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ABSTRACT 
  Ahmed, Shaheen. Ph.D. The University of Memphis. August 2011. Information 
Theoretic Approach for Feature Selection and Segmentation in Posterior Fossa Tumor. 
Major Professor: Khan M. Iftekharuddin, Ph.D. 

  Posterior fossa (PF) is a type of brain tumor located in or near brain stem and 

cerebellum. About 55%- 70% pediatric brain tumors arise in the posterior fossa, 

compared with only 15%- 20% of adult tumors.  For segmenting PF tumors we should 

have features to study the characteristics of tumors. In literature, different type of texture 

features such as Fractal Dimension (FD) and Multifractional Brownian Motion (mBm) 

have been exploited for measuring randomness associated with brain and tumor tissue 

structures, and the varying appearance of tissues in magnetic resonance images (MRI). 

For selecting best features techniques such as neural network and boosting methods have 

been exploited. However, neural network cannot describe about the properties of texture 

features. We explore methods such as information theoretic methods which can perform 

feature selection based on properties of texture features. 

  The primary contribution of this dissertation is investigating efficacy of different 

image features such as intensity, fractal texture, and level-set shape in segmentation of 

posterior fossa (PF) tumor for pediatric patients. We explore effectiveness of using four 

different feature selection and three different segmentation techniques respectively to 

discriminate tumor regions from normal tissue in multimodal brain MRI. Our result 

suggest that Kullback-Leibler divergence (KLD) measure for feature ranking and 

selection and Expectation Maximization (EM) algorithm for feature fusion and tumor 

segmentation offer the best performance for the patient data in this study.  
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 To improve segmentation accuracy, we need to consider abnormalities such as 

cyst, edema and necrosis which surround tumors. In this work, we exploit features which 

describe properties of cyst and technique which can be used to segment it. To achieve this 

goal, we extend the two class KLD techniques to multiclass feature selection techniques, 

so that we can effectively select features for tumor, cyst and non tumor tissues. We 

compute segmentation accuracy by computing number of pixels segmented to total 

number of pixels for the best feature.    

 For automated process we integrate inhomogeneity correction, feature selection 

using KLD and segmentation is an integrated EM framework. To validate results we have 

used similarity coefficients for computing the robustness of segmented tumor and cyst.  
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PREFACE 

  This dissertation follows the guideline of IEEE Transaction on Information 

Technology in Biomedicine 2011. This dissertation was also submitted to IEEE 

Transaction on Information Technology in Biomedicine 2011. 
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1. Introduction 

1.1. Dissertation Overview                             

 The adult body normally forms new cells only when they are needed to replace 

old or damaged ones. Infants and children form new cells to complete their development 

in addition to those needed for repair. A tumor develops if normal or abnormal cells 

multiply when they are not needed. A brain tumor is a mass of unnecessary cells growing 

in the brain. There are two basics kinds of brain tumors such as primary tumors and 

metastatic tumors. Primary brain tumor starts and tends to stay in the brain. Metastatic 

brain tumor begins as a cancer elsewhere in the body and spreads in the brain.  

       Tumors are diagnosed and then named based on a classification system. Most 

medical centers now use the World Health Organization (WHO) classification system for 

this purpose. Table 1 shows WHO classification of Central Nervous Tumors.  

 

 

Table 1.1 WHO Classification of Central Nervous System Tumors [28] 

            Neuroepithelial tumors 
1. Astrocytic tumors [glial tumors--categories I-V, below--may also be subclassified as invasive or non-

invasive, although this is not formally part of the WHO system, the non-invasive tumor types are indicated 
below. Categories in italics are also not recognized by the new WHO classification system, but are in 
common use.]  

1. Astrocytoma (WHO grade II)  
i. variants: protoplasmic, gemistocytic, fibrillary, mixed  

2. Anaplastic (malignant) astrocytoma (WHO grade III)  
i. hemispheric  

ii. diencephalic  
iii. optic  
iv. brain stem  
v. cerebellar  

3. Glioblastoma multiforme (WHO grade IV)  
i. variants: giant cell glioblastoma, gliosarcoma  

4. Pilocytic astrocytoma [non-invasive, WHO grade I]  
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i. hemispheric  
ii. diencephalic  

iii. optic  
iv. brain stem  
v. cerebellar  

5. Subependymal giant cell astrocytoma [non-invasive, WHO grade I]  
6. Pleomorphic xanthoastrocytoma [non-invasive, WHO grade I]  

2. Oligodendroglial tumors 
1. Oligodendroglioma (WHO grade II)  
2. Anaplastic (malignant) oligodendroglioma (WHO grade III)  

3. Ependymal cell tumors  
1. Ependymoma (WHO grade II)  

i. variants: cellular, papillary, epithelial, clear cell, mixed  
2. Anaplastic ependymoma (WHO grade III)  
3. Myxopapillary ependymoma  
4. Subependymoma (WHO grade I)  

4. Mixed gliomas  
1. Mixed oligoastrocytoma (WHO grade II)  
2. Anaplastic (malignant) oligoastrocytoma (WHO grade III)  
3. Others (e.g. ependymo-astrocytomas)  

5. Neuroepithelial tumors of uncertain origin  
1. Polar spongioblastoma (WHO grade IV)  
2. Astroblastoma (WHO grade IV)  
3. Gliomatosis cerebri (WHO grade IV)  

6. Tumors of the choroid plexus  
1. Choroid plexus papilloma  
2. Choroid plexus carcinoma (anaplastic choroid plexus papilloma)  

7. Neuronal and mixed neuronal-glial tumors  
1. Gangliocytoma  
2. Dysplastic gangliocytoma of cerebellum (Lhermitte-Duclos)  
3. Ganglioglioma  
4. Anaplastic (malignant) ganglioglioma  
5. Desmoplastic infantile ganglioglioma  

i. desmoplastic infantile astrocytoma  
6. Central neurocytoma  
7. Dysembryoplastic neuroepithelial tumor  
8. Olfactory neuroblastoma (esthesioneuroblastoma)  

i. variant: olfactory neuroepithelioma  
8. Pineal Parenchyma Tumors  

1. Pineocytoma  
2. Pineoblastoma  
3. Mixed pineocytoma/pineoblastoma  

9. Tumors with neuroblastic or glioblastic elements (embryonal tumors)  
1. Medulloepithelioma  
2. Primitive neuroectodermal tumors with multipotent differentiation  

i. medulloblastoma  
ii. cerebral primitive neuroectodermal tumor 

3. Neuroblastoma  
i. variant: ganglioneuroblastoma  

4. Retinoblastoma  
5. Ependymoblastoma 

10. Tumors of the sellar regions 
1. Pituitary adenoma 
2. Pituitary carcinoma 
3. Craniopharyngioma 
4. Hematopoietic tumors 
5. Primary malignant lymphomas 

i. Plasmocytoma 
ii. Granulocytic sarcoma 
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11. Germ cell tumors 
i.  Germinoma 
ii. Embryonal carcinoma 

1. Tumor of meninges 
i. Meningioma 

ii. Atypical meningioma 
iii. Anaplastic meningioma 
iv. Non- meningothelial tumor of meninges 

2. Tumor of cranial and spinal neves 
i. Schwannoma 

ii. Neurofibroma 
iii. Malignant peripheral nerve sheath tumor 

12. Metastatic tumors 
13. Unclassified tumors 
14. Cysts and tumor –like lesions 

 
 

                                   

 

  

  Note in Table 1.1 we can observe that the tumors are graded from 1-4. The grade 

of a tumor indicates its degree of malignancy. Grade 1 tumors are the least malignant. 

Grade 2 tumors are the relatively slow growing; they can spread into nearby normal 

tissue and can recur. Grade 3 tumors are malignant and high grade tumors. Grade 4 is 

most malignant tumors and can easily grow into surrounding normal tissues. 

       Nearly 1,500 to 2,000 children in US are affected by brain tumors every year [1]. 

Such pediatric brain tumor can result from abnormal growth of tissues either in the brain 

or in other internal organs leading to metastasis of mass in brain. Diseases such as 

neurofibromatosis, von Hippel-Lindau disease, Li- Fraumeni syndrome and 

retinoblastoma are all associated with a higher risk of brain tumors in children [2].  

Although pediatric brain tumors may originate at any age, children are mostly diagnosed 

with brain tumors between the ages of three and eight. These tumors can be more or less 

malignant that may grow rapidly and spread to the spinal cord. 

       Some examples of childhood brain tumors include Astrocytomas, Glioblastoma 

multiform (GBM), Ependymomas, Primitive neuroectodermal, Choroid Plexus, and 
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Atypical Teratoid – Rhabdoid (ATRT). Such pediatric brain tumors are one of the leading 

causes of solid tumor cancer – related death in children under the age of 20. Among all 

childhood brain tumors, about 54% to 70% originate in posterior fossa [3] regions. The 

posterior fossa is a small space in the skull, found near the brain stem and cerebellum. 

The cerebellum is the part of the brain responsible for movement. Tumors in this region 

are considered critical because of limited space within the PF and brain stem nuclei. The 

PF tumor can block the flow of spinal fluid and cause increased pressure on the brain and 

spinal cord. Most tumors of the posterior fossa are primary brain cancers, which originate 

in the brain, rather than spreading from elsewhere in the body.  Certain types of PF 

tumors such as medulloblastoma, ependymomas, primitive neuroectodermal tumors 

(PNETs) and astrocytoma of the cerebellum and brain stem occur more frequently in 

children. Some glial tumors such as mixed gliomas are unique in children. They are 

located in cerebellum (67%) and are usually benign. 

        Among all PF tumors, brain stem gliomas (BSG) represent 25-30% of all brain 

tumors, while ependymomas occur 50% in children younger than 3 years [4]. Cystic 

cerebellar astrocytoma comprises about 33% of all PF tumors in children. It represents 

25% of all pediatric tumors. This tumor may be solid or cystic and may be located 

medially in the vermis or laterally in the cerebellar hemisphere. PNETs include 

medulloblastomas, medulloepitheliomas, pigmented medulloblastomas, 

ependymoblastomas, pineoblastomas, and cerebral neuroblastomas. These tumors 

originate from undifferentiated cells in the subependymal region in the fetal brain. 

PNETs are second to the cerebellar astrocytoma in frequency, comprising 25% of 

intracranial tumors in children. These tumors appear heterogeneous on MRI, with areas 

http://www.nlm.nih.gov/medlineplus/ency/article/000768.htm�
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of cystic degeneration and central necrosis and isointense in T1 images. Tumors like 

Ependymomas are derived from ependymal cells. They occur more frequently in females, 

with 50% presenting in children younger than 3 years. Choroid plexus papilloma and 

carcinoma represent 0.4-0.6% of all intracranial tumors. They are more frequent in 

children than in adults (3% of childhood brain tumors). Sixty percent occur in the lateral 

ventricle and 30% in the fourth ventricle. The third ventricle and cerebellopontine angle 

are rare locations for this tumor. Dermoid tumors arise from incomplete separation of 

epithelial ectoderm from neuroectoderm at the region of the anterior neuropore; this 

usually occurs during the fourth week of gestation. The cyst grows slowly and gradually 

becomes filled by desquamated epithelium, sweat, and sebaceous materials. More 

commonly, the cyst occurs in the PF, at or near the midline. Hemangioblastoma 

represents about 7-12% of all posterior fossa tumors. About 70% of hemangioblastomas 

occurring in the cerebellum are cystic. Age of presentation is 30-40 years old and is more 

common in males. Three percent of all cranial metastatic lesions occur in the brainstem 

and 18% occur in the cerebellum. Originating sites include breast, lung, skin, and kidney. 

Brainstem gliomas constitute 15% of all brain tumors. In children, brainstem glioma 

represents 25-30% of all brain tumors. Most brainstem gliomas are low-grade 

astrocytoma.  

       The MRI is considered to be the most useful imaging modality for studying brain 

tissues and tumors. Brain tumor segmentation from MRI is a challenging task because of 

the heterogeneous appearance in terms of image features such as intensity, texture and 

shape. The source of heterogeneity is attributed to a) the imaging system and image 

reconstruction process that is prone to background noise, and b) differentiation interstitial 
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pressure, perfusion or blood flow over the tumor region. The tumors to be segmented are 

anatomical structures which are complex in shape, vary greatly in size and position, vary 

from patients to patients, and may overlap with normal brain tissue. Often a growing 

tumor can deform the nearby tissues giving it an abnormal appearance. Clinicians and 

radiologist spend considerable amount of time on segmenting and labeling tumors in MR. 

There are many works reported in literature [5, 6, 7] on tumor segmentation and 

identification of tumor region in MR images. 

       Manual segmentation of tumor tissues is labor intensive. Thus, a computer aided 

diagnosis (CAD) tool is warranted which can automatically determine the shape, size and 

volume of the tumor with ease and also reduce the manual efforts saving time. The 

segmentation task becomes more difficult when one has to drive common decision 

boundaries on different tissue types in an image. Due to complex structures of different 

tissues such as white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF) as 

well as cyst, necrosis and edema in brain, segmentation becomes even more difficult. 

Consequently, considerable amount of research has been focused on semi-automatic and 

fully automatic methods for detecting and/or segmenting brain tumors from MRI scans.  

Zadech et al.  [8] has developed an automatic method for adaptive enhancement and 

unsupervised segmentation of different brain tissues such as CSF, GM and WM in 

synthetic MR images. Algorri et al. [9] have also used fuzzy parameters to segment 

normal brain tissues. The most widely performed technique for brain tumor segmentation 

is using atlas. In atlas based segmentation the template MR volume is registered to the 

unregistered scans. A one – to –one correspondence between the template and subject 

images is achieved through high dimensional warping. Warfield et al. [10, 11] combined 
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elastic atlas segmentation with statistical classification to mask the brain from 

surrounding structures. Prastawa et al. [12] developed automatic tumor segmentation and 

statistical classification of brain MR images using an atlas prior. On the computational 

domain certain machine learning techniques have also been used for MR image 

segmentation such as self organizing maps (SOM) [13], Support Vector machine (SVM) 

[14], Markov Random Fields (MRF) [15]. Li et al. [13] has exploited spatial constraints 

by using a Markov Random Field (MRF) along with self organizing maps model to 

accurately identify CSF, GM and WM. The MRF takes care of the prior distribution with 

clique potential and improves the segmentation results without having extra data samples 

in the training set. Jian et al. [14] has used SVM for separating the tumor and healthy 

tissues. Gerig et al. [15] have developed a framework in which the information on five 

properties: voxels intensities, neighborhood coherence, intra-structure properties, inter- 

structure relationships, and user input flows between the layers via multi-level Markov 

random fields and Bayesian classification.  

 Other important technique involved is the feature based technique. Texture can be 

defined as spatial arrangement of texture primitives or texture elements called textone 

arranged in more or less periodic manner. Texture primitive, on the other hand, is a group 

of pixels representing the simple or basic patterns. A texture can be fine, coarse, and 

smooth or grained depending upon the structure and tone, where tone is based on pixel 

intensity and structure is the spatial relationship between primitives. The extraction of 

good features is fundamental to successful image segmentation in this technique. The 

texture features can capture intensity, irregular variation, mean, variance, skewness, 

roughness and stochastic process among pixels making it an important. On the other 
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hand, atlas based techniques, SOM, SVM, MRF cannot capture texture techniques. They 

can identify the abnormal region by referring a template or by supervised mode.        

 Texture features have been explored to characterize and segment dystrophic 

muscles and adipose tissue [16, 17, 18]. Lerski et al. [19] have demonstrated a brain 

tumor MR image analysis technique, while Mahmoud – Ghoneim et al. [20] have 

proposed a 3D co- occurrence matrix based tumor texture analysis with increased 

specificity and sensitivity. However, in both of their works, the volume of interests has 

been segmented manually. Pachai et al. [21] have proposed a multiresolution pyramid 

algorithm to segment sclerosis lesions in brain MR image with morphological accuracy 

and improved reproducibility compared to manual segmentation method. Pitiot et al. [22] 

have presented a texture based MR image segmentation approach with a novel 

combination of two – stage hybrid neural classifier. The authors have achieved 90% to 

98% classification rate for caudate nucleus, hippocampus and corpus callosum. One of 

the important features in segmenting tumor from other tissues in brain is intensity. 

Intensity along with conventional fuzzy c-means clustering algorithm has been used for 

segmentation of CSF, GM and WM in MR images [23, 24]. However, intensity alone is 

insufficient to provide successful segmentation. Therefore, other features such as texture 

type fractal features have been proven effective for analysis of brain tumors. The tumor 

growth follows fractal process and FD [25] is a natural choice to characterize the textured 

images and surface roughness. FD has been exploited for to quantify cortical complexity 

of the brain [26]. Further, multi- fractional Brownian motion (mBm) obtained using 

stochastic process is shown effective to segment brain tumor [27]. In our previous works 

[28, 29, 30] the usefulness of intensity, FD and mBm wavelet fractal texture features for 
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tumor segmentation have been discussed. The tumors are often surrounded by sphere like 

structures called cyst. A cyst refers to a closed sac that contains fluids, gas or semi solid 

substances.  

 

1.2. Dissertation Aims  

 In this dissertation, we investigate computer aided pediatric posterior fossa tumor 

segmentation. Specifically we investigate efficacy of feature - based tumor segmentation, 

improvement of segmentation accuracy and validation by a) selecting the best features for 

Tumor and Non tumor and b) extending the search for best features for abnormalities 

such as cyst. The goal is to obtain an effective tumor analysis scheme that may ultimately 

help radiologist and medical physicists in accurate tumor delineations for patient 

management. Fig. 1.1 shows the proposed outline for achieving our goals. 

 Consequently, we formulate our three aims as follows. Aim #1 is to select set of 

features from a given subset of features using an information theoretic approach for PF 

tumor and non tumors tissues. Aim#2 is to extend the information theoretic approach for 

multiclass feature selection for selecting the best features for posterior fossa tumor, cyst 

and non tumor. This aim also obtains improved tumor segments by discriminating cyst 

from the tumor segments in Aim # 1. Aim # 3 is to obtain an integrated mathematical 

framework for multiclass feature selection and improved tumor segmentation. Such an 

integrated mathematical framework will be instrumental in obtaining a complete 

automated computer aided diagnostic (CAD) system for segmenting PF tumors. We now 

discuss our aims in more details. 
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Aim # 1: To investigate the efficacy of texture, shape factor and intensity feature 

selection and fusion for PF tumor segmentation in MRI. 

