9 research outputs found

    Multiscale Finite Element Modeling of Nonlinear Magnetoquasistatic Problems Using Magnetic Induction Conforming Formulations

    Full text link
    In this paper we develop magnetic induction conforming multiscale formulations for magnetoquasistatic problems involving periodic materials. The formulations are derived using the periodic homogenization theory and applied within a heterogeneous multiscale approach. Therefore the fine-scale problem is replaced by a macroscale problem defined on a coarse mesh that covers the entire domain and many mesoscale problems defined on finely-meshed small areas around some points of interest of the macroscale mesh (e.g. numerical quadrature points). The exchange of information between these macro and meso problems is thoroughly explained in this paper. For the sake of validation, we consider a two-dimensional geometry of an idealized periodic soft magnetic composite.Comment: Paper accepted for publication in the SIAM MMS journa

    Isogeometric analysis of nonlinear eddy current problems

    Get PDF

    Numerical modelling of electrical stimulation for cartilage tissue engineering

    Get PDF
    In this thesis, the design and validity of numerical models of electrical stimulation for cartilage tissue engineering are critically assessed at different scales. In sum, the results of this thesis pave the way for experimentally validated numerical models of electrical stimulation devices for cartilage tissue engineering. Furthermore, models of tissue samples can be developed down to the cellular scale and will contribute to the development of patient-specific stimulation approaches

    Multiscale finite element modeling of nonlinear magnetoquasistatic problems using magnetic induction conforming formulations

    Get PDF
    © 2018 Society for Industrial and Applied Mathematics. In this paper we develop magnetic induction conforming multiscale formulations for magnetoquasistatic problems involving periodic materials. The formulations are derived using the periodic homogenization theory and applied within a heterogeneous multiscale approach. Therefore the fine-scale problem is replaced by a macroscale problem defined on a coarse mesh that covers the entire domain and many mesoscale problems defined on finely-meshed small areas around some points of interest of the macroscale mesh (e.g., numerical quadrature points). The exchange of information between these macro and meso problems is thoroughly explained in this paper. For the sake of validation, we consider a two-dimensional geometry of an idealized periodic soft magnetic composite.status: publishe

    30th International Conference on Electrical Contacts, 7 – 11 Juni 2021, Online, Switzerland: Proceedings

    Get PDF
    corecore