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Abstract

Meningioma subtypes classification is a real world problem from the

domain of histological image analysis that requires new methods for its

resolution. Computerised histopathology presents a whole new set of

problems and introduces new challenges in image classification. High

intra-class variation and low inter-class differences in textures is often

an issue in histological image analysis problems such as Meningioma

subtypes classification. In this thesis, we present an adaptive wavelets

based technique that adapts to the variation in the texture of menin-

gioma samples and provides high classification accuracy results. The

technique provides a mechanism for attaining an image representation

consisting of various spatial frequency resolutions that represent the

image and are referred to as subbands. Each subband provides differ-

ent information pertaining to the texture in the image sample. Our

novel method, the Adaptive Discriminant Wavelet Packet Transform

(ADWPT), provides a means for selecting the most useful subbands

and hence, achieves feature selection. It also provides a mechanism for

ranking features based upon the discrimination power of a subband.

The more discriminant a subband, the better it is for classification.

The results show that high classification accuracies are obtained by se-

lecting subbands with high discrimination power. Moreover, subbands

that are more stable i.e. have a higher probability of being selected

provide better classification accuracies. Stability and discrimination

power have been shown to have a direct relationship with classifica-

tion accuracy. Hence, ADWPT acquires a subset of subbands that

provide a highly discriminant and robust set of features for Menin-

gioma subtype classification. Classification accuracies obtained are

greater than 90% for most Meningioma subtypes.



Consequently, ADWPT is a robust and adaptive technique which en-

ables it to overcome the issue of high intra-class variation by statis-

tically selecting the most useful subbands for meningioma subtype

classification. It overcomes the issue of low inter-class variation by

adapting to texture samples and extracting the subbands that are

best for differentiating between the various meningioma subtype tex-

tures.
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Chapter 1

Introduction

Meningiomas are tumours of the brain and the nervous system [1]. They occur

in the covering of the brain and the nervous system called the Meninges. Menin-

giomas account for 27% of all brain tumours and exist in three different grades

of malignancy (WHO Grade I-III) [2], most being benign (over 80%) but some

showing an increased propensity of recurrence with rare cases being malignant.

Meningioma patients may live for up to five years with treatment [3]. A greater

frequency of occurrence is seen in ageing populations with very rare cases reported

amongst children. Most benign WHO Grade I Meningiomas belong to one of the

four subtypes shown in Figure 1.1. The problem of Meningioma subtype clas-

sification essentially involves discriminating between four different subtypes of

Meningiomas.

Fibroblastic, Meningiothelial and Transitional are the most common Menin-

giomas whereas Psammomatous occurs less frequently. There are five more Grade

I Meningiomas which occur rarely. Each Meningioma subtype has certain char-

acteristics that differentiate it from the other subtypes circled in Figure 1.1.

They represent the various stages of tumour development. The first stage is the

Meningothelial when the cells join together and become lobulated. A grouping of

cells is formed called the synctium. The next stage is the Fibroblastic when the

presence of stress in the tissue causes tearing. This in turn causes the formation

of a matrix. Since the tissue is stretched, the cells become elongated and spindle

shaped. The tears in the tissue results in spaces in the tissue which are filled by

proteins causing formations called collagen. Transitional is the next stage where
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a. b.

c. d.

Figure 1.1: Meningioma images for each subtype a. Meningiothelial (cells form

synctium), b. Fibroblastic (spindle shaped cells in collagen-rich matrix), c. Tran-

sitional (cells form whorls with Psammoma bodies present), d. Psammomatous

(high number of Psammoma bodies)

whorls or circular formations can be found in the tissue. Tumours at this stage

have both Fibroblastic and Psammomatous features present. The next stage is

the Psammomatous where Psammoma bodies are formed. Psammoma bodies

are circular objects that look like blobs. They form when the whorls from the

previous stage surround themselves with proteins. At this stage, the tumour may

appear as a protrusion from the surface of the brain. At this stage, the tumour

may become lethal even if its benign because the protrusion would press against

the skull and the brain causing bleeding and damage to brain cells. The other

five Meningioma subtypes in WHO Grade I are not included in the study. Grade

II & III are not included in the study.

As mentioned earlier, this study is dedicated to the issue of Meningioma sub-

type classification from the domain of histopathological image classification. The

problem may be defined as follows:

Given a histology image of a tissue section of a Meningioma, assign a class label
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1.1 Image Acquisition

to it from four different Meningioma subtypes.

Meningioma classification is a real world problem from the domain of medical

image analysis that requires efficient pattern recognition. In the last five decades,

a lot of research work has gone into developing a general purpose machine based

pattern recognition system but the goal to this date remains elusive. Many novel

and efficient pattern recognition algorithms have been invented with the data in

most studies acquired using controlled conditions. For instance, in case of im-

age classification Brodatz textures have been widely used. Recently the focus

of research in image classification has shifted from synthetic textures or textures

acquired using controlled conditions to real world textures. Real world problems,

however, present a whole new set of challenges to the pattern recognition com-

munity. Many techniques that work exceptionally well in the lab, fail or do not

perform as well in the real world where conditions are not perfect. In this thesis,

we aim to present one real world problem from the domain of histological image

processing and develop an algorithm to solve it using transform-based image pro-

cessing and machine learning techniques. The aim of our study is to resolve the

problem of computer-based Meningioma subtype (brain tumour) classification.

In this chapter we describe why Meningioma subtype classification is an im-

portant problem that requires solution. Section 1.1 describes the process of acqui-

sition of Meningioma image data. Section 1.2 presents the reasoning behind the

use of computational techniques in histological image classification. Section 1.3

presents a synopsis of the related work in the area of histological image analysis.

Section 1.4 describes the main challenges in Meningioma subtype classification.

Section 1.5 analyses the two main approaches of textural analysis for Meningioma

subtype classification. The chapter ends with a section on main contributions of

this thesis and another section on the thesis organisation.

1.1 Image Acquisition

Acquiring a Meningioma sample entails performing a brain biopsy which is fraught

with risks and can be complicated. In many instances the samples are extracted
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1.2 Computer Assisted Diagnosis (CAD): Why?

during surgery rather than taking a biopsy sample (as in the case of colon and

prostate). Once the tissue samples are obtained the image acquisition tasks may

be carried out.

The first stage of image acquisition is slide preparation. The tissue is placed

on the slides using formalin-fixed paraffin-embedding and then cut into different

sections and cross-sections. Next, Hematoxylin and Eosin (H & E) staining is

carried out. The formalin-fixed paraffin-embedding and H & E staining are the

most popular techniques for tissue slide preparation. The H & E staining renders

the nuclei as blue whereas the rest of the tissue texture is turned pink. The next

stage in slide preparation is the cutting of the tissue using a machine called the

microtome. It is used to cut thin slices of the tissue for microscopic inspection.

The next stage is to analyze the tissue slides under a light microscope. A

Zeiss Axioskop 2 plus microscope fitted with a Zeiss Archoplan 40×/0,65 lens

is used for the purpose. Manual focussing and automated background correc-

tion is carried out. True colour RGB pictures are taken at standardised 3200

K light temperature. TIF format pictures are obtained using the Zeiss AxioVi-

sion 3.1 software and a Zeiss AxioCam HRc digital color camera (Carl Zeiss AG,

Oberkochen, Germany). The microscope is integrated with a computer system on

which the images are viewed and stored. This system allows for high throughput

capture of histological image data.

1.2 Computer Assisted Diagnosis (CAD): Why?

Histopathological diagnosis of tumours of the brain and the spinal cord still re-

quires decision making by human experts. Diagnosis and decision making is

hampered by the fact that the reviewing of the histological slides is time con-

suming, prone to error, dependent upon the availability of the expert and more

importantly there is considerable inter-rater variability amongst the experts. Al-

though much effort has been expended to exactly define diagnostic criterion for

all tumour entities within the World Health Organization (WHO) Classification

of Tumours [2], the inter-rater variability still remains considerable (see e.g., [4]).

Hence, a bias is introduced which influences further therapy regimens. Therefore,

there is a need for an automated computer based technique to introduce more
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objectivity in to the analysis. Moreover, computerised analysis may lead to iden-

tification of intrinsic textural features in tumour samples that are missed by the

human eye and hence would lead to an improvement in definition of the tumour

types as per their characteristics.

Most Meningiomas are benign [5] which means that neuropathologists are

spending most of their time analysing and diagnosing benign tumours. Therefore,

there is an urgent need to develop automated techniques to aid the neuropathol-

ogist. This would lead to reduction in costs and more objective and accurate

diagnosis.

Due to the progress in digital image retrieval and analysis technologies, computer-

assisted decision making can be used to support histopathologists by providing

more objective diagnostic parameters (that may be used to define the tumour

categories better) and allow high-throughput analysis. A first step, however,

when developing new algorithms for image classification is to test whether an

automated technique can reproduce human assignment of single tumour samples

to diagnostic classes. In order to develop such a technique, we have focussed on

Meningiomas. Correct histopathological diagnosis can be made in most cases by

a trained human expert i.e. a neuropathologist. Therefore, this tumour is well

suited for testing diagnostic properties of a computer assisted diagnostic system.

In the past decade or so, histopathology has advanced a great deal. The

invention of new more advanced microscopes and advancement in digital imaging

technology has opened new horizons and new possibilities for histopathological

analysis. The great increase in computational power and invention of whole slide

digital scanners has made the digitisation and the mass storage of histopathology

slides possible. Therefore, the application of computerised image analysis and

machine learning techniques for CAD has become possible. CAD algorithms are

already in use to aid a radiologist and new CAD algorithms are being developed

for disease detection, diagnosis and prognosis to help a pathologist [6]. Gurcan

et al. [6] describe how different image analysis approaches have been applied

to histological imaging combined with different machine learning techniques and

feature selection approaches. In the next section, we describe the main works in

the domain of histological image analysis.
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1.3 Related Work in Histological Image Analysis

1.3 Related Work in Histological Image Analy-

sis

Since the advent of surgery, the naked eye examination of tissues and organs has

come to be used for diagnosis of ailments. After the invention of non-invasive tools

to obtain medical images, histopathology seems to have lost it predominant role

in medical diagnosis. Although many advances have been made in non-invasive

mechanisms such as Magnetic Resonance Imaging (MRI) etc., histopathology is

still the most reliable tool for accurate diagnosis (as proved in various studies

[7] [8]). The reason for this is that the non-invasive methods though are very

convenient to use but are unable to provide the amount of information that may

be obtained through histopathology. Non-invasive techniques such as MRI and

Positron Emission Tomography (PET) provide limited resolution and poor spatial

information.

Advances in histological image analysis have created new challenges as well.

One of the most important benefits of the recent advances is that histopathological

image data is now available at very high resolutions. This significantly improves

our capability for better and more efficient diagnosis but increases the difficulty

in diagnosis as huge volumes of image data are now obtained which consequently

means that the task of analysing them is very time consuming and prone to error.

Therefore, use of automated techniques for histopathological image analysis has

become crucial. Moreover, the speed and quality of diagnosis has to be improved

as well for better health care.

Apart from providing efficient diagnosis, there is also a need to extract com-

plex information from images which is difficult to obtain merely by visual inspec-

tion. The analysis of histopathology data is crucial for treatment as it provides

important information about the extent of malignancy and the developmental

stage of the disease under study. Advances in histopathology and imaging tech-

nologies will enable us to be better able to define clinical courses and better

treatment regimens. An interesting review of the developments in histological

image analysis was carried out by Loukas and Linney [9].

Loukas and Linney contend in their paper that success of radiotherapy de-

pends a great deal upon the biology of a tumor. This is another reason why a
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detailed image analysis of the histological specimen is crucial. The proliferating

activity of the tumour influences a great deal, the outcome of radiotherapy [8]

[10] [11] [12] [13]. The extraction of potential prognostic information is also im-

portant [14]. The study of computational techniques applied to histopathology

can be broadly categorised into the following areas.

1.3.1 Segmentation

There have been various techniques used for segmentation in histology. Some of

these techniques are presented here.

1.3.1.1 Thresholding

The first studies in histopathological image analysis concentrated on threshold-

ing. The principle of thresholding is based upon the premise that an object and

its background can be differentiated by their grey-level values. Hence, the cells

in a histopathological image specimen can be distinguished from the background

intensities by carefully choosing a grey-level threshold. In a survey paper Sahoo

et al. [15] have grouped thresholding into four categories; point dependent global

thresholding, region-dependent global thresholding, local thresholding and multi-

thresholding. In many instances thresholding is carried out using the histogram.

The technique is simplistic but has found wide applicability in segmentation of

meaningful structures and cell counting etc [16] [17] [18]. In certain techniques,

thresholds could be set interactively [19] [20] [21]. In a study [22], a local thresh-

olding mechanism was developed based upon an iterative selection method to

segment histological images into nuclei and background. An interesting form of

thresholding is carried out by diffusion with which an image is transformed into

a family of threshold surfaces where choosing a threshold surface is analogous to

applying a scale [23].

Automated thresholding techniques involve colour-based image analysis where

coloured objects of interest are segmented from surrounding structures [24]. Sharipo

[25] presented a technique for quantifying muscle content by simultaneously thresh-

olding three monochrome images i.e. red, green and blue. A few other works of

interest in this area were carried out by Dobrinski et al. [26], Lehr [27] and
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Deverell [28]. Colour based analysis has also involved experimenting with other

colour representation methods, namely hue, saturation and intensity (HSI) [29]

which closely approximates the behaviour of the human eye [30]. Hue, satura-

tion, luminance (HSL) [31] and hue, saturation and density (HSD) [32] are other

models that have been studied. Pixel classification in the RGB space has also

been researched extensively. Some approaches have chosen to use a combination

of RGB or HSI components to achieve the best discrimination [33] [34]. Recently,

novel imaging systems that take advantage of spectral features have also been

proposed [35] [36].

1.3.1.2 Region Merging

Region merging or growing is another area which has received a lot of attention

and a lot of research effort has gone into it. One such algorithm is a multistage one

[37] for detection of membrane structures in kidney electron micrographs. Kate

et al. [38] use a similar method for counting mitoses (represented by compact

and dense objects) in stained breast cancer sections. Merging pixels and re-

gions is based upon employing pixel proximity and grey-level uniformity [39] for

the detection of cell nuclei in histopathological images acquired using a confocal

laser scanning microscope. There are other interesting region-based segmentation

techniques including seeded volume growing and 3D watershed algorithms [40].

1.3.1.3 Edge Detection

Edges are important features of images and are widely used in image classifica-

tion and analysis. Some of the first filters used for edge detection were Prewitt,

Roberts and Sobel [30], which approximate the first derivative of the image bright-

ness function used for enhancing edges. Some studies that use edge detection for

cell identification may be found in [41, 42]. First, the localisation of the intensity

peak is obtained followed by radially directed edge detection in respect to the

peak found. Laplacian and Laplacian of Gaussian operators have also been used

for edge detection [43, 44].
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1.3.1.4 Template Matching

A kind of template matching method is the Active Contour Model (ACM) [45]

also known as snakes. An active contour is an energy minimising spline that

searches for the local energy minimum on a potential surface. Snakes have been

used for the detection of cell boundaries of nerve cells [46]. An elliptical Hough

transform to locate interior points is followed by snakes to detect the interior and

exterior cell boundaries. As the image complexity increases, snakes can converge

to a wrong nuclear boundary with the result heavily dependent upon the choice

of the initial snake. A similar effort was carried out by Bond et al. [23] who first

performed segmentation using snakes and then used shape models for texture

segmentation.

Statistical models have been used to overcome the drawbacks of snakes. Ex-

amples of such efforts can be found in [44, 47] where optimal cellular boundaries

are found by exhaustive search and an optimal set of pixels are derived based

upon a Bayesian metric dependent upon a statistical model. Dynamic matching

methods such as the ones suggested by Yamada et al. [48] and Wu et al. [49]

where polygons or parametric images are used to approximate the target image

have also been used for histological image analysis.

1.3.2 Texture Analysis

Another approach to describing a texture is to quantify the content. Texture can

be generally described as a repetition of patterns over an image region. Image

processing carried out over texture can be broadly categorised into three types;

statistical, structural and spectral [30]. Statistical analysis involves classifying

images based upon the statistical features acquired from an image. Structural

techniques deal with the arrangement of image primitives and texture geometry

whereas spectral techniques analyse texture in transformed domains such as the

Fourier, Gabor and Wavelet domains.

1.3.2.1 Statistical Approaches

Statistical approaches use statistical properties from gray level histograms (skew-

ness and kurtosis etc.) and co-occurrence matrix features (energy, entropy, inertia
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etc.) [50] to describe texture. A texture may be characterised as smooth, coarse

or regular. Co-occurrence matrices have been used to characterise textures based

upon spatial homogeneity [51]. A comparison of Gray Level Co-occurrence Matri-

ces (GLCMs) for Meningioma classification with spectral approaches was carried

out by Qureshi et al. [52]. The technique showed that spectral approach (Wavelet

Packets) performed much better than statistical analysis using GLCMs.

Using computer software provided by microscope manufacturers or off-the-

shelf software for statistical analysis of histological slides is widespread in histopathol-

ogy. Mutter et al. [53] perform pre-cancer analysis of patient tissues for prob-

ability of it developing in to cancer using a statistical measurements software

QProdit 6.1. Orbo et al. [54] used QProdit to perform morphometric and sta-

tistical analysis of endometrial hyperplasia histology samples. Inman et al. [55]

use ImageJ for thresholding and statistical co-localisation in histological tonsil

specimens for automated counting. Angelini et al. [56] perform computerised

statistical analysis for breast tumour diagnosis.

1.3.2.2 Structural Approaches

Structural approaches have been used widely in medical image analysis for tasks

such as locating diagnostically useful areas [57], discriminating between normal

and cancerous tissues [58], classifying tumours of various grades [59] and quanti-

fying their architectural organisation [60]. Such techniques have also been used in

locating abnormal tissue areas in colorectal histology [57] [58]. Fractal geometry

has also been used to study texture and perform texture classification [61] [62]

[63]. Nuclear dimensions have also been analysed using Fractal geometry [64].

1.3.2.3 Spectral Approaches

Fourier domain texture analysis for image classification [65] and its compari-

son with standard texture measures [66] has been carried out in various studies.

Lessman et al. [67] used wavelet transforms for analysing textures in Menin-

gioma images. We have used wavelet packets with statistical analysis [68] [69] for

Meningioma subtype classification. Recently some interesting work with wavelet

30



1.3 Related Work in Histological Image Analysis

packets has been carried out by Katouzian et. al. [70] who employ wavelet pack-

ets for coronary artery segmentation. Jafari-Khouzani and Soltanian-Zadeh [71]

use multi-wavelets for grading of histological prostate specimens.

1.3.3 Classification

Recently, a lot of research work in histological image understanding has been

carried out. Many different types of image descriptors have been used ranging

from geometric features (distance, perimeter, size and shape) to colour models

(RGB, HSI etc.) and texture content-based features. The choice of classifier has

also varied but linear discriminant analysis remains the most popular [72].

Like any other classification problem, the first stage in classification of his-

tological images is the feature extraction process followed by statistical decision

making [73]. A broad range of features may be extracted using color analysis,

template matching, texture analysis, frequency domain techniques and surface

modelling [74]. Esgiar et al. [58] have used pattern classification for colonic mu-

cosa images where mutually exclusive training and testing data sets were used for

first training a linear discriminant function and then subsequently testing it using

the trained function. Similar studies have been carried out using this framework

[75] [76]. Amaral et al. [77] perform pixel classification using posterior probabil-

ities assigned using colour for scoring breast tumour microarrays.

Histopathological images are difficult to automatically characterise and seg-

ment because of their inherent complexity. Therefore, various mechanisms have

been used for computer based histological image classification such as expert sys-

tems [78], morphological cellular features [79], machine vision techniques based

upon segmentation of regions and diagnostic decision support systems [80], knowledge-

based segmentation [81] [82] and fuzzy logic based techniques [83].