Rationale # 1       

 In our previous work [27, 29, 30, 31, 32] we already showed that texture type 

features such as fractal dimension (FD) and multifractal Brownian motion (mBm) are 

very useful in segmenting PF tumor from normal brain tissues. However, as we discussed 

in Section 1.1 feature – based tumor segmentation is an active research areas [16, 17, 18, 

19, 20, 21, 22]. Among the different types of features such as intensity, texture, multi-

resolution texture and shape factor, some features may be redundant or irrelevant for PF 

tumor segmentation. Therefore, it is essential to perform systematic feature ranking and 

selection. Our discussion in Section 1.1 shows that among many different feature 

selection techniques in literature neural network [33] has been widely used. However, 

neural network based feature selection is an exhaustive search method; hence, it may be 

computationally expensive. In comparison, formation theoretic techniques may be more 

effective for brain tumor feature selection. Among various measures for information 

theoretic feature selection, we exploit a Kullback Leibler Divergence (KLD) approach for 

selecting the best features. The KLD is a measure of difference between two probability 

distributions, whereas other distance measure such as Bhattacharya measures the 

similarity for two discrete probability classes. Therefore, KLD can be used for 

multivariate normal distributions, approximated for the class conditional distributions of 

the tumor and non-tumor regions in MR brain images.  
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Aim # 2: To investigate information theoretic multiclass feature selection for improved 

pediatric brain tumor segmentation. 

Rationale # 2       

 The tumors are often surrounded by abnormalities such as edema, cyst and 

necrosis. In our previous work [27, 29, 30, 31, 32] the segmentation results for tumors 

included surrounding tissues such as cyst, edema and necrosis. So to improve the 

accuracy we need to get rid of the surrounding tissues. For achieving this we need 

specific texture features for surrounding tissues such as cyst. Many works have been done 

previously for achieving this goal. In Ref. [34] authors have described about the hybrid 

level set (HLS) segmentation method driven by region and boundary information for 

segmenting edema and tumor. Region information serves as a propagation force which is 

robust and boundary information serves as a stopping functional which is accurate. Many 

neural networks have been exploited for multiclass feature selection. Authors in [35-36] 

have tried to employ support vector machines (SVMs) to improve the prediction 

accuracy, and obtained satisfactory results. Further, [37] describes about combination of 

genetic algorithms with adaboost classifiers to evaluate the effectiveness and the 

robustness of MNIST database.  

       On the other hand, many information based criterion has also been explored. Ref. 

[38] demonstrates the application and impact of the mutual information (MI) criterion for 

feature selection when developing texture-based CAD tools for the automated diagnostic 

interpretation of medical images. MI measures the general dependence of random 

variables without making any assumptions about the nature of their underlying 
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relationships. Ref. [39] multidimensional local spatial autocorrelation (MLSA) measure 

that quantifies the spatial autocorrelation of the hyperspectral image data.  

       The information theoretic approaches described above involve classification of 

two classes. Since our goal in this dissertation is multiclass separation (i.e. tumor, normal 

tissues, abnormalities and non tumors) there is a need to investigate multiclass 

classification algorithm. To achieve this goal we plan to extend KLD to multiclass such 

that it can be used to select the best features from the given set of features.  We also aim 

at improving the segmentation of tumors by discriminating the cyst.  

Aim # 3: To develop an information theoretic mathematical framework for feature 

selection, and segmentation. 

Rationale # 3          

 Many works has been done for integrating registration, inhomogeneity correction 

and segmentation of magnetic resonance images. In [40] authors have developed EM 

framework for estimating the image inhomogeneities, anatomical label maps and 

mapping from the atlas to image space. The authors in Ref. [41] present an algorithm for 

adaptive fuzzy segmentation of MRI data and estimation of intensity inhomogeneities 

using fuzzy logic. Further ref. [42] describes about unifying framework for fully 

automated inhomogeneity correction and partial volume (PV) segmentation of multi-

spectral brain magnetic resonance (MR) images. Warfield et al. [43,44] have combined 

elastic atlas registration with statistical classification. Elastic registration of a brain atlas 

helps to mask the brain from surrounding structures.   

       We are interested in developing an integrated mathematical framework for 

inhomogeneity correction, optimal feature selection and segmentation of PF tumors in an 
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EM – KLD framework. In the previous aims feature selection and segmentation are two 

different methods. In this aim we want to couple feature selection and segmentation. This 

will help us demonstrate the segmentation at different iterations for feature selection with 

different features.  

  

1.3. Dissertation Contributions  

       In this section, the novel contribution of this dissertation is summarized. Note 

these research contribution follow the above research aims as described above. 

1) We investigate the efficacy of several different features, feature ranking and 

feature selection techniques along with different feature fusion and segmentation 

methods for PF brain tumor segmentation using the selected features. The novelty 

comes from the fact that we implement an integrated mathematical framework for 

features selection using Kullback Leibler Divergence for PF tumors in pediatric 

brain MRI. 

2) To improve the tumor segmentation we extend the two class KLD techniques to 

multiclass feature selection techniques, so that we can effectively select features 

for tumor, cyst and non tumor tissues. We further obtain segmentation robustness 

for each tissue types by computing the Bayes posterior probabilities and 

corresponding number of pixels for each tissue segments in MRI patient images. 

For KLD computes the differences between the conditional probabilities for two 

classes. Bayes upper bound property minimizes the error of classifier by selecting 

the features taking into account their effects on classification errors. The novelty 

comes from the approach that we combine these properties of KLD and Bayes 
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upper bound to develop a multiclass feature selection for tumor, cyst and non 

tumor tissues.  

3) A novel integrated information theoretic mathematical framework for 

inhomogeneity correction, feature selection using KLD and tumor segmentation 

in EM is developed for pediatric PF tumors. To the knowledge, no integrated 

framework has yet been proposed to combine information from intensity 

inhomogeneity to segmentation for automated segmentation of PF tumors. 

 

1.4. Dissertation Organization 

        The remainder of the dissertation is organized as follows. In Chapter 2, a detailed 

background review for all the 3 aims proposed has been described. Chapter 3 describes 

about the “Efficacy of texture, shape and intensity feature fusion for PF tumor 

segmentation in MRI”. Chapter 4 mentions about the “Information theoretic multiclass 

feature selection and improved pediatric brain tumor segmentation robustness 

evaluation”. In Chapter 5 describes “Develop an information theoretic mathematical 

framework for feature selection, and segmentation”. Introduction, methods, results and 

conclusion have been described in Chapter 3, 4 and 5. Finally chapter 6 provides the 

concluding remarks and some future directions. 
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2. Literature Review 
  

       In this section, we first review relevant background for feature extraction using 

fractal, multifractal texture and level set shape methods. The tumor growth is known to 

follow a fractal process [45] that can be quantified using FD. The FD can be used as a 

measure of degree of the texture complexity of the tumor surface. Among many other 

conventional feature extraction methods, the Gabor filters are suitable to capture 

discontinuity in intensity and texture in an image [46]. Wavelet – Gabor filters have been 

investigated to outline the area of metaplastic changes in cervical images [47], and also to 

differentiate prostate and non- prostate tissues [48]. However, the wavelet – Gabor 

technique does not provide an integrated mathematical framework for simultaneous 

analysis of tumor texture at different resolutions. In comparison, FD is inherently suitable 

to capture salient fractal properties in an image such as self-similar features in addition to 

texture variation. In addition, wavelet-fractal techniques capture the multiresolution and 

texture features simultaneously for effective tumor segmentation [27, 28, 29, 49]. 

       Among many different types of features such as intensity, texture, multi-

resolution texture and shape, some features may be redundant or irrelevant for PF tumor 

segmentation. Therefore, it is essential to perform systematic feature ranking and 

selection. Among many different feature selection techniques neural networks [50] has 

attracted attention. However, neural network based feature selection is an exhaustive 

search method; hence it may be computationally expensive. Another hybrid technique 

that uses classifiers is known as Boosting [51]. In addition, simple techniques such as 

PCA [52] have also been used for feature selection. On the other hand, the KLD provides 

a quantitative feature ranking considering the entropy gain of features and ranks them is a 
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decreasing order. In this work, we systematically investigate four different feature 

selection techniques such as use Kullback – Leibler Divergence (KLD) [53], Principal 

Component Analysis (PCA) [52], Boosting [51] and entropy to ascertain which features 

offer the maximum separability between PF tumor and non- tumor tissues.  For feature 

fusion and segmentation, there have been various methods reported in literature [54, 55]. 

In Ref. [54], the authors have proposed novel idea of combining Top Down and Bottom 

Up (TDBU) segmentation. Among different feature fusion and clustering tools [56] EM 

algorithm is an efficient iterative procedure to compute the Maximum Likelihood (ML) 

estimate in presence of missing or hidden data [56]. Note that KLD and EM can be 

combined in a single mathematical framework for feature selection and segmentation. In 

this work, we explore effectiveness of three different feature fusion and segmentation 

techniques such as EM, TDBU and graph cut respectively.  

 

2.1. Fractal Dimension (FD) texture feature extraction  

 The concept of fractal is first proposed by Mandelbrot [57] to describe the 

geometry of the objects in nature. The FD is a real number that characterizes the 

fractalness (texture) of the objects. We investigate effectiveness of three different FD 

computation methods for brain tumor segmentation in MRI [31]. In a prior work [31], we 

demonstrate that piecewise- triangular-prism-surface-area (PTPSA) method offers the 

most reliable FD values and resulting tumor segmentation. 
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 2.2. Multifractional Brownian Motion (mBm) texture feature extraction 

       We have successfully investigated mBm-based texture model for brain tumor 

segmentation in MRI [27]. The mBm is defined as,  

 

)()( )( txaatx tH= ,                                                                                                (1) 

 

where x(t) is an mBm process, H(t) is the time varying scaling (or Holder) exponent and 

a is the scaling factor. After a sequence of mathematical derivation, the expectation of the 

squared –magnitude of the wavelet transform, Wx, of x(t) is given as, 
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 The critical research issue is to obtain a robust estimation of the expectation of the 

squared-magnitude of the wavelet coefficients given a single observation of the random 

process x.  Following Goncalves et al. [58], the empirical estimate of the q-th order 

moment of  ),( atWx  can be estimated as, 
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where  single realization of the analyzed process is sampled on a uniform lattice ti = i/N, i 

= 0, …., N-1). Plugging q = 2 in Eq. (4) and combining with Eq. (3) one can approximate 

H(t) as follows, 
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 For 2-D mBm model, let )(
→

uz represent a 2D mBm process, where 
→

u denotes the 

vector position (ux, uy) of a point in the process. Following the similar derivations for 

Eqn. (2), we approximate H (
→

u  ) for a 2D mBm process as follows [27], 
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 The Eqn. that links H (
→

u  ) with FD is given as,  

 

FD = E+1-H.                                                                                                              (6) 
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where E is  Euclidean Dimension of the space of fractal (E = 2 for 2D image) and H is the 

Hurst coefficient. 

 

2.3. Level set based shape feature extraction 

 Level-set based shape modeling is an important research topic in computer vision 

and computer graphics. Shape models aid the tasks of object representation and 

recognition. The authors in [59] modified the level set method first proposed in [60] and 

obtain a model for shape-based representation of objects in image. In this study, we 

implement a more recent work [61] on binary level set representation for object shape 

detection. Consider the basic definition of level given as [60], 

 

)0,(,0 ==∇+ txgivenFt φφφ ,                                                                                      (7) 

 

and  

 

φεφφφ ∇=∇+∇+ KtyxUFot ),,(  .                                                                             (8) 

 

where φ∇oF is the motion of curve in the direction normal to front, φ∇),,( tyxU is the 

term that moves the curve across the surface, φε ∇K is the speed term dependent upon 
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curvarture. In our work, ),,( tyxU is the gradient of image and φε ∇K is approximated 

using a central difference. We first convert the MRI to binary image. The level set is used 

on these binary images to track the shape at the boundary of images. Note, for binary 

images, only digital derivative approximations exists at the boundary. We initialize the 

level set function using the gradient of the image. We propagate this gradient across the 

surface given as [61], 

 

])0,min()0,[max(1 −++ ∆+∆∆−= ijij
t
ij

t
ij GGtφφ .                                                                        (9) 

 

where t
ijφ  is the value of φ at pixel i at time t, t∆ is the time step (or scaling factor), Gij  is 

a Gaussian filter to smooth the edges and +∆  and −∆ describe the normal component and 

given as, 
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2/12222 ])0,min()0,max()0,min()0,[max( −+−+− +++=∆ yyxx DDDD .                                           (11) 



                                                                                                                                                                                                                                                                      

22 
 

where +−+−
yyxx DDDD ,,,  are the forward and backward derivative approximation in x and y 

directions. These steps iterate and stop when the boundary is completed upon 

convergence. 

 

2.4. Kullback – Leibler Divergence for Feature selection & Entropy for feature 

ranking 

       The KLD is a measure of difference between two probability distributions [53]. 

Therefore, KLD can be used for multivariate normal distributions, approximated for the 

class conditional distributions of the tumor and non-tumor regions in MR brain images. 

The equation for the parametric model for ω-th class conditional density function for a 

random variable x is given as [53], 
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and, 
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(μo, σo) is the mean and variance for first class, (μm, σm) is the mean and variance for the 

second class and θ is the control parmeter.  

ωαm    is a non negative weight, 1
1

=∑
=

ω
ωα

M

m
m   and 

ωM  is the number of  features component. We now consider the maximum likelihood 

estimation (MLE) of all the unknown parameters such as oBBAA µωω ,, == and 0σ in 

the parametric family. We use EM algorithm to maximize the log likelihood function w. 

r. t. parameters ooBA σµ ,,,  with givenθ . The KLD between two classes ω1 and ω2 is 

given as [53], 
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where, 
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and 
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Figure 2.1 shows the formal algorithm for KLD computation. 

 

 

KL divergence (X, N, k. Ji) 

X is the input matrix of size n x1. N is the number of features/dimensions. K is the desired 

number of clusters.  

1. Compute the weights ),( 000 σµxg  and  ),(0 mmxg σµ    using Eqns. (13) and (14) 
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2. Under fixed weights compute the value of ωµmi , 
2)( ωσ mi , ωωµ −Ω,

mi , 2, )( ωωσ −Ω
mi using 

Eqns.(16)-(19) 

3. Using the parameters of ωµmi , 
2)( ωσ mi , ωωµ −Ω,

mi , 2, )( ωωσ −Ω
mi and weights compute the 

value of   the KLD using Eqn. (15) 

4. Compute the entropy using Eqn.(21) 

 

Fig. 2.1 Algorithm for computing the feature selection and ranking [53] 

       

 We exploit the idea of information theory such as mutual information and KLD 

for feature ranking and selection. The mutual information can also be understood as the 

expectation of the KLD of the univariate distribution p (x) of X from the conditional 

distribution p (x|c) of X given C. This suggest that the more different the distributions p 

(x|c) and p(x), the greater is the information gain, I(x,c) as follows, 

 

 

Gain = )}()(({),( xpcxpDEcxI KLxp= .
                                                    (21) 

        

 According to feature ranking based on information, gain ranks feature X over 

feature Y if Gain (X, C) > Gain (Y, C).  Therefore, a feature should be ranked if it can 

reduce more entropy than the other.  We find the entropy for all the four features – 

intensity, mBm, fractal and shape using Eqn. (21). 

http://en.wikipedia.org/wiki/Expected_value�
http://en.wikipedia.org/wiki/Conditional_distribution�
http://en.wikipedia.org/wiki/Conditional_distribution�
http://en.wikipedia.org/wiki/Kullback-Leibler_divergence�


                                                                                                                                                                                                                                                                      

26 
 

2.5. Similarity Coefficient (SC) for segmentation quality and robustness 

identification 

       For estimating the robustness of segmentation we consider different similarity 

measures such as Jaccard, Dice, Sokal & Sneath (SS) and Russel and Rao (RR) [29]. 

Note the study of outlier and its effect on segmentation and pattern classification is better 

understood using region of curves (ROC) analysis, which is beyond the scope of this 

work. We quantify segmentation robustness by measuring the overlap of tumor using 

different similarity metrics such as Jaccard (p/p+q), Dice (2p/2p+q), SS (p/p+2r) and RR 

(p/p+q+r), where p is the area of tumor region in MRI (tumors segmented by radiologist 

and used as ground truth), q is the area of the tumor region segmented using EM 

algorithm and r is the non-tumor region. Note computations of both Dice and Jaccard 

involve the ratio between actual and automated tumor segments. On the other hand, SS 

and RR involve computations of both the ratio between actual tumor segments to 

automated tumor segments and the non-tumor regions. Overall, these overlap ratios 

indicate the accuracy of tumor segmentation results for each patient. Value of 1.0 for any 

of these measures represents complete overlap whereas 0.0 represents no overlap. 

 In this section, we first review relevant background for different feature selection 

techniques. In machine learning and statistics, feature selection, is the technique of 

selecting a subset of relevant features for building robust learning models. Two class 

feature selection has many limitations. Methods such as classifier LDA include the fact 

that the classifier must have a linear form. The performance degrades when the two 

groups to be classified are not perfectly separable in feature space. For very large training 

set, the minimum error rate in feature space is not achievable. These problems are 

http://en.wikipedia.org/wiki/Machine_learning�
http://en.wikipedia.org/wiki/Statistics�
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especially relevant in medical image segmentation because of the large image dataset and 

the high complexity of the images. Wrapper-based feature selection is attractive because 

wrapper methods are able to optimize the features they select to the specific learning 

algorithm. Unfortunately, wrapper methods are prohibitively expensive to use with neural 

nets. 

