359 research outputs found

    Multiresolution Dynamic Mode Decomposition (mrDMD) of Elastic Waves for Damage Localisation in Piezoelectric Ceramic

    Get PDF
    The performance of piezoelectric sensors deteriorated due to the presence of defect, delamination, and corrosion that needed to be diagnosed for the effective implementation of the structural health monitoring (SHM) framework. A novel experimental approach based on Coulomb coupling is devised to visualise the interaction of ultrasonic waves with microscale defects in the Lead Zirconate Titanate (PZT). Multiresolution dynamic mode decomposition (mrDMD) technique in conjunction with image registration, and Kullback Leibler (KL) divergence is utilised to diagnose and localise the surface defect in the PZT. The mrDMD technique extracts the spatiotemporal coherent mode and provides an equation-free architecture to reconstruct underlying system dynamics. Additionally, due to the strong connection between mrDMD and Koopman operator theory, the proposed technique is well suited to resolve the nonlinear and dispersive interaction of elastic waves with boundaries and defects. The mrDMD sequentially decomposes the three-dimensional spatiotemporal data into low and high frequency modes. The spectral modes are sensitive to defects based on the scaling of wavelength with the size of the defect. The error due to offset and distortion was minimised with ad hoc image registration technique. Further, localisation and quantification of defect are performed by evaluating the distance metric of the probability distribution of coherent data of mrDMD acquired from healthy and defected samples. In the arena of big-data that is ubiquitous in SHM, the paper demonstrates an efficient damage localisation algorithm that explores the nonlinear system dynamics using spectral multi-mode resolution techniques by sensitising the damage features

    Meningioma classification using an adaptive discriminant wavelet packet transform

    Get PDF
    Meningioma subtypes classification is a real world problem from the domain of histological image analysis that requires new methods for its resolution. Computerised histopathology presents a whole new set of problems and introduces new challenges in image classification. High intra-class variation and low inter-class differences in textures is often an issue in histological image analysis problems such as Meningioma subtypes classification. In this thesis, we present an adaptive wavelets based technique that adapts to the variation in the texture of meningioma samples and provides high classification accuracy results. The technique provides a mechanism for attaining an image representation consisting of various spatial frequency resolutions that represent the image and are referred to as subbands. Each subband provides different information pertaining to the texture in the image sample. Our novel method, the Adaptive Discriminant Wavelet Packet Transform (ADWPT), provides a means for selecting the most useful subbands and hence, achieves feature selection. It also provides a mechanism for ranking features based upon the discrimination power of a subband. The more discriminant a subband, the better it is for classification. The results show that high classification accuracies are obtained by selecting subbands with high discrimination power. Moreover, subbands that are more stable i.e. have a higher probability of being selected provide better classification accuracies. Stability and discrimination power have been shown to have a direct relationship with classification accuracy. Hence, ADWPT acquires a subset of subbands that provide a highly discriminant and robust set of features for Meningioma subtype classification. Classification accuracies obtained are greater than 90% for most Meningioma subtypes. Consequently, ADWPT is a robust and adaptive technique which enables it to overcome the issue of high intra-class variation by statistically selecting the most useful subbands for meningioma subtype classification. It overcomes the issue of low inter-class variation by adapting to texture samples and extracting the subbands that are best for differentiating between the various meningioma subtype textures

    An Information Theoretic Approach For Feature Selection And Segmentation In Posterior Fossa Tumors