Artificial Neural Networks (ANN) have also found wide application in pathol-

ogy as they have an added advantage that features may be computed by self-

organisation which ultimately aid classification [84] [67]. Dytch and Wied [85]

used neurocomputing for histological image understanding. Many other ANN-

based efforts have been attempted for cell classification [86] [87] [88]. Lately,

ANNs have also been used for segmentation though to a limited extent. One
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such effort was carried out by Sjostrom et al. [89]. Amaral et al. [90] compare

Gaussian process ordinal regression with a multi-layer perceptron for breast tu-

mour scoring in breast tissue microarrays and conclude that perceptron performs

better. A comparison of various neural networks with a neural network based fea-

ture reduction scheme for cervical cancer detection was presented by McKenna

et al. [91] where high accuracy results were obtained.

1.3.4 Meningioma Classification

In [67], Meningioma subtype visualisation has been attempted by Lessman et al.

who described how self organising maps can be combined with wavelet transforms

for clustering of Meningioma images. Lessmann et al. in a subsequent work [92]

describe how the various features extracted affect Meningioma clustering and a

detailed analysis is presented. Work on Meningioma cell classification was car-

ried out by Wirjadi et. al. [93] who uses a supervised learning method called

Classification and Regression Trees (CART). The first approach employs textural

analysis whereas the latter uses structural information derived after segmenta-

tion. However, the method proposed in [93] only differentiates between two types

whereas Lessman [67] has produced good clustering results for four Meningioma

subtypes.

1.4 Challenges in Meningioma Subtype Classi-

fication

Histological image analysis presents a new set of challenges to the scientific com-

munity. Histological images are real world data and are considerably different

from synthetic textural data which is acquired or obtained using controlled pro-

cedures. Histological images have a uniquely complex texture which represents

a new set of issues. The texture in histological images is more or less non-

homogenous i.e. different areas in an image may have different textural prop-

erties which in turn may represent different patterns. Hence, textural analysis

and subsequent recognition is not straightforward. Moreover, intra-class varia-

tion amongst the samples belonging to the same class may be high and to make
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matters worse inter-class differences amongst the samples may be low. The prob-

lem is made more difficult by the fact that a very high degree of classification

accuracy is required. An inaccurate analysis would have dire consequences for

the patient.

Figures 1.2-1.5 show all the image samples acquired from various patients

used in the study. These images are 1300× 1100 in size and are later divided in

to images of size 512 × 512. An image of 512 × 512 is cropped from the larger

image and then the cropping window is moved 256 pixels forward in the horizontal

direction. The same process is repeated in the vertical direction yielding 4 × 3

i.e. 12 images. The images acquired are overlapping which is analogous to how a

neuropathologist would analyse a slide moving a small distance in each direction

at a time. This though would introduce a bias making it easier to associate

textures with each other but the training and test data is divided based upon

patients which means that the entire image data belonging to a patient is left out

in the training stage. Since there is considerable intra-class variation, the test

data is most often very different from the training data keeping the test/training

data mutually independent.

As stated earlier, there are a total of four Meningioma subtypes included in

the study namely Meningiotheliamatous, Fibroblastic, Transitional and Psam-

momatous. The data for 5 patients per Meningioma subtype is available, with

48 images per patient (after dividing the original 4 images per patient), giving a

total of 240 images per Meningioma subtype. Hence, for four Meningioma sub-

types the total number of images available for analysis is 960. The gold truth

or the labels to the data were assigned by a trained neuropathologist. The data

was analysed for the relevance of Meningioma textural features to there assigned

class by Lessmann et al. [92].

As can be seen from the Figures 1.2-1.5, the textural data in images of the

patients belonging to the same Meningioma subtype can differ to a great extent.

This can clearly be observed in the case of patients 3 and 4 for Fibroblastic

samples shown in Figure 1.3. The tear in the tissue of the patient 3 is much

advanced compared to other patients making the texture very different from that

of other patients. The contrast and colour information in images of patient 4 is
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different from other patients since red correction1 has not worked properly for

the data of other patients. These differences would ultimately make the data

belonging to these patients more challenging to classify as the colour information

is not dependable.

In the case of the Meningiotheliamatous data shown in Figure 1.2, there is the

issue of red correction for some samples but more importantly some Meningio-

theliamatous images can be grouped with Fibroblastic as they contain collagen

and the formation of a matrix can be seen. This can be clearly seen in the data

for patients 3, 4 and 5 where texture seems to be tearing apart with presence of

collagen and stretched cells with a matrix present as well (a feature that is more

closely associated with the Fibroblastic subtype). Hence, Meningiotheliamatous

gets confused with Fibroblastic very often making it one of the more complicated

Meningioma subtypes to classify.

Transitional again has issues with red correction as shown in Figure 1.4. Tex-

ture for patients 1 and 2 seems to be more broken with whorls, but there are

some regions in images for patient 3 where whorls are not found and there is

also the presence of collagen making the texture more like Fibroblastic. Hence,

low intra-class texture variation is an issue for Transitional Meningioma subtype

classification as well. Moreover, there are regions in the images that resemble the

Fibroblastic subtype making the task of classification more difficult.

Psammomatous data shown in Figure 1.5 again shows a notable degree of

intra-class variation. There is the issue of red correction working slightly in certain

samples such as those of patient 3 and patient 4 whereas not working too well

for other patients. Some patients have Psammoma bodies of large size dispersed,

such as patient 1 and patient 5, while some have smaller Psammoma bodies, such

as patient 2, making the texture in the samples very different on a per patient

basis. It can also be seen that the texture in the images belonging to the same

patient may differ as well, for example as can be seen in the samples for patient

1 and patient 5. Some images have smaller psammoma bodies present while the

1The histological specimens are H&E stained which causes the non-nuclei segment to become
pink and nuclei becomes purple. Red correction is a feature in some microscopes that fixes the
redness in the images. It basically processes the images to remove redness from the images
which is an artifact acquired during biopsy slide preparation and image acquisition.
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rest have large psammoma blobs. Psammomatous data is, however, considerably

different from the image data belonging to other Meningioma subtypes and is

therefore, easier to classify correctly.

There is also the issue of inter-class variation in the image samples being low

in many instances. This can be clearly observed for the Meningiotheliamatous

samples as data for patient 3 resembles the Fibroblastic patient 2 as presence of

collagen with formation of a matrix can be seen. It can also be observed that the

formation of whorls can be seen for Fibroblastic patient 4 which is essentially a

property of Transitional samples as can be seen for the Transitional patient 5.

On the other hand, looking at the texture within the same class a great amount

of variation in the texture can be seen. The high intra-class variation can be

clearly observed for the all Meningioma subtypes. The images in the rows show

a great variation in texture. The variation in the colour means that the colour

information is not dependable.
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a.

b.

c.

d.

e.

Figure 1.2: Meningiotheliamatous patient data a. Patient 1, b. Patient 2, c.

Patient 3, d. Patient 4, e. Patient 5
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a.

b.

c.

d.

e.

Figure 1.3: Fibroblastic patient data a. Patient 1, b. Patient 2, c. Patient 3, d.

Patient 4, e. Patient 5
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a.

b.

c.

d.

e.

Figure 1.4: Transitional patient data a. Patient 1, b. Patient 2, c. Patient 3, d.

Patient 4, e. Patient 5
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a.

b.

c.

d.

e.

Figure 1.5: Psammomatous patient data a. Patient 1, b. Patient 2, c. Patient 3,

d. Patient 4, e. Patient 5
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1.5 Meningioma Subtype Classification: Segmen-

tation Vs. Textural Analysis

Meningioma subtype classification is a relatively hard problem. There are two

approaches that could have been used to solve the problem. Firstly, segmentation

could have been used to extract structures in an image and then classification

could have been carried out based upon the constituents of the image. The other

approach that can be used is textural. Textural features can be acquired from

each image and classification can be carried out based upon those features. Each

approach has its pitfalls and strengths.

Segmentation does not suit our problem for many reasons. The first and

foremost reason is the huge variation in the data. The tumour subtypes in our

analysis exhibit high intra-class variability as can be seen in Figures 1.2-1.5. This

variation entails the presence of structures that can be very different for images

belonging to the same class. There is also the issue of the presence of struc-

tures representing different tumour subtypes in an image which otherwise may

overwhelmingly represent one type of Meningiomas. Moreover, the type of tex-

ture present in the images of Fibroblastic, Meningiotheliamatous and Transitional

subtypes makes the task of segmenting difficult. As can be seen from the Figures

1.2-1.5, its difficult to ensure that the structures obtained through segmentation

would be able to accurately differentiate between textures belonging to these

classes as there is low inter-class variation between textures in many instances.

Shape and structural analysis of constituents of images using segmentation,

has found wide application in histology image analysis [94]. Numerous segmen-

tation techniques such as thresholding [15, 21], adaptive thresholding [95, 96],

watershed algorithms [40], fuzzy clustering and active contours [97] have been

used for the segmentation of nuclei and glands in histology images but there are

issues in using each of these techniques. Thresholding tends to work better for

uniform images but produces inconsistent results if the variability within the im-

age sets is high as stipulated by Gurcan et al. [6]. Watershed algorithms tend to

suffer with the same problem [98]. Active contours deal better with the variabil-

ity but multiple overlapping objects pose a difficult challenge for active contours

as they may be enclosed to form one object [99]. Meningioma images suffer from
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all the issues mentioned above. There is considerable variation within the tex-

ture samples and overlapping of structural components is frequent as can be seen

for Meningiothelial and Psammomatous samples. Furthermore, high intra-class

variation and low inter-class variation pose serious issues for any segmentation

technique as the segmented constituents differ greatly for different image samples

belonging to the same class. Hence, segmentation may not be the best approach

for differentiating between the different subtypes of Meningiomas.

Textural analysis suffers from its inability to account for the structural char-

acteristics of objects in an image. The strength of textural analysis lies in the

fact that it examines the texture pattern as a whole and employs the differences

amongst the patterns to classify images. There are strong distinct patterns that

can be seen in the images of various Meningioma subtypes. Although there are

variations in the patterns with subpatterns being present as well, the holistic ap-

proach of texture analysis may be useful in assigning a label to an image. Since,

textural analysis of an image involves analysing an image as a whole rather than

analysing its constituent parts, it should prove more useful (in our opinion) for

classifying or differentiating between different Meningioma subtypes. Therefore,

we have preferred using a textural analysis based approach which is novel and

as we shall see in Chapters 4 and 5 produces high clustering and classification

accuracies. Moreover, textural analysis has not been explored as much as seg-

mentation for histological image analysis, hence there is a need to develop novel

textural analysis algorithms for histological image classification.

1.6 Main Contributions

The main contributions of our work are:

1. A novel adaptive multiresolution wavelet transform based approach for

Meningioma classification that allows for analysis of textures at various

spatial and frequency resolutions.

2. A robust approach to overcome the challenge of high intra-class texture vari-

ation as seen in the case of Meningioma subtypes by statistically selecting

subbands that have a high probability of occurrence.
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3. Efficient and novel approach for feature selection that overcomes the prob-

lem of low variation in texture amongst the different classes often referred

to as low inter-class variation by selecting the most discriminant subbands.

4. High classification accuracies are obtained.

5. The technique is suited to problems where more than two classes of textures

need to be analysed and compared.

1.7 Thesis Organization

In this thesis, we present a novel textural analysis approach for Meningioma sub-

type classification. The next chapter provides a review of the various textural

analysis techniques that use wavelet packets. The chapter also introduces our

novel technique and some preliminary comparative results are presented. Chap-

ter 3 describes the technique in detail with an analysis of the stability of the

technique and analyses its robustness for Meningioma texture analysis and clas-

sification. In the subsequent chapter, clustering results are presented and vari-

ous distance functions are analysed for the computation of the novel Adaptive

Discriminant Wavelet Packet Transform (ADWPT). In Chapter 5, classification

results are presented with a new approach for feature selection. The thesis ends

with conclusions and future directions in Chapter 6.
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Chapter 2

Towards a Multiresolution

Analysis of Meningioma Subtype

Textures

Multiresolution image representation has been one of the most important develop-

ments in the domain of image analysis [100–103]. The multiresolution approach

was able to incorporate ideas from various disciplines which included subband

coding from signal processing, quadrature mirror filtering from digital speech

recognition and pyramid image processing. The strength of the technique lies

in the representation of the signal at more than one resolution so that a feature

which is undetected at one resolution is detected at another [30].

Multiresolution analysis acts like a virtual microscope that can be used to

analyse complex signals and textures at various spatial resolutions. Moreover,

the wavelet transform allows for signal analysis at various frequency resolutions

as well. Hence, multiresolution analysis using wavelets can be used to analyse an

image at various spatial-frequency resolutions so that some features may become

more obvious at one resolution while other features can be analysed better at

another resolution. The process is analogous to applying a microscope at different

power levels for the analysis of histological slides.

In this chapter, we describe the development of transform based techniques

as tools for multiresolution analysis of image textures such as Meningiomas. The

pros and cons of each technique are discussed in Section 2.1. Wavelet transforms
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and wavelet packets are described in Section 2.2 and Section 2.3 respectively. The

chapter concludes with some comparative results on the discrimination ability of

wavelet based methods and some other non-transform based methods.

2.1 Transform-based Analysis

In the 19th century, in his book “The Analytic Theory of Heat”, Fourier described

how an irregular and complex function can be represented as a sum of series of

sines and cosines. These series were referred to as the Fourier series. The new

theory proposed that all signals however complex, consist of simpler functions

such as sines and cosines. Fourier series led to the development of the Fourier

Transform. This was the beginning of a long tradition of transform based analysis.

The development of the Fourier transform had a significant impact on the field

of signal analysis [104–111], as it became possible to study complex phenomena

such as heat dissipation and sound generation in a completely new way.

The Fourier transform of a continuous signal f(t) can be computed as:

F (ω) =

∫ +∞

−∞
f(t)e−jωtdt (2.1)

where ejωt = cosωt+jsinωt. The Fourier transform allows for the conversion of a

signal from the time domain to the frequency domain. This means that individual

frequencies in a signal can be analysed independently, hence breaking the problem

of signal analysis into smaller more manageable parts using Fourier analysis.

Although the Fourier transform is a powerful concept in the respect that it allows

for frequency analysis of a complex signal, it is limited, as it assumes continuity

of a signal in infinite time or space. This implies that the Fourier transform of

a signal is possible only after assuming that the constituent frequencies would

remain persistent throughout the duration of the signal and no new signals and

frequencies would be added. A solution to the problem is taking the Short Time

Fourier Transform or the Windowed Fourier Transform.

The Short Time or Windowed Fourier Transform, as the name implies, is the

Fourier Transform of a signal at different points in time in a predefined time

window [112–114]. This means that a signal is divided into constituent parts
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at different points in time and then Fourier analysis of the signal in that time

span is carried out. Gabor introduced the concept of a Gaussian function as

a window in the synthesis phase. This resulted in what is now known as the

Gabor transform [115]. The issue with STFT is that the time-frequency analysis

is heavily dependent on the window chosen. The time-frequency resolution is

fixed over the entire time-frequency plane, since the size of the window is fixed

and the same window is used for the analysis of the whole signal. This introduces

the ‘time-frequency dilemma’.

The issue of time frequency resolution, as per the Heisenberg uncertainty

principle [116], is that a signal cannot be localised precisely both in time and

frequency at the same time. The problem occurs when the signal being analysed

changes too quickly or too slowly i.e. for high frequencies, a shorter window

is good for analysis but if the signal is low frequency, a wider window is more

suitable. In the former case, the signal is well localised in time but may not be

in frequency, as it represents a short segment of the signal, whereas in the latter

case it would be well localised in frequency but not in time since the analysis

window is too long.

This discrepancy in the spatial-frequency resolution would require examining

a signal at various trade-off points. This implies that a signal may need to be

analysed at various frequency and spatial resolutions with the analysing window

contracted and dilated to represent various frequency and spatial resolutions. The

need for a technique that would allow the analysis of a signal at various spatial

and frequency resolutions led to the development of the wavelet transform. Unlike

the Fourier transform, which severely limits the choice of the basis functions i.e.

only sines and cosines can be used, wavelet transform offers possibly a very large

number of choices in terms of basis functions. A basis function is an element

of the function space that may be used to represent other more complex signals

and functions as linear combinations of it. We shall see some examples of basis

functions for wavelet transforms later in this chapter.
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2.2 Wavelet Transforms

The wavelet transform is one of the most widely used tools in the area of sig-

nal and image processing. Its application area is diverse, ranging from image

compression to texture analysis. The wavelet basis effectively represents the con-

stituent frequencies that form the original signal at multiple frequency and time

resolutions.

The ability that differentiates the wavelet transform from other techniques

for signal analysis is that it allows the study of a signal both in time and fre-

quency domain at the same time [117]. Recently, the wavelet transform (WT) has

replaced the Fourier transform (FT) as the mainstay of transform-based image

processing. The WT differs from the FT, as it is based upon small wave functions

called wavelets, which differ from the sinusoid functions used in FT. Wavelets are

functions of varying frequency and limited duration. The advantage the WT has

over FT is that in the latter temporal information is hidden only to be available

after inverse FT whereas WT not only retains the frequency information, but also

the time or space information of the various components of the signal. This is

achieved by decomposing a signal both in time and frequency domains at multiple

resolutions.

Wavelet analysis is performed using the shifts and dilations of a prototype

function ψ(t) in the continuous domain. The function ψ(t) satisfies

∫ +∞

−∞
ψ(t)dt = 0 (2.2)

and is also referred to as the mother wavelet. When the mother wavelet is dilated

by a factor of a and translated by a scalar b, another wavelet denoted by ψab(t)

is derived which is given by,

ψab(t) =
1√
a
ψ(

t− b

a
) (2.3)

The wavelet transform Fw(a, b) of a function f(t) at a scale a and position b

is computed by correlating function f(t) with ψab(t)

Fw(a, b) =
1√
a

∫ +∞

−∞
ψ(

t− b

a
)f(t)dt (2.4)
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This transform is referred to as the Continuous Wavelet Transform (CWT).

The CWT in theory is infinitely redundant but may be used to extract impor-

tant characteristics of the signal being analysed as explained in [117]. The CWT

involves the analysis of a signal at a very high number of frequencies using di-

lations of the mother wavelet leading to many possible bases of signal represen-

tation and hence, introduces redundancy and complexity. An effort to overcome

the complexity of CWT implementation and reduce CWT redundancy, led to the

development of the Discrete Wavelet Transform (DWT).

The main idea behind the Discrete Wavelet Transform (DWT) is basically the

same as CWT. The time-scale representations are again obtained by translations

and dilations of a wavelet function, the only difference being that in the case of

DWT, the process is carried out using discrete values. The dilation is most often

carried out by a power of 2 and is referred to as dyadic. DWT is essentially the

sampled version of CWT.

The CWT is computed by changing the scale of the analysing function, shifting

it in time, convolving it with the original signal and integrating over time. In

DWT, filters with different cutoff frequencies are used to analyse a signal at

different scales. An input signal is analysed with a series of low pass and high

pass filters. The low pass filter is referred to as the scaling function while the

high pass is called the wavelet function. Two dimensional (2D) signals such as

images may also be analysed using DWT. Figure 2.1 shows the process of a 2D

wavelet transform where H(x) corresponds to the scaling function and G(x) is

the wavelet function and the results of a one level transform are shown as well.

As can be seen from the Figure 2.2, the wavelet transform decomposes an image

into scale-space representation referred to as subbands which represent different

frequency and spatial information. This is a very important property of the

wavelet transform as it decomposes complex textures into simpler components

aiding in their analysis. Another important property of the wavelet transform is

that it is invertible which means that the original signal can be recovered without

loss by employing the inverse wavelet transform.
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Figure 2.1: Process of obtaining a Wavelet transform of an image showing the

filter bank arrangement to compute 1-Level DWT
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Figure 2.2: A wavelet transform of Lena showing 1st level Decomposed image
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a. b.

Figure 2.3: Examples of Wavelets, a. Haar Wavelet, b. Meyer Wavelet (Source

Matlab)

As an improvement to the Fourier analysis, the idea of wavelet analysis is to

determine how an analysing function (wavelet) needs to be modified to approx-

imate a signal. Various kinds of wavelet functions have been invented and used

for signal analysis. Figure 2.3 shows some examples of a few well known wavelets.