      There have been works in information theoretic methods for feature selection. In 

Ref. [62], separability indices, such as Bhattacharyya distance, Jeffries – Matusita 

distance and Mahalanobis distance have been used to determine the best band 

combination in multitemporal dataset. A probabilistic Bayesian network model is used in 

Ref. [63] to systematically select the representative performance features, which can 

provide optimal classification accuracy and adapt to changing workloads. In Ref. [64], a 

novel feature selection scheme based on the upper bound of Baye’s error under normal 

distribution for the multi-class dimension reduction problem is proposed. In order to 

obtain an accurate solution of the feature selection transform matrix in term of the 

minimum upper bound of Baye’s error, a recursive algorithm based on gradient method is 

developed. 

   Bruazzone et al. [65-68] has extended two class classifications to multiclass for 

satellite images. The authors in Refs. [65, 66] discuss multiclass features selection for 

distance measure such as Bhattacharya, Jeffery - Matsutia, F index and Baye’s criterion 

for remote sensing images. Reference [67] discusses a data fusion approach to the 

classification of multisource and multitemporal remote-sensing images. The method is 

based on the application of the Bayes rule for minimum error to the “compound” 

classification of pairs of multisource images acquired at two different dates. In particular, 
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the fusion of multisource data is obtained by using multilayer perceptron neural networks 

for a nonparametric estimation of posterior class probabilities. Furthermore, a supervised 

nonparametric technique based on the “compound classification rule” for minimum error 

is discussed in [68] to detect land-cover transitions between two remote-sensing images 

acquired at different times. The methods in Ref. [68] offer discriminative feature subset 

as a group rather than emphasizing the individual contribution of features to discriminate. 

In addition, the probabilistic distance measures which are used as criterion function offers 

the individual discriminatory powers of features. 

       In this work, we propose to improve our prior tumor segmentation accuracy by 

segmenting cyst tissues from tumor regions using information theoretic KLD method. In 

our prior works [69, 70] the segmented tumor regions include other non-tumor tissues 

such as cyst, edema and necrosis. In this work, we develop an integrated probabilistic 

KLD technique for multiclass feature selection and improved pediatric brain tumor 

segmentation.  KLD computes the difference between the conditional probabilities for 

two classes. The greater the difference the best is the separation between classes. Baye’s 

upper bound property minimizes the error of classifier by selecting the features taking 

into account their effects on classification errors [65]. We combine these properties of 

KLD and Baye’s upper bound to develop a multiclass feature selection for tumor (T), 

cyst (C) and non tumor (NT) tissues. We further evaluate our improved tumor 

segmentation robustness using evaluation metrics for eight patients in T1, T2 and FLAIR 

modalities. The criterion we present in this paper is based on upper bound to the Baye’s 

error formulated under appropriate simplifying hypotheses. We define the criterion for 

two-class case and then generalize it to multiclass feature selection.  
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3.1. Multiclass feature selection Criteria 

       Several distance measures such as Bhattacharya and Jeffrey’s – Matusita (JM) 

have been used for statistical separability of classes. The Bhattacharya distance measure 

is given as, [65], 
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where )( ixp ω  and )( jxp ω  are the conditional probabilities for two classes. The JM 

distance, on the other hand, is given as, [65], 
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 Consider two classes, ωi and ωj. The error probability of the Baye’s classifier for 

the minimum error is given as, [65], 
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where Di and Dj are the decision regions in the feature space X for the classes ωi and ωj, 

respectively. The D’s are defined as, 
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 Assuming Gaussian distributions, Eqn. (24) can be written as, 
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where ξ
π

ξ dexQ
x
∫
+∞

−= 2/2

2
1)( . The value of α depends on the optimal decision parameter 

which is computed using maximum a posterior probability (MAP) as follows, 

 

α = log P (ωi ) / P (ωj ).                  (28) 
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 The priors are computed as the number of pixels covering the tumor, cyst and non 

tumor region to the total number of pixels.  

 

3.2. Segmentation using mBm feature 

       For effective segmentation, we consider each pixel within a region share similar 

characteristic such as intensity or texture with its neighbors. To be specific, a pixel within 

a texture region can be considered as an interior pixel for a neighborhood in the raw 

image. On the other hand, boundary pixel does not share similar property with its 

neighbors. This allows effective separation of interior and boundary pixels for a texture 

region.  

       Once we select the best feature using Bayesian KLD technique, we obtain 

segmentation robustness for selected feature at pixel level. We compute the number of 

pixels for segmented tumors using the best feature. Texture feature such as FD and mBm 

are non linear feature extraction process. Therefore, in order to compute pixel level 

accuracy for tumor segments we consider sub images which cover the tumor region, and 

then obtain a suitable threshold for interior pixels and exterior pixels for selecting from 

those sub images.  

       Let us consider c (i, j) to represent the number of sub images containing pixel x (i, 

j). Let also x (i, j) be an interior point of a certain texture region and CM (i, j) represents 

the regions in the sub images. Assume that the number of sub images used in the 

algorithm is K; the possible value of interior threshold (Thint) ranges from 1 to K. To 

determine the best values of Thint, a two-step method is adopted [71]. The steps involved 

to testing each candidate value for Thint and determination of the best threshold are based 
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on number of regions created as well as the separability among these regions. 

Considering all possible threshold candidates, the most frequent resulting region number 

is determined first. The threshold resulting from the corresponding region number is 

chosen as the tentative candidate for Thint. If there are more than one most frequent 

resulting region numbers, then the threshold that results in larger class separability is 

selected as the final threshold. In order to obtain an automatic threshold selection 

algorithm, let us define a few terms. 

 The class separability (SP) is defined as the ratio of intra-distance, dintra and inter- 

distance, dinter of the texture regions, TRj, j = 1, 2,….., m. SP = d2/d1 . Let Mj denote the 

mean gray value of TRj, and pj(x, y) be the value of the pixel (x, y) in TRj. Then, dintra and 

dinter are defined as follows, 
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where Aj is the area size of TRj. The algorithm for computing the interior pixels is given 

below; 
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Algorithm for computing interior pixels: 

1)  For each sub image sk covering T or C region do 

      a)  For each pixel x (i, j) in sk do 

Check the M XM neighborhood N (i, j) of x (i, j) 

If more than p% pixels of N (i, j) are in the same region as x (i, j) then 

    c (i, j) = c (i, j) + 1 

  2) For each counter c (i; j)  

        b)  Perform a region growing to produce texture region TRij = 1,2,….m 

       c)  Compute separability for different regions SP using eqn. (10) 

     d) Select SP Max = 0. 

     e) For each texture region TR if 

                If mi = m and 

               If SPi >MaxSP then 

                MaxSP = SPi. 

Thint = Threshold Candidate. 

 
Fig.2.2 Algorithm for computing the interior pixels for texture (mBm) feature [71]. 
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 We separate the interior of texture regions from their boundaries using algorithms 

in Fig.2.2. The texture regions, TRij, are obtained by region growing. Given a boundary 

pixel p and a sub image s, we locate the texture region rp in s in which p resides, then 

determine the texture region in TRij which overlaps most with rp. After checking all sub 

images, p is assigned to the texture region in TRij to which it is assigned most frequently. 

We show boundary pixel assignment algorithm as follows. 

 

 

Algorithm: Boundary Pixel Assignment 

1) For each boundary pixel p do 

a) For each sub image sk do 

Determine the region, rk in sk, to which p belongs based on the clusters of sk 

Determine the region rm of TRij, which overlaps with rk most 

cm = cm + 1 

End 

j = argmaxi ci 

Assign p to region rj 

End 

 

                       
Fig. 2.3 Algorithm for computing the boundary pixels for texture (mBm) feature [71]. 
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 In this work we review relevant work based on statistical approach for 

segmentation of structures using inhomogeneity. An elaborate initialization scheme is 

suggested to link the set of Gaussians per tissue type, such that each Gaussian in the set 

has similar intensity characteristics with minimal overlapping spatial supports [72]. 

Segmentation of the brain image is achieved by the affiliation of each voxel to the 

component of the model that maximized the a posteriori probability. Incorporating spatial 

information via a statistical atlas provides a means for improving the segmentation results 

[73, 74, 75]. The statistical atlas provides the prior probability for each pixel to originate 

from a particular tissue class. Algorithms that are based on the maximum a posteriori 

(MAP) criterion utilize the atlas information in the algorithm iterations to augment the 

information in the presence of noisy data. In Ref. [76] a three-step segmentation 

procedure is discussed. First, segmentation of brain/non-brain tissue is performed by 

using Hybrid watershed algorithm (HWA). Then the intensity inhomogeneity correction 

method is applied to MR image. Finally, Fuzzy Kohonen's Competitive Learning (F-

KCL) Algorithms are used for MRI tissue segmentation. 

       Recently EM approaches have been utilized for computing the bias field. Wells et 

al.  [77, 78, 79] propose an expectation-maximization (EM) algorithm to achieve an 

interleaved bias correction/statistical segmentation. In the case of scalar data, the bias 

estimate b̂  is calculated as ][ˆ WUYHb −= , where H is a low-pass filter, Y the original 

data and WU a prediction of the signal, which is the sum of the class means weighted by 

the a posteriori probabilities, ccP µ∑ . Wells' formulation includes the bias distortion in 

the statistical model of the pixel distribution, i.e. the bias field influences the distribution 

by locally shifting its mean value. The algorithm iterates between two steps, the E-step 
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for calculating the posterior tissue probabilities, and the M-step for estimating the bias 

field.  Regis et al. [80] introduced a modified EM algorithm that replaces the distribution 

of the class other, which includes all tissue not explicitly modeled, by a uniform 

probability density function. The correction claims to be more robust and to overcome 

some limitations of Wells' original method. They also introduce an automatic estimation 

of the initial parameters based on a constrained and exhaustive search guided by 

minimum entropy. Nevertheless, the initialization of the parameters remains critical, as in 

the original algorithm, and the method is still sensitive to the spatial configuration of 

image structures. Leemput et al. [81, 82] developed fully automatic segmentation of MR 

head images by statistical classification using an atlas prior both for initialization of 

probability density functions and also for geometric constraints, solved as an expectation 

maximization (EM) algorithm. The method has been shown to be very robust and highly 

reproducible for normal brain images, but fails in the presence of large pathology. 

      In this work, we have not considered registration as a parameter. Registration of 

brain MRI having tumor if registered on atlas will produce erroneous result.  The brain 

tumors can't be simply modeled as intensity outliers due to overlapping intensities with 

normal tissue and/or significant size.  In [83], for example, a criterion for detecting 

outliers is used to generate a tumor prior in a subsequent EM segmentation which is 

treating tumor as an additional tissue class. Ref. [84] introduces a generative probabilistic 

model for segmentation of tumors in multi-dimensional images. The model allows for 

different tumor boundaries in each channel, reflecting difference in tumor appearance 

across modalities. They augment a probabilistic atlas of healthy tissue priors with a latent 
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atlas of the lesion and derive the estimation algorithm to extract tumor boundaries and the 

latent atlas from the image data.  

       So far there has been work on combining registration and inhomgeneity to see the 

effect of segmentation [85]. But in this work, we are trying to see the effect of 

segmentation when varying textural features. This is achieved in a single framework by 

combining Inhomogeneity, feature selection and segmentation. In this work we combine 

feature selection method with homogeneity in an Expectation Maximization framework 

to study that feature selection also plays an important role for improving tumor 

segmentation. 
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3. Efficacy of Texture, Shape and Intensity Feature Fusion for Posterior 

- Fossa Tumor Segmentation in MRI 

3.1. Introduction 

         Brain tissue and tumor segmentation in MR images has been an active research 

area. Extraction of good features is fundamental to successful image segmentation. Due 

to complex structures of different tissues such as the gray matter (GM), white matter 

(WM) and cerebrospinal fluid (CSF) in the MR brain images, extraction of useful 

features is a challenging task. Variability in tumor location, shape, size and texture 

properties further complicates the search for robust features. Posterior fossa (PF) tumor is 

usually located near the brain stem and cerebellum. About 55%- 70% pediatric brain 

tumors arise in the PF, compared with only 15%- 20% of adult tumors. Most tumors of 

the PF are primary brain cancers, which originate in the brain, rather than spreading from 

elsewhere in the body. Due to narrow confinement at the base of the skull, complete 

removal of PF tumors poses non-trivial challenges. Therefore, accurate segmentation of 

PF tumor is necessary.  

       Intensity is an important feature in segmenting tumor from other tissues in the 

brain. In Ref. [86], the authors use intensity and a conventional fuzzy c-means clustering 

algorithm for segmentation of CSF, GM and WM in MR images. However, using 

intensity alone for segmentation has proved to be insufficient. Fractal Dimension (FD) is 

a useful tool to characterize the textured images and surface roughness [87]. FD has been 

exploited to quantify cortical complexity of the brain [88]. Further, texture feature 

obtained using a stochastic Multi- fractional Brownian motion (mBm) model is shown 

effective to segment brain tumor [28]. In our previous works [28, 29, 30, 31], we discuss 
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the usefulness of intensity, FD and mBm wavelet fractal texture features for tumor 

segmentation. However, for patients with poor MR image quality, the texture and 

intensity features may prove inadequate for PF tumor segmentation.  For these patients, 

another feature such as the shape may be useful for improved PF tumor segmentation in 

MR images. 

  The level set method first developed by Osher et al. [89] has found applications in 

many disciplines such as image processing, computer graphics, computational geometry 

and optimization. The level set is a numerical analysis technique for tracking 

interferences and shape. Some applications of level sets in medical image analysis are 

extraction of complex shapes such as the human cortex in MRI for neurological disease 

diagnosis [60] and shape-based approach to curve evolution for the segmentation of 

medical images [90]. In a recent work [61], a binary level set method has been introduced 

to reduce the expensive computational cost of redistancing the traditional level set 

function. 

       Feature selection, also known as variable selection, feature reduction, attribute 

selection or variable subset selection, is a technique for selecting a subset of relevant 

features for building robust learning models. Feature selection has been exploited in 

many applications such as medical imaging, data mining and lexical works [91, 92]. In 

medical imaging, various techniques have been used to select the best features from a 

given set of features [93, 53]. A new feature selection technique based on KLD between 

two-class conditional densities functions approximated by finite mixture of parameterized 

densities has also been discussed [53].  

http://en.wikipedia.org/wiki/Features�
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        In our current work, we evaluate the efficacy of the level set shape along with 

fractal texture and intensity features to discriminate PF tumor from other tissues in the 

brain. We investigate the efficacy of several different features, feature ranking and 

feature selection techniques along with different feature fusion and segmentation methods 

for PF brain tumor segmentation using the selected features. 

 

3.2. Methods and Datasets 

       The overall flow diagram our method is shown in Fig.3.1. The first step includes 

the preprocessing stage that minimizes this intensity bias using the normalization 

algorithm. After intensity normalization we extract four features such as intensity, FD 

using PTPSA algorithm, mBm using fractal- wavelet algorithm and shape using level set 

method in multimodality MR images. We use both KLD and the entropy values for 

feature ranking and selection. The features selected are then used for the segmentation of 

the tumor region in MRI using EM. Note, an integrated EM framework allows us to 

obtain feature ranking and selection using KLD and subsequent tumor segmentation 

simultaneously. 
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Fig. 3.1 Flow diagram showing the steps 

  

3.2.1. Image Intensity Normalization 

       The MRI intensity is affected by various sources of variations such as different 

parameter settings and physics of imaging device. To minimize the intensity bias of the 

MR image, intensity normalization is used as pre – processing step. In this work, we 

implement a two- step normalization method in [27, 29] where the image histograms are 

modified such that the histograms match a mean histogram obtained using the training 

data.  After applying the normalization method, the intensity values for the same tissue in 

different MR images fall into a very narrow range (usually a single value) in the 

normalized image. 

 

 3.2.2. Feature Extraction 

       After intensity normalization and bias correction we extract three sets of features 

from the normalized images in T1, T2 and Flair modality.  
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 3.2.3. Feature selection and feature ranking using different methods 

       The authors in [53] propose a novel PCA – based method for dimensionality 

reduction of features known as Principal Feature Analysis (PFA). The PFA has been 

successfully applied for choosing the principal features in face tracking and content based 

image retrieval problems. Similarly, a boost feature subset selection (BFSS) method has 

been proposed to select and rank genes in microarray data on the basis of discriminative 

scores to improve the performance [52]. For BFSS implementation, we compute the F-

score for each feature type in each modality. We then rank the F-scores in the descending 

order. For comparison, we also formalize the mathematical derivation of KLD. We 

exploit KLD for ranking and selecting the best feature combinations among four features 

for tumor / non-tumor discrimination. After the feature has been extracted, we use the 

KLD algorithm in Fig. 2.1 for feature selection.  

 

 3.2.4. Image Segmentation using different algorithms 

       We study three different segmentation techniques for comparison. We first 

implement TDBU method as follows. For top-down step, we extract the texture features 

from MRI slices and obtain boundary of the tumors and non-tumor region based on the 

mutual information. Then to avoid inconsistent boundary in the top down step, we 

perform bottom up processing which segments the tumor by considering the coherent 

groups of pixels that belong to tumor based on the texture features. For graph cut method 

[94], the image is considered a graph and nodes i and j are pixels. Note the edge weight 

Wij denotes a local measure of similarity between two pixels.  Let G = {V, E} where V 
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stands for the node and E for edges. The similarity between two groups is called a cut and 

is given by, 

 

∑
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 The fundamental issue is specifying the edge weights Wij for which we rely on the 

normalized cuts. Shi et.al [95] proposed a normalized cut to separating the region and 

defined normalized cut as follows, 
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graph.  In our work, we compute the edge weights Wij between the two pixels as follows, 
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where, TX
ijij WW = .We compute the eigenvectors by using laplacian matrix, and use the 

eigenvector with the second smallest eigenvalues computed using laplacian matrix to 

bipartition the graph using Eqn. (33) given in [95].  

       For EM algorithm, at each pixel in an image, we compute a d-dimensional feature 

vector that encapsulates intensity and texture information. EM algorithm assumes that a 

segment is chosen with a probability, and models the density associated with that 

segment as a Gaussian probability distribution function, with parameters (μ, σ), that 

depend on the chosen segment. This is known as a Gaussian mixture model [96]. The EM 

tool [34] also yields the cluster mean and covariance, for a user-defined number of 

clusters and number of iterations. Note that varying the number of clusters and the 

number of iterations influences the computation time and the quality of results. In our 

work, we randomly initialize the number of clusters and retain the meaningful number of 

clusters after couple of iterations. 