    Get PDF
    Posterior Fossa (PF) is a type of brain tumor located in or near brain stem and cerebellum. About 55% - 70 % pediatric brain tumors arise in the posterior fossa, compared with only 15% - 20% of adult tumors. For segmenting PF tumors we should have features to study the characteristics of tumors. In literature, different types of texture features such as Fractal Dimension (FD) and Multifractional Brownian Motion (mBm) have been exploited for measuring randomness associated with brain and tumor tissues structures, and the varying appearance of tissues in magnetic resonance images (MRI). For selecting best features techniques such as neural network and boosting methods have been exploited. However, neural network cannot descirbe about the properties of texture features. We explore methods such as information theroetic methods which can perform feature selection based on properties of texture features. The primary contribution of this dissertation is investigating efficacy of different image features such as intensity, fractal texture, and level - set shape in segmentation of PF tumor for pediatric patients. We explore effectiveness of using four different feature selection and three different segmentation techniques respectively to discriminate tumor regions from normal tissue in multimodal brain MRI. Our research suggest that Kullback - Leibler Divergence (KLD) measure for feature ranking and selection and Expectation Maximization (EM) algorithm for feature fusion and tumor segmentation offer the best performance for the patient data in this study. To improve segmentation accuracy, we need to consider abnormalities such as cyst, edema and necrosis which surround tumors. In this work, we exploit features which describe properties of cyst and technique which can be used to segment it. To achieve this goal, we extend the two class KLD techniques to multiclass feature selection techniques, so that we can effectively select features for tumor, cyst and non tumor tissues. We compute segemntation accuracy by computing number of pixels segemented to total number of pixels for the best features. For automated process we integrate the inhomoheneity correction, feature selection using KLD and segmentation in an integrated EM framework. To validate results we have used similarity coefficients for computing the robustness of segmented tumor and cyst

    A region based approach to background modeling in a wavelet multi-resolution framework

    Get PDF
    In the field of detection and monitoring of dynamic objects in quasi-static scenes, background subtraction techniques where background is modeled at pixel-level, although showing very significant limitations, are extensively used. In this work we propose a novel approach to background modeling that operates at region-level in a wavelet based multi-resolution framework. Based on a segmentation of the background, characterization is made for each region independently as a mixture of K Gaussian modes, considering the model of the approximation and detail coefficients at the different wavelet decomposition levels. Background region characterization is updated along time, and the detection of elements of interest is carried out computing the distance between background region models and those of each incoming image in the sequence. The inclusion of the context in the modeling scheme through each region characterization makes the model robust, being able to support not only gradual illumination and long-term changes, but also sudden illumination changes and the presence of strong shadows in the scen

    Wavelet based similarity measurement algorithm for seafloor morphology

    Get PDF
    Thesis (S.M. in Naval Architecture and Marine Engineering and S.M. in Mechanical Engineering)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2006.Includes bibliographical references (leaves 71-73).The recent expansion of systematic seafloor exploration programs such as geophysical research, seafloor mapping, search and survey, resource assessment and other scientific, commercial and military applications has created a need for rapid and robust methods of processing seafloor imagery. Given the existence of a large library of seafloor images, a fast automated image classifier algorithm is needed to determine changes in seabed morphology over time. The focus of this work is the development of a robust Similarity Measurement (SM) algorithm to address the above problem. Our work uses a side-scan sonar image library for experimentation and testing. Variations of an underwater vehicle's height above the sea floor and of its pitch and roll angles cause distortion in the data obtained, such that transformations to align the data should include rotation, translation, anisotropic scaling and skew. In order to deal with these problems, we propose to use the Wavelet transform for similarity detection. Wavelets have been widely used during the last three decades in image processing. Since the Wavelet transform allows a multi-resolution decomposition, it is easier to identify the similarities between two images by examining the energy distribution at each decomposition level.(cont.) The energy distribution in the frequency domain at the output of the high pass and low pass filter banks identifies the texture discrimination. Our approach uses a statistical framework, involving fitting the Wavelet coefficients into a generalized Gaussian density distribution. The next step involves use of the Kullback-Leibner entropy metric to measure the distance between Wavelet coefficient distributions. To select the top N most likely matching images, the database images are ranked based on the minimum Kullback-Leibner distance. The statistical approach is effective in eliminating rotation, mis-registration and skew problems by working in the Wavelet domain. It's recommended that further work focuses on choosing the best Wavelet packet to increase the robustness of the algorithm developed in this thesis.by Ilkay Darilmaz.S.M.in Naval Architecture and Marine Engineering and S.M.in Mechanical Engineerin

    AUTOMATIC 3D DEFORMED MIDSAGITTAL SURFACE LOCALIZATION BY CONSTRAINED MONTE CARLO OPTIMIZATION

    Get PDF
    AUTOMATIC 3D DEFORMED MIDSAGITTAL SURFACE LOCALIZATION BY CONSTRAINED MONTE CARLO OPTIMIZATIO
    • 

    corecore