Wavelets have the capability to automatically adapt to different components of

a signal by employing a small window to look at brief, high frequency compo-

nents and a large window to look at long-lived and low frequency components. A

wavelet function acts like a ’mathematical microscope’ by compressing the wavelet

to increase the magnification and dilating it to reduce it [117]. Hence, the signal

can be analysed at various scales. The analysing function can be shifted over the

signal for analysis at different times. Hence, its an ideal tool for constructing a

virtual microscope for the analysis of meningioma subtypes.

Wavelet analysis may be carried out by a pair of functions φ(x) ∈ L2(R)

(scaling function) and ψ(x) ∈ L2(R) (wavelet function) which are equivalent to

the functions H(x) and G(x) respectively shown in Figure 2.1. L2(R) denotes

the vector space of measurable and square-integrable one dimensional functions

[102]. The approximation of the signal f(x) at the resolution 2j, A2jf(x), is

characterised by

A2jf = (〈f(u), φ2j(u− 2−jn)〉)n∈Z (2.5)
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Once the approximation is obtained, the next stage is computation of the

detail. Detail is defined as the difference of information between the approxima-

tions of a function f(x) at resolutions 2j and 2j+1. (2−jψ2j(x − 2−jn))(n,j)∈Z2 is

an orthonormal basis. Hence, ψ(x) is called an orthogonal wavelet. The discrete

detail signal at the resolution 2j is given by,

D2jf = (〈f(u), ψ2j(u− 2−jn)〉)n∈Z (2.6)

If the original signal has N samples, then the discrete signals D2jf and A2jf

have 2jN samples each. Hence the wavelet representation can be written as,

(A2jf, D2jf)−J≤j≤−1 (2.7)

The wavelet representation would have the same total number of samples

as the original signal, but divided amongst the approximations A2jf and D2jf .

This analogy can be extended to images and in this case the function space

becomes L2(R2), since we are dealing with 2D signals. The signal is now written

as f(x, y) ∈ L2(R2). The scaling function now becomes Φ(x, y), which is written

as,

Φ(x, y) = φ(x)φ(y) (2.8)

The above equation emphasises the fact that the scaling is performed in both

the horizontal and the vertical directions as seen in Figure ??a. Consequently,

the approximation of an image f(x, y) at a resolution 2j is characterised by,

A2jf = (〈f(x, y), Φ(x− 2−jm, y − 2−jn)〉)(m,n)∈Z2 (2.9)

Now, let ψ(x) be the one dimensional wavelet associated with the scaling

function φ(x). The three possible 2-D wavelet functions are then given by,

Ψ1(x, y) = φ(x)ψ(y), Ψ2(x, y) = ψ(x)φ(y), Ψ3(x, y) = ψ(x)ψ(y) (2.10)
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It must be noted here that Ψ1(x, y) and Ψ2(x, y) perform wavelet filtering

in one direction and scaling in another leading to horizontal and vertical de-

tails whereas Ψ3(x, y) leads to the diagonal detail with wavelet filtering in both

directions. The three detail images are then given by,

D1
2jf = (〈f(x, y), Ψ1(x− 2−jm, y − 2−jn)〉)(m,n)∈Z2 (2.11)

D2
2jf = (〈f(x, y), Ψ2(x− 2−jm, y − 2−jn)〉)(m,n)∈Z2 (2.12)

D3
2jf = (〈f(x, y), Ψ3(x− 2−jm, y − 2−jn)〉)(m,n)∈Z2 (2.13)

In a classical wavelet transform, the filtering process defined is carried out for

the approximation A2j iteratively to obtain further detail and approximations at

various levels j. This process is also referred to as the discrete wavelet transform.

The wavelet decompositions of a 2D signal can be viewed as nodes of a tree.

The wavelet decompositions can be maintained in a quadtree structure, with the

parent being the original subband or image and the children being the wavelet

packet decompositions of the parent. The tree is referred to as the wavelet tree

and the various nodes represent the different spatial-frequency information at

various resolutions as shown in the Figure 2.4.

Figure 2.4: Wavelet tree showing the subband indices, depth (d) and frequency

indices (p, q)

The nodes of the tree are expressed in terms of the indices d, p, q, where d is

the depth of the tree (which is related to the spatial resolution) and p, q represent

the frequency resolution indices. These nodes are referred to as subbands and

can be obtained using the convolution operator as,
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Wd+1,2p,2q = Φ ∗Wd,p,q (2.14)

Wd+1,2p+1,2q = Ψ1 ∗Wd,p,q (2.15)

Wd+1,2p,2q+1 = Ψ2 ∗Wd,p,q (2.16)

Wd+1,2p+1,2q+1 = Ψ3 ∗Wd,p,q (2.17)

where d represents the depth of the wavelet tree and p, q are the frequency indices

of the subband. The subband W0,0,0 = I corresponds to the original image I being

analysed. The three 2D wavelet functions are given by Ψi, where i = 1, 2, 3 and

the scaling function is given by Φ. The above analogy will be used to represent

the process of multiresolution analysis throughout this thesis.

The discrete wavelet transform (DWT) decomposes the input signal iteratively

by filtering the approximation at various spatial and frequency resolutions. The

detail subbands at each stage are not decomposed further. Hence, the subbands

with frequency indices p = 0 and q = 0 are the only subbands that are decomposed

at each level of the decomposition for DWT.

The detail subbands contain the high frequency information decomposed from

the original image and the approximations. There is substantial information

in detail components that can be further filtered to obtain a more elaborate

representation of the original signal. The filtering of detail components forms the

basis of the Wavelet Packet Transform.

2.3 Wavelet Packet Transform (WPT)

A generalisation of the discrete wavelet transform (DWT) led to the development

of the wavelet packet transform (WPT). The difference between DWT and WPT

is that in WPT both approximation and details are further filtered using the

scaling and wavelet functions. Wavelet packet analysis of an image leads to a

wavelet packet tree, the nodes of which may be indexed in terms of the depth d

and subband indices p, q. Unlike DWT, in WPT subband indices with p, q values

greater than 0 are also decomposed which are equivalent to the detail subbands.

Consequently, decomposing the approximation as well as the detail leads to

an overcomplete wavelet packet basis representation, the terminal nodes of which
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are referred to as the full wavelet packet transform. It must be noted that such a

transform is overcomplete when all the nodes at all the various levels are included

in the analysis.

2.3.1 Full Wavelet Packet Transform (FWPT)

In the Full Wavelet Packet Transform (FWPT), an image is decomposed into

its respective subbands and then each subband is decomposed further until a

predefined maximum depth is reached. Figure 2.5 shows the 2-level full wavelet

packet tree. As Figure 2.5 shows, a wavelet packet transform tree is a poten-

Figure 2.5: Full wavelet packet representation of an image

a. b.

Figure 2.6: Different wavelet packet representations

tially redundant representation. This representation could be reduced to have

different permutations of the terminal nodes but still retain all the information

required to recover the original signal as can be seen in Figure 2.6. There are

many possible plausible bases that could be acquired by keeping some nodes and

truncating others as shown in Figure 2.6. The number of possible bases increase

exponentially as the level of decomposition d increases and is given by,

N0 = 1 (2.18)
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Nd = N4
d−1 + 1 (2.19)

Hence, the number of possible bases at a certain level is related to the number

of bases at a previous level as deduced by Rajpoot in [118]. The important

issue is what subbands to keep and which ones to get rid of. What spatial and

frequency domain information is more useful for a given application? Hence, an

algorithm for some sort of subband selection is very important for compactness

and efficiency.

As stated earlier, subband selection remains an issue with there being a large

number of possible wavelet bases for a given full wavelet packet tree. Coifman

and Wickerhauser [119] combined dynamic programming with wavelet analysis

to come up with a technique for obtaining the best wavelet packet basis. Thus

the issue of redundancy in the overcomplete wavelet representation was resolved.

In the next section, a novel technique is presented that performs subband selec-

tion by acquiring representations that help in differentiating between signals or

textures under study. It can be used to obtain an optimal wavelet-based repre-

sentation for meningioma subtype classification.

2.3.2 Adaptive Discriminant Wavelet Packet Transform

(ADWPT)

Since the invention of best-basis selection algorithm by Coifman and Wicker-

hauser [119] many new algorithms have been proposed for the selection of a

wavelet basis. Some of these will be discussed in the next section. Different opti-

mal bases have been computed for various applications. In this thesis, we present

a new algorithm for wavelet packet basis selection designed to obtain a wavelet

packet basis that is optimal for differentiating between signals and textures being

analysed.

Our novel algorithm, the Adaptive Discriminant Wavelet Packet Transform

(ADWPT), seeks to obtain an optimal wavelet representation by optimising the

discrimination power of the wavelet-bases. The ADWPT as a result obtains the

optimal wavelet basis that best differentiates between signals under study. To

define the ADWPT algorithmically, we define a discriminant function D̄ which

may be represented as
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2.4 Wavelet Packets for Texture Analysis

D̄(Υ, B) (2.20)

where Υ represents the training data-set which in this instance comprises of the

four meningioma subtypes included in this study and B represents the wavelet

packet bases. The objective of our computation would be to find a wavelet packet

decomposition B∗ that has the maximum discriminant function D̄ representing

the overall discrimination power of a best basis B∗.

B∗ = argmax
B

D̄(Υ, B) (2.21)

The above equation represents the computation function over a set of all possi-

ble wavelet packet trees to compute the wavelet packet representation that best

differentiates between the different meningioma textures. The ADWPT thus ob-

tained contains the subbands that are most discriminant. Hence, the aim is to

obtain a set of subbands that collectively have the highest discrimination power.

Various stages in the computation of the ADWPT are described in the next chap-

ter. Next, we present an overview of the various wavelet packets based techniques

used for texture analysis. The literature on meningioma classification and the use

of wavelets in histological analysis was reviewed in Chapter 1.

2.4 Wavelet Packets for Texture Analysis

Over the last few decades, a large body of research work has been conducted in the

area of texture analysis. Zhang and Tan [120] presented a review of various tex-

ture analysis methods. Various mechanisms and techniques have been employed

ranging from statistical approaches to transforms and model based methods. En-

tirely new paradigms have been envisaged and efforts have been made to mimic

the process of human perception in machines. Hence, the techniques employed

for texture discrimination and classification are varied and bring together knowl-

edge from various domains and fields of study. In this thesis, we are mainly

concerned with techniques pertaining to the Wavelet Packet Transform (WPT).
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2.4 Wavelet Packets for Texture Analysis

In this section, the aim is to present a synopsis of the work done in texture anal-

ysis by employing wavelet packet transform and the various best bases selection

techniques that have been used.

Many subband selection algorithms for wavelet packets have been presented.

Some researchers perform subband selection whereas others have chosen to use

all the subbands obtained in a wavelet packet decomposition. Many criteria

have been used for subband selection, since the entropy based criterion proposed

by Coifman and Wickerhauser [119]. Chang and Kuo [121] used energy as the

criterion for selection of subbands by comparing subbands on the same scale

and decomposing those subbands that have comparatively high energy. Pun

and Lee [122] chose subbands that have high energy and achieve rotation and

scale invariance using log polar wavelet signatures. Chen and Kundu [123] used

wavelet packets and Hidden Markov Models (HMMs) for rotation and gray-scale

invariant texture identification for Brodatz textures. The lowest level subbands

in the wavelet packet tree were used to extract features. Laine and Fan [124]

also performed Brodatz texture classification using wavelet packets but chose to

select subbands arbitrarily by selecting all subbands from levels 1 to 3, only level

3, level 2 to 3 and only level 4, producing comparative results. Sengur et al. [125]

combined a multi-layer perceptron classifier with wavelet packets for Brodatz

texture classification. A 2-level wavelet packet decomposition was obtained for

various textures in the Brodatz album and all subbands were used for the analysis.

The concept of wavelet frames was introduced by Unser [126] which was ex-

tended by Kim and Kang [127] to wavelet packets. Kim and Kang [127] used

wavelet packet frames for Brodatz texture classification and segmentation. The

frames with the greatest variance were selected producing high accuracies. Ra-

jpoot [128] employed the local discriminant wavelet packet bases for subband se-

lection which involved determining the discrimination power of a subband using

various distance functions, namely Kullback-Leibler divergence, Jensen Shannon,

Euclidean and Hellinger distance, for subband selection. The principle is that

the higher the discrimination power the better the subband. A comparison is

made between the parent and child nodes in the wavelet packet tree. Bhalerao

and Rajpoot later extended the work in [129] to show that the discrimination

power is an important measure that can indicate the usefulness of a subband in
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differentiating between various textures. They add Bhattacharya distance to the

set of distance functions and show that it performs better in most instances.

Some recent work on wavelet packet subband selection has been carried out

by Huang and Aviyente [130, 131]. They propose a new mechanism for selec-

tion of subbands based upon mutual information amongst the various subbands.

Two algorithms are presented, namely Mutual Information based Subband Se-

lection (MISS) and Subband Grouping and Selection (SGS). Their algorithms

are shown to perform better than the traditional subband selection paradigms

described above. The techniques aim to compare all subbands at the same time

based upon their energy values. The aim is to obtain a sparse representation

whose coefficients are as independent as possible. This technique has been shown

to produce promising results in comparison with other techniques for subband

selection but their method compares low-pass subbands directly with high-pass

subbands which may be flawed, since the frequency information they represent

is very different. Moreover, the technique may result in selection of the parent

subband with the children which would not have information exactly indepen-

dent of the parents, a criterion which the technique aims to maximize i.e. mutual

independence.

Some comparisons between wavelet packets and other techniques have also

been carried out. An elaborate comparison of various filters namely Law masks,

ring/wedge filters, Gabor filters, wavelet transforms, wavelet packets and wavelet

frames, quadrature mirror filters, discrete cosine transform, linear predictors and

finite impulse response filters was performed by Randen and Husoy [132]. The

textural data used for the analysis was obtained from the Brodatz album, the

MIT Vision Texture database and the MeasTex Image Texture Database. The

results showed that no one filter performs better for all data sets and the study

was important in the sense that the test and training data is completely separated

with no overlap. This is very much the case in our study for meningioma subtype

classification.

Arivazhagan et al. [133] uses Gabor wavelets for rotation invariant texture

classification of Brodatz textures and compares the results with those of discrete

wavelet transforms, indicating that Gabor wavelets perform better. Livens et al.

[134] employed wavelet transform and wavelet packet transforms for corrosion
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image classification. Wavelet packets perform better with no subband selection.

Brodatz textures have been used in all the studies mentioned in this section.

As the literature review indicates, wavelet packets have been used quite widely

for texture analysis but they have not been employed as widely in medical texture

analysis, specifically in histology. Although some work has been carried out for

wavelet packets [70] they are not as popular as other techniques such as Gabor or

the Discrete Wavelet Transform. The reason for this remains the complexity of

wavelet packets due to the exponential rise in number of subbands as the depth of

the transform increases. There is also the issue of subband selection. Many stud-

ies indicate that the wavelet packet transform is better for texture classification

in comparison to the wavelet transform, provided a viable mechanism for sub-

band selection is used. Gabor transform and Gabor wavelets produce comparable

results to wavelet packets as indicated in some studies [132].

In the next section, we provide a comparison between three transform based

techniques, namely the wavelet transform, the full wavelet packet transform, the

Gabor transform and the two spatial domain texture analysis techniques namely

Local Binary Patterns (LBPs) and Gray Level Co-occurrence Matrix (GLCMs)

for meningioma subtype clustering. We finally compare all these results with

the Adaptive Discriminant Wavelet Packet Transform (ADWPT) and show that

ADWPT performs better.

2.5 Meningioma Clustering: A Preliminary Study

Many transform and non-transform based techniques have been used in texture

analysis for feature extraction. In this section, we compare the results for menin-

gioma clustering obtained using some non-transform techniques namely GLCMs

and LBPs and some transform based techniques such as Gabor and types of

wavelet transforms with ADWPT. In the results shown all images in our data-set

were used.
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2.5.1 Non-transform based Textural Analysis Techniques

Non-transform techniques have found wide application in histological image clas-

sification as indicated in Chapter 1. We discuss two and present their results.

2.5.1.1 Gray Level Cooccurrence Matrix (GLCM)

Since their invention [135], GLCMs have been used widely for texture analysis. A

comparison between ADWPT and GLCM was presented in [52]. Figure 2.7 shows

the projections on the first three principal components obtained for the GLCM

Energy feature using Principal Component Analysis (PCA) [136]. In this GLCM

analysis, 4 directions namely 0o, 45o, 90o and 135o were used with 5 distances i.e.

1 to 5. 20 GLCM matrices are obtained and the GLCM-based energy feature is

used to construct the feature set.

The four different colours represent the four meningioma subtypes. Blue cor-

responds to Fibroblastic, red corresponds to Meningiotheliamatous, green cor-

responds to Psammomatous and yellow represents the Transitional. Figure 2.7

clearly shows that there is no clear separation between any of the meningioma

subtypes with Meningiotheliamatous, Psammomatous and Transitional forming

a cluster at the centre while Fibroblastic is dispersed all around the centre with

some samples in the middle.

2.5.1.2 Local Binary Pattern (LBP)

Local binary patterns (LBP) have also been widely used for texture analysis.

Some comparative results between LBP and ADWPT were presented in [137].

Figure 2.8 shows the projections on the first three principal components obtained

for the LBP features using PCA. A radius of 1 was chosen and 8 neighbourhood

pixels are used in the analysis. Other radii and number of pixels were also used

with no apparent improvement in results. A more detailed description of the

technique can be found in the paper by Ojala et. al [138].

The results show that Meningiotheliamatous forms a relatively good cluster

at the centre but is intermixed with Transitional samples. Fibroblastic samples

are again dispersed while Psammomatous is projected vertically. The technique

seems to be forming clusters that look better than the results for GLCM.
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2.5.2 Transforms based Textural Analysis

An advantage of transform based multiresolution analysis is that apart from al-

lowing analysis of a signal at different scales, it also breaks down the input signal

into various constituent frequencies. This implies that at each scale of decomposi-

tion, each constituent band represents frequency content which may be classified

as low frequency (approximation) or high frequency (detail). Hence, if η rep-

resents the frequency content in 2D signal f(x, y) with the highest frequency

represented by η+ and the lowest frequency by η−, and if a represents the fre-

quency content of approximation, ω1 the horizontal detail, ω2 the vertical and ω3

the diagonal detail, then the following holds,

a− < a < a+ (2.22)

ω1
− < ω1 < ω1

+ (2.23)

ω2
− < ω2 < ω2

+ (2.24)

ω3
− < ω3 < ω3

+ (2.25)

η− < ω1
− ≤ ω2

− < a− (2.26)

a+ < ω1
+ ≤ ω2

+ < η+ (2.27)

This frequency resolution will help us in acquiring features. Since the fre-

quency content has been resolved into low frequency and high frequency aspects

with high frequency further divided into three levels, therefore, the process of

extracting features is aided. This frequency resolution in essence distributes the

inherent features of the image into various subbands representing periodic tex-

ture, horizontal edges, vertical edges and diagonal edges at various scales. This

in turn helps in obtaining a feature-set that would be a good representation of

the textures under study.
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2.5.2.1 Gabor Analysis

Gabor analysis of the textures was carried out as proposed by Ma and Manjunath

[139]. Four scales and six orientations were used to provide texture representa-

tions at various scales and orientations. Energy feature is used to construct the

feature set so that a comparative analysis may be made between the various tech-

niques discussed in this section. The mean and variance as suggested by Ma and

Manjunath was also used but no improvement was seen in the results.

Figure 2.9 shows the results obtained for Gabor Wavelet Analysis. No sepa-

ration is seen amongst the Fibroblastic, Meningiotheliamatous and Transitional

subtypes. Psammomatous is much better differentiated with some points inter-

mixed with the cluster at the centre.

2.5.2.2 Discrete Wavelet Transform (DWT)

A four level discrete wavelet transform was obtained as discussed previously in

this chapter. Energy of each subband was used as a feature. Figure 2.10 shows

the results for the discrete wavelet transform. The projection results on the

first three principal components are comparable with those of Gabor Wavelets.

Psammomatous is again much better separated while the other three meningioma

subtypes are all clustered in the middle.

2.5.2.3 Full Wavelet Packet Transform (FWPT)

The Full Wavelet Packet Transform (FWPT) has been discussed in detail in

previous sections. A four level FWPT is obtained and the energy feature is

acquired from each subband. Figure 2.11 shows that the results do not improve

much. Psammomatous is still the best differentiated with Transitional samples

clustered southwards while Fibroblastic and Meningiotheliamatous inter-mixed.