 

 3.2.5. Image Data Set 

        The image database includes the two image modalities – gadolinium – enhanced 

T1, T2 and FLAIR from 10 patients with PF tumors as shown in Table 1. All the images 

are sampled by 1.5 Tesla Siemens Magnetom scanners. The slice thickness is 5mm, with 

the slice gap of 1mm, the field-of-view (FOV) of 210x210 mm2 and the image matrix of 

256x256 pixels. The scan parameters for T1- weighted image are: TR=168ms, TE=8ms, 

flip angle=90 degrees; the scan parameters for T2-weighted image are: Turbo Spin Echo, 

TR=6430, TE=114ms, 14 echoes per TR. 
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Table 3.1 MR image data statistics 

 
Pati
ent 

 
Field 
Stren
gth 
(Tesla
) 

 
Numb
er of 
tumor
s 

 
Name of 
tumor 

 
Numbe
r of 
images 
with 
visible 
tumors 

 
             T1 modality 

 
    T2 modality 

 
Flair 
modali
ty 

Total 
number 
of 
images 
in a 
sequen
ce 

Tumor 
visibilit
y 

Contrast 
agent(gad
olinium 
Enhanced
) 

Total 
number 
of 
images 
in a 
sequence 

Tumor 
visibilit
y 

Total 
number 
of 
images 
in a 
sequen
ce 

Tumor 
visibilit
y 

1 1.5 Single Medulloblast
oma 

9 35 Good Applied 35 Good 35 Mediu
m 

2 1.5 Single Medulloblast
oma 

9 35 Mediu
m 

Applied 35 Good 35 Mediu
m 

3 1.5 Single Medulloblast
oma 

9 35 Mediu
m 

Applied 35 Mediu
m 

34 Good 

4 1.5 Single Medulloblast
oma 

8 37 Mediu
m 

Applied 36 Mediu
m 

36 Mediu
m 

5 1.5 Single Medulloblast
oma 

9 35 Mediu
m 

Applied 35 Mediu
m 

34 Good 

6 1.5 Single Astrocytoma 8 40 Good Applied 40 Good 34 Mediu
m 

7 1.5 Single Astrocytoma 6 27 Mediu
m 

Applied 27 Mediu
m 

25 Mediu
m 

8 1.5 Single Astrocytoma 8 37 Poor Applied 38 Mediu
m 

35 Mediu
m 

9 1.5 Single Astrocytoma 7 21 Mediu
m 

Poor 26 Mediu
m 

25 Good 

10 1.5 Single Astrocytoma 9 28 Mediu
m 

Applied 27 Mediu
m 

26 Good 

 

 

3.3. Results 

 3.3.1. Feature Extraction and Selection  

     We compute intensity, fractal dimension, fractal wavelet and shape features in all 

MR images for ten patients. We first divide the images into 8 X 8 sub – images and 

obtain the corresponding features using PTPSA, mBm and level set algorithms 

respectively. Note in our previous work, we show that the effectiveness of fractal 

algorithms improve by dividing images into 8x8 sub- images for local detection of tumor 
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[30]. We then obtain the normalized mean value of the FD, mBm, intensity and shape 

features for both tumor and non-tumor regions for each MRI slice. 

      For robust identification of effective features we obtain feature selection using 

three different techniques such as PCA, boosting and KLD. The PCA [53] offers the 

feature ranking of the distance of PCA eigenvalues algorithm as shown in Table 3.2. 

Table 3.2 shows the PCA values for five even numbered patients for example.  

 

 

 

 

Table 3.2 Feature ranking using PCA 

Patient Features Distance 
of 
eigenvalu
es for 
PCA in  
T1  
(feature 
ranking) 

Distance 
of 
eigenvalu
es for 
PCA in   
T2 
(feature 
ranking) 

Distance 
of 
eigenvalu
es for 
PCA in   
FLAIR 
(feature 
ranking) 

Patient Features Distance 
of 
eigenval
ues for 
PCA in   
T1  
(feature 
ranking) 

Distance 
of 
eigenvalu
es for 
PCA in   
T2 
(feature 
ranking) 

Distance 
of 
eigenval
ues for 
PCA in   
FLAIR 
(feature 
ranking) 

2 Intensity 1.83   (2) 1.77   (1) 1.80  (2) 6 Intensity 1.77   (1) 1.71   (1) 1.74  (1) 

mBm 1.86   (1) 1.72   (3) 1.85  (1) mBm 1.74   (2) 1.67    (3) 1.72 (2) 

Shape 1.81   (3) 1.74   (2) 1.79  (3) Shape 1.68  (3) 1.70  (2) 1.68  (3) 

Fractal 1.79   (4) 1.71   (4) 1.77  (4) Fractal 1.67   (4) 1.66   (4) 1.65  (4) 

4 Intensity 1.72   (2) 1.75   (1) 1.70  (3) 8 Intensity 1.72   (3) 1.74     (1) 1.72  (3) 

mBm 1.74   (1) 1.67   (3) 1.77 (1) mBm 1.80   (1) 1.70     (3) 1.76  (1) 

Shape 1.67   (3) 1.71   (2) 1.75  (2) Shape 1.77   (2) 1.72     (2) 1.74  (2) 

Fractal 1.66   (4) 1.64   (4) 1.66  (4) Fractal 1.70   (4) 1.67     (4) 1.65  (4) 

10 Intensity 1.71   (2) 1.73   (1) 1.74  (2) 

mBm 1.75   (1) 1.67   (3) 1.76 (1) 

Shape 1.69   (3) 1.69   (2) 1.70  (3) 

Fractal 1.65   (4) 1.65   (4) 1.68  (4) 
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 Table 3.2 shows that for both T1and FLAIR modalities mBm performs the best 

for all the patients (except patient 6). For T2 modality, intensity ranks first for all the 

patients. The second method for feature selection is boosting [22]. The boosting method 

offers feature ranking in decreasing order using the F scores as shown in Table 3.3 for the 

same even numbered patients as shown in Table 3.2. Table 3.3 shows that for T1 and 

FLAIR modality, mBm performs the best. Similarly for T2 modality, intensity ranks first 

for all the patients.   

        

 

Table 3.3 Feature ranking using F – scores in boosting method 

Patient Features F-values 
for T1  
(feature 
ranking) 

F-values for 
T2 
(feature 
ranking) 

F- values 
for FLAIR 
(feature 
ranking) 

Patient Features F values 
for T1  
(feature 
ranking) 

F-values for 
T2 
(feature 
ranking) 

F-values for 
FLAIR 
(feature 
ranking) 

2 Intensity 14.4     (2) 17.7      (1) 14.8(2) 6 Intensity 18.2   (3) 18.4   (1) 18.2 (2) 

mBm 15.6     (1) 16.2       (3) 15.5  (1) mBm 18.7    (1) 17.6    (3) 18.4  (1) 

Shape 13.8      3) 16.8      (2) 13.8  (3) Shape 18.4  (2) 18.1  (2) 16.8  (3) 

Fractal 13.2     (4) 15.4       (4) 12.3  (4) Fractal 16.7   (4) 17.3   (4) 16.5  (4) 

4 Intensity 18.2     (2) 18.5       (1) 16.4  (3) 8 Intensity 18.2     (3) 17.8     (1) 17.2  (3) 

mBm 18.4     (1) 15.7       (3) 17.7 (1) mBm 18.0     (1) 17.4     (3) 17.6  (1) 

Shape 16.7     (3) 17.1       (2) 17.5  (2) Shape 17.7     (2) 17.6     (2) 17.4  (2) 

Fractal 15.6     (4) 14.4       (4) 16.6  (4) Fractal 16.7     (4) 16.7     (4) 16.5  (4) 

10 Intensity 17.3     (2) 17.6   (1) 17.4  (2) 

mBm 17.7     (1) 16.7    (3) 17.6 (1) 

Shape 17.2     (3) 17.4    (2) 17.0  (3) 

Fractal 16.5     (4) 16.5   (4) 16.8  (4) 
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 Finally, we obtain KLD plots for all the three MR image modalities per patient. 

Figure 3.2 shows results in T1, T2 and FLAIR modalities for patient #8 as an example.    

Figures 3.2 (a) and (c) show that as the entire tumor cluster is located in the mBm plane. 

Thus, mBm can be used to effectively discriminate between the PF tumors and non- 

tumor tissues in T1and FLAIR MRI. Figures 3.2(b) shows that intensity is necessary to 

isolate tumor cluster in T2. This similar trend is noted for all the ten patients in our 

database.  Fig.3.2 clearly provides more effective separation of tumor features.  Table 3.4 

summarizes our qualitative KLD feature plot observations for all ten patients in all the 

modalities. We observe that in T1 and FLAIR modality, mBm is the most effective 

feature for PF tumor segmentation. For T2 modality, intensity is the best features. In 

order to obtain a more quantitative measure of feature effectiveness, we obtain the 

entropy (or information gain) for all the four features in T1, T2 and FLAIR modalities 

respectively. We then rank these entropies in decreasing order. 

 

 

 

 

 

 

 

 

 

        (a)                                                                (b)                                                       
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           (c) 

Fig. 3.2 KLD results showing the separability of features for (a) T1 modality; (b) T2 
modality; (c) FLAIR modality for patient#8.  Encircled dots show tumors and the rest 
shows non –tumor.      

 

Table 3.4 Summary of qualitative observation of feature ranking using KLD in T1, T2 
and FLAIR MRI. 
 
Patient  Best features 

using KLD for 
segmentation 
inT1 (feature 
ranking) 

Best features 
using KLD for 
segmentation in 
T2 (feature 
ranking) 

Best features 
using KLD for 
segmentation 
in FLAIR 
(feature 
ranking) 

Patient Best features 
using KLD for 
segmentation 
inT1 (feature 
ranking) 

Best features 
using KLD for 
segmentation in 
T2  (feature 
ranking) 

Best features 
using KLD for 
segmentation in 
FLAIR (feature 
ranking) 

1 mBm (1) 

Intensity, 
fractal  (2) 

Intensity, shape 
(1) 

Intensity (2) 

 

mBm (1) 

Intensity (2) 

 

6 mBm (1) 

Intensity, shape 
(2) 

Intensity (1) 

Intensity, shape 
(2) 

mBm (1) 

Intensity, shape 
(2) 

2 mBm (1) 

Intensity, 
shape (2) 

Intensity (1) 

Intensity, shape 
(2) 

mBm (1) 

 

7 mBm (1) Intensity (1) mBm (1) 

 

3 mBm (1) 

Intensity, 
shape (2) 

Intensity (1) mBm (1) 

 

8 mBm (1) 

Intensity, fractal 
(2) 

Intensity (1) mBm (1) 

 

4 mBm (1) 

 

Intensity (1) 

Intensity, shape 
(2) 

mBm (1) 

Intensity, 
shape (2) 

9 mBm (1) Intensity, shape 
(1) 

mBm (1) 

 

5 mBm (1) 

 

Intensity (1) 

Intensity, shape 
(2) 

mBm (1) 

 

10 mBm(1) Intensity (1) mBm (1) 
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Table 3.5 Summary of entropy based feature ranking in T1, T2 and FLAIR modalities. 

Patient Features Entropy 
values for T1  
(feature 
ranking) 

Entropy 
values for 
T2 
(feature 
ranking) 

Entropy 
values 
for 
FLAIR 
(feature 
ranking) 

Patient Features Entropy 
values for 
T1  
(feature 
ranking) 

Entropy 
values 
for T2 
(feature 
ranking) 

Entropy 
values for 
FLAIR 
(feature 
ranking) 

1 Intensity 0.82      (2) 0.78      (1) 0.77 (3) 6 Intensity 0.72   (2) 0.71   (1) 0.72 (2) 

mBm 0.84     (1) 0.69       (4) 0.82 (1) mBm 0.77    (1) 0.67   (3) 0.74  (1) 

Shape 0.81     (3) 0.75      (2) 0.79 (2) Shape 0.68  (3) 0.70  (2) 0.68  (3) 

Fractal 0.75     (4) 0.70     (3) 0.75 (4) Fractal 0.67   (4) 0.66   (4) 0.65  (4) 

2 Intensity 0.83     (2) 0.77      (1) 0.80  (2) 7 Intensity 0.64    (3) 0.67   (1) 0.63  (2) 

mBm 0.86      (1) 0.72       (3) 0.85  (1) mBm 0.68     (1) 0.63   (3) 0.70  (1) 

Shape 0.81        (3) 0.74      (2) 0.79  (3) Shape 0.66     (2) 0.64   (2) 0.62  (3) 

Fractal 0.79         (4) 0.71       (4) 0.77  (4) Fractal 0.60     (4) 0.59   (4) 0.60  (4) 

3 Intensity 0.78    (2) 0.78       (1) 0.76  (2) 8 Intensity 0.72     (3) 0.74   (1) 0.72  (3) 

mBm 0.80      (1) 0.75       (3) 0.81  (1) mBm 0.80     (1) 0.70   (3) 0.76  (1) 

Shape 0.76     (3) 0.77       (2) 0.74  (3) Shape 0.77     (2) 0.72   (2) 0.74  (2) 

Fractal 0.75      (4) 0.74       (4) 0.69  (4) Fractal 0.70     (4) 0.67   (4) 0.65  (4) 

4 Intensity 0.72     (2) 0.75       (1) 0.70  (3) 9 Intensity 0.76     (2) 0.80   (1) 0.70  (3) 

mBm 0.74     (1) 0.67       (3) 0.77 (1) mBm 0.78     (1) 0.75   (3) 0.78  (1) 

Shape 0.67      (3) 0.71       (2) 0.75  (2) Shape 0.73     (3) 0.77   (2)   0.75  (2) 

Fractal 0.66      (4) 0.64       (4) 0.66  (4) Fractal 0.70     (4) 0.72   (4) 0.67  (4) 

5 Intensity 0.71      (2) 0.73      (1) 0.67  (3) 10 Intensity 0.71     (2) 0.73   (1) 0.74  (2) 

mBm 0.78      (1) 0.68       (3) 0.75  (1) mBm 0.73     (1) 0.67   (3) 0.76 (1) 

Shape 0.68     (3) 0.71     (2) 0.69  (2) Shape 0.69     (3) 0.69   (2) 0.70  (3) 

Fractal 0.66      (4) 0.66     (4) 0.66  (4) Fractal 0.65     (4) 0.65   (4) 0.68  (4) 

                      
 

       Table 3.5 summarizes our ranked entropy results for all ten patients. We observe 

that in T1 and FLAIR modalities mBm ranks first. In T2 modality, intensity ranks first 

for all the ten patients. Consequently, using both qualitative KLD features in Table 3.4 
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and quantitative entropy ranking in Table 3.5, we conclude that mBm is the most 

effective feature in T1 and FLAIR modalities while intensity is the best for T2 modality. 

Note these observations are mostly supported by the ranking obtained using boosting 

method as shown in Table 3.3. For boosting about 70% of feature ranking in T1 modality, 

80% of that in FLAIR modality, and 100% of that in T2 modality match between 

boosting F scores and KLD entropy values. For PCA, about 50% of features ranking in 

T1 and FLAIR modality and 100% in T2 modality match between PCA and KLD entropy 

values. However, note that PCA ranking for T1 and FLAIR modalities in Table 3.2 is 

inconsistent. Furthermore, F scores using boosting in Table 3.3 do not provide consistent 

feature ranking for T1 and FLAIR modality for all patients (patient # 2,3 and 5 have 

different F values). Therefore, we use the best features obtained using KLD method such 

as mBm, intensity and mBm for T1, T2 and FLAIR modalities respectively for 

subsequent processing. 

 

    3.3.2. PF Tumor segmentation using selected MRI features 

       For effective comparison and evaluation, we employ three different tumor 

segmentation techniques such as top down bottom up, graph cut and EM. Figure 3.3 

shows an example for patient #8 in three MRI modalities. The corresponding TDBU 

segmentation result is shown in Fig. 3.4. Figure 3.4 shows six example clusters each for 

each MRI modalities. Figure 3.4 shows that the tumor cannot be segmented entirely from 

the non-tumor regions. We also obtain the summary segmentation results using top down 

and bottom up method (manual % of area overlap between known ground truth and 

automated segmentation) for all ten patients as shown in left half of Table 3.6. 
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                             (a)                             (b)                    (c) 

 
Fig. 3.3 An example MRI slice for (a) T1 modality; (b) T2 modality; (c) FLAIR modality 
for patient #8. Tumors have been shown using boundary. 
 

              

                              (a)                                               (b)                                            (c)    
 
Fig. 3.4 PF tumor segmentation using TDBU method for patient # 8 in (a) T1 modality 
using mBm; (b) T2 modality using intensity; and (c) FLAIR modality using mBm. 
Tumors segments are circled.                                                    
 

 

       Next, Figure 3.5 shows the segmentation result for the same patient # 8 using 

graph cut method. Even though this method offers better segmentation results when 

compared to those using top down bottom up tumor regions cannot be completely 

separated from the non-tumor regions.  We obtain the summary graph cut segmentation 
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results (manual % of area overlap between known ground truth and automated 

segmentation) for all ten patients as shown in right half of Table 3.6. 

 

 

                                                                                                          
 
 
 
 
 
 
 

(a)                                                                    (b) 
 

 

 

 

 

 

                         (c) 

Fig. 3.5 PF tumor segmentation using graph cut for patient # 8 in (a) T1 modality using 
mBm, (b) T2 modality using intensity, (c) FLAIR modality using mBm respectively. 
Tumor segments are circled.          
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Table 3.6 Summary of tumor segmentation results for top down and bottom up method. 
The numbers in parenthesis represent the number of images that the tumor region can be 
clearly segmented vs. the total number of image with visible tumor. 
 
