE CHLORIDE PENETRATION IN CONCRETE WITH DIFFERENT CURING CONDITION UNDER ACTUAL ENVIRONMENTAL CONDITIONS	410
R. Wattanapornprom, T. Ishida	
INFLUENCE OF CARBONATION ON THE CHLOIRDE TRANSPORT IN CONCRETE: THEORETICAL MODELLING AND APPLICATION	414
K. Li, F. Zhao, and Y. Zhang	
INTEGRATING HYDRATE ASSEMBLAGE, MICROSTRUCTURE AND ELECTROSTATIC PROPERTIES OF C-S-H FOR PREDICTING CHLORIDE INGRESS	419
Y. Elakneswaran, T. Nawa	
MASS TRANSFER ANALYSIS CONSIDERING GAS PHASE DIFFUSION AND EXPERIMENTAL VERIFICATION FOR SURFACE PAINTING A WATERBORNE MCI IN CONCRETE	423
X. Wang, Z. Wang, Z. Liu, N. Song	
MODELLING CARBONATION REACTION ON ROUGH CEMENT SURFACE	431
A. Varzina, J. Perko, D. Jacques, Q. T. Phung, L. Yu, N. Maes, Ö. Cizer	
MODELLING THE SPREAD OF REINFORCEMENT CORROSION PRODUCTS IN CONCRETE USING THE THEORY OF POROUS MEDIA	439
J. N. Ndawula, S. Skatulla, H. Beushausen, J. Petersen	
MULTISCALE MODELLING OF ALKALI TRANSPORT AND ASR INDUCED DAMAGE IN CONCRETE	449
T. Iskhakov, J. J. Timothy, G. Meschke	
MULTI-SPECIES TRANSPORT IN CONCRETE CONSIDERING CARBONATION	453
M. Xie, P. Dangla, K. Li	
NUMERICAL MODELLING OF CEMENTITIOUS MATERIALS AGEING UNDER ACID ATTACK	457
N. Ukrainczyk, C. S. Walker, E. A. B. Koenders	
PREDICTING THE LONG-TERM PERFORMANCE OF STRUCTURES MADE WITH ADVANCED CEMENT BASED MATERIALS IN EXTREMELY AGGRESSIVE ENVIRONMENTS: CURRENT STATE OF PRACTICE AND RESEARCH NEEDS – THE APPROACH OF H2020 PROJECT RESHEALIENCE	467
G. di Luzio, L. Ferrara, M. Cruz Alonso, P. Kunz, V. Mechtcherine, C. Schroefl	

SEISMIC ANALYSIS OF CONCRETE DAMS AFFECTED BY ALK ALI SILICA REACTION CONSIDERING FLUID-STRUCTUREFOUNDATION INTERACTION	478
M. S. Pourbehi, G. P.A.G. Van Zijl, J.A.vB. Strasheim	
CHANGES IN PORE SOLUTION COMPOSITION IN MORTAR DUE TO	490
CARBONATION	
G. Plusquellec, A. B. Revert, M.R. Geiker, B. Lothenbach, K. De Weerdt	
SIMULATION OF MICROWAVE DETECTION OF CRACK IN PIPE SYSTEM	494
M. Sadeghi, C. Spitas, K. van Breugel	