2.5.2.4 Adaptive Discriminant Wavelet Packet Transform (ADWPT)

The Adaptive Discriminant Wavelet Packet Transform (ADWPT) was also car-

ried out to the fourth level. The subband selection for the most discriminant
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decomposition was obtained using the Fisher Discriminant. A detailed discussion

on ADWPT will be presented in the next chapter.

Figure 2.12 shows the PCA analysis results (projections on the first three

principal components) obtained using the energy feature from each subband. The

results are quite encouraging. ADWPT forms the most defined cluster for Psam-

momatous differentiating it very well from all the other subtypes. Transitional is

also seen to form clusters around the edge of the cluster intermixed with Fibrob-

lastic and Meningiotheliamatous samples. There is no clear distinction between

the Fibroblastic and Meningiotheliamatous samples but the results produced are

the best so far as Psammomatous is very clearly separated while Transitional has

also formed a distinct cluster.

The above results have compared some non-transform and transform based

textural analysis techniques. The results show that ADWPT performs better

amongst the transform based techniques while LBP does better in comparison to

GLCM in non-transform based techniques. However, the preliminary PCA results

indicate that ADWPT results are encouraging as it overall performs much better

than LBP in differentiating between the meningioma subtypes. This is due to

the fact that the multiresolution analysis using ADWPT allows for both spatial

and frequency resolution whereas LBPs strength lies only in spatial analysis.

The comparative results here show that ADWPT is clearly a good technique for

meningioma subtype classification.

2.6 Summary and Conclusion

This chapter highlighted the importance of multiresolution analysis for texture

analysis. We show that transform based analysis has numerous advantages over

non-transform based techniques. Wavelet packet based methods are shown to

produce better clustering results in comparison to other multiresolution tech-

niques.

We present some comparative results for meningioma clustering with some

transform and non-transform based techniques. The ADWPT provides the best

results for clustering meningioma subtypes. In the next chapter, we develop the

ADWPT further with a detailed discussion on the choice of the discriminant
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function and the construction of the multiresolution texture approximation and

how they impact the ADWPT best basis (subband selection).
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Figure 2.7: Projections on the first 3 principal components obtained using the

PCA analysis of the GLCM based Energy feature-set (Fibroblastic (F), Menin-

giotheliamatous (M), Psammomatous (P) and Transitional (T))
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Figure 2.8: Projections on the first 3 principal components obtained using the

PCA analysis of the Local Binary Patterns based feature-set (Fibroblastic (F),

Meningiotheliamatous (M), Psammomatous (P) and Transitional (T))
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Figure 2.9: Projections on the first 3 principal components obtained using the

PCA analysis of the Gabor Transform based Energy feature-set (Fibroblastic (F),

Meningiotheliamatous (M), Psammomatous (P) and Transitional (T))
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Figure 2.10: Projections on the first 3 principal components obtained using the

PCA analysis of the Discrete Wavelet Transform based Energy feature-set (Fi-

broblastic (F), Meningiotheliamatous (M), Psammomatous (P) and Transitional

(T))
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Figure 2.11: Projections on the first 3 principal components obtained using the

PCA analysis of the Full Wavelet Packet Transform based Energy feature-set (Fi-

broblastic (F), Meningiotheliamatous (M), Psammomatous (P) and Transitional

(T))
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Figure 2.12: Projection on the first 3 principal components obtained using the

PCA analysis of the Adaptive Discriminant Wavelet Packet Transform (Fisher

Distance) based Energy feature-set (Fibroblastic (F), Meningiotheliamatous (M),

Psammomatous (P) and Transitional (T))
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Chapter 3

ADWPT and Its Stability

In this chapter, a detailed description of the various stages of the Adaptive Dis-

criminant Wavelet Packet Transform (ADWPT) is presented. The most impor-

tant aspect of ADWPT is the multiresolution comparison of textures. Texture

class comparison involves two main steps namely texture template construction

and computation of subband discrimination power which are described in detail

in this chapter. An introduction to the various distance functions that have been

used in the study for computing the discrimination power of a subband is also

presented. The chapter discusses the issue of variability in ADWPT decomposi-

tion due to the variation in Meningioma textures used. An analysis on what type

of texture template construction methods and distance functions are better for

ADWPT computation is also presented.

As the name suggests ADWPT is an adaptive approach. This implies that it

adapts to the problem semantics and incorporates problem domain information

in order to resolve it. This enables ADWPT to be a viable approach for problems

such as Meningioma subtype classification which have high texture variability.

ADWPT is able to acquire textural features from various scale-space representa-

tions for variable and complex textural data by adapting to the type of texture

data under study. However, this introduces the issue of ADWPT decomposition

variability due to the variation in the data set. This would be referred to as

ADWPT stability. Stability of ADWPT decomposition is important for extrac-

tion of a consistent set of features for a texture classification problem such as

Meningioma subtype classification. If there is no stability then no consistent set

71



3.1 Computation of ADWPT

of features may be acquired. Section 3.1 describes the process of ADWPT com-

putation with a detailed discussion on template construction and computation

of subband discrimination power while section 3.2 describes the issue of stabil-

ity of an ADWPT representation in detail. The various stages of ADWPT are

described next.

3.1 Computation of ADWPT

The various stages of ADWPT are presented below.

1. Pre-processing (color to greyscale conversion) of each image.

2. Full Wavelet Packet Transform (FWPT) of each image.

3. Texture template construction for each texture class using the image FWPT

trees computed earlier.

4. Computation of the discrimination power of each subband.

5. Selection of discriminant subbands so that ADWPT decomposition is ob-

tained.

3.1.1 Preprocessing

Before the main stages of ADWPT, some preprocessing is applied to the im-

ages. First and foremost, the images are converted to gray scale. The following

expression is used for conversion.

Ig = 0.299IR + 0.587IG + 0.114IB (3.1)

where Ig represents the image I in gray scale whereas IR represents the red

channel, IG is the green channel and IB is the blue channel. This allows the

reduction of image data by incorporating info from all channels in to a gray scale

image representation. Subsequently, each image is zero-meaned which essentially

involves subtracting the image mean from all the pixels and is given by,
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Īg(m,n) = Ig(m,n)− Iµ
g (3.2)

where Īg(m,n) represents the zero-meaned grey scale image while m = 0 to MI−1

and n = 0 to NI−1. MI×NI is the resolution of the image. Iµ
g is the mean of the

pixel values in the image. This is essentially the zero-meaning the data so that

the image brightness does not effect the computation of the wavelet transform.

Next, the FWPT of the grey scale image is obtained.

3.1.2 Full Wavelet Packet Transform (FWPT)

Daubechies 8-tap filter is used to compute the FWPT of up to 4 levels. An

increase in the number of transform levels causes the FWPT computation com-

plexity to rise exponentially. For analysing Meningioma subtype images of size

512× 512 each, 4 level transform was found to be adequate. A total of 340 sub-

bands are found in the FWPT decomposition tree of up to 4 levels. A 5 level

FWPT causes the number of subbands to rise to 1364 which is a substantial in-

crease in the number of features. This causes the complexity to increase many

folds and does not provide substantial benefit. A 3 level transform was not used

because the resolution of the terminal subbands was quite high at 64 × 64. A 4

level transform leads to subbands 32 × 32 in size and keeps the number of sub-

bands at 340 which offers a good compromise as to the complexity of subband

selection (it will be described later) and the 32×32 size of the subband allows for

effective comparison of textures. Therefore, all analysis in this thesis is carried

out with a transform of up to 4 levels.

Meningioma subtype classification with several wavelet filters was carried out

in [69] and the various wavelet properties useful for textural analysis were inves-

tigated. Daubechies 8-tap filter was found to be one of the best wavelet filters for

the analysis of Meningioma images. Hence, Daubechies 8-tap filter was chosen for

all analysis in this thesis. The next stage is the computation of the multiresolution

texture class representations so that the texture classes can be compared.
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3.1.3 Texture Class Representation

An important step in ADWPT is the computation of representative texture tem-

plates for each textural class (Meningioma subtype texture). Hence, the aim is

to come up with a standard texture template Ta representing each texture type

a.

Ta = z{ai} (3.3)

where ai represents textures belonging to each class and i = 1...Ns while Ns is the

number of texture samples. The simplest mechanism for obtaining a template is

to choose the image that is most representative of each texture type and use the

FWPT of that image for comparing the textures. In our first publication [140],

a sample image that best represented the texture associated with a Meningioma

subtype was chosen as a template for ADWPT computation. However, this was

soon found to be inadequate for our problem domain because of the inherent

complexity and intra-class variability in the texture classes being compared as

discussed in chapter 1. Therefore, a novel solution to the problem was found

which involved the computation of multiresolution texture approximations as de-

scribed next.

Multiresolution Adaptive Wavelet Texture Class Templates (MAWTT)

The ADWPT algorithm aims to compare the various Meningioma subtype

textures so that the most important and useful features that can be used to dif-

ferentiate between textures are extracted. Texture images have components that

can adequately represent textures referred to as textons in the literature [141].

Textons are defined as atomic features of a texture. Multiresolution analysis al-

lows for the decomposition of the texture so that elements such as textons may

be identified at various frequency and spatial resolutions. In a multiresolution

wavelet-based decomposition, the texture is decomposed into simpler components

in the shape of sparse subbands each representing the texture at a different spa-

tial and frequency resolution. These subbands represent texton-like information

as they capture intrinsic textural properties in various spatial frequency domains

and hence can be used to compare textures in a meaningful way.
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Multiresolution Adaptive Wavelet Texture Class Templates (MAWTT) as the

name suggests are multiresolution wavelet based representations that are con-

structed from the available image data and hence are referred to as adaptive.

The MAWTTs represent textural characteristics at various spatial frequency res-

olutions represented by the subbands in the MAWTT tree. The computation

of MAWTTs has many stages with the first stage being the computation of the

probability functions (pfs) of all the subbands in the FWPT decomposition.

Probability Function of Subbands

A probability function (pf) for each subband is computed by obtaining the

normalised energy of the subband coefficients. A pf is computed by dividing the

energy of a coefficient by the total energy in a subband as follows,

sd,p,q(m,n) = x2
d,p,q(m,n)/

M−1∑
i=0

N−1∑
j=0

x2
d,p,q(i, j) (3.4)

where xd,p,q(m,n) is the coefficient at location (m,n) in the subband Wd,p,q of

size M × N at depth d and frequency indices p, q. This is done to acquire a

distribution of energy in the subbands. This energy distribution is referred to as

a probability function of the subband because it follows the properties associated

with a probability function (i.e. the sum of all the coefficients is equal to 1). A

probability function estimates the energy in a subband. The subband coefficients

energy provides an estimate of how much textural information is present in the

scale-space resolution represented by the subband.

The FWPT produces sparse representations with textural data localized both

in space and frequency in each subband. Hence, the textural data is de-correlated

i.e. filtered in to various domains with low frequency and high frequency content

found separately in different subbands. Moreover, the subbands also represent the

texture at various spatial scales. Hence, the Meningioma texture at various spatial

and frequency resolutions is analysed just as a microscope analyses Meningioma

slides.

As mentioned earlier, a pf estimates the energy distribution in a subband so

that the presence of useful information in the subband can be ascertained. It
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3.1 Computation of ADWPT

also represents the probability of occurrence of texture in a subband at the spa-

tial frequency resolution with each coefficient’s energy acting as an estimate of

presence of texture. The idea is to estimate the probability of the existence of

useful textural characteristics in a subband in the multiresolution wavelet-based

decomposition for a texture class. The process is similar to maximum likelihood

estimation and the estimate obtained would be referred to as the pseudo probabil-

ity estimate (ppe) as it is not equivalent to a maximum likelihood estimate. The

probability estimate for a subband coefficient is obtained over the entire sample

space. We would refer to it as a pseudo probability estimate (ppe) as averaging

of normalised energies is performed to derive a ppe.

As stated earlier, the averaging is done to derive an estimate of the energies in

each subband for a textural class, so that subsequently when the textures are to

be compared (since most distance functions compare energies), the distance func-

tions prove to be effective. Using single images as textural templates is though

the simplest mechanism but is not the best approach in this instance as there is

considerable intra-class textural variability. No single image, hence, could serve

as an effective basis for comparing these textures. Another method could have

been comparison of subbands based upon features extracted such as energy of the

subband. This would imply averaging the energy of each and every corresponding

subband for all images belonging to a textural class. An advantage of such an

approach would be that rotation invariance may be acquired. The disadvantage

would be that when comparing textures only one feature per subband would be

compared rather than a pixel wise comparison or the comparison of statistical

properties of subband textures. This may be a viable approach and may become

a subject of a future study.

The averaging of the pfs of corresponding subbands from images representing

a textural class, such as a Meningioma subtype, estimates the underlying tex-

tural properties captured by the spatial-frequency resolution represented by the

subband. However, there are two averaging approaches that may be applied i.e.

pairwise (using two pfs) or averaging all the pfs over the entire sample space at

the same time referred to as pseudo and standard averaging respectively. Both

approaches are used to compute the subband probability estimates of the sub-

band pfs so that MAWTTS representing the texture classes can be constructed.

76



3.1 Computation of ADWPT

The MAWTTs obtained using standard and pseudo-averaging are described next.

Standard Averaging of the Probability Functions

Standard averaging of the pfs is the averaging of the normalised energies in a

subband over the entire texture class, i.e. all images available representing a tex-

ture class. This implies that all the samples belonging to a particular Meningioma

subtype are decomposed in to a FWPT representation and then the coefficients

in the corresponding subbands are averaged. The averaging process is given by,

Aa
m,n =

Na∑
i=1

sai
d,p,q(m, n)/Na (3.5)

where sai
d,p,q(m,n) is the (m, n)th coefficient of the pf s of a subband at depth d

and frequency indices p, q for the training image ai belonging to class a while Na

is the number of samples belonging to class a. Ad,p,q is referred to as a pseudo

probability estimate of the subband Wd,p,q.

Pseudo-averaging of the Probability Functions

The pseudo average of the pfs is computed by iteratively computing the pair-

wise averages of the corresponding subbands in the wavelet-based multiresolution

representation of the images in a texture class. The process can be described as

given below,

Aa2
d,p,q(m,n) =

sa1
d,p,q(m,n) + sa2

d,p,q(m,n)

2
, (3.6)

Aai
d,p,q(m,n) =

A
ai−1

d,p,q(m,n) + sai
d,p,q(m,n))

2
, i = 3 . . . Na. (3.7)

where sai
d,p,q(m, n) is the (m,n)th value of the pf of a subband Wd,p,q for the image

ai belonging to class a and Na is the number of training samples available for

the texture class a. Aa
d,p,q(m,n) corresponds to the pseudo probability estimate

(ppe) value for the class a at the m,nth position in the pf. It is important to

note that an average of the normalized energies of a subband for two images

is computed per iteration. The objective is to acquire a basic model of energy

distribution in a subband for each class so that the difference between the classes

may be estimated. This averaging is to be referred as pseudo-averaging as it is
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3.1 Computation of ADWPT

different from standard averaging. This is done to account for any sudden rise

or fall in the pfs. As can be seen in Figures 3.1 and 3.2, the pseudo-averaging is

better able to follow the trends in subband coefficients. It can be seen from the

figures that pseudo-averaging approximates the discontinuities (that is, jumps

or high values) as well as the most repeated coefficient values (mode) better

than standard averaging. Hence, pseudo-averaging provides better probability

estimates in comparison to standard averaging.
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a.

b.

Figure 3.1: Plots of how closely standard averaging and pseudo-averaging of the

coefficients per subband approximate the mode (most repeated coefficient) and

the highest value recorded for that coefficient over the entire sample space a.

Fibroblastic (subband (3,3,0)) b. Meningiotheliamatous (subband (1,0,1))
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a.

b.

Figure 3.2: Plots of how closely standard averaging and pseudo-averaging of the

coefficients per subband approximate the mode (most repeated coefficient) and

the highest value recorded for that coefficient over the entire sample space a.

Psammomatous (subband (1,0,1)) b. Transitional (subband (4,3,2))
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3.1 Computation of ADWPT

Pseudo-averaging vs. Standard Averaging: An Analysis

The aim of the methods described above is to come up with a multiresolution

wavelets decomposition that represents the salient characteristics of the texture

classes being compared. The result is a pseudo probability estimate (ppe) which

is representative of the textural properties of a texture class at each subband level.

The ppes of the pfs of each subband together form the Multiresolution Adaptive

Wavelet Texture Templates (MAWTTs). The idea is to obtain MAWTTs that

would closely correspond to the textures in the original texture samples. Fig-

ures 3.3-3.6 show the MAWTT subbands constructed using pseudo and standard

averaging. It can be seen from the figures that the intrinsic texture characteris-

tics such as formation of matrix in Fibroblastic images, lobulated cells in case of

Meningiothelial, presence of blobs for Psammomatous and formation of whorls

in case of Transitional are captured well with pseudo-averaging. Different sub-

bands in the MAWTTs represent different features as they represent different

spatial-frequency information. The MAWTT subbands capture different textural

characteristics in the various subbands. We need to select the subbands which are

best for discriminating between the textures belonging to the various Meningioma

subtypes.

Each value in the ppe represents the textural characteristic at the m,nth

coefficient. Hence, we would expect to have a value that is closest to the most

repeated value i.e. the mode of the values at that coefficient index and also

represent any irregularities (high values). The process is similar to computing

probability distribution of an event where if in an experiment an outcome has

greater probability of occurrence, the overall probability is updated accordingly.

We are interested in most probable coefficients and most important disconti-

nuities which are better captured by pseudo-averaging in most cases. The discon-

tinuities or irregularities not present in most samples should not overly influence

the templates. We see, however, there are instances when pseudo-averaging may

not work too well. An obvious issue in pseudo-averaging is that it is weighted

averaging i.e. the later probability values in the pseudo-averaging process have

a higher impact on the overall pseudo probability estimates. This is resolved by

performing the pairwise averaging in both the forward and backward direction

and obtaining an average of the two overall pseudo probability estimates. This
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3.1 Computation of ADWPT

would still leave the issue of the weight assigned to the probability densities in the

middle of the pairwise computation. The averaging of the forward and backward

pairwise averaging solves the problem somewhat but not completely. An obvious

solution is to associate equal importance to all the probability values which is

achieved with standard averaging. Hence, the MAWTTs using both standard

and pseudo-averaging are computed and the results are compared.

However, any other form of averaging would require determining the size of

a suitable averaging window (Parzen window for probability estimation) which

would be application and data dependent. For instance, in the case of Menin-

gioma subtype classification different averaging windows may be found suitable

for different subsets of data. This is due to the inherent intra-class variability.

The search for an adequate window can be a subject of another study. We would

further discuss this issue in the concluding chapter of this thesis. However, it

should be noted that our focus is not on determining the optimal window for

comparison but to obtain viable ppes that could be used to compare the textural

classes under study. As we see in the Figures 3.3-3.6, good ppes or MAWTTs

can be obtained using pseudo-averaging.

It can be seen from graphs in Figures 3.1 and 3.2 that the pseudo-averaging

curve tends to oscillate between the mode and the highest frequency for different

coefficients but the standard averaging tends to be more stable and does not rep-

resent the higher frequencies in the pfs as shown in the figures. This could be seen

more clearly from the decompositions in Figures 3.3-3.6 which show that pseudo-

averaging represents Meningioma subtype textures (included in the study) much

better than standard averaging in all cases. The high frequencies represent edges

which are better captured by pseudo-averaging than standard averaging. Hence,

better texture templates (Ta) are acquired using pseudo-averaging. Figures 3.3-

3.6 show subbands of the texture templates Ta
P and Ta

S obtained using pseudo

and standard averaging respectively while a denotes the texture class that the

template represents.

Since pseudo-averaging is better able to capture the high frequency content in

the subbands, therefore, the templates obtained using pseudo-averaging approach

are better able to capture the salient features of the texture. On the other hand,

the subband templates obtained using standard averaging seem like noise and do
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a. b.

Figure 3.3: Texture templates obtained using pseudo-averaging (a) and standard

averaging (b) of Fibroblastic Meningioma subtype at level 1

a. b.