  
Patient 

  
 T1 
modality 
segmentati
on by 
TDBU 

         
 T2 
modality 
segmentati
on by 
TDBU 

 
FLAIR 
modality 
segmentati
on by 
TDBU 

 
T1 + 
T2 
+FLAI
R  
fusion 
by 
TDBU 

  
Patient 

    
  T1 
modality 
segmentati
on by 
graph cut 

         
   T2 
modality 
segmentati
on by 
graph cut 

 
FLAIR 
modality 
segmentati
on by 
graph cut 

 
T1 + 
T2 
+FLAI
R  
fusion 
by 
graph 
cut 

 mBm Intensity mBm mBm  mBm Intensity mBm mBm 

1 55% 
(5/9) 

66% 
(6/9) 

55% 
(5/9) 

77% 
(7/9) 

1 77% 
(7/9) 

66% 
(6/9) 

66% 
(6/9) 

77% 
(7/9) 

2 77% 
(7/9) 

55% 
(5/9) 

66% 
(6/9) 

77% 
(7/9) 

2 66% 
(6/9) 

66% 
(6/9) 

66% 
(6/9) 

88% 
(8/9) 

3 66% 
(6/9) 

77% 
(7/9) 

55% 
(5/9) 

66% 
(6/9) 

3 55% 
(5/9) 

77% 
(7/9) 

55% 
(5/9) 

77% 
(7/9) 

4 55% 
(5/9) 

77% 
(7/9) 

44% 
(4/9) 

88% 
(8/9) 

4 55% 
(5/9) 

77% 
(7/9) 

55% 
(5/9) 

66% 
(6/9) 

5 77% 
(7/9) 

66% 
(6/9) 

77% 
(7/9) 

77% 
(7/9) 

5 77% 
(7/9) 

88% 
(8/9) 

77% 
(7/9) 

88% 
(8/9) 

6 62% 
(5/8) 

75% 
(6/8) 

62% 
(5/8) 

62% 
(5/8) 

6 62% 
(5/8) 

87% 
(7/8) 

75% 
(6/8) 

75% 
(5/8) 

7 83% 
(5/6) 

66% 
(4/6) 

83% 
(5/6) 

83% 
(5/6) 

7 83% 
(5/6) 

83% 
(5/6) 

83% 
(5/6) 

83% 
(5/6) 

8  75% 
(6/8) 

87% 
(7/8) 

75% 
(6/8) 

87% 
(7/8) 

8  75% 
(6/8) 

87% 
(7/8) 

75% 
(6/8) 

87% 
(7/8) 

9 57% 
(4/7) 

71% 
(5/7) 

71% 
(5/7) 

71% 
(5/7) 

9 71% 
(5/7) 

71% 
(5/7) 

85% 
(6/7) 

85% 
(6/7) 

10 77% 
(7/9) 

77% 
(7/9) 

66% 
(6/9) 

88% 
(8/9) 

10 77% 
(7/9) 

88% 
(8/9) 

66% 
(6/9) 

88% 
(8/9) 

Total 56% 
(47/83) 

72% 
(60/83) 

65% 
(54/83) 

78% 
(65/83) 

Total 69% 
(58/83) 

79% 
(66/83) 

70% 
(58/83) 

81% 
(67/83) 

                    
     

 Finally, we obtain tumor segmentation results for the same selected combinations 

of the features in single modality MR images using EM. Figures 3.6 (a), (b) and (c) show 

the tumor segmentation using mBm in T1, intensity in T2 and mBm in FLAIR 

respectively. Comparison among Figs. 3.4, 3.5 and 3.6 shows that EM offers the best 

tumor segmentation performance. A summary of the complete PF tumor segmentation 

results using single modality T1, T2 and FLAIR images are shown in the first three 

columns in Table 3.7. In Table 3.7, we observe that in T1 MRI, mBm offers average 

segmentation rate (i.e. the number of tumor images segmented vs. total number of images 
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with visible tumor) of 83%. In T2 modality, intensity yields 84% segmentation rate 

followed by the combination of intensity and shape with 72%. For FLAIR modality, 

mBm offers 84% segmentation rate.  Comparison of Tables 3.6 and 3.7 confirms that EM 

is the best segmentation algorithms among the three experimented in this study. 

Therefore, we employ EM for the next experiment for multiple MRI modality feature 

fusion.  

       We fuse features in T1, T2 and FLAIR MR modalities for tumor segmentation for 

each patient. Figures 3.7 (a) show that the entire tumor cluster is located in the mBm 

plane. Therefore, to find out the best features is mBm; we obtain tumor segmentation 

using EM in Fig. 3.7(b). In Fig. 3.7 (b), mBm offers better tumor segmentation for fused 

T1, T2 and FLAIR modalities. We summarize our complete tumor segmentation results 

for multimodal case in the fourth column in Table 3.7. The results in Table 3.7 suggest 

that mBm is the best feature for robust PF tumor segmentation for all ten patients in our 

datasets.         

 

                                                                                                                                                                                                                                 
                 
                
 
 
 
 
 
 
 
 

                       (a)                                          (b)    
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                     (c) 
 
Fig. 3.6 PF tumor segmentation using EM for patient #8 in (a) T1 image using mBm, (b) 
T2 image using intensity, (c) FLAIR image using mBm, respectively. Tumor segments 
are circled. 
 
 

                                                                   

                                                                                                        
                                          

                                           
 

(a)                                                                      (b) 
 
 
Fig. 3.7 KLD feature fusion of T1, T2 and FLAIR MRI showing separability between (a) 
intensity, mBm, fractal; (b) Tumor segmentation using EM by fusion of T1, T2 and 
FLAIR modality for mBm. Tumor segments are circled.  
 

 

Table 3.7 Summary of tumor segmentation results for EM. The numbers in parenthesis 
represent the number of images that the tumor region can be clearly segmented vs. the 
total number of image with visible tumor. 
 
 
Patient T1 modality 

segmentation by 
EM 

T2 modality segmentation by 
EM 

FLAIR modality 
segmentation by EM 

T1 + T2 +FLAIR  fusion by EM 
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Table 3.7 Summary of tumor segmentation results for EM. The numbers in parenthesis 
represent the number of images that the tumor region can be clearly segmented vs. the 
total number of image with visible tumor (cont.) 
 
 mBm Intensity Intensity+ 

shape 
mBm mBm Intensity 

+shape 

1 77% 
(7/9) 

88% 
(8/9) 

55% 
(5/9) 

88% 
(8/9) 

100% 
(9/9) 

100% 
(9/9) 

2 77% 
(7/9) 

66% 
(6/9) 

66% 
(6/9) 

88% 
(8/9) 

100% 
(9/9) 

77% 
(8/9) 

3 88% 
(8/9) 

77% 
(7/9) 

66% 
(6/9) 

77% 
(7/9) 

100% 
(9/9) 

88% 
(8/9) 

4 88% 
(8/9) 

88% 
(8/9) 

77% 
(7/9) 

77% 
(7/9) 

100% 
(9/9) 

100% 
(9/9) 

5 77% 
(7/9) 

88% 
(8/9) 

77% 
(7/9) 

77% 
(7/9) 

100% 
(9/9) 

88% 
(8/9) 

6 87% 
(7/8) 

87% 
(7/8) 

75% 
(6/8) 

87% 
(7/8) 

100% 
(8/8) 

75% 
(7/8) 

7 83% 
(5/6) 

100% 
(6/6) 

100% 
(6/6) 

83% 
(5/6) 

100% 
(6/6) 

100% 
(6/6) 

8  87% 
(7/8) 

87% 
(7/8) 

75% 
(6/8) 

87% 
(7/8) 

100% 
(8/8) 

87% 
(7/8) 

9 85% 
(6/7) 

85% 
(6/7) 

71% 
(5/7) 

85% 
(6/7) 

100% 
(7/7) 

100% 
(7/7) 

10 77% 
(7/9) 

77% 
(7/9) 

66% 
(6/9) 

88% 
(8/9) 

100% 
(9/9) 

88% 
(8/9) 

Total 83% 
(69/83) 

84% 
(70/83) 

72% 
(60/83) 

84% 
(70/83) 

100% 
(83/83) 

93% 
(77/83) 

 

 

 

   3.3.3. Quality and Robustness of tumor segmentation   

       In order to verify the quality and robustness of our proposed techniques, we 

obtain four different similarity measures for automatic computation of overlap between 

tumors segments obtained using EM and ground truth obtained using manual 

segmentation by radiologists. Figure 3.8 shows radar plots for four similarity metrics 

such as Jaccard, Dice, Sneath and Sokal (SS) and Russell and Rao (RR) in T1, T2 and 

FLAIR modalities for all ten patients, respectively. In each sub plot, for a specific metric 

the values in y-axis represent overlap coefficient while the axis at each clock location 

represents patient number. In Figs. 3.8(a) and 3.8(d) both the overall Jaccard and RR 

overlap is about 60% for all patients. We observe that the Dice overlap in Fig. 3.8 (b) is 



                                                                                                                                                                                                                                                                      

58 
 

above 80% for all patients. In Figure 3.8(c) SS overlap for nine patients is above 60% 

except for a dip at 47% for patient # 1 for all modalities. Note these results suggest that 

our techniques perform better when we compare tumor segments obtained using ground 

truth to that using our automated segmentation technique as indicated by the Dice metric. 

However, inclusion of non-tumor segments in the metrics computations, as indicated by 

both SS and RR metrics, suggests moderate segmentation performance. 

 

 

 

 

 

                                        

(a)                                                                             (b) 

 

 

 

 

 

(c)                                                                                      (d) 
Fig. 3.8 Plot of similarity metrics for ten patients in 3 modalities for (a) Jaccard; (b) Dice; 
(c)Sneath &Sokal (SS); and (d)Russell & Rao (RR). The number outside circle shows the 
patient number from 1 -10.Number 0, 0.2, 0.4, 0.6, 0.8, 1.0 shows the range of metrics. 
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3.4. Conclusion  

       We systematically investigate the efficacy of different types of features including 

texture, (such as FD and mBm) level set shape and intensity for segmentation of PF 

tumors. For selection of the best feature, we compare four different techniques such as 

PCA, boosting, KLD and entropy metrics. We implement an integrated mathematical 

framework for feature selection and ranking using KLD since KLD offers the best feature 

selection performance for this study. Our KLD feature selection technique shows that 

mBm is the best feature for both T1 and FLAIR modality while intensity is for T2 

modality. In order to obtain robust segmentation of PF tumor in pediatric brain MRI, we 

compare performance of three different techniques such as bottom up top down, graph 

cut and EM. We finally select an integrated KLD - EM framework for tumor 

segmentation since this specific combination offers the best performance among the 

techniques investigated in this study. The uniqueness of our formal KLD computation 

takes into account the mean and variance of two different classes expressed in terms of 

EM. We evaluate robustness of our proposed model using four different similarity 

metrics and demonstrate the efficacy of our technique using 249 real MR images from ten 

pediatric patients. Furthermore, we show that fusion of mBm feature in multimodality 

T1, T2 and FLAIR MRI, can offer 100% PF tumor segmentation for the patient cases 

studied in this work. 

       We obtain time estimates of all the steps in this work as shown in Fig. 3.1 such as 

normalization, feature extraction, features selection and segmentation. In our work, the 

time taken for normalization is 10 min, extraction of all four features is 30 min, feature 

selection using KLD is 30 min and segmentation using EM is 40 min respectively for 50 
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slices/patient on an INTEL[R] Xeon[R] CPU X5355 at 2.66GHz and with 3.00 GB of 

RAM. Note all these steps can be done offline and made available to aid in a typical 

clinical setting wherein hundreds of MRI slices may be read by radiologists per day. In 

the future, we plan to extend our work for automated classification of tumor from non – 

tumor regions after the PF tumor segmentation. Further, our existing features may not be 

sufficient to discriminate among the brain tissues such as white matter, gray matter, CSF 

from tumor and edema. We need to investigate additional features for differentiating 

among tumor, non-tumor and edema. This will require fundamental work in extending 

KLD to discriminate multiclass tissues such as brain tissues, tumor, edema and other 

artifacts in MRI.  
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4. Information Theoretic Multiclass Feature Selection and Improved 

Pediatric Brain Tumor Segmentation Robustness Evaluation 

  4. 1.  Introduction 

       Brain tumor is a leading cause of solid tumor related cancer in children. The 

tumors are often surrounded by sphere like structure filled with fluid called cyst. Cysts 

may contain fluid, blood, minerals, or tissue. The cysts are benign growths, but they are 

sometimes found in parts of the brain that control vital functions.  A tumor, on the other 

hand, consists of a mass of abnormal cells with abnormal growth potential. Cysts have a 

very thin rim surrounding the fluid for non associated tumors. When tumor has an 

associated cyst, there is generally a mass, or at least a thickening of the rim, visible on CT 

or MRI scan [97]. The segmentation of these surrounding tissues such as cyst, necrosis 

and edema are very difficult due to the surrounding of growth, appearance in MRI, 

location and size. However a systematic study dealing with their imaging properties such 

as intensity, shape, selection of best feature and appropriate segmentation technique can 

be attempted to deal with this problem. To obtain good segmentation we need good 

features and techniques to select best features from a set. When dealing with tissues such 

as tumor (T), cyst (C) and non tumor (NT) we need a multiclass selection method which 

can select the best features for more than two tissues.  

       Feature selection has been an active area in many different applications. The 

authors in Refs. [98, 99, 100, 101, 102] discuss various two class feature selection and 

segmentation techniques in medical imaging domain. Reference [98] presents an 

information theoretic approach to evaluate the usefulness of each attribute in a feature 

vector and fuzzy connectedness method for brain tumor segmentation. Principal 
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component analysis (PCA) and linear discriminant analysis (LDA) are also used for 

feature selection [99, 100]. A regularization based feature selection to leverage both the 

sparsity and clustering properties of the features used for uterine cervix image 

segmentation [101]. Reference [102] describes fuzzy c-mean (FCM) clustering method 

for segmenting lateral ventricular compartments in brain magnetic resonance imaging 

(MRI). The method uses Gaussian smoothing to enable fuzzy c-mean (FCM) to create 

both a more homogeneous clustering result and reduce effect caused by noise.      

 In our previous works [27,29,30], we studied efficacy of different types of fractal 

features such as fractal dimension (FD) and multifractional Brownian motion (mBm), as 

well as intensity and shape factor for brain tumor segmentation. These features are fused 

using different segmentation techniques such as SOM and EM algorithms to obtain tumor 

segmentation from the non-tumor tissues. For our prior segmentation results, tumor 

segments include surrounding tissues such as cyst, edema and necrosis. In order to 

increase accuracy of tumor segments, there is need to extract cyst and other non tumor 

tissues from the tumor segments. Different tissue types can be characterized by different 

features. Therefore, multiclass feature selection is necessary to address multiple tissue 

segmentation. 

       The multiclass feature selection is an active research area [103, 104, 105, 106, 

107,108, 109]. Reference [103] discusses a prediction risk based feature selection method 

using multiple classification support vector machines (SVM). The performance of the 

proposed method is compared with the previous methods of optimal brain damage based 

feature selection methods using binary SVM.  The authors in [104] present multiclass 

classifier for tissue classification based on gene expression. In order to obtain optimal 
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gene subset for classification, a genetic algorithm based model-free gene selection 

method is proposed [105]. A probabilistic neural network technique [106] is compared 

with that of machine learning methods similar to decision tree and neural network for 

multi class classification of gene expression data sets. Authors in Ref. [107] describe a 

multi-class feature selection scheme based on recursive feature elimination for texture 

classifications. The feature selection scheme is performed in the context of one-against-

all least squares support vector machine classifiers. Reference [108] presents a supervised 

multi-class feature selection approach, which is based on support vector data description. 

This method suggested utilizes a sequential backward selection algorithm using the 

accuracy of classifier to decide which feature to be eliminated. A novel layered genetic 

programming based feature selection is proposed in [109] that use the multiple-

population genetic programming. Genetic algorithms have been explored [110] for 

partitioning the datasets. Further genetic algorithms has been compared with importance 

score in [111] which is based on greedy algorithm in which the genetic algorithms give a 

more robust solution at the expense of computational effort. 

       Many neural network techniques have been used for the selection of multiple 

features. Bidiwala et al. [50] have proposed neural network for classifying pediatric 

posterior fossa tumors using clinical and imaging data. The authors in Ref. [112] present 

a neural network based approach for identifying salient features for classification of 

diabetic and breast cancer datasets. The augmented error function forces the neural 

network to keep low derivatives of the transfer functions of neurons when learning a 

classification task. Cascade Correlation (C2) nets is an internal wrapper feature selection 

method [113] which selects features and at the same time adds hidden units to the 
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growing C2 net architecture. A Bayesian neural network [114] with automatic relevance 

determination priors has been investigate for joint feature selection and classification in 

computer-aided diagnosis of medical imaging.  The authors in [115] have proposed a 

two-phase filter and wrapper feature selection algorithm to remove redundant or useless 

features.  

       The methods described above for multiclass feature selection use neural networks 

(NN). These NN based feature selection methods are mostly ad hoc. These methods do 

not offer quantitative measures of features quality. On the other hand, information 

theoretic approach measures general statistical dependence between variables. Secondly, 

they are invariant to monotonic transformations performed on the variables, contrary to 

linear dimension reducers such as principal component analysis. Finally, information 

theoretic feature selection approach is independent of the decision algorithm, thus 

reducing computational complexity contrary to genetic algorithms. 

 In this work, we exploit an information theoretic approach for multiclass feature 

selection for pediatric brain tumor segmentation. The goal is to select best features for 

segmentation of tumor (T), cyst (C) and non tumor (NT) tissue classes such that tumor 

segmentation accuracy can be improved. In our prior work [116], we obtained Kullback – 

Leibler Divergence (KLD) metric for texture features to discriminate between two classes 

i.e. tumor and non tumor. We also obtained the entropy metric to cross validate selected 

features for tumor and non tumor classes. We further showed advantage of KLD when 

compared to other feature selection techniques such as boosting and PCA for tumor and 

non tumor tissue segmentation in brain MRI. In this work, we extend the KLD to 

multiclass feature selection for T, C and NT tissues. The segmentation is obtained by 
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using a Baye’s classifier which offers Baye’s error for the different classes for a given 

feature. We obtain upper bound for the Baye’s error and select feature that offers 

minimum upper bound in a given set. We further obtain the segmentation accuracy by 

extracting total number of pixels for T, C, NT classes using a Baye’s classifier. 

 

 4.2. Datasets and Methods  

 4.2.1 Image Data Set  

       Our patient database includes the three image modalities such as gadolinium – 

enhanced T1, T2 and FLAIR from eight patients with pediatric posterior fossa tumors as 

shown in Table 4.1. All the images are sampled by 1.5 Tesla Siemens Magnetom 

scanners. The slice thickness is 5mm, with the slice gap of 1mm, the field-of-view (FOV) 

of 210x210 mm2 and the image matrix of 256x256 pixels. The scan parameters for T1- 

weighted image are: TR=168ms, TE=8ms, flip angle=90 degrees; the scan parameters for 

T2-weighted image are: Turbo Spin Echo, TR=6430, TE=114ms, 14 echoes per TR. 

 

 

 

 

Table 4.1 Datasets for tumor, cyst and non-tumor 

 

 
Pati
ent 

 
Field 
Strengt
h 
(Tesla) 

 
Numbe
r of 
tumors 

 
Name of 
tumor 

 
Number 
of 
images 
with 
visible 
tumors 

 
             T1 modality 

 
    T2 modality 

 
Flair 
modali
ty 

Tumor 
visibility 

Cyst  
visibilit
y 

Contrast 
agent(gado
linium 
Enhanced) 

Tumor 
visibilit
y 

Cyst  
visibil
ity 

Tumor 
visibilit
y 

Cyst  
visibilit
y 
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Table 4.1 Datasets for tumor, cyst and non-tumor (contd.) 
 
1 1.5 Single Astrocyt

oma 
9 Good Good Applied Good Good Mediu

m 
Mediu
m 

2 1.5 Single Astrocyt
oma 

9 Medium Good Applied Good Good Mediu
m 

Mediu
m 

3 1.5 Single Astrocyt
oma 

9 Medium Mediu
m 

Applied Medium Medi
um 

Good Mediu
m 

4 1.5 Single Astrocyt
oma 

8 Medium Good Applied Medium Good Mediu
m 

Good 

5 1.5 Single Astrocyt
oma 

9 Medium Good Applied Medium Good Good Good 

6 1.5 Single Astrocyt
oma 

8 Good Mediu
m 

Applied Good Good Mediu
m 

Good 

7 1.5 Single Medullo
blastoma 

6 Good Good Applied Medium Good Mediu
m 

Good 

8 1.5 Single Medullo
blastoma 

8 Good Good Applied Medium Good Mediu
m 

Good 

 

                                    

   4.2.2. Feature selection and segmentation robustness 

       The overall flow diagram of the method followed is shown in Fig. 4.1. The first 

step includes the preprocessing stage that minimizes intensity bias in MRI. After intensity 

normalization we compute the priors for the T, C, and NT tissues. We then extract texture 

features such as FD using PTPSA algorithm, and mBm using fractal wavelet algorithm in 

MR images. We use different combinations of these features to Baye’s classifier wherein 

the distance between two classes is computed using KLD, Bhattacharya and JM measures 

for feature selection. The selected best features are utilized for finding the number of 

pixels for T, C and NT tissues. These pixels are used as the input to Baye’s classifier to 

obtain the posterior probabilities for respective tissues. We then find segmentation 

accuracy based on posterior probabilities. We discuss each step below.  
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Fig. 4.1 Flow diagram showing feature selection and segmentation accuracy method    
          

                              

 4.2.2.1. Image Intensity Normalization 

       To minimize the intensity bias of the MR image, intensity normalization is used 

as pre – processing step. In this work, we implement a two- step normalization method 

[24], wherein the image histograms are modified such that the histograms match a mean 

histogram obtained using the training data. After applying the normalization method the 
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intensity values for the same tissue in different MR images fall into a very narrow range 

in the normalized image. 

 

 4.2.2.2. Prior computation 

        We divide the image into 8X8 sub images and count the number of sub images 

covered by T, C and NT. We then compute the prior by dividing the number of sub 

images for T, C and NT to the total number of sub images. 

 

 4.2.2.3. Feature Extraction 

       We extract FD and mBm texture features from the intensity normalized images 

T1, T2 and Flair modality. We exploit our existing the texture computing algorithms as 

discussed in [24]. 

 

 4.2.2.4. Feature selection using Bayesian KLD 

 We obtain Bayesian KLD metric for all the given features for T, C and NT 

classes. We then we obtain the upper bound for all the Bayesian KLD metrics using 

algorithm in Fig.4.2. The upper bound with a lower value corresponds to lower Bayesian 

KLD metric and is selected as the best feature. 

 

 4.2.2.5. Computing accuracy using Baye’s classifier 

       We compute the number of pixels for each T, C, and NT classes respectively. As 

discussed in Section 3.2 pixel selection for texture feature such as mBm is not easy as 

intensity feature. Consequently, we obtain pixel count for mBm feature using algorithm 
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in Figs. 2.2 and 2.3, respectively. Similarly, we obtain pixel count for intensity using 

algorithm in Fig. 4.3.  

 

 4.2.3. Bayesian Kullback Leibler Divergence Criteria for Multiclass feature selection 

       We extend our prior two class feature selection method in section 3.1 to 

multiclass using KLD metric. The KLD distance metric is given as, 
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where, (μωi, σωi) is the mean and variance for first class, (μωj, σωj) is the mean and 

variance for the second class and θ is the control parameter. αω
m  is a non negative 

 

weight, 1
1

=∑
=

ω
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M

m
m   and ωM  is the number of  features component. Inserting Eqn. (34) in 

Eqn. (27), we obtain, 
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 Consider the upper bound for a two class problem for each features based on error 

probability as discussed in section 3.1. This upper bound is given as,  
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   Note that the optimal decision parameter is computed by fixing the values of 

KLDij at the middle point of the KLD distance between the two classes given by KLDij / 

2 in Eqn. (36). The upper bound evaluates two requirements such as the tightness of 

bound to the error probability and the load for the computation of this bound. The upper 

bound is provided by the sum of pair - wise errors, computed for all pairs of classes and 

the sum is given as, 
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where ),( jieP ωω  can be computed by Eqn. (27). Considering the pair - wise upper 

bounds for multiclass problem, the equation can be written as, 
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 The use of E1 guarantees a better approximation for the error probability, while 

that of E2 slightly reduces the computation load [66]. Our algorithm for computing the 

Baye’s upper bound using KLD is given below. 

 

 

Algorithm for computing upper bound using KLD 

1. For each slice k = 1 to N do  

i. Divide the image into 8x8 sub images. 

ii. Extract the textural features – mBm, FD 

iii. Compute the value of α using maximum a posterior probability (MAP) in Eqn. 

(28). 

iv. Compute the distance measure dij for KLD using Eqn. (34). 

v. Compute the Pe(ωi, ωj) using Eqn.(27). 

vi. Compute the upper bound using Eqn.(37) or Eqn. (38). 

vii. Select the set that has minimum upper bound. 

2. End 

    
Fig.4.2 Algorithm for computing the upper bound using KLD metric 
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 4.2.4. Segmentation accuracy 

  4.2.4.1. Segmentation Accuracy using Intensity feature 

       We are interested in obtaining the tumor segmentation accuracy using pixel 

intensity feature. The segmentation accuracy can be obtained by computing the number 

of pixels correctly classified using a Baye’s Classifier. We first compute the number of 

pixels for every class such as T, C and NT. We input total numbers of pixels for each 

class to Baye’s classifier and obtain the posterior distributions for each class. We then 

calculate the number of pixels correctly classified based on posterior value and, hence, 

the tumor segmentation accuracy. Our algorithm for computing the intensity pixel 

segmentation accuracy is given below. 

 

 

 

Algorithm for computing segmentation accuracy for intensity feature; 

1. For each slice k = 1 to N do  

i. Compute the mean and variance for the whole image for T1, T2 and FLAIR 

images. 

ii. Apply a threshold on basis of the variances obtained for selecting T, C and NT 

pixels. 

iii. Use number of pixels as input to Bayes classifier and obtain posterior probability. 

iv. Multiply the total number of pixels by posterior probability to obtain the number 

of correctly classifies pixels. 
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v. Obtain Segmentation accuracy % (No. of pixels classified / Total no. of pixels) for 

given class. 

 2. End 

                   

   Fig. 4.3 Algorithm for computing the segmentation accuracy for intensity feature. 

 

 4.2.4.2. Segmentation Accuracy using mBm feature 

       We are also interested in computing the tumor segmentation accuracy using 

texture features. As discussed in Section 3.1 we cannot directly work with the pixels 

since fractal texture extraction is a non - linear process. For computing mBm features 

during extraction process [27] we first find the covariance for each of the sub image 

given as; 
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where σs
2 is the variance of the mBm process. The expected value of squared – magnitude 

of the wavelet transform [27] is given as, 
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 Substituting the covariance function of the mBm from Eqn. (16) and )(, sasψ in 

Eqn. (15) yields, 
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 In our work, to obtain number of tumor pixels for mBm feature case, we obtain 

covariance image and decompose the variance image using multiresolution wavelet 

theory. The resulting decomposed image is divided into sub images of size 8x8. We then 

compute the wavelet coefficients for all the pixels in the sub images. We obtain the 

histogram for each sub images given as, 
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 The histogram offers variation in wavelet coefficients for the sub images. The 

wavelet coefficient values of pixels in the same texture region are similar, and hence we 

collect these pixels in one group termed as ‘mountain’. On the other hand, the boundary 

pixels between two texture regions will have a different value termed as ‘valley’. The 

valleys are computed using the following criteria, if )()( ihjih >−  and )()( jihih +< , 

with jkkihih <<+= 0),()( , then let 2/)1( −+=′ jii  and consider pixel ‘i’ as a valley. 
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We select a suitable threshold for selecting these valleys which in turn yields the 

boundary for different regions. However, there are some regions which are left out in this 

process. These regions are merged and resulting regions provide ‘seed’ for segmentation. 

We then obtain the interior and exterior pixels using algorithms in Figs. 2.2 and 2.3. 

                                 

4.3. Results 

 4.3.1. Multiclass Feature selection using Bayesian KLD     

 We obtain the Baye’s error for the texture and intensity features for T, C and NT 

classes using Eqn. (11). We then compute the upper bound errors for all three classes 

using Eqn. (12). Figure 4.4 shows example of upper bound errors for T, C and NT classes 

using KLD for T1 modality for all eight patients. The upper bound errors for T2 and 

FLAIR modalities also show similar results.  

      We observe the minimum value of upper bound from the feature sets for a 

specific patient. We select the corresponding feature for that upper bound as the best 

feature for segmentation. In Fig. 4.4 (a), (b) and (c), we observe that for tumor vs. cyst 

(T/C), cyst vs. non tumor (C/NT) segmentation intensity; and for tumor vs. non tumor 

(T/NT) segmentation mBm are the best features respectively. Similarly, we obtain best 

features for T2 and FLAIR modalities. For T2 modality intensity is the best feature for all 

three classes such as T/C and NT/ C and T/NT. Similarly, for FLAIR modality, intensity 

is the best feature for T/C and NT/C, while mBm is best for T/NT.  Note for comparison 

we also obtain feature selection using other information theoretic techniques such as 

Bhattacharya and JM distance measure as shown in Fig.4.5 (a), (b) and (c); and Fig. 4.6 

(a), (b) and (c) respectively. Figures 4.4 (a), (b) and (c) shows that KLD is the best metric 
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among all metrics for all three T1, T2 and FLAIR MRI modalities. Overall, our feature 

selection techniques yield intensity and mBm as the best features for T/C, C/NT and 

T/NT discrimination for all MRI modalities respectively. Therefore, we compute the 

segmentation accuracy of C, T and NT tissue segmentation using mBm and intensity 

features for rest of this work. 

 

 

                                                                                                  

                                       (a)                                                                     (b)                                                                                                                  

 
 
 
 
 
 
 
 
 
 

 
                           (c) 
 
 Fig. 4.4 Upper bound for Bayesian KLD framework in T1 modality for (a) T/NT; (b) 
T/C; and (c) C/NT. 
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                     (a)                                                                                (b) 

 
 
 
 
 
 
 
 
 
 
 

                               
                                  (c) 
 
Fig. 4.5 Upper bound for Bhattacharya distance measure in T1 modality for (a) T/NT; (b) 
T/C; and (c) C/NT. 
 
 

        

                            (a)                                                                              (b)               
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                        (c) 
 
Fig. 4.6 Upper bound for JM distances measure in T1 modality for (a) T/NT; (b) T/C; and 
(c) C/NT. 
 

 

 4.3.2. Segmentation Accuracy Computation 

4.3.2.1. Segmentation Accuracy for intensity feature 

      Figures 4.7 (a) and (b) show plots for pixel intensity variance vs. % threshold for 

an example slice of patient # 2 for tumor and cyst segments respectively. We select the 

threshold that corresponds to maximum pixel intensity variance in an MRI image. We 

observe that the appropriate threshold that selects the maximum number of pixles for 

tumor is 40% while that for cyst is 55%. Note we validate the accuracy of our selected 

number of pixels for any given tissue type by comparing with that the radiologists 

segmentation provided for tumor and cyst for each patients. Figure 4.8 shows the 

segmention of tumor and cyst using intensity as feature for slice # 7 of patient # 2 as an 

example. 
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(a)                                                                      (b) 

 Fig. 4.7 Threshold vs number of pixels selected for (a) tumor; and (b) cyst.    

 

                                       

                       

 

                      

 

 

 

 

                  (a)                                                       (b)                                              (c)                                                                                    

Fig.4.8 (a) MR image for patient #2; (b) Segmented tumor and (b) Segmented cyst for 
intensity as feature. 
                                                                        

        

 

 We use the selected features obtained in previous step for computing tissue 

segmentaiton accuracy in a Baye’s framework. Note we use five patients to train the 

network while three patients for testing. Figure 4.9 (a) shows segmentation accuracy vs.  

slices /patient for T tissue during the training phase of Baye’s method in T1 modality. 
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Figure 4.9 (b) shows the corresponding segmentaiton accuracy for tumor tissue during 

testing phase. Similarly, we obtain the segmentation plots for T1 modality in Figs. 4.9 

(c), (d), (e) and (f) for C and NT tissues respectively.We perform the same procedure for 

T2 and FLAIR modalities for computing segmentaion accuracy for T, C, NT tissues 

respectively. We observe that the T tissue segmetnation accuracy values for T1 modality 

are about 95% for training and 90% for testing phases respectively. For C tissue the 

training and testing values are 94% and 86% respectively as shown in Figs. 4.9 (c) and 

(d). The training accuracy for NT tissue is 98% while that for testing is 94% as shown in 

Fig. 4.9 (e) and (f) respectively. Table 4.2 shows the summary for segmnetation accuracy 

values after training and testing for intensity feature in all the three modalities. Similarly, 

we obtain training and testing segmentation accuracies for C and NT in T2 and FLAIR 

moaldities. 

 

 

 

                               (a)                                                                           (b) 
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                             (c)                                                                              (d)                                                                                   

 
 
                           (e)                                                                              (f)                                                                       

Fig.4.9 Plots of segmentation accuracy vs. slices/patients for  (a) Training results for 
tumor tissue; (b) Testing results for tumor tissue ;(c) Training results for cyst tissue; 
(d)Testing  results for Cyst tissue;  (e) Training results for Non tumor tissue; and (f) 
Testing results for Non tumor tissue in T1 modality.   
 
 

Table 4.2 Summary of tissue segmentation accuracy using intensity feature for T, C, NT 
classes  
 
 T1 MRI T2 MRI Flair MRI 

Tissue Classes Training Testing Training Testing Training Testing 

T 95% 90% 94% 91% 95% 90% 

C 94% 86% 94% 94% 94% 88% 

NT 98% 94% 97% 97% 96% 92% 
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 4.3.2.2.Segmentation accuracy for mBm feature 

       Figure 4.10 (a) shows the MR image of patient # 2 with tumor and the 

surrounding cyst. Figure 4.10 (b) shows the texture regions after histogram thresholding 

for subimages. These subimages are obtained after decomposing the image to 1st level. 

Figure 4.10 (c) and (d) shows the  segmentation obtained after defining the boundary 

using algorithm in Fig.4. 2 for tumor and cyst respectively. 

                                                                                                    

 

 

 

 

                                                                       

 

                                                                   

(a)                                                                        (b)     
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                                          (c)                                                                        (d) 

Fig. 4.10 (a) MR image for patient # 2 in T1 modality. Tumor and cyst are shown by 
boundary; (b) Tetxure regions obtained after histogram thresholding; (c) Segmented 
tumor and (d) Segmented cyst after integrating subimages. 
                    

       

 

 Figure 4.11 (a) shows segmentation accuracy vs.  slices /patient for T tissue 

during the training and testing phase of Baye’s method in T1 modality. Figure 4.11(b) 

shows the corresponding segmentation accuracy for tumor tissue during testing phase. 

Similarly, we obtain the segmentation plots for T1 modality in Figs. 4.11(c), (d), (e) and 

(f) for C and NT tissues respectively. We observe that the T tissue segmetnation accuracy 

value is 93% for training and 89% for testing. For cyst training accuracy for training and 

testing are 92% and 83% as shown in Figs.4.11(c) and (d). The training  and testing 

accuracy for NT are 94% and 91% shown in Fig. 4.11 (e) and (f). for testing.  For NT  

tissue training accuracies are 93% and 84% for testing. Table 4.3 shows the summary for 

segmnetation accuracy values after training and testing for intensity feature in all the 

three modalities. Similarly, we obtain training and testing segmentation accuracies for C 

and NT in T2 and FLAIR moaldities. 
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(a)                                                                              (b) 

 

(c)                                                                                   (d) 

                                (e)                                                                                 (f) 

Fig. 4.11 Plots of segmentation accuracy vs. slices/patients for mBm feature (a) Training 
results for tumor tissue; (b) Testing results for tumor tissue;(c) Training  results for cyst 
tissue; (d) Testing results for Cyst tissue; (e) Training result for Non tumor tissue; and (f) 
Testing  results for Non tumor  tissue in T1 modality.   
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 Table 4.3 Summary of tissue segmentation accuracy using mBm feature for T, C, NT 
classes  
 
 T1 T2 Flair 

Tissue Classes Training Testing Training Testing Training Testing 

T 93% 89% 93% 88% 92% 88% 

C 92% 89% 93% 85% 91% 83% 

NT 94% 91% 94% 90% 90% 84% 

 

 

 

 4.3.3 Segmentation robustness 

       Figure 4.12 shows comparison of tumor segmentation efficacy between our prior 

two class KLD method [32] and the multiclass KLD method proposed in this work using 

mBm feature for an example slice for patient 4. Figures 4.12 (a) and (b) show the original 

image and the segmented tumors and cyst using radiologist’s maual segmnetation 

respectively. Figures 4.12 (c) and (d) show the comparison of T segments respectively. 