Figure 3.4: Texture templates obtained using pseudo-averaging (a) and standard

averaging (b) of Meningiotheliamatous Meningioma subtype at level 1

a. b.

Figure 3.5: Texture templates obtained using pseudo-averaging (a) and standard

averaging (b) of Psammomatous Meningioma subtype at level 1

not capture the edges present in the textural classes being analysed. This was

expected since our graphs in Figures 3.1 and 3.2 show that standard averaging
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a. b.

Figure 3.6: Texture templates obtained using pseudo-averaging (a) and standard

averaging (b) of Transitional Meningioma subtype at level 1

does not respond well to the high values in the pfs. These high values correspond

to edges present in the texture.

The next stage is the calculation of the discrimination power Dd,p,q associated

with each subband. There are various methods to do this. We have explored a

few well-known distance metrics for this purpose. These include Hellinger dis-

tance, Kullback-Leibler divergence, Fishers Linear discriminant, Jensen-Shannon

distance, Bhattacharyya distance, Mahalanobis distance, Energy and the novel

Relative Energy distance. The description of each distance function is given in

Appendix B.1. Other distance functions may also be used for the purpose but we

have chosen a few from the various types of distance functions for comparison.

3.1.4 Multiple Classes and Distance Computation

The distance functions used to compute D in most instances (except in the case

of Multi-class Mahalanobis distance) are pairwise i.e. the distance is computed

between a pair of texture classes. Since the distance is calculated pairwise, for

a four class problem six pairwise distances are computed. Subsequently, the

calculation of the overall discriminatory power P of a subband is given by,

Pd,p,q =
∑

(a,b)∈O

D
a,b
d,p,q (3.8)

where O is the set containing all the pairwise class combinations of the 4 different

classes (|O| = 6) for subband Wd,p,q. The process is repeated for all the subbands

84



3.1 Computation of ADWPT

at various levels in the MAWTT decomposition. This procedure is not required

in the case of Multi-class Mahalanobis distance which by definition obtains the

discrimination measure between all classes simultaneously. The next stage is the

best bases selection.

3.1.5 Best Basis Selection: An Algorithm

As stated in Chapter 2, a wavelet packet decomposition may have multiple bases

of representation. We aim to obtain a representation that is best for a specific

purpose such as data compression or texture comparison. A best basis is a wavelet

packet representation that is obtained for a specific purpose maximising upon

a criterion. In this section, we present the algorithm that we employ for the

selection of the best basis. This algorithm selects a best basis by maximising the

discrimination power of the subbands of a wavelet packet decomposition.

1. Compute the J-level FWPT as described in Section 2.1 for each texture

class.

2. Compute the MAWTTs for all subbands and for all classes using the dif-

ferent averaging schemes.

3. Calculate the discrimination power Pd,p,q ∀ d, p, q using Eq.3.8.

4. Initialize d = J − 1.

5. For all 0 ≤ p < 2d, 0 ≤ q < 2d, do the following:

5a. If Pd,p,q < max[Pd+1,2p,2q, Pd+1,2p,2q+1,Pd+1,2p+1,2q, Pd+1,2p+1,2q+1]

Keep the four child subbands at depth d + 1 where Pd,p,q represents

the discrimination power of a node at position p, q and depth d.

5b. Otherwise keep the parent at depth d and remove the child subbands.

6. Decrement d by 1.

7. If d < 0, then stop, otherwise goto Step 5.

85
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It can be seen from the algorithm that a comparison is made between the

parent and child nodes at every level. This would lead to the selection of the

most discriminant subbands yielding a best basis of representation referred to

as ADWPT basis for discriminating between Meningioma subtypes. At each in-

stance, a comparison is made between subbands from one branch of the ADWPT

tree, i.e. subbands in the approximation domain are not compared with subbands

in the detail domains. This would ensure that relevant information is compared.

We will compare the high frequency subbands with the low frequency subbands

in the final feature selection phase in Chapter 5.

Subband selection for different Meningioma data samples results in selection

of different ADWPT decompositions. This is due to the high intra-class texture

variation inherent in Meningioma subtype samples. In the next section, we discuss

the issue of stability in ADWPT computations. A metric for measuring stability

is proposed and the distance functions that produce more stable decompositions

are identified.

3.2 ADWPT Stability

There are three factors that affect ADWPT stability namely, the texture in the

Meningioma samples used, the type of MAWTT construction mechanism em-

ployed and the distance function used for computing the subband discrimination

power. In the subsequent section, a discussion on the variation in Meningioma

textural data is presented with an analysis on how it impacts the ADWPT de-

composition produced for a given distance function.

3.2.1 Meningioma Data Variation

As described in Chapter 1, there can be high intra-class and little inter-class vari-

ation in Meningioma samples. Meningioma subtype classification is a non-trivial

problem to solve since inter-class variation is low in many instances. Moreover,

the texture in the data samples is quite complex in comparison to synthetic tex-

tures such as Brodatz etc. It is important to discuss the texture found in the

Meningioma samples belonging to different patients as that would ultimately
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have an impact on the subband selection and stability of the ADWPT decom-

position. Stability of ADWPT decomposition is important since it represents

the propensity of the subbands selected to remain consistent when the data for

analysis changes. If the ADWPT decomposition changes by too much for the

given problem, then no consistent set of features can be extracted for classifying

Meningioma subtypes.

Intra-class variation in textures raises the issue that if a patient’s image data

has texture which is highly variant and is left out from the template construction

and the ADWPT computation phase, then the information pertaining to its tex-

tural characteristics would not be adequately represented in the ADWPT best

bases decomposition. Moreover, the high intra-class variation would also make

the task of Meningioma subtypes classification more difficult. We shall see that

our technique responds to this challenge in Meningioma subtypes classification

very effectively.

3.2.2 Stability of ADWPT Decompositions

As stated earlier, the geometry of the ADWPT decomposition is dependent upon

three factors: the distance measure, the type of MAWTT construction mechanism

used and the training data. It has been observed that as the data changes the

decomposition obtained also changes. Therefore, it is important to investigate

the effect of data on the structure of the ADWPT decomposition.

3.2.2.1 Stability Analysis using Meningioma Image Data

As stated in Chapter 1, the data available to us is composed of images obtained

from 5 patients per Meningioma subtype for four Meningioma subtypes. We select

4 patients from each subtype leaving one out at each iteration which is analogous

to the leave-one-out algorithm used frequently in pattern classification. This is

done to investigate the stability of our decompositions in a real world scenario.

Hence, 4 patients in total (1 for each Meningioma subtype) are left out at each

iteration for testing. This gives a total number of 625 possible combinations of

test and training data. Most often the decompositions obtained using the above

methodology are similar but sometimes they differ to a great extent. This is
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due to the fact that there is high variation in the texture of Meningioma images

belonging to different patients.

We perform an analysis for each decision metric and find out which are the

most stable or most frequent decompositions. These would eventually be used

to evaluate which distance measures are more suitable for our application. The

quality of a distance function would be evaluated based upon the stability of the

decompositions produced and the classification accuracies obtained with it (which

are presented in Chapter 4). The decomposition stability of a distance function

is based upon the criterion of how often a few decompositions are repeated i.e. if

a few different types of decompositions are produced and they are repeated for

most of the data combinations, then the respective distance function would be

termed as stable. We carry out an in-depth evaluation of each distance measure

and choose a subset of most suitable ones for our application i.e. classification of

Meningioma subtypes. The analysis is done for both the pseudo-averaging and

standard averaging of the subband pfs.

Applying the ADWPT algorithm with Hellinger distance, a total of 119 dif-

ferent decompositions are obtained in the case of standard averaging. Most of the

decompositions occur only once or twice. A few are repeated more frequently. All

the decompositions acquired are combined and shown in a single decomposition

by including all the subbands found in the various decompositions and indicating

how frequently a subband is found in the various decompositions. A measure of

stability is indicated by displaying how often a certain subband is found. The

overall subband decomposition thus obtained with stability information is shown

in Figure 3.7. The colour of each subband indicates its discrimination power Pd,p,q,

with white being the most discriminant and black being the least discriminant

subband.
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Figure 3.7: Stability of the decomposition obtained using the Hellinger distance

function over standard averaging based MAWTTs

89



3.2 ADWPT Stability

The Figure 3.7 shows the probability of occurrence of a subband which is

displayed in magenta whereas the number in cyan denotes the standard devia-

tion in the frequency of occurrence of the subband over the different ADWPT

decompositions obtained. The stability of a subband is computed as,

hd,p,q =

NT∑
i=1

Nd,p,q(i)/NT (3.9)

where Nd,p,q(i) is the total number of times the subband Wd,p,q is found in the

decomposition produced for the ith trial run and NT is the total number of trial

runs which is equal to 625. The standard deviation σS for a subband at depth d

and location p, q is given by,

σS
d,p,q =

√∑NT

i=1(Nd,p,q(i)− hd,p,q)2

NT − 1
(3.10)

Figure 3.8 shows the stability of the decompositions obtained using the Hellinger

distance over pseudo-averaging based MAWTTs. Fewer subbands are obtained

in comparison to the decomposition obtained using the same distance measure

over standard averaging shown in Figure 3.7.

A high value of hd,p,q means that the subband is consistently regarded by the

bases selection part of the algorithm (Section 3.1.6) as being discriminant and also

robust, as its selection is less dependent on the variation in the data and texture

samples. The decompositions showing stability values hd,p,q for each subband are

given in Figures 3.7 and 3.8.

A hd,p,q value of 1 denotes that the subband is found in all the decompositions

all the time. A standard deviation in the stability values (σS
d,p,q) of greater than

0 indicates that a subband may not be found in all the decompositions. These

values reveal interesting facts about the stability of the decompositions computed

using a distance function. The Table 3.1 shows the average of the stability of the

subbands for various distance functions computed using the following expression,

h =

Np−1∑
p=0

Nq−1∑
q=0

hd,p,q/NS (3.11)
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Figure 3.8: Stability of the decompositions obtained using the Hellinger Distance

over Pseudo-averaging based MAWTTs

where Np and Nq indicates the maximum number of the subband indices and NS

is the total number of subbands.

Table 3.1 indicates that standard averaging based decompositions most often

produce a higher value of subband stability. The only exceptions are the Bhat-

tacharyya distance, the multi-class Mahalanobis distance and the Relative Energy

distance which are more stable in the case of pseudo-averaging. Interestingly the

Energy distance produces a stability value of 1 which is due to the fact that de-

compositions obtained using it are equivalent to the FWPT and no variability is

seen in the ADWPT decompositions produced. The next most stable distance

function is the Fisher discriminant for both forms of averaging. The numbers in

Table 3.1 reveal interesting facts about the stability of ADWPT decompositions

obtained using different distance functions. The difference between the stability

values h for standard and pseudo averaging remains small in all instances except
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h(SA) h(PA)

HLD 0.37 0.36

K-LD 0.41 0.37

FD 0.92 0.78

J-SD 0.41 0.37

BD 0.71 0.74

MD 0.31 0.15

MCMD 0.23 0.24

EneD 1 1

REneD 0.66 0.70

Table 3.1: Stability analysis of subbands acquired using the various distance func-

tions (HLD=Hellinger Distance, K-LD=Kullback-Leibler Distance, FD=Fisher

Linear Discriminant, J-SD=Jensen-Shannon Distance, BD=Bhattacharya Dis-

tance, MD=Mahalanobis Distance, MCMD=Multi-Class Mahalanobis Distance,

EneD=Energy Distance, REneD=Relative Energy Distance) and averaging meth-

ods (namely SA=Standard Averaging and PA=Pseudo-Averaging)

for Fishers discriminant. These estimates are, however, severely dependent upon

the number of subbands found in an ADWPT decomposition. Later in this chap-

ter, we will compare the stability of standard averaging and pseudo-averaging

based decompositions using other more objective measures.

Standard averaging vs. Pseudo-averaging Stability

In the above sections, we have seen that the standard averaging is overall more

stable than pseudo-averaging. However, the templates obtained using standard

averaging contain texture that can be categorised as nothing but noise and have

no inherent resemblance to the texture classes that they represent as shown earlier

in this chapter. On the other hand, we see that pseudo-averaging tends to create

templates that represent the inherent characteristics of the textures under study

quite well and captures the salient features of the texture classes being studied.

Moreover, the decompositions produced are relatively stable with stability values

comparable to standard averaging in most instances. Hence, pseudo-averaging is
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a better approach for template construction.

Table 3.2 shows the number of unique decompositions obtained using the var-

ious distance functions for the two modes of template construction. ND indicates

the number of unique decompositions produced. A unique decomposition is an

ADWPT decomposition which is different from all other decompositions.

ND(SA) ND(PA)

HLD 119 16

K-LD 114 16

FD 316 16

J-SD 118 16

BD 557 16

MD 618 43

MCMD 619 81

EneD 1 1

REneD 340 16

Table 3.2: Stability analysis of the decompositions acquired using var-

ious distance functions (HLD=Hellinger Distance, K-LD=Kullback-Leibler

Distance, FD=Fisher Linear Discriminant, J-SD=Jensen-Shannon Distance,

BD=Bhattacharya Distance, MD=Mahalanobis Distance, MCMD=Multi-Class

Mahalanobis Distance, EneD=Energy Distance, REneD=Relative Energy

Distance) and averaging methods (namely SA=Standard Averaging and

PA=Pseudo-averaging)

The table shows that there is not much stability in the decompositions ob-

tained using standard averaging. This can be seen in the case of all distance met-

rics and particularly for the two modes of Mahalanobis distance, Bhattacharya

distance and Fisher’s linear discriminant where more than 300 hundred different

decompositions are obtained for a total possible texture sample combinations of

625. This implies that no decomposition is reproduced more than twice whereas

in the case of pseudo-averaging we see much more stability. No distance function

produces more than 16 different decompositions. Therefore, in the light of the
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above observations we conclude that in terms of ADWPT decomposition vari-

ability pseudo-averaging of coefficients for MAWTT construction is superior to

standard averaging. However, most of these distance functions show high stabil-

ity in terms of subbands which means that most subbands remain consistent and

only a very few subbands change over the various ADWPT decompositions.

Mahalanobis distance is one of the least stable in both averaging modes. This

may be due to the fact that the distance depends upon the difference in vari-

ance in the probability estimates of the subbands for deriving a measure of the

discrimination power whereas the other measures are either based upon coeffi-

cient values or the first order statistics of the coefficients. Mahalanobis distance

proves to be not suitable for our application as it intends to derive a distance

measure based upon the spread of the ppe coefficients covariance and mean of

the probability estimates. The use of covariance for distance estimation is unique

to Mahalanobis distance and has been found to be not a very suitable approach

for ADWPT computation.

In the instance of the Energy distance only 1 unique decomposition is ob-

tained. This decomposition is equivalent to a FWPT which is undesirable since

it represents all the subbands that can be decomposed and our aim is to obtain

a meaningful reduction of features that would enhance our capability to differ-

entiate between various Meningioma subtypes under study. We will see in the

later chapters that the decompositions obtained using the Energy distance fail to

produce a high clustering accuracy.

To analyse the stability of each distance function objectively, we propose a

stability measure that would indicate how stable a certain distance function is in

terms of the decompositions produced. The stability measure could be computed

using two methods. First, an estimate of the number of subbands which are

decomposed in most iterations would provide us with an estimate of how stable a

certain distance function is. If a higher percentage of subbands are decomposed

more often then the stability would be high and fewer unique decompositions

would be produced. The second source of stability estimation is the number

of unique decompositions produced. The two stability measures are inherently

linked. Based on this principle, we provide two stability measures S1 and S2,

with the first estimating stability based upon the frequency of occurrence of the
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individual subbands and the other on the total number of unique decompositions

obtained. These would be used to objectively compare the stability of distance

functions in standard averaging and pseudo-averaging. The first stability measure

is hence given by the formula,

S1 =
ℵhf

ℵt

(3.12)

where ℵhf indicates the number of subbands which are highly frequent (i.e. sub-

bands with mean frequency of occurrence of 0.75 or higher may be considered

more frequent) and ℵt indicates the total number of subbands decomposed i.e.

all subbands found in the decomposition. In this instance, a sum of most frequent

subbands ℵhf would be given by,

ℵhf =
t−1∑
i=0

ℵi ∀ ℵi =

{
1 if ℵi ≥ Tℵ
0 otherwise

(3.13)

where Tℵ = 0.75. The selection of threshold Tℵ is arbitrary and a suitable value

may be selected based upon the application. In our analysis, we found 0.75 to be

a suitable threshold for determining highly frequent subbands. Table 3.3 shows

the stability values for S1 obtained for the various distance functions over the

two different forms of averaging. The second measure based upon the number of

unique decompositions is given by,

S2 = 1− ND

NT

(3.14)

where ND is the number of unique decompositions obtained for a certain distance

function D and NT represents the total number of possible decompositions. Table

3.4 shows the stability values for S2 obtained for the various distance functions

over the two different forms of averaging. The overall stability measure S would

be an average of S1 and S2, which is given by,

S =
S1 + S2

2
(3.15)

S would provide us with a measure of stability that ranges between 0 and 1 with

0 representing the least stable and 1 representing the most stable. The results

are given in Tables 3.3-3.5.
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3.2 ADWPT Stability

ℵhf (SA) ℵt(SA) SSA
1 ℵhf (PA) ℵt(PA) SPA

1

HLD 85 145 0.59 72 133 0.54

K-LD 90 151 0.60 69 133 0.52

FD 226 250 0.90 184 244 0.75

J-SD 90 151 0.60 72 142 0.51

BD 138 232 0.59 160 256 0.63

MD 24 253 0.09 8 175 0.05

MCMD 0 256 0 8 253 0.03

EneD 256 256 1 256 256 1

REneD 143 205 0.70 141 253 0.56

Table 3.3: Stability analysis of decompositions acquired using various

distance functions (HLD=Hellinger Distance, K-LD=Kullback-Leibler Dis-

tance, FD=Fisher Linear Discriminant, J-SD=Jensen-Shannon Distance,

BD=Bhattacharya Distance, MD=Mahalanobis Distance, MCMD=Multi-Class

Mahalanobis Distance, EneD=Energy Distance, REneD=Relative Energy

Distance) and averaging methods (namely SA=Standard Averaging and

PA=Pseudo-Averaging)
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3.2 ADWPT Stability

ND(SA) ND(PA) SSA
2 SPA

2

HLD 119 16 0.81 0.97

K-LD 114 16 0.82 0.97

FD 316 16 0.49 0.97

J-SD 118 16 0.81 0.97

BD 557 16 0.11 0.97

MD 618 43 0.01 0.93

MCMD 619 81 0.01 0.87

EneD 1 1 1 1

REneD 340 16 0.46 0.97

Table 3.4: Stability analysis of the decompositions acquired using var-

ious distance functions (HLD=Hellinger Distance, K-LD=Kullback-Leibler

Distance, FD=Fisher Linear Discriminant, J-SD=Jensen-Shannon Distance,

BD=Bhattacharya Distance, MD=Mahalanobis Distance, MCMD=Multi-Class

Mahalanobis Distance, EneD=Energy Distance, REneD=Relative Energy

Distance) and averaging methods (namely SA=Standard Averaging and

PA=Pseudo-averaging)
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3.2 ADWPT Stability

SSA
1 SPA

1 SSA
2 SPA

2 SSA SPA

HLD 0.59 0.54 0.81 0.97 0.7 0.76

K-LD 0.60 0.52 0.82 0.97 0.71 0.75

FD 0.90 0.75 0.49 0.97 0.70 0.86

J-SD 0.60 0.51 0.81 0.97 0.71 0.74

BD 0.59 0.63 0.11 0.97 0.35 0.80

MD 0.09 0.05 0.01 0.93 0.05 0.49

MCMD 0 0.03 0.01 0.87 0.005 0.45

EneD 1 1 1 1 1 1

REneD 0.70 0.56 0.46 0.97 0.58 0.77

Table 3.5: Overall stability measure of the decompositions acquired using

the various distance functions (HLD=Hellinger Distance, K-LD=Kullback-

Leibler Distance, FD=Fisher Linear Discriminant, J-SD=Jensen-Shannon Dis-

tance, BD=Bhattacharya Distance, MD=Mahalanobis Distance, MCMD=Multi-

Class Mahalanobis Distance, EneD=Energy Distance, REneD=Relative En-

ergy Distance) and averaging methods (namely SA=Standard Averaging and

PA=Pseudo-averaging)
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3.2 ADWPT Stability

It can be seen from the Table 3.3- 3.5 that the decompositions obtained using

pseudo-averaging are more stable than standard averaging since the difference

in the stability measure is high especially in the case of Bhattacharya distance

and Mahalanobis distance. All distance functions are more stable in the pseudo-

averaging mode compared to the standard averaging mode in terms of the overall

stability index S. Energy distance (EneD) is equally stable in both averaging

modes. However, there are instances where standard averaging is more stable

compared to pseudo-averaging for the first stability index S1. All distance func-

tions except for the Bhattacharyya distance are more stable in the standard

averaging mode as far as S1 is concerned. A higher stability index S1 and low

stability index S2 indicates that a small number of subbands occur with high

variation causing the overall stability index S to suffer.