As expected, tumor obtained using the two class KLD method contains cyst. On the other 

hand, the multiclass KLD  method separates the cyst from tumor regions.  
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                   Original Image                  
Tumor Segmented                    
using 2 class KLD 
[69] 

 
Tumor segmeted using multiclass KLD 
proposed in this work Raw Image Manual 

segmentation 
using  Image J 

 

     
               (a) 

 

 
            (b) 

 

 
          (c) 

            
    Tumor 

 
           (d) 

           
   Cyst 

 
         (e) 

 
Fig. 4.12 Comparison of tumor segmentation results using two class KLD and multiclass 
KLD     
     

   

 

  In order to summarize the overall improvement in T segmentation accuracy in 

this work, we obtain overlap measures. Tables 4.4 and 4.5 show tumor segmentation and 

coeffcient overlap comparison between our prior work [69] and this study. The similarity 

coefficients in this study are obtained as the number of pixels correctly segmented for T 

and C tissues and compare it to the ground truth for T and C region annotated by 

radiologist. Comparing Tables 4.4 and 4.5 we observe that the tumor segmentation 

accuracy improves for each patients using our proposed techniques in this work. 
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 Table 4.4 Tumor segmnetation robustness values [31] 

   Patient Previous method (Jaccard 
Coeffcient based on 
segmented clusters) [31] 

Previous method (Dice 
Coeffcient based on 
segmented clusters) [31] 

Previous method (Sokal & 
Sneath Coeffcient based on 
segmented clusters) [31] 

Previous method (Russel 
& Rao Coeffcient based 
on segmented clusters) 
[31] 

1 80% 83% 81% 84% 
2 80% 84% 82% 84% 
3 83% 83% 81% 85% 
4 82% 83% 83% 84% 
5 82% 84% 84% 86% 
6 83% 85% 84% 87% 
7 83% 85% 85% 87% 
8 80%    84% 85% 86% 
            

 

Table 4.5 Tumor segmentation robustness value using current method 

  Patient Current method 
(Jaccard Coeffcient based 
on pixels) 

Current method 
(Dice 
Coeffcient based on 
pixels) 

Current method 
(Sokal & Sneath 
Coeffcient based on pixels 

Current method 
(Russel & Rao 
Coeffcient based on pixels 

1 91% 92% 93% 91% 
2 94% 94% 93% 94% 
3 94% 93% 93% 93% 
4 94% 94% 93% 93% 
5 93% 94% 93% 95% 
6 93% 95% 92% 93% 
7 94% 94% 94% 94% 
8 93%  95% 94% 94% 
 

                                            

4. 4. Conclusion                

       In this work we investigate an information theoretic multiclass for segmenting T, 

C and NT tissues respectively. We develop an integrated framework by combining KLD 

and the upper bound Baye’s error for improved pediatirc brain tumor segmentation. We 

obtain the best features which has minimun upper bound Baye’s error from among set of 

features. Our Baye’s KLD approach shows that mBm is the best feature for NT / T 

segmentation for T1 and FLAIR modalities. In addition, our methods suggests that  
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intensity is best feature for T / C and C / NT segmentation in T1, T2 and FLAIR 

modalities. In order to validate the segmentation robustness, we obtain the pixel count in 

each of the T, C and NT regions using intensity and mBm features. We compute 

segmentation robustness by comparing the tumor segments to the ground truth provided 

by radiologists for all eight pediatric patients. In future, we plan to perform more 

comprehensive work for discriminating other abnormalities such as necrosis and edema 

for more accurate brain tumor segmnetation.  
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5. Integrated Framework for Inhomogeneity, Feature Selection and 

Segmentation in Posterior Fossa Tumors 

5.1. Introduction 

       Segmentation of medical images depends on the structural and intensity 

characteristics of biological variability. The intensity inhomogeneity [117] [118] can 

cause a variation in intensity of a particular tissue across the field of view. The most basic 

tissue-segmentation method is global intensity thresholding. This assumes a voxel 

intensity can be identified which assigns each voxel into a background class (voxels less 

intense than the threshold) or a foreground class (voxels more intense than the threshold). 

Selection of a global threshold may be done in several ways [119] and may not be 

appropriate in MR images due to intensity inhomogeneity. It may be possible to correct 

such intensity variation prior to segmentation. An alternative approach is to use local 

(adaptive) thresholding where the intensity threshold is variable and is computed over 

sub-images or over a region of interest around each voxel. 

       Intensity based classification of MR images have proven to be problematic; 

however, even advanced techniques such as non parametric, multichannel methods have 

been used. Intra scan intensity inhomogeneities due to RF coils or acquisition sequences 

e.g. susceptibility artifacts in gradient echo images are a common source of difficulty. In 

addition, the operating conditions and status of the MR equipment frequently affect the 

observed intensities causing significant inter scan inhomogeneities which makes it 

necessary for the manual training on a per scan basis. Reference [120, 121, 122, 123, 

124] discusses about some success in correcting intra scan inhomogeneities, such 

methods require supervision for the individual scans. 
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            Many parametric models have been proposed for solving the inhomogeneities 

problems in MRI. Ref. [125] discuss about new correction method called PABIC 

(Parametric Bias field Correction) is based on a simplified model of the imaging process, 

a parametric model of tissue class statistics, and a polynomial model of the 

inhomogeneity field. The estimation of the parametric bias field is formulated as a non-

linear energy minimization problem using an Evolution Strategy.  Li et al. describe about 

variation level set approach with bias correction for the MR images [126].  In [127], 

Pham and Prince proposed an energy minimization method for adaptive segmentation 

and estimation of the bias field. In their method, the smoothness of the bias field is 

ensured by adding a smoothing constraint term in their objective function, which leads to 

a highly expensive procedure to solve a space-varying difference equation. Such an 

expensive smoothing procedure is avoided in some well-known parametric methods by 

modeling the bias field as a polynomial, which is smooth by nature. However, due to 

limited approximation capability of polynomials, these methods are not able to 

approximate bias fields of general profiles, such as those in 7T MR images.  

      Several works for segmentation due to inhomogeneity has been reported. Kohn et 

al. [128] observed that inhomogeneity elongates clusters in feature space in the direction 

of the origin, but that due to the relative positions of the clusters representing brain and 

cerebra-spinal fluid, the two classes was still separated. Lim et al. [122] proposed a 

smoothing technique to correct for the inhomogeneity problem: after extraction of the 

head contour, the intensity values were extended radially towards the image boundaries 

and smoothed with a Gaussian filter of a large kernel size. They assumed that the 

resulting blurred image represents one homogeneous region that is only distorted by the 
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scanner inhomogeneities. The images were corrected with this approximation of the 

inhomogeneity characteristics.  Dawant et al. [123] propose a bias correction method 

relying on user interaction. A user selects typical sample points of a tissue class as input 

to the estimation of a parametric bias field. Tincher et al. [129] and Meyer et al. [130] 

present automatic techniques that fit polynomial functions to pre-segmented regions. The 

individual fits are combined to find an estimate for a global inhomogeneity field. The 

procedure relies on a preliminary segmentation into region patches. 

       So far many integrated approached involving registration and inhomogeneity 

corrections have been proposed for segmenting in anatomical structures. Warfield et al. 

[131, 132] combined elastic atlas registration with statistical classification. Elastic 

registration of a brain atlas helped to mask the brain from surrounding structures. They 

use “distance from brain boundary” as an additional feature to improve separation of 

clusters in multi-dimensional feature space. Label fusion methods offer two main 

advantages: (1) across-subject anatomical variability is better captured than in a single 

atlas, which can be viewed as a parametric model that typically uses single mode 

distributions (e.g., Gaussian) to encode anatomical appearance, and (2) multiple 

registrations improve robustness against occasional registration failures. Authors describe 

about the incorporation of prior knowledge information into the multiscale framework 

through a Bayesian formulation [133]. The probabilistic information is based on an atlas 

prior and on a likelihood function estimated from a manually labeled training set. The 

significance of new approach is that the constructed pyramid, reflects the prior knowledge 

formulated. This leads to an accurate and efficient methodology for detection of various 

anatomical structures simultaneously.  
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       We have not considered registration in this work as registering an MRI with 

tumor with an atlas will provide erroneous results if coupled with inhomogeneity and 

feature selection methods. All these methods described either used a parametric model or 

an energy minimization method for segmentation and inhomogeneity correction. The 

major drawback of using parametric model is that the inhomogeneity field is estimated 

only from intensities of one major tissue and then blindly extrapolated over the whole 

image. The main assumption for gradient based fitting equation is that sufficiently large 

homogeneous areas are evenly distributed over the entire image so that local gradients of 

intensity Inhomogeneity can be estimated by local averaging of image intensity gradient. 

These major drawbacks of these methods are that some adverse image formation may be 

integrated. These methods are successful only if homogeneous areas are large and 

distinctive such as the white matter. 

       This work uses the knowledge of tissue intensity properties and intensity 

inhomogeneities to correct and segment MR images. We use an EM step in which each 

iteration utilizes the knowledge of the tissue type to make accurate estimate in next step.      

In this work, we combine inhomogeneity, feature selection and segmentation in EM 

framework.   In the inhomogeneity step the unknown parameter is bias field B, and the 

latent variable are the mean and variances for different classes or tissues. For feature 

selection step the unknown parameter is best feature and the latent variable are the mean 

and variance for different classes. These mean and variance are iterated and the values of 

those are allotted in KLD equation for features. In the segmentation round, the missing 

parameters are the tumor clusters, and the latent variables are the variance of the best 

features for tumor cluster which is computed in feature selection step. These all steps 
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come together perfectly in the mathematical model and the algorithms mentioned in the 

next sections.  

         

5.2. Methods 

 5.2.1. Mathematical modeling for Inhomogeneity correction, Feature selection and 

segmentation 

       In this work, we establish an EM framework for computing the inhomogeneities 

B and feature selection FS for MR images I. It is difficult to compute these two 

parameters without considering any hidden variable. We assume segmentation G as a 

hidden variable. When properly defined, the EM framework gives two important 

guarantees. First, each iteration yields an improved estimate of (B, FS) as measured by 

eqn. (1). Second the algorithm converges to local maxima of the objective function. The 

conditional probability distribution function describing I is given as ( )GFSBIP ,, .  We 

want to estimate B and FS from this framework which is given as 

 

( ) ( )







= ∑

G
FSB IGFSBPSFB ,,logmaxargˆ,ˆ

,                                                   (43) 

  

 Next we incorporate the ( )SFBIGP ′′,,  where ( )SFB ′′,  are estimates of ( )SFB ˆ,ˆ , 

into eqn. (43) and define ( )( ) ( ) ( )CfBAPCfE BA =  to get the following relationship [31] 
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  The purpose of these operations is to put Eqn. (43) into a form such that we can 

exploit the bound derived via Jensen’s equality. The lower bound of the function is easy 

to maximize using EM. 
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( ) ( ) ( )( )SFBIPPIGFSBPESFB SFBIGFSB ′′−=′′ ′′ ,,log,,logmaxarg, ,,,  

               = ),,((logmaxarg ,,, IGFSBPE SFBIGFSB ′′′  

               = ( ) ( )( )IGPIGFSBPE SFBIGFSB log,,logmaxarg ,,, +′′′  

               =  ( ) ( ) ( ) ( )( )GPGIPGFSBPFSBGIPE SFBIGFSB loglog,log,,logmaxarg ,,, −−+′′′    

               = ( ) ( ) ( )( )GBPBGFSPFSBGIPE SFBIGFSB log,log,,logmaxarg ,,, ++′′′       (45)              
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   Both inhomogeneity and feature selection are affect the segmentation in MRI. But 

in this work we are assuming them as separate parameters. The optimization procedure 

decomposes the equation based on the following independence assumptions. First, we 

assume the independence of I with respect to FS conditioned on T and B. We can 

therefore characterize each anatomical structure with an intensity distribution based on 

the tissues or classes which is not influenced by the mapping between the atlas and image 

space. Secondly; we assume FS independent of B conditioned on T. Thirdly; we assume 

independence of B with respect to T as the image inhomogeneities are caused by the radio 

frequency coil of the scanner. Thus, Eqn. (45) simplifies to  

 

( ) ( ) ( ) ( )( )BPGFSPBGIPESFB SFBIGFSB loglog,logmaxarg, ,,, ++=′′ ′′′               (46) 

       

 The hidden variable G = {G1, G2,……………Gn} are the number of segments for 

each   pixel ‘x’ denoted by Gx  and takes values from the set of k-dimensional unit vectors 

{e1, e2,…….eK}, where Gx = eK, meaning that ‘x’ pixels belong to tissue ‘k’ or cluster 

‘k’. The E step is equivalent to calculating the probability map in the presence of hidden 

variable G and given the estimates of xB′ , SF ′  for a particular tissue ‘k’ using Baye’s 

rule. 

 

( ) ( )
( )SFBIP

SFBekGPSFBekGIP
kW

xx

xkxxkxx
x ′′

′′=′′=
=

,
,)(,,)(

)(                                          (47) 
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 Adding term   )(kWx   to Eqn. (46) simplifies to  

 

( ) ( ) ( ) ( )( )BPGFSPBGIPWSFB ekxekxx
x

kxFSB loglog,logmaxarg, ,)(, ++=′′ ==∑∑     (48)  

              

The M-step maximizes the estimates parameters B′  and SF ′  on probability maps Wx(k). 

 

( ) ( )BBGIPWB ekxx
x

kxB log,logmaxarg )( +=′ =∑∑                                                  (49) 

 

( ) ( )FSGFSPSF ekx
x

kWxFS loglogmaxarg )( +=′ =∑∑                                                 (50) 

 

 

Estimating the intensity inhomogeneities: 

       In Eqn. (48) the inhomogeneities is defined as  
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=                                  (51) 

 

where γk, µk are the mean and variances for a particular tissue, Ix  is value of intensity 

feature at pixel x, βx is the bias field at pixel x for particular tissue or class. 

       On differentiating Eqn. (48) we obtain 
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kxxkx IA µβγ −−= −                                                                           (52) 

 

turns Eqn .(49) into a closed from solution. In practice we achieve good result by 

estimating B by a low pass filter applied to a weighed residual that depends on W, 

( )kk γµ ,  and image I. 

 

Estimating the feature selection: 
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       In Eqn. (48) the feature selection is defined by using KLD which is explained in 

Aim 1. Aim 1 also describes about derivation of KLD for two classes.  
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On differentiating Eqn. (49) we obtain 
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where σm, σk , µm , µk  are the mean and variance for different tissues or classes.  

     

   The segmentation G depends on the best feature selected using KLD. The KLD 

represents the conditional probability for two classes or tissues which are T/NT, T/C and 

C/NT. The KLD considers the means and variance for the two classes or tissues for a 
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particular texture feature and these means and variances are updated during M step.  The 

segmentation for different tissues is related with the updating of probability maps which 

are updated for inhomogeneity and feature selection.  

 

EM applied to Inhomogeneity, Feature selection and Segmentation: 

  Substituting eqn. (51) and (53) in eq. (47) gives,   
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 The algorithm for computing inhomogeneity, features selection in EM framework 

is discussed in Fig. 5.1.    
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    Algorithm for computing Inhomogeneity, features selection in EM framework 

For 

 Input MRI scan = I,   Pixel x = 1 to N, Tissue class 1 = k for T, Tissue class 2 = 

m for NT, interval = 0: 60; 

1) Initialize the weight B′ and SF ′ using Eqn. (51) and (53) 

2) Iterate E step using Eqn. (55) 

3) Update the M step as  

)(1
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4) Stop at convergence 

5) Label map )(maxarg kWxTx = . 

 

 Fig. 5.1 shows the flow diagram for integrated feature selection and Segmentation.  
 

 

 5.2.2. Feature selection and segmentation in EM framework                            

       The first step includes the preprocessing stage that minimizes the inhomogeneity 

of the MRI. After inhomogeneity correction we then extract texture features such as FD 

using PTPSA algorithm, mBm using fractal wavelet algorithm in MR images. We have 

selected the best features for T vs. NT, T vs. C and C vs. NT using multiclass feature 
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selection in AIM #2. We feed the best features for the different classes or tissues and 

obtain subsequent segmentations for the tissues using EM. A detailed explanation for all 

methods is given below.  

 

 5.2.2.1. Estimating Inhomogeneity correction 

       We use a Bayesian approach to estimate the bias field in MR intensity image [20]. 

The method assumes a Gaussian distribution for the different tissues or classes.  

 

 5.2.2.2. Feature Extraction 

         After intensity normalization we extract textural features from the normalized 

images in T1, T2 and Flair modality - FD, mBm. 

 

 5.2.2.3. Feature selection using KLD and segmentation 

       We construct as support map or probability map. These support maps contains the 

mean and variance associated with a pixel for the best features. We initialize the support 

map by the estimates of B and FS. We maximize the estimates of B and FS for two 

classes. The labeling of map for each cluster gives the segmentation for the two classes 

which in turn has been obtained by the best features.  

 

5.3. Results 

       Figure 5.2 (a) shows an MR image of patient having tumor in T1 modality. 

Figure 5.2 (b), (d), (f) and (h) shows the inhomogeneity results at 15th, 30th, 45th and 60th 

iteration. Fig. 5.2 (c), (e), (g) and (i) show the segmentation results for intensity feature 
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using  integrated KLD- EM algorithm. We observe that good tumor segmentation is 

obtained at 60th iteration of EM algorithm in cluster no. 5. 