Although the difference in the values is small in most instances except for

Fisher discriminant and Relative Energy distance. Overall, as indicated in Table

3.5, pseudo-averaging is overall more stable. An analysis of the stability using our

novel methodology has been concluded here. In the next section, we use graph

matching to describe the issue of stability from another perspective.

3.2.2.2 Decomposition Stability Analysis using Graph Matching

Decomposition stability S is a very important factor in determining the utility

of a distance function. In the previous section, we carried out an analysis of the

stability of the decompositions obtained using a distance function. This is an

important factor in the selection of a distance function for further analysis. In

this section, we would present a detailed analysis of the decomposition stability

in terms of Graph Edit Distances and Maximal Common Subgraphs. This would

provide a graphic view of the stability of the decompositions in the figures by

showing by how much the decompositions differ. Results for two distance func-

tion namely Hellinger and Mahalanobis are shown in this section. This is because

Hellinger is one of the most stable whereas Mahalanobis is the least stable dis-

tance function. The results for the remaining distance functions can be found in

the Appendix B.5.
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3.2 ADWPT Stability

Graph Matching

Graph matching and finding distances between graphs is one of the most

frequently used concepts in pattern matching. It has been used in a variety of

areas such as character recognition [142], image registration [143] and 3-D object

recognition [144].

Although the legacy algorithms for graph matching are graph and subgraph

isomorphisms [145] due to the fact that they are not error tolerant they were

replaced by more developed algorithms such as graph edit distances [146]. The

graph edit distances represent the similarity of two graphs in terms of the cost

of the shortest sequence of edit operations that would transform one graph to

another. This method suffers with the weakness that a cost must be associated

with each edit operation namely insertion, deletion or substitution of nodes and

edges. Maximal common subgraph is a more recent method for error-tolerant

graph matching [147, 148]. Bunke has described the relationship between graph

edit distances and maximal common subgraphs (MCSs) [149] and then proposed

a distance metric based upon MCSs for graph matching [150]. Although any

method for graph-matching would be adequate, we use Bunke’s method since its

error-tolerant and acts as a metric for graph-matching.

Maximum Common Subgraph

A graph g may be defined as,

g = (V,E) (3.16)

where V is a finite set of vertices or nodes and E is the set of edges linking the

vertices. A maximum common subgraph can be defined in terms of isomorphisms

of graphs g1 = (V1, E1) and g2 = (V2, E2). A common subgraph of g1 and g2 is

a graph gc = (Vc, Ec) such that there exists a subgraph isomorphism from gc to

g1 and gc to g2. The subgraph gc would be referred to as a maximum common

subgraph of g1 and g2 if it has more nodes than any other common subgraph of

g1 and g2. A set of isomorphisms G of graph g may be defined as,
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3.2 ADWPT Stability

G = gi|i = 1...Ng, ]|gi| ≤ ]|g|,
Ng⋃
i=1

gi = g (3.17)

where ]|gi| represents the number of nodes in the graph gi and
⋃Ng

i=1 represents

the union operation over all the graphs g1 to gNg .

gc = mcs(g1, g2) ⇒ gcεG1, gcεG2, ]|gc| > ]|g1
i |, ]|gc| > ]|g2

i |; i = 1...Ng (3.18)

where ]|gc| represents the number of nodes or vertices in gc and g1
i and g2

i denote

the various isomorphisms of graphs g1 and g2.

In the next section, we use the metric proposed in [150] for measuring graph

distances to show how the decompositions change when the input data changes.

The variability of the decomposition trees would be computed with respect to

the union of the decomposition trees. A union of the decompositions contains all

the subbands that are ever composed in any of the data configurations using the

leave-one-out procedure.

Distance Functions and Stability Graphs

The distance metric measures the difference amongst two graphs in terms of

the Maximum Common Subgraph (MCS). The distance between two graphs g1

and g2 is given by the formulae,

d(g1, g2) = 1− ]|mcs(g1, g2)|
max(]|g1|, ]|g2|) (3.19)

⇒ d(g1, g2) = 1− ]|gc|
max(]|g1|, ]|g2|) (3.20)

where ]|g1| and ]|g2| represents the number of nodes or vertices in graphs g1 and

g2 respectively. This distance would be computed for each decomposition tree

in the 625 different decompositions. Each tree gt represents a decomposition B∗
t

which would be compared against the union of all trees B∗⋃.

B∗⋃ =
Nt⋃
i=1

B∗
i = B∗

1

⋃
B∗

2

⋃
. . . B∗

Nt
(3.21)
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3.2 ADWPT Stability

The union of the decomposition bases B∗
i where i = 1, 2, 3....Nt are used for

analysis of decomposition stability. The graphs obtained for Hellinger and Ma-

halanobis distance functions are provided here while the remaining graphs can

be found in the Appendix B.5. Hellinger is one of the most stable in terms of

ADWPT decomposition stability whereas Mahalanobis is one of the least stable.

Hellinger Distance

This is one of the relatively stable distance functions. The graph for this is

shown in Figures 3.9 & 3.10. Hellinger distance over pseudo-averaging is much

Figure 3.9: Graph showing distances between various decompositions from the

Union of all decompositions obtained using Hellinger Distance over Standard

Averaging

more stable. This can be seen from the graphs in Figures 3.9 & 3.10. It can

be seen from the graph that a few decompositions are obtained again and again,

since the same distance values are repeated. On the other hand, standard av-

eraging curve seems to be erratic and shows that there is a great variety in the
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3.2 ADWPT Stability

Figure 3.10: Graph showing distances between various decompositions from

the Union of all decompositions obtained using Hellinger Distance over Pseudo-

averaging

decompositions obtained with Hellinger distance over standard averaging.

Mahalanobis Distance

The decompositions produced by the two cases of Mahalanobis distance are

quite interesting as the stability is low. Although the various decompositions do

not differ much in terms of distance in the case of multiple classes for Mahalanobis

distance but the number of unique decompositions produced are greater than

the two class Mahalanobis distance. This could be seen from the graphs in the

Figure 3.11 and 3.12. There are still a few decompositions that are repeated more

frequently than others but there is no systematic repetition of decompositions.

It can also be seen that the decompositions obtained using standard averaging

show greater variety and the curve obtained shows erratic behaviour.
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3.2 ADWPT Stability

a.

b.

Figure 3.11: Graph showing distances between various decompositions from the

Union of all decompositions obtained using Mahalanobis Distance over a. Stan-

dard Averaging and b. Pseudo-averaging
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3.2 ADWPT Stability

a.

b.

Figure 3.12: Graph showing distances between various decompositions from the

Union of all decompositions obtained using Multi-class Mahalanobis Distance

over a. Standard Averaging and b. Pseudo-averaging
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3.3 Summary and Conclusions

The results shown in the figures are very interesting in the respect that they

describe how the decompositions change when the data changes for a specific

function. Most of the distance functions, exhibit a repeatable pattern in the case

of pseudo-averaging. This is a very desirable trait as it implies that the decompo-

sitions would only change when the change in data is substantial. Though, this

is true only for the case of pseudo-averaging. Standard averaging has been shown

to produce very variable decompositions.

There are however some functions that are more unstable. In case of pseudo-

averaging, we can see that the multiple class Mahalanobis distance is relatively

unstable when it comes to decomposition stability. This distance function is

unique as it allows us to measure the variability in various texture classes at the

same time. On the other hand, the variability in decomposition trees in case of

standard averaging may be attributed to poor representation of textures by the

templates obtained using standard averaging.

Another important factor apart from decomposition stability that influences

our choice of a distance function is the clustering or classification performance. In

the next chapter, we perform clustering using the various distance functions and

identify which distance functions are better for Meningioma subtype classifica-

tion. An analysis in terms of both stability and clustering accuracy is presented,

concluding with the selection of a set of the best distance functions for Menin-

gioma subtype classification.

3.3 Summary and Conclusions

In this chapter, we described in detail the computation of ADWPT with a focus on

the two core processes of template construction and computation of the subband

discrimination power. Two techniques of template construction namely standard

averaging and pseudo-averaging of the probability functions are compared. It can

be seen that better texture templates are obtained for pseudo-averaging.

As stated earlier, ADWPT obtains a best basis for texture discrimination

of textures such as Meningioma subtypes. There are various ways in which the

discrimination power of a subband may be estimated and some distance functions

for the purpose have been presented. ADWPT is adaptive as indicated in this
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3.3 Summary and Conclusions

chapter. This raises the issue of ADWPT best bases variability when the data

used for analysis changes. This is referred to as the issue of stability and it

occurs due to the intra-class texture variation in Meningioma subtypes. In this

chapter, we also investigated the issue of stability of the ADWPT best bases

indicating the distance functions and the MAWTT construction mode that is

better for acquiring more stable ADWPT decompositions. Mahalanobis distance

was found to be the least stable distance function. In the next chapter, some

further analysis of the various distance functions would be presented indicating

which distance functions are better considering the stability of ADWPT best

bases and the clustering accuracy of the Meningioma subtypes.
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Chapter 4

Towards a Robust Discriminant

Basis

As stated earlier, in this thesis we propose a wavelet-based multiresolution texture

analysis approach (referred to as ADWPT) for Meningioma subtypes classifica-

tion. The most important aspect of wavelet packets analysis is the selection of

subbands based upon discrimination power. In the previous chapter, the details

of the technique pertaining the selection of subbands using the various distance

functions is presented. In this chapter, we evaluate each distance function in

terms of the stability of the ADWPT decomposition and the clustering accuracy

acquired. We also show that more stable subbands produce better clustering

results.

Section 4.1 presents all the steps followed for clustering of Meningioma sub-

type features acquired using ADWPT decompositions. Multiple decompositions

are acquired using various distance functions and their results compared. Fi-

nally, a subset of distance functions which are better for Meningioma subtype

classification are selected.

Due to the intra-class variation, stability of the ADWPT decomposition is an

issue. Changes in the data-set lead to different ADWPT decompositions. The

aim is to select the most representative and optimal ADWPT decomposition.

Our solution is the selection of subbands based upon their stability index, i.e.

the probability of occurrence as described in Chapter 3. We employ two schemes.

The first involves using all the subbands that are decomposed in the various
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different decompositions obtained for a particular distance function. The second

involves selecting only those subbands that are found in all the decompositions

produced using the distance function. These would be referred to as the union

and intersection decompositions, respectively. We will show that the subbands

found in the intersection of decompositions are better for classification accuracy

in comparison to the subbands found in the union of decompositions as there is

a substantial reduction of features acquired using intersection while there is no

reduction in classification accuracy.

4.1 Union and Intersection of ADWPT Decom-

positions

In Chapter 3, we have used the ADWPT algorithm to obtain various wavelet

packet decompositions using different distance functions. Since, more than one

unique decomposition is obtained, we need to derive a decomposition that is

representative of the variety of subbands selected by ADWPT. The decomposition

computed must represent salient features for the textures being compared. For

this purpose, we obtain union and intersection of all the decompositions obtained

for a distance function using the ADWPT. It is important to understand here

that intersection is inherently the selection of subbands who have a probability of

occurrence of 1 whereas a union is essentially selection of all the terminal subbands

that are found in any of the best basis obtained. Subsequently, in Chapter 5 we

show that selection of subbands may also be carried out by thresholding i.e.

different thresholds may be used and different number of subbands selected. The

selection is dependent upon statistical significance of a subband which is derived

based upon its frequency of occurrence in all the different best basis acquired for

the various test-trial runs. This measure would be updated for every new image

acquired and classified using the system. Hence, the best basis would adapt

statistically to new data. Any noise would be filtered based upon its statistical

insignificance. The way to acquire union and intersection is described next.

109



4.1 Union and Intersection of ADWPT Decompositions

4.1.1 Union of ADWPT Decomposition

As stated earlier, in order to evaluate the effectiveness of a distance function,

we need to obtain an overall ADWPT representation for a particular distance

function. To that end we obtain a union of all the different ADWPT representa-

tions that contains all the subbands that have been decomposed for a particular

distance function for all the trial runs. The union decomposition B∗⋃ is defined

as,

B∗⋃ =
Nt⋃
i=1

B∗
i = B∗

1

⋃
B∗

2

⋃
. . . B∗

Nt
(4.1)

where B∗
i represents the best bases obtained using the ith dataset, i = 1, 2, 3 . . . Nt

and Nt is the total number of trial runs. Union decompositions for some distance

functions are given in Figure 4.1 while the rest are given in the Appendix B.2.
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a.

b.

c.

Figure 4.1: Union of ADWPT decompositions obtained using the a. Hellinger

Distance (Pseudo-averaging), b. Fishers Discriminant (Pseudo-averaging) and c.

Kullback-Leibler Distance (Standard averaging)
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4.1 Union and Intersection of ADWPT Decompositions

The color of a subband indicates its discrimination power. The darker the

subband, the less discriminant it is and vice versa.

4.1.2 Intersection of ADWPT Decompositions

Similar to the selection of decomposed subbands using the union paradigm, we

also select subbands based upon the intersection of decompositions. In this case,

only those subbands are selected which are found in all the decompositions. This

implies that any subband which is not decomposed in all of the trial runs is

not represented in the ADWPT intersection decomposition. The intersection

decomposition B∗⋂ is defined as.

B∗⋂ =
Nt⋂
i=1

B∗
i = B∗

1

⋂
B∗

2

⋂
. . . B∗

Nt
(4.2)

where B∗
i represents the best wavelet bases obtained using the ith dataset and

i = 1, 2, 3 . . . Nt. The intersection operation would result in a decomposition B∗⋂

containing subbands with a decomposition frequency of occurrence or stability

index of 1. The intersection decompositions for some distance functions are given

in Figure 4.2 while the rest can be found in Appendix B.3.

The union and intersection decompositions for each distance function would

subsequently be used to evaluate how good a distance function is for differen-

tiating between the tumour subtypes under study. The subbands in B∗⋃ and

B∗⋂ are then used to extract feature sets representing each image. These feature

sets would subsequently be used for clustering in order to evaluate how good a

distance function is for Meningioma subtype classification.
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a.

b.

c.

Figure 4.2: Intersection of ADWPT decompositions obtained using the a.

Hellinger Distance (Pseudo-averaging), b. Fishers Discriminant (Pseudo-

averaging) and c. Kullback-Leibler Distance (Standard averaging)
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4.2 Feature Extraction

4.2 Feature Extraction

In the first step, the union and intersection decompositions obtained using ADWPT

are computed for each image in the data set. Next, we acquire all the terminal

subbands representing a decomposition for all the images as shown in Figures 4.1

and 4.2 and then statistical features are computed for each subband. These sta-

tistical features are subsequently used for clustering and classification of Menin-

gioma subtypes. These features represent characteristics of a subband and are

highly effective in acquiring textural characteristics as we shall see in the results

section.

Many statistical features were obtained and evaluated for their clustering and

classification efficiency. The statistical features used were first-order histogram

based features, co-occurrence matrix based features and Grey-Tone Difference

Matrix (GTDM) features [151]. None of the GTDM features perform as well as

GLCM features. Some of the features that performed better were selected and

are described below.

Mean

If the coefficients of a subband Wd,p,q are represented by xai
d,p,q, then the mean

µai
d,p,q may be computed as

µai
d,p,q =

[
M−1∑
m=0

N−1∑
n=0

xai
d,p,q(m,n)

]
/M ×N (4.3)

where xai
d,p,q(m,n) is the (m,n)th coefficient of the subband in a decomposition

for an image ai belonging to class a with M ×N as the size of the subband.

Standard Deviation

The standard deviation σd,p,q of the ppde of the subband Wd,p,q is given by

σai
d,p,q = sqrt

∑M−1
m=0

∑N−1
n=0 [xai

d,p,q(m,n)− µai
d,p,q]

2

M ×N − 1
(4.4)

Skewness
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The skewness νai
d,p,q of the ppde of the subband Wd,p,q is given by,

νai
d,p,q =

∑M−1
m=0

∑N−1
n=0 [xai

d,p,q(m,n)− µai
d,p,q]

3

(M ×N − 1)(σai
d,p,q)

3
(4.5)

Kurtosis

The kurtosis Γai
d,p,q of the ppde of the subband Wd,p,q is derived as,

Γai
d,p,q =

[∑M−1
m=0

∑N−1
n=0 (xai

d,p,q(m, n)− µai
d,p,q)

4

(M ×N − 1)(σai
d,p,q)

4

]
− 3 (4.6)

Energy

The normalised energy ξai
d,p,q of the subband Wd,p,q is given by,

ξai
d,p,q =

M−1∑
m=0

N−1∑
n=0

(xai
d,p,q(m,n))2 (4.7)

Entropy

The entropy εai
d,p,q of a subband Wd,p,q is computed by,

εai
d,p,q = −

M−1∑
m=0

N−1∑
n=0

(xai
d,p,q(m,n)) ∗ log(xai

d,p,q(m,n)) (4.8)

Grey Level Co-occurrence Matrix (GLCM) Features

GLCM features were shown as a viable approach for texture analysis by Haral-

ick et al. [135]. The GLCM is computed over each subband. The aim is to acquire

intrinsic features representing each subband. The Gray Level Co-occurrence Ma-

trix C over a subband Wd,p,q, parameterised by an offset (4x,4y) is computed,

C4x,4y
d,p,q (i, j) =

{
C4x,4y

d,p,q (i, j) + 1 if Wd,p,q(m,n) = i and Wd,p,q(m +4x, n +4y) = j

C4x,4y
d,p,q (i, j) otherwise
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where Wd,p,q is the p, qth subband at depth d. The (4x,4y) defines the offset

in the horizontal and vertical direction and m,n represents the coefficients index.

The offsets (4x,4y) are used to define the distance and the angle of the direction

in which co-occurrence of pixel values is being searched. A value of (1, 1) would

mean an angle of 45o and a distance of 1 whereas (−2, 0) would mean an angle of

−180o and a distance of 2. GLCM analysis at various number of bins was carried

out and 32 bins were found to be the best for Meningioma subtypes classification.

The GLCM matrix is computed for four directions i.e. 0o, 45o, 90o, 135o and the

distance remains equal to 1. Other distance measures such as 2, 3 and 4, using

the above directions, were also used for clustering and classification but results

produced are not better, hence we present results for distance 1. The features

are computed for a normalised GLCM matrix which is given by:

Q4x,4y
d,p,q = C4x,4y

d,p,q (i, j)/

NC−1∑
i,j=0

C4x,4y
d,p,q (i, j) (4.9)

where NC × NC is the size of the GLCM and NC corresponds to the number of

bins. The GLCM features used in this study are given below.

GLCM Contrast

The contrast feature for the normalised GLCM matrix Q4x,4y
d,p,q may be computed

as:

Gς,d,p,q =
N−1∑
i,j=0

(i− j)2Q4x,4y
d,p,q (i, j) (4.10)

Contrast measures the difference or the gradient in coefficient values over a sub-

band.

GLCM Correlation

The correlation feature for a normalised GLCM matrix Q4x,4y
d,p,q is defined by the

equation:

Gυ,d,p,q =
N−1∑
i,j=0

(i− µd,p,q)(j − µd,p,q)

(σd,p,q)2
Q4x,4y

d,p,q (i, j) (4.11)
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where µd,p,q and σd,p,q represent the mean and standard deviation of Wd,p,q. Cor-

relation determines the relationship in terms of how the coefficient values vary

over a subband.

GLCM Energy

Energy is a measure of the number of non zero coefficients or the presence of

texture in a subband. The Energy feature may be computed as:

Gε =
N−1∑
i,j=0

(Q4x,4y
d,p,q (i, j))2 (4.12)

GLCM Homogeneity

Homogeneity reflects the degree of similarity of coefficient values over a subband.

The homogeneity feature for a normalised GLCM matrix Q4x,4y
d,p,q is given by:

Gτ =
N−1∑
i,j=0

Q4x,4y
d,p,q (i, j)

1 + (i− j)2
(4.13)

Each of these features capture a textural property of the image and will be

used in subsequent sections for k-means clustering of the texture samples. The

next stage is clustering based upon the features presented above.

4.3 Clustering

Over the years many algorithms have been developed for clustering data. k-means

clustering [152] is one algorithm that has been used widely for computing clusters

[153] [154] [155]. Rand indices is one of the mechanisms used to ascertain the

quality of a cluster in terms of how accurately it represents the data characteristics

[156] [157]. Both these techniques are used in our clustering analysis.

4.3.1 k-Means Clustering

k-Means clustering is one of the simplest algorithms for unsupervised classifica-

tion. It aims to produce k clusters by obtaining centroids cj where j=1 to k. The

process of computing the centroids involves the selection of certain initial points
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in the data as centres and then finding all the data points that are nearer to

these centres and grouping them into respective clusters. Next the centroids are

re-calculated with the previously clustered data and new centroids are estimated.

The algorithm is repeated until the centroids no longer shift. At each iteration

the algorithm seeks to minimise the Euclidean distance between the data points

xij and the centroid cj which is given by,

∆E =

√
Σk

j=1Σ
Nf

i=1(xij − cj)2 (4.14)

Since the clusters obtained are sensitive to the selection of initial points of

reference, the clustering procedure is repeated 5 times and the result with the

best clusters is selected as the final result. The features discussed in the previ-

ous section form the input feature set for k-Means clustering. A feature value is

computed for each subband separately representing an image and a feature set is

obtained with length Nf which is equal to the number of subbands in the decom-

position. It must be noted here that this is done for the union and intersection

decompositions separately.

4.3.2 Rand Indices

Rand index [157] provides a measure of similarity between clusters in two clus-

tering results. It ranges from 0 to 1 where 0 corresponds to the instance where

the clusterings are completely dissimilar whereas 1 is the value when the clusters

are absolutely the same. Say we need to compare two clusterings namely C1

and C2 where C1 is the ground truth i.e. the true value of the cluster to which

a data point belongs to while C2 is the clustering obtained by an unsupervised

clustering method such as k-Means clustering. If G1
i and G2

j are clusters found

in the clusterings C1 and C2 respectively, then the Rand index may be computed

as follows

R =
Cn

2 +
∑G1

i
i=1

∑G2
j

j=1 n2
ij − 1

2

∑G1
i

i=1(
∑G2

j

j=1 nij)
2 − 1

2

∑G2
j

j=1(
∑G1

i
i=1 nij)

2

Cn
2

(4.15)

where Cn
2 represents the various combinations that may be obtained for n obser-

vations taken 2 at a time. In our case, n is the number of data points. However,
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4.4 Evaluation of Distance Functions

nij is the number of observations that are in group i in the case of C1 and in

group j in the case of C2. The Rand indices for different distance functions and

features for the union and intersection decompositions are presented in the next

section.

4.4 Evaluation of Distance Functions

In order to select the best distance function, we need to evaluate the effectiveness

of each in differentiating between the various Meningioma subtypes. The stability

of the decomposition is also one of the factors that determines the viability of a

distance metric. In order to evaluate each distance metric, we acquire features

from the subbands in each decomposition and use k-Means clustering to determine

how good a certain distance function is. The first stage is the acquisition of

statistical features per subband and then k-Means clustering of the features is

carried out. Rand indices are provided to indicate the viability of a distance

function for Meningioma subtypes classification.

The results of Rand index analysis are given in Tables 4.1-4.4. As indicated,

the Rand values for each feature were obtained separately and the clustering

was carried out using k-Means clustering. Although k-Means is a very basic and

simple clustering method, it nevertheless produces very good results for our data.

As can be seen from Tables 4.1- 4.4, the intersection of decompositions performs

slightly better than union for both standard averaging and pseudo-averaging.

Especially in the case of pseudo-averaging, it can be seen that the difference in

Rand indices for union and intersection is relatively high. The steps followed for

acquiring the results are:

1. Intersection and union of ADWPT decompositions is obtained for each im-

age in the data set (Note: Different decompositions are obtained for different

distance functions).

2. Statistical features for the intersection and union ADWPT decompositions

are extracted.

3. k-Means clustering of the feature sets is carried out.
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4. Subsequently Rand indices are computed for each feature set and for each

distance function separately.

Tables 4.1- 4.4 show the Rand indices indicating the accuracy of the clusters

produced using the decompositions obtained with various distance functions over

standard averaging mode of texture template construction. The Highest Rand

Index (HRI) produced for each distance function is shown in bold. The Average

Rand Indices (ARIs) are shown under Rµ which indicates the overall clustering

efficiency for the various types of features.

4.4.1 Results: Standard Averaging

Rand indices computed for standard averaging based ADWPT decompositions are

shown in the Tables 4.1 and 4.2. The results are quite encouraging as relatively

high values for Rand indices are obtained.

Table 4.1: Rand Indices for various features of Intersection decomposi-

tion obtained using Standard averaging and various distance functions

(HLD=Hellinger Distance, K-LD=Kullback-Leibler Distance, FD=Fishers Lin-

ear Discriminant, J-SD=Jensen-Shannon Distance, BD=Bhattacharya Dis-

tance, MD=Mahalanobis Distance, MCMD=Multi-Class Mahalanobis Distance,

EneD=Energy Distance, REneD=Relative Energy Distance). Rµ=Average Rand

Index
µ σ ν Γ ξ ε Gς Gυ Gε Gτ Rµ

HLD 0.63 0.62 0.63 0.63 0.62 0.78 0.74 0.81 0.74 0.79 0.70
K-LD 0.58 0.62 0.63 0.63 0.63 0.77 0.74 0.81 0.73 0.79 0.69
FD 0.62 0.63 0.63 0.61 0.63 0.72 0.72 0.75 0.71 0.75 0.68
J-SD 0.58 0.62 0.63 0.63 0.63 0.77 0.77 0.81 0.73 0.79 0.70
BD 0.63 0.62 0.63 0.63 0.62 0.75 0.73 0.82 0.71 0.76 0.69
MD 0.62 0.59 0.63 0.61 0.59 0.68 0.70 0.76 0.72 0.81 0.67
MCMD 0.62 0.55 0.50 0.60 0.55 0.65 0.70 0.78 0.67 0.73 0.64
EneD 0.63 0.63 0.61 0.64 0.63 0.68 0.72 0.75 0.68 0.74 0.67
ReneD 0.58 0.47 0.62 0.64 0.60 0.73 0.72 0.82 0.67 0.77 0.66

Avg 0.61 0.60 0.61 0.63 0.61 0.72 0.73 0.79 0.70 0.77 0.68
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Table 4.2: Rand Indices for various features of Union decomposition obtained

using Standard averaging and various distance functions (HLD=Hellinger Dis-

tance, K-LD=Kullback-Leibler Distance, FD=Fishers Linear Discriminant, J-

SD=Jensen-Shannon Distance, BD=Bhattacharya Distance, MD=Mahalanobis

Distance, MCMD=Multi-Class Mahalanobis Distance, EneD=Energy Distance,

REneD=Relative Energy Distance). Rµ=Average Rand Index

µ σ ν Γ ξ ε Gς Gυ Gε Gτ Rµ

HLD 0.62 0.62 0.62 0.64 0.62 0.67 0.73 0.8 0.72 0.76 0.68
K-LD 0.58 0.64 0.61 0.64 0.64 0.67 0.72 0.81 0.72 0.76 0.68
FD 0.63 0.63 0.61 0.64 0.63 0.68 0.72 0.75 0.68 0.74 0.67
JS 0.56 0.64 0.6 0.64 0.64 0.67 0.72 0.81 0.72 0.76 0.68
BD 0.62 0.64 0.6 0.65 0.65 0.73 0.72 0.75 0.68 0.75 0.68
MD 0.63 0.63 0.61 0.64 0.63 0.68 0.72 0.75 0.68 0.74 0.67
MCMD 0.62 0.63 0.61 0.64 0.63 0.68 0.72 0.75 0.68 0.75 0.67
EneD 0.62 0.63 0.61 0.64 0.63 0.68 0.72 0.75 0.68 0.74 0.67
ReneD 0.63 0.62 0.61 0.65 0.62 0.68 0.72 0.75 0.71 0.75 0.67

Avg 0.61 0.63 0.61 0.64 0.63 0.69 0.72 0.77 0.70 0.74 0.67
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As seen from the tables the intersection of ADWPT decompositions B∗⋂ pro-

duces slightly better results than union of ADWPT decompositions B∗⋃. The

main advantage of the intersection of ADWPT decompositions is that it reduces

the length of the feature set greatly. We will also see in the next chapter that

B∗⋂ is a superior method for selection of subbands. The highest ARI is produced

by Hellinger and Jensen-Shannon distance which is 0.70 while the highest Rand

value of 0.82 is obtained for the GLCM correlation feature for the Bhattacharyya

and Relative Energy distance based decompositions. Kullback-Leibler also pro-

duces relatively good Rand indices. Comparative analysis was made with LBP

features. Two LBP based feature sets are acquired with neighbours 8 and radius

1 and neighbours 16 and radius 2. The Rand indices obtained after k-means

clustering were 0.69 and 0.65 respectively.

On the other hand, in the case of B∗⋃, the better performing distance functions

are Hellinger, Kullback-Leibler, Jensen-Shannon and Bhattacharyya (as shown

in Table 4.2). The highest ARI produced for B∗⋃ is 0.68 which is lower than

the highest ARI of 0.70 produced for intersection of decompositions. From the

results, for union and intersection, it can be seen that some distance functions

perform better than others. After careful analysis of the Tables 4.1 and 4.2, it can

be seen that the Energy distance and Mahalanobis distance measures (in both

modes i.e. union and intersection) consistently perform worse than Hellinger,

Kullback-Leibler, Jensen-Shannon and Bhattacharyya distance functions.

It may also be observed that the difference between the various ARI’s overall

remains low but the difference between HRI’s is high. It would be important

here to discuss the various decompositions and how subband selection affects the

overall clustering efficiency. It must be noted here that we would be referring only

to the intersection decompositions in our discussion as they produce better Rand

indices. Figure 4.3 shows the intersection decomposition obtained for the various

distance functions. It is clear from Figure 4.3 (a-e) that the decompositions with

a high value of Rµ decompose subbands in the approximation, horizontal and

vertical details i.e. the descendants of subbands W1,0,0, W1,1,0 and W1,0,1. The

more discriminant subbands are found usually amongst the descendants of W1,1,0

and W1,0,1. The only exception is the Relative Energy distance for which the most

discriminant subband is found in the descendants of the approximation subband
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a. b. c.

d. e.

f. g. h.

Figure 4.3: Standard averaging based intersection decompositions obtained for

the distance functions a. Hellinger, b. Kullback-Leibler, c. Jensen-Shannon, d.

Bhattacharyya, e. Relative Energy, f. Energy, g. Mahalanobis and h. Multiple-

class Mahalanobis

W1,0,0. This is due to the fact that high energy is found in the descendants

of W1,0,0 and since relative energy compares energies of two subbands, therefore

more discriminant subbands are selected in the descendants of the more energetic

subband. On the other hand, we can see that Energy distance does not do as well

because it decomposes all subbands rendering the feature set too long and hence,

adds features to the feature set which may not be the best for differentiating

between Meningioma subtypes.

Mahalanobis distance fails to decompose subbands beyond 2 levels and hence

fails to capture the intrinsic textural characteristics. Multi-class Mahalanobis is

even worse as it fails to go beyond the first level. Multi-class Mahalanobis yields

a feature set which is quite small and as the results indicate does not produce
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desirable results. Hence, it can safely be deduced that subband selection in the

descendants of the approximation subband W1,0,0, the vertical W1,1,0 and the

horizontal detail subbands W1,0,1, is good for clustering as it keeps the feature

set at a sufficient length and also captures the most useful discriminant textural

characteristics. A FWPT decomposition as seen in the case of Energy distance is

undesirable as it increases the feature set length and does not capture the more

discriminant information. The Mahalanobis distance selects fewer subbands, in

fact, the decomposition obtained is only up to the 2nd level which is not good for

capturing textural characteristics as the Rand index indicates. The same applies

to multi-class Mahalanobis which decomposes subbands only up to the 1st level.

Next we discuss the results for the pseudo-averaging case.

4.4.2 Results: Pseudo Averaging

The pseudo averaging based approach produces results comparable to standard

averaging. Tables 4.3 and 4.4 show the Rand indices obtained for various sta-

tistical features discussed previously. The highest ARI for pseudo-averaging is

obtained in the case of intersection of decompositions for the Fisher discriminant

as can be seen in Table 4.3. Fisher distance overall performs better than any

other distance function for pseudo-averaging with an ARI of 0.70. The highest

overall Rand value for the union decompositions is 0.69 which is slightly lower

than the one obtained for intersection. The highest HRI obtained is 0.81 for

Fisher Discriminant (correlation feature) which is much better than the highest

Rand Index for the k-means clusters of LBP based features of 0.69. Intersection

is again seen to perform better than union with an ARI of 0.70 compared to

0.69 obtained with union while the HRI produced with intersection is 0.81, much

better than the union HRI of 0.77.

Like standard averaging Hellinger (0.69), Kullback-Leibler (0.69) and Jensen-

Shannon (0.69) also produce good results in the case of pseudo averaging for

B∗⋂. The only difference is Fisher Discriminant which produces much better re-

sults for pseudo averaging (ARI=0.70) compared to those for standard averaging

(ARI=0.67) while Bhattacharyya does better in the case of standard averaging

(ARI of 0.69 compared to 0.63 for pseudo averaging). Relative energy performed
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Table 4.3: Rand Indices for various features of Intersection decompositions ob-

tained using pseudo-averaging and various distance functions (HLD=Hellinger

Distance, K-LD=Kullback-Leibler Distance, FD=Fishers Linear Discriminant, J-

SD=Jensen-Shannon Distance, BD=Bhattacharya Distance, MD=Mahalanobis

Distance, MCMD=Multi-Class Mahalanobis Distance, EneD=Energy Distance,

REneD=Relative Energy Distance). Rµ=Average Rand Index

µ σ ν Γ ξ ε Gς Gυ Gε Gτ Rµ

HLD 0.62 0.63 0.62 0.60 0.63 0.74 0.73 0.77 0.78 0.80 0.69
K-LD 0.62 0.63 0.62 0.60 0.63 0.74 0.74 0.77 0.75 0.80 0.69
FD 0.62 0.68 0.62 0.63 0.68 0.72 0.73 0.81 0.71 0.75 0.70
J-SD 0.63 0.63 0.62 0.60 0.63 0.74 0.73 0.77 0.75 0.80 0.69
BD 0.62 0.48 0.61 0.63 0.46 0.65 0.66 0.76 0.68 0.75 0.63
MD 0.62 0.60 0.62 0.60 0.60 0.72 0.72 0.78 0.72 0.8 0.68
MCMD 0.63 0.51 0.50 0.60 0.51 0.65 0.70 0.78 0.67 0.73 0.63
EneD 0.61 0.63 0.61 0.64 0.63 0.68 0.72 0.75 0.68 0.74 0.67
REneD 0.62 0.46 0.58 0.63 0.48 0.63 0.66 0.73 0.68 0.76 0.62

Avg 0.62 0.59 0.60 0.62 0.59 0.70 0.71 0.77 0.71 0.77 0.67

better in the case of standard averaging (HRI=0.82) but is seen to produce much

worse results for pseudo-averaging (HRI=0.76). Figure 4.4 shows the intersection

decomposition obtained for some of the distance functions.
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Table 4.4: Rand Indices for various features of Union decompositions obtained

using pseudo-averaging and various distance functions (HLD=Hellinger Dis-

tance, K-LD=Kullback-Leibler Distance, FD=Fishers Linear Discriminant, J-

SD=Jensen-Shannon Distance, BD=Bhattacharya Distance, MD=Mahalanobis

Distance, MCMD=Multi-Class Mahalanobis Distance, EneD=Energy Distance,

REneD=Relative Energy Distance). Rµ=Average Rand Index

µ σ ν Γ ξ ε Gς Gυ Gε Gτ Rµ

HLD 0.58 0.62 0.61 0.64 0.62 0.68 0.73 0.75 0.72 0.76 0.67
K-LD 0.63 0.62 0.6 0.64 0.62 0.68 0.73 0.75 0.72 0.76 0.68
FD 0.63 0.63 0.61 0.64 0.63 0.68 0.72 0.75 0.68 0.74 0.67
J-SD 0.58 0.63 0.6 0.65 0.63 0.73 0.73 0.75 0.72 0.76 0.68
BD 0.63 0.63 0.61 0.64 0.63 0.68 0.72 0.75 0.68 0.74 0.67
MD 0.63 0.65 0.62 0.64 0.65 0.73 0.72 0.77 0.71 0.75 0.69
MCMD 0.62 0.63 0.61 0.64 0.63 0.68 0.72 0.75 0.68 0.75 0.67
EneD 0.62 0.63 0.61 0.64 0.63 0.68 0.72 0.75 0.68 0.75 0.67
REneD 0.63 0.63 0.61 0.64 0.63 0.68 0.72 0.75 0.68 0.74 0.67

Avg 0.62 0.63 0.61 0.64 0.63 0.69 0.72 0.75 0.70 0.75 0.67
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a. b. c.

d. e.

f. g. h.

Figure 4.4: Pseudo averaged intersection decompositions obtained for the distance

functions a. Hellinger, b. Kullback-Leibler, c. Jensen-Shannon, d. Fishers

Discriminant, e. Mahalanobis, f. Bhattacharyya, g. Relative Energy and h.

Multiple-class Mahalanobis
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Figure 4.4(a)-(e) shows decompositions belonging to distance functions that

perform comparably better in the case of pseudo-averaging while (f)-(h) produce

lower clustering accuracies. It can be clearly seen from Figure 4.4 that the sub-

bands W4,10,0, W4,11,0, W4,10,1 and W4,11,1 are the most critical subbands (this

is true for both standard and pseudo-averaging). There inclusion in the Maha-

lanobis distance decompositions causes the clustering accuracy to rise (ARI=0.68

and HRI=0.80) while it can be clearly seen that the decompositions which do not

include these subbands shown in Figure 4.4(f)-(h) do not perform well. On the

other hand, the best clustering accuracies are obtained for the Fishers distance

which includes subbands that are descendants of the approximation W1,0,0, the

horizontal W1,1,0 and the vertical W1,0,1 detail subbands. The diagonal detail sub-

bands decomposed i.e. the descendants of W1,1,1 do not seem to be too important

as their inclusion or exclusion has little impact on clustering accuracies but in

classification as we shall see in the next chapter these subbands can improve the

classification accuracy.

4.4.3 Discussion

It can be safely concluded from the above analysis that standard averaging overall

performs slightly better than pseudo-averaging in terms of clustering efficiency.

Although the difference remains small with standard averaging producing the

best HRI of 0.82 while pseudo-averaging producing a best HRI of 0.81 but the

highest ARI for both remains equal to 0.70. However, different distance functions

perform better for the two different types of averaging. Intersection is generally

found to be better than the union of decompositions. Indeed, this trend can

be seen for most of the distance functions with there being very few instances

when the union performs better than intersection as seen in the case of Hellinger

for standard averaging. The union decomposition represents the universal set

or the maximum set whereas the intersection represents the minimum set. The

intersection places a very stringent constraint that the subband included must

be found in all the 625 decompositions obtained. From the above discussion, we

conclude that there are two factors that affect the clustering accuracy obtained

using a decomposition.
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1. The frequency content of the subbands selected or which descendants of

the approximation (W1,0,0) and detail (W1,1,0, W1,0,1, W1,1,1) subbands are

selected.