 Similarly, Fig. 5.3 (b), (d), (f) and (h) shows the inhomogeneity results at 15th, 

30th, 45th and 60th iteration. Fig. 5.3 (c), (e), (g) and (i) show the segmentation results for 

mBm feature using  integrated KLD- EM algorithm. We observe that good tumor 

segmentation is obtained at 60th iteration of EM algorithm in cluster no. 5. 

 

 

 

MR Image Inhomogeneity Feature selection & Segmentation 
 

 
(a) 

 

 
(b) At 15th iteration 

 

 
(c) Segmentation using intensity feature at 15th iteration 

  
 

 
(d) At 30th iteration 

 
 

 
    (e) Segmentation using intensity feature at 30th iteration 
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(f) At 45th iteration 

 

 
  
 (g) Segmentation using intensity feature at 45th iteration 

  

 
(h) At 60th iteration 

 

 
(i) Segmentation using intensity feature at 60th iteration 

 

Fig. 5.2 (a) T1 modality for patient #2; (b) inhomogeneity iteration at 15th iteration; (c) 
segmentation at 15th iteration; (d) inhomogeneity iteration at 30th iteration; (e) 
segmentation at 30th iteration; (f) inhomogeneity iteration at 45th iteration; (g) 
segmentation at 45th iteration; (h) inhomogeneity iteration at 60th iteration; (i) 
segmentation at 60th iteration   using KLD –EM framework for T vs. NT for intensity 
feature in T1 modality. 
  

 

 Figure 5.4 (b), (d), (f) and (h) shows the inhomogeneity results at 15th, 30th, 45th 

and 60th iteration. Fig. 5.4 (c), (e), (g) and (i) show the segmentation results for FD 

feature using  integrated KLD- EM algorithm. We observe that good tumor segmentation 

is obtained at 60th iteration of EM algorithm in cluster no. 5. 
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MR Image Inhomogeneity correction Feature selection & Segmentation 
 

 
(a) 

 

 
(b) At 15th iteration 

 

 
(c) Segmentation using mBm feature at 15th iteration 

  
 

 
(d) At 30th iteration 

 
 

 
 
(e) Segmentation using mBm feature at 30th iteration 

  

 
(f) At 45th iteration 

 
 

 
  
 (g) Segmentation using mBm feature at 45th iteration 
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(h) At 60th iteration 

 
(i) Segmentation using mBm feature at 60th iteration 

 
 
Fig. 5.3 (a) T1 modality for patient #2; (b) inhomogeneity iteration at 15th iteration; (c) 
segmentation at 15th iteration; (d) inhomogeneity iteration at 30th iteration; (e) 
segmentation at 30th iteration; (f) inhomogeneity iteration at 45th iteration; (g) 
segmentation at 45th iteration; (h) inhomogeneity iteration at 60th iteration; (i) 
segmentation at 60th iteration   using KLD –EM framework for T vs. NT for mBm feature 
in T1 modality. 
 

 

 Note that for features such as mBm and FD we first perform the inhomogeneity 

correction and then extract texture features offline. After this we perform the automated 

steps for features selection and segmentation. 

 

 

 
MR Image Inhomogeneity correction Feature selection & Segmentation 
 

 
           (a) 

 

 
(b) At 15th iteration 

 

 
(c) Segmentation using FD feature at 15th iteration 
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(d) At 30th iteration 

 
 
    (e) Segmentation using FD feature at 30th iteration 

  

 
(f) At 45th iteration 

 

 
  
 (g) Segmentation using FD feature at 45th iteration 

  

 
(h) At 60th iteration 

 

 
(i) Segmentation using FD feature at 60th iteration 

 
 
Fig. 5.4 (a) T1 modality for patient #2; (b) inhomogeneity iteration at 15th iteration; (c) 
segmentation at 15th iteration; (d) inhomogeneity iteration at 30th iteration; (e) 
segmentation at 30th iteration; (f) inhomogeneity iteration at 45th iteration; (g) 
segmentation at 45th iteration; (h) inhomogeneity iteration at 60th iteration; (i) 
segmentation at 60th iteration   using KLD –EM framework for T vs. NT for FD feature 
in T1 modality. 
 
 

 Similarly Fig. 5.5 and 5.6 shows segmentation for C from T an NT for intensity 

features. 
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MR Image Inhomogeneity correction Feature selection & Segmentation 
 

 
           (a) 

 

 
(b) At 15th iteration 

 

 
(c) Segmentation using  intensity feature at 15th 
iteration 

  
 

 
(d) At 30th iteration 

 
 

 
 
    (e) Segmentation using intensity feature at 30th 
iteration 

  

 
(f) At 45th iteration 

 

 
  
 (g) Segmentation using intensity feature at 45th 
iteration 
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(h) At 60th iteration 

 
(i) Segmentation using intensity feature at 60th 
iteration 

 
 
Fig. 5.5 (a) T1 modality for patient #2; (b) inhomogeneity iteration at 15th iteration; (c) 
segmentation at 15th iteration; (d) inhomogeneity iteration at 30th iteration; (e) 
segmentation at 30th iteration; (f) inhomogeneity iteration at 45th iteration; (g) 
segmentation at 45th iteration; (h) inhomogeneity iteration at 60th iteration; (i) 
segmentation at 60th iteration   using KLD –EM framework for C vs. NT for intensity 
feature in T1 modality. 
 

 

 

MR Image Inhomogeneity correction Feature selection & Segmentation 
 

 
           (a) 

 

 
(b) At 15th iteration 

 

 
(c) Segmentation using  intensity feature at 15th iteration 
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(d) At 30th iteration  

 
    (e) Segmentation using intensity feature at 30th iteration 

  

 
(f) At 45th iteration 

 

 
  
 (g) Segmentation using intensity feature at 45th iteration 

  

 
 
(h) At 60th iteration 

 

 
(i) Segmentation using intensity feature at 60th iteration 

 
Fig.5.6 (a) T1 modality for patient #2; (b) inhomogeneity iteration at 15th iteration; (c) 
segmentation at 15th iteration; (d) inhomogeneity iteration at 30th iteration; (e) 
segmentation at 30th iteration; (f) inhomogeneity iteration at 45th iteration; (g) 
segmentation at 45th iteration; (h) inhomogeneity iteration at 60th iteration; (i) 
segmentation at 60th iteration   using KLD –EM framework for C vs. T for intensity 
feature in T1 modality. 
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 Table 5.1 shows the similarity coefficients obtained from the overlap of the 

segmented tumors to that for the original tumor (ground truth) when KLD and EM have 

been used separately (AIM#1). Table 5.2 shows the similarity coefficients when KLD 

and EM have been coupled (AIM # 3). Comparing the tables we observe that we are 

getting the same performance but the advantage is that we can perform inhomogeneity, 

feature selection and segmentation in one step. Similarly, Table 5.3 and Table 5.4 show 

the similarity coefficients for C vs. NT and C vs. T respectively.  

 
 

 
Table 5.1 Summary of similarity coefficient for 8 patients using KLD as feature selection 
and EM as segmentation separately (AIM # 1) for T vs. NT. 
 
Patient 
 

Jaccard Dice Sokal & Sneath 
(SS) 

Russel & Rao 
(RR) 

 T1 T2 Flair T1 T2 Flair T1 T2 Flair T1 T2 Flair 
1 0.62 0.65 0.61 0.71 0.73 0.73 0.47 0.49 0.53 0.62 0.64 0.6 
2 0.71 0.69 0.73 0.84 0.75 0.78 0.78 0.65 0.65 0.71 0.7 0.72 
3 0.72 0.69 0.68 0.78 0.76 0.8 0.7 0.67 0.66 0.75 0.71 0.65 
4 0.8 0.81 0.72 0.83 0.88 0.84 0.78 0.77 0.7 0.8 0.82 0.72 
5 0.8 0.68 0.83 0.84 0.74 0.85 0.76 0.63 0.8 0.81 0.68 0.83 
6 0.82 0.85 0.81 0.86 0.9 0.85 0.72 0.75 0.73 0.84 0.84 0.81 
7 0.77 0.86 0.79 0.8 0.88 0.83 0.74 0.84 0.75 0.78 0.87 0.8 
8 0.84 0.87 0.83 0.87 0.89 0.88 0.8 0.84 0.79 0.82 0.85 0.82 
 

 

Table 5.2 Summary of similarity coefficient for 8 patients using KLD as feature selection 
and EM as segmentation in integrated framework (AIM # 3) for T vs. NT. 
 
Patient Jaccard Dice Sokal & Sneath 

(SS) 
Russel & Rao 
(RR) 

 T1 T2 Flair T1 T2 Flair T1 T2 Flair T1 T2 Flair 
1 0.65 0.67 0.61 0.72 0.74 0.73 0.52 0.51 0.53 0.63 0.64 0.64 
2 0.71 0.69 0.73 0.85 0.75 0.78 0.78 0.65 0.65 0.71 0.73 0.72 
3 0.73 0.69 0.68 0.78 0.76 0.84 0.7 0.67 0.66 0.75 0.71 0.65 
4 0.8 0.81 0.72 0.83 0.88 0.84 0.78 0.77 0.7 0.84 0.82 0.72 
5 0.8 0.68 0.83 0.84 0.74 0.85 0.76 0.63 0.8 0.81 0.68 0.83 
6 0.82 0.85 0.81 0.86 0.9 0.85 0.72 0.75 0.73 0.84 0.84 0.81 
7 0.77 0.86 0.79 0.8 0.88 0.83 0.74 0.84 0.75 0.78 0.87 0.83 
8 0.84 0.88 0.83 0.87 0.89 0.88 0.8 0.84 0.79 0.82 0.85 0.82 
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Table 5.3 Summary of similarity coefficient for 8 patients using KLD as feature selection 
and EM as segmentation in integrated framework (AIM # 3) for C vs. NT. 
 
Patient Jaccard Dice Sokal & Sneath 

(SS) 
Russel & Rao 
(RR) 

 T1 T2 Flair T1 T2 Flair T1 T2 Flair T1 T2 Flair 
1 0.65 0.67 0.61 0.62 0.72 0.63 0.72 0.65 0.67 0.63 0.64 0.64 
2 0.70 0.69 0.70 0.65 0.65 0.68 0.68 0.65 0.65 0.71 0.63 0.72 
3 0.63 0.69 0.64 0.68 0.66 0.68 0.71 0.67 0.68 0.75 0.71 0.65 
4 0.62 0.61 0.65 0.68 0.67 0.64 0.67 0.71 0.74 0.64 0.65 0.72 
5 0.63 0.71 0.62 0.64 0.73 0.73 0.72 0.65 0.72 0.71 0.68 0.63 
6 0.62 0.62 0.62 0.66 0.71 0.71 0.71 0.73 0.68 0.74 0.64 0.68 
7 0.65 0.70 0.64 0.64 0.68 0.73 0.65 0.68 0.69 0.72 0.67 0.63 
8 0.64 0.69 0.62 0.68 0.68 0.69 0.68 0.69 0.65 0.62 0.65 0.62 
 

 

Table 5.4 Summary of similarity coefficient for 8 patients using KLD as feature selection 
and EM as segmentation in integrated framework (AIM # 3) for C vs. T. 
 
Patient Jaccard Dice Sokal & Sneath 

(SS) 
Russel & Rao 
(RR) 

 T1 T2 Flair T1 T2 Flair T1 T2 Flair T1 T2 Flair 
1 0.64 0.66 0.61 0.62 0.70 0.66 0.71 0.64 0.64 0.61 0.65 0.65 
2 0.65 0.67 0.70 0.61 0.73 0.64 0.65 0.63 0.63 0.65 0.73 0.72 
3 0.73 0.63 0.62 0.74 0.75 0.64 0.73 0.67 0.65 0.73 0.71 0.66 
4 0.72 0.65 0.66 0.65 0.67 0.67 0.68 0.7 0.72 0.65 0.68 0.72 
5 0.64 0.65 0.62 0.64 0.73 0.73 0.66 0.65 0.7 0.65 0.68 0.63 
6 0.62 0.62 0.67 0.63 0.71 0.71 0.69 0.73 0.66 0.65 0.65 0.65 
7 0.74 0.65 0.64 0.64 0.68 0.73 0.65 0.68 0.68 0.72 0.63 0.66 
8 0.64 0.64 0.62 0.65 0.66 0.69 0.63 0.67 0.65 0.62 0.65 0.62 

                                  

 

5.4. Conclusion 

       In this work we have coupled three steps – inhomogeneity correction, feature 

selection and segmentation in an EM framework. This framework selects the best feature 

for T and NT and performs segmentation simultaneously. This allows us to observe the 

effect of segmentation when selecting the best features. So we select a patient from the 

dataset, perform preprocessing, extract the texture features, and then feed the features to 

KLD-EM framework for selecting best features and segmentation. To obtain robustness 
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we use different similarity coefficients. We observe that the segmentation performance is 

same as that in AIM#1 but in this method can perform the steps in single framework. 
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6. Conclusion and Future Work 

6.1. Discussion and Future Work 

       The primary goal of this dissertation is to investigate and improve robustness of 

feature –based pediatric PF tumor segmentation. The investigation is focused on selecting 

the best features from among multiple different features for tumor and non tumor. We 

implement an information theoretic approach for selecting the best features among 

multiple different features including out texture features. To improve the tumor 

segmentation we investigate features for abnormalities such as cyst. To achieve this goal 

we extend two class approaches to multiclass information theoretic. Finally, we present 

an integrated framework information theoretic approach for feature selection and 

segmentation in an EM framework.  

 

6.2. Major Contributions 

       The major contribution of this dissertation includes three different novel 

computational models for improving the feature selection for effective segmentation of 

pediatric brain tumors. These computational models and associated studied are all 

published in proceeding of few major conferences [116], journal paper [69] an book 

chapter [134]. Now the contributions in these three dissertation are summarized as 

follows. In Chapter 3 discusses efficacy of texture, shape and intensity feature fusion for 

posterior-fossa tumor segmentation in MRI. The primary goal is to select the best feature 

for two class i.e. tumor and non tumor using KLD. For selection of the best feature, we 

compare four different techniques such as PCA, boosting, KLD and entropy metrics. We 

implement an integrated mathematical framework for feature selection and ranking using 
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KLD since KLD offers the best feature selection performance for the study. Our KLD 

feature selection technique shows that mBm is the best feature for both T1 and FLAIR 

modality while intensity is for T2 modality. In order to obtain robust segmentation of PF 

tumor in pediatric brain MRI, we compare performance of three different techniques such 

as bottom up top down, graph cut and EM. We finally select an integrated KLD - EM 

framework for tumor segmentation since this specific combination offers the best 

performance among the techniques investigated in this study. We evaluate robustness of 

our proposed model using four different similarity metrics and demonstrate the efficacy 

of our technique using 249 real MR images from ten pediatric patients. Furthermore, we 

show that fusion of mBm feature in multimodality T1, T2 and FLAIR MRI, can offer 

100% PF tumor segmentation for the patient cases studied in this work. 

       In Chapter 4 we investigate information Theoretic Multiclass Feature Selection 

for Improved Pediatric Brain Tumor Segmentation. The goal is to select extend two class 

KLD to multiclass for selecting features for T, C and NT. We also improve feature 

selection by including abnormalities such as cyst as another class. We develop an 

information theoretic approach for multiclass feature selection for improved pediatirc 

brain tumor segmentation by combining KLD and the upper bound Baye’s error. We 

obtain the best features which has minimun upper bound Baye’s error from among set of 

features. Our Baye’s KLD approach shows that mBm is the best feature for T / NT 

segmentation for T1 and FLAIR modalities.In addition, intensity is best for T / C, C / NT 

segmentation in T1, T2 and FLAIR modalities. In order to validate the segmentation 

efficacy, we obtain the pixel count in each of the T, C and NT regions using intensity and 
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mBm features. We compute segmentation robustness by comparing the tumor segments 

to the ground truth provided by radiologists for all eight pediatric patients. 

       Finally in Chapter 5 we develop an integrated framework for inhomogeneity, 

feature selection and segmentation in PF tumors. The goal is to integrate the three steps 

such as inhomogeneity correction, feature selection and segmentation in an EM 

framework. We develop a statistical framework using EM algorithm to couple these 

steps. This framework selects the best feature for two tissue type such as T and NT; T and 

C; and C and NT at a time for corresponding tissue segmentation. This allows us to 

observe the effect in segmentation at different iterations of inhomogeneity corrections 

and feature selection. We select a patient from the dataset, perform inhomogeneity 

preprocessing, extract the texture features, and then use the features to KLD-EM 

framework for selecting best features and subsequent segmentation in each iterations. We 

extensible validate robustness using different similarity coefficients. We observe that 

though the tumor tissue segmentation performance is similar to that in Chapter 3, 

however, we obtain such tumor segmentation performance in a single framework. 

Furthermore, our integrated framework allows one to observe the effect of inhomogeneity 

correction and feature selection on tumor segmentation step – by – step. 

 

6.3. Future Works 

   In this section a few interesting future direction of this dissertation are discussed. 

In Chapter 3 we discuss features for T and NT. We need to investigate additional features 

for differentiating among tumor, non-tumor and edema. This will require work in 

extending KLD to discriminate multiclass tissues such as brain tissues, tumor, edema and 
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other artifacts in MRI. We also plan to investigate features for tumors such as 

astrocytoma, medulloblastoma, glioblastoma multiforme (GBM). 

       In this Chapter 4 we discuss relevant features for T, C and NT. We have used 

intensity as the features for discriminating C from other tissues. The segmentation can be 

improved further if we exploit other features depending on the characteristic of cyst for 

different tumors. We plan to develop other statistical models for feature selection. 

       In Chapter 5 we discuss integrated method for inhomogeneity, feature selection 

and segmentation. But we perform feature extraction offline after inhomogeneity 

correction. We resume feature selection and segmentation after feature extraction. We 

would like to come up with mathematical model for including feature extraction as the 

integrated step. This would add another parameter in the integrated framework and its 

effect on the existing parameters such as inhomogeneity, feature selection and 

segmentation. 
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