2. Number of subbands selected.

From the above results, we can see that subbands that are the descendants

of the approximation subband W1,0,0, vertical W1,1,0 and horizontal W1,0,1 detail

subbands contains information that are effective for efficient clustering with sub-

bands indices W4,10,0, W4,11,0, W4,10,1 and W4,11,1, identified as the most critical

subbands.

The other important factor is the number of subbands selected. Next we would

discuss, how number of subbands selected affects clustering accuracies. How-

ever, its extremely important that the subbands selected represent the spatial-

frequency resolution which is best for differentiating between Meningioma sub-

types. The discrimination power of a subband computed using a viable distance

function would indicate how useful a certain subband is. Considering this fact, the

more discriminant the subbands in a decomposition, the better it is for classifica-

tion and clustering. We shall see in the classification results in the next chapter

that usually a high number of subbands are better than a lower number provided

they represent the right spatial frequency information. Subsequent discussion

would aim to ascertain which number of subbands provide higher classification

accuracies.

In this discussion, we would be referring to intersection decomposition as it

provides better results for clustering. Our analysis shows that the best results

depend upon the number of subbands selected and more importantly upon the

frequency content of the subbands selected. Fisher discriminant produces the best

results for pseudo-averaging. A total of 139 subbands are found in the intersec-

tion. While in the case of Bhattacharyya distance, intersection of decomposition

produces a total of 58 subbands with a low ARI of 0.63. On the other hand Ma-

halanobis distance produces a relatively good ARI of 0.68 with just 13 subbands

since the subbands selected are better for classification in comparison to those

selected by Bhattacharyya, as explained earlier. Tables 4.5 and 4.6 show the

number of subbands and the ARIs and HRIs obtained for each distance function.
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Table 4.5: Number of subbands and Rand indices for Standard Averag-

ing (HLD=Hellinger Distance, KLD=Kullback-Leibler Distance, FD=Fishers

Linear Discriminant, JSD=Jensen-Shannon Distance, BD=Bhattacharya Dis-

tance, MD=Mahalanobis Distance, MCMD=Multi-Class Mahalanobis Distance,

EneD=Energy Distance, REneD=Relative Energy Distance) (All values are cor-

rect to 2 decimal places)

Ns HRI ARI

HLD 73 0.81 0.70
KLD 82 0.81 0.69
FD 178 0.75 0.68
JSD 82 0.81 0.70
BD 130 0.82 0.69
MD 10 0.81 0.67
MCMD 4 0.78 0.63
EneD 256 0.75 0.67
REneD 124 0.82 0.66

Table 4.5 shows the number of subbands and the ARIs and HRIs obtained for

the various distance functions included in the study for the standard averaging

case. In Table 4.5, it can be seen that the lowest ARI is obtained for the multi-

class Mahalanobis distance. The number of subbands selected are quite low

i.e. only four subbands are selected which is equivalent to a first level simple

wavelet transform. Two class Mahalanobis distance is also not good for subband

selection as it selects only 10 subbands and produces a comparatively low ARI

of 0.67. The other distance for which a relatively low ARI is acquired is the

Energy distance function. The ADWPT decompositions obtained for Energy

distance functions are equivalent to a Full Wavelet Packet Transform (FWPT).

As discussed in Chapter 2 and as per the results in Table 4.5 FWPT is not the best

decomposition for Meningioma subtypes classification. The results indicate that

a very low number of subbands (i.e. under 10 subbands) and a very high number

of subbands such as 256 are not ideal for differentiating between Meningioma

subtypes.
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Again referring to the Table 4.5, the HRIs indicate that Bhattacharyya and the

novel Relative Energy distance are the best distances for clustering Meningioma

subtypes. Bhattacharyya and Relative Energy based decompositions produce

130 and 124 subbands respectively. Hence, subbands number in this range are

good for differentiating between Meningioma subtypes provided the right spatial

and frequency resolution subbands are selected. Mahalanobis distance performs

well although only 10 subbands are selected but Fisher discriminant does not

produce a too high an HRI although 178 subbands are selected. This is due to

the non-selection of the right spatial-frequency resolution subbands as discussed

earlier.

Table 4.6: Number of subbands and Rand indices for Pseudo-averaging

(HLD=Hellinger Distance, KLD=Kullback-Leibler Distance, FD=Fishers Lin-

ear Discriminant, JSD=Jensen-Shannon Distance, ED=Euclidean Distance,

BD=Bhattacharya Distance, MD=Mahalanobis Distance, MCMD=Multi-Class

Mahalanobis Distance, EneD=Energy Distance, REneD=Relative Energy Dis-

tance)

Ns HRI ARI

HLD 37 0.80 0.69
K-LD 37 0.80 0.69
FD 139 0.81 0.69
J-SD 40 0.80 0.69
BD 58 0.76 0.63
MD 13 0.80 0.68
MCMD 4 0.78 0.63
EneD 256 0.75 0.67
REneD 64 0.76 0.62

Table 4.6 shows the HRIs and ARIs for the pseudo-averaging case for vari-

ous distance functions. Hellinger, Kullback-Leibler, Fisher and Jensen-Shannon

distances produce comparable results with Fisher being the best with an HRI

of 0.81. Very few subbands, as obtained in the case of Multi-class Mahalanobis

produce discouraging results which is consistent with the results for standard

averaging. Moreover, 256 subbands selected in the case of Energy distance are
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again found to be undesirable. Mahalanobis distance produces a good HRI for

just 13 subbands as the subbands selected are good for clustering accuracy.

In the light of above discussion, we can conclude that generally more sub-

bands are better than fewer subbands with the optimum lying somewhere in the

range of 10 to 190, provided the right descendants of the approximation and

detail subbands are selected. If more subbands are available but they do not

represent the right frequency and spatial information then high accuracy results

will not be obtained. If the right spatial and frequency information is selected

then subbands as few as 13 produce high clustering efficiency results as seen

for Mahalanobis distance (pseudo-averaging case). Therefore, selection of the

right spatial-frequency resolutions represented by a subband is more important

than the number of subbands selected. Hence, it can be safely concluded that

we are interested in decompositions with 4 levels of decomposition in the verti-

cal W1,0,1, horizontal W1,1,0 and also in the approximation W1,0,0 subband of a

wavelet packet decomposition as these subbands are important for acquiring high

clustering accuracies with subbands W4,10,0, W4,11,0, W4,10,1 and W4,11,1 being the

most critical.

The above discussion describes how different distance functions produce dif-

ferent clustering results as different decompositions are acquired using them. In

order to determine which discriminant functions are good and which are not,

we develop a system so that we could accept or reject a distance function based

upon its performance. Tables 4.7 and 4.8 present the results obtained taking into

account factors such as stability (S1, S2) defined in Chapter 3, maximum Rand

index i.e. the HRI (R∗) obtained for a distance function, ARI (Rµ) and subbands

viability function (κ) which is defined as,

V = 8
Ns

4L
(1− Ns

4L
) (4.16)

κ =

{
V if V < 1
1 otherwise

where Ns is the number of subbands produced in the intersection of all decom-

position for a given distance function and L is the level to which the transform

is carried out. κ tends to 0 when the number of subbands are low (such as less

than 10) or when the number of subbands are high i.e. 256 which is equivalent
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4.4 Evaluation of Distance Functions

to the number of subbands produced in FWPT. This is due to the fact that both

these contingencies are undesirable as discussed previously. A very low number

of subbands (less than 10) and a high number of subbands approaching or equal

to the value 4L have been shown to produce low clustering accuracies. Figure 4.5

shows how the κ function behaves in response to the number of subbands. As

stated earlier, very low number of subbands and very high that is approximating

the maximum at that decomposition level are not good for our problem and hence

have low κ values.

Figure 4.5: A graph showing the shape of the Kappa function

The overall measure of stability and clustering accuracy for a distance function

is given by M,

M =
κSR∗ + κSRµ + κRµ

R∗ S

3
(4.17)

The function describes the usefulness of a distance function in terms of its clus-

tering efficiency and decomposition stability. Each factor of the above equation

represents characteristics desirable in a discriminant function i.e. high decomposi-

tion stability S and good clustering efficiency R∗, Rµ. κSR∗ computes a relatively

direct measure of clustering efficiency by taking into account the HRI obtained

for a given function while κSRµ represents a viability measure more dependent
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upon the ARI produced by the distance function. On the other hand, κRµ

R∗ S relies

on a more important metric of overall clustering efficiency which relates ARI to

the HRI produced. This is one of the most important factors in deciding the

viability of a distance function. Each of these factors reflect the usefulness of a

distance function based upon different clustering efficiency indices and the sta-

bility measure acquired. All of these are averaged to produce an overall distance

function viability measure M.

Table 4.7: Performance evaluation of the various distance functions for

Standard Averaging (HLD=Hellinger Distance, KLD=Kullback-Leibler Dis-

tance, FD=Fishers Linear Discriminant, JSD=Jensen-Shannon Distance,

BD=Bhattacharya Distance, MD=Mahalanobis Distance, MMD=Multi-Class

Mahalanobis Distance, EneD=Energy Distance, REneD=Relative Energy Dis-

tance) (All values are correct to 2 decimal places)

S R∗ Rµ Ns κ F (SR∗) F (SRµ) F (SR) M

HLD 0.70 0.81 0.70 73 1 0.57 0.49 0.60 0.55
KLD 0.71 0.81 0.69 82 1 0.58 0.49 0.60 0.56
FD 0.70 0.75 0.68 178 1 0.52 0.47 0.63 0.54
JSD 0.71 0.81 0.70 82 1 0.57 0.49 0.61 0.56
BD 0.35 0.82 0.69 130 1 0.29 0.24 0.29 0.27
MD 0.05 0.81 0.67 10 0.30 0.01 0.01 0.01 0.01
MMD 0.01 0.78 0.63 4 0.12 0 0 0 0
EneD 1 0.75 0.67 256 0 0 0 0 0
REneD 0.58 0.82 0.66 124 1 0.48 0.38 0.47 0.44
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Table 4.8: Performance evaluation of the various distance functions

for Pseudo-Averaging (HLD=Hellinger Distance, KLD=Kullback-Leibler Dis-

tance, FD=Fishers Linear Discriminant, JSD=Jensen-Shannon Distance,

BD=Bhattacharya Distance, MD=Mahalanobis Distance, MMD=Multi-Class

Mahalanobis Distance, EneD=Energy Distance, REneD=Relative Energy Dis-

tance)

S R∗ Rµ Ns κ F (SR∗) F (SRµ) F (SR) M

HLD 0.75 0.80 0.69 37 0.99 0.60 0.52 0.64 0.59
K-LD 0.75 0.80 0.69 37 0.99 0.59 0.52 0.64 0.58
FD 0.86 0.81 0.69 139 1 0.70 0.59 0.73 0.67
J-SD 0.74 0.80 0.69 40 1 0.59 0.51 0.64 0.58
BD 0.80 0.76 0.63 58 1 0.61 0.50 0.66 0.59
MD 0.49 0.80 0.68 13 0.39 0.15 0.13 0.16 0.15
MCMD 0.45 0.78 0.63 4 0.12 0.04 0.04 0.04 0.04
EneD 1 0.75 0.67 256 0 0 0 0 0
REneD 0.77 0.76 0.62 64 1 0.58 0.47 0.62 0.56
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Tables 4.7 and 4.8 show the values for M obtained for various distance func-

tions for the intersection of decompositions. The discriminant functions selected

are shown in bold. The criterion for the selection of a distance function is based

upon the measure M and is given as,

M > > (4.18)

where > = 0.5, which provides a good cut off point. It can be clearly seen from

the tables that the other distance functions that suffer as per there stability or

classification accuracy produce values which are relatively low in comparison to

distance functions found good in our analysis. Most functions produce values for

M sufficiently below the the threshold 0.5 except for the functions found good in

our analysis which are safely above the threshold. Distance functions not selected

do not provide any interesting or better results in terms of stability and clustering

efficiency except for Bhattacharyya distance in case of pseudo-averaging which

produces high clustering accuracies. Although Bhattacharyya distance is good

for clustering but its stability is low, hence, it is not selected. The maximum

value that can be attained for M is 1. A distance function for which M is equal

to 1 would be the perfect distance function. This represents the theoretical limit.

Finally, we have come to the point where the most useful distance functions

have been found. The functions that perform better in the case of pseudo-

averaging are: Hellinger, Kullback-Leibler, Fishers Linear, Jensen-Shannon, Bhat-

tacharyya and Relative Energy distance. Hence, there will be a total of 6 functions

which would be analysed further in the rest of the thesis for pseudo-averaging.

In case of standard averaging, the distance functions selected are: Hellinger,

Kullback-Leibler, Fishers Discriminant and Jensen-Shannon distance. But it

must be noted that Kullback-Leibler is equivalent to Jensen-Shannon in case

of standard averaging whereas Kullback-Leibler produces the same decomposi-

tion as Hellinger in case of pseudo-averaging. In the next chapter, a comparison

between the various distance functions for pseudo-averaging and standard averag-

ing case are presented with classification results. We will include Relative Energy

distance and Bhattacharyya distance for standard averaging in our analysis as

they produce a relatively high value for M in case of pseudo-averaging and also
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they produce the highest HRIs for standard averaging. They are included so

that a comparison can be made between the results produced for standard and

pseudo-averaging. The distance functions selected have been found useful for

Meningioma subtypes classification. An analysis of this sort may be carried out

for any other application and the best distance measures may be selected.

4.5 Summary and Conclusions

In this chapter, an analysis of the stability of ADWPT decompositions with

respect to different distance functions is presented. 10 distance functions each

for the two forms of pseudo averaging are compared. An objective criterion is

proposed for selection of distance functions based upon stability and clustering

efficiency. The viability of a distance function is defined in terms of the stability

index and the clustering accuracy attained. 6 distance functions are selected for

further analysis.

In terms of the averaging mechanism, it can be said that pseudo-averaging is

relatively more stable than standard averaging but standard averaging produces

slightly better clustering results. Therefore, its important that the classification

results for both forms of averaging for the distance functions that perform better

are presented. In the next chapter, we present the classification results and select

the distance functions and feature type that is best for Meningioma subtype

classification.
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Chapter 5

Feature Selection for Subtype

Classification

As stated earlier, the aim of our research is to differentiate amongst the differ-

ent meningioma subtypes under study, i.e. Meningiotheliamatous, Fibroblastic,

Transitional and Psammomatous. In this chapter, first the classification of feature

sets obtained using ADWPT is carried out to investigate the efficacy of ADWPT

features in differentiating between the various meningioma subtypes. The dis-

tance function that performs best in classifying amongst the various meningioma

subtypes is identified. Subsequently, we show how the stability and the discrimi-

nation power of a subband impacts classification accuracy. An optimal subset of

subband features is selected based upon subband discrimination power and sta-

bility of the subband that provide the best classification accuracies with almost

perfect results in some instances.

Section 5.1 discusses the classification results and presents the best distance

functions for meningioma subtype classification. Section 5.2 presents a feature se-

lection approach based upon subband stability and subband discrimination power

and shows that better classification accuracies are obtained with more stable and

discriminant subbands.
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5.1 Classification

5.1 Classification

The aim of our study has been principally to develop a technique to accurately

differentiate between meningioma subtypes. After the acquisition of decomposi-

tions, features for each subband were computed and then used for clustering in

the previous chapter. It was concluded from the clustering results that GLCM

features generally provide better clusterings. In our work with classification of

meningioma subtype images, we experimented with various features including the

Grey Tone Difference Matrix features and the first order statistical features [151].

We found GLCM features to be better than all other features for classification.

Hence, more GLCM features were included in the study. The GLCM features

that were added for classification were GLCM Mean, Standard Deviation, Dis-

similarity, Shade and Prominence as described by Haralick et al. [135].

GLCM Mean

The mean of a normalised GLCM matrix Q4x,4y
d,p,q may be computed as:

G
µ
d,p,q =

N−1∑
i,j=0

iQ4x,4y
d,p,q (i, j) (5.1)

The GLCM mean describes how the frequency content varies over a subband. A

high value for mean would signal presence of high values or energy in texture

represented by the subband whereas a low mean would correspond to low energy.

GLCM Standard Deviation

The standard deviation of a normalised GLCM matrix Q4x,4y
d,p,q may be com-

puted as:

Gσ
d,p,q =

√√√√
N−1∑
i,j=0

(i− G
µ
d,p,q)

2Q4x,4y
d,p,q (i, j) (5.2)

The GLCM Standard Deviation provides a measure of the variance in coefficient

values over a subband i.e. how the coefficient values vary in relevance to each

other.
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GLCM Dissimilarity

The Dissimilarity feature of a normalised GLCM matrix Q4x,4y
d,p,q may be com-

puted as:

Gϑ
d,p,q =

√√√√
N−1∑
i,j=0

|i− j|Q4x,4y
d,p,q (i, j) (5.3)

The GLCM Dissimilarity is related to the contrast feature which provides a mea-

sure of the difference or the gradient in coefficient values over a subband. The

only difference is that in computation of contrast the weights increase exponen-

tially while in dissimilarity they increase linearly.

GLCM Shade

The Shade feature of a normalised GLCM matrix Q4x,4y
d,p,q may be computed

as:

G=d,p,q = sgn(A)|A| 13 (5.4)

where

A =
N−1∑
i,j=0

(i + j − 2Gµ
d,p,q)

3Q4x,4y
d,p,q (i, j)

Gσ
d,p,q

3(
√

2(1 + Gυ
d,p,q)

3)
(5.5)

and sgn(A) denotes the sign on the value A. The GLCM Shade is related to

the correlation feature which determines the relationship in terms of how the co-

efficients values vary over a subband. Shade feature as the name suggests tries

to determine if the texture represented by a subband contains shading or darker

regions in terms of how the coefficients are correlated.

GLCM Prominence

The Prominence feature of a normalised GLCM matrix Q4x,4y
d,p,q may be com-

puted as:

G=d,p,q = sgn(B)|B| 14 (5.6)
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where

B =
N−1∑
i,j=0

(i + j − 2Gµ
d,p,q)

4Q4x,4y
d,p,q (i, j)

4Gσ
d,p,q

4(1 + Gυ
d,p,q)

2)
(5.7)

and sgn(B) denotes the sign on the value B i.e. either positive or negative.

The GLCM Prominence is also related to the correlation feature (Gυ
d,p,q) which

determines the relationship in terms of how the coefficients texture varies over a

subband.

After feature extraction, the next step in any texture classification problem is

classifier selection. Many classifiers have been used for texture classification. We

experimented with a few classifiers and found Support Vector Machines (SVMs) to

be the best for meningioma subtype classification using ADWPT based features.

A discussion of various classifiers is presented next and the results obtained with

each kind of classifier are discussed as well.

5.1.1 Classifiers

In any pattern classification problem, the choice of classifier is one of the critical

aspects. The other important factor is feature selection. The success of a pat-

tern recognition algorithm depends upon feature and classifier selection. In the

previous chapter, we have shown that the features extracted using ADWPT and

GLCM can produce good clusters. Rand indices as high as 0.82 were obtained

for some of the features. This indicates that the features obtained are capable of

differentiating between the various textures under study. Since our aim is classi-

fication, we must select an appropriate classifier. In this section, we discuss the

choice of classifiers and present the results obtained with the one that produces

the best results.

Over the last few decades, great progress has been made in the domain of

classifiers. Many new classifiers have been invented. There are various types of

classifiers. Mazhelis in [158] presents an overview of various types of classifiers

and an analysis of the strengths and weaknesses of the classifiers in relation to a

problem.

There are various types of binary-class and multi-class classifiers in use. A

binary class classifier principally says whether a sample belongs to a class or not
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i.e. it differentiates between two classes. Many binary-class classifiers can be

combined to produce a multi-class classifier. A multi-class classifier as the name

suggests classifies a test sample amongst a number of classes at the same time.

In the process of classification, normally a process of training is involved with a

number of training samples and subsequently test samples are used to test the

classification accuracy of a classifier.

Types of Classifiers

The various classifiers whether one-class or multi-class can be categorised into

one of the following based upon the internal model used by the classifier:

Density Methods

k-Nearest Neighbour (k-NN) is an example of a density based classifier. Other

examples of such classifiers are Gaussian or Gaussian mixture based classifiers.

In density methods an estimate of the probability density function of the feature

values in the training samples is estimated. The training data is assumed to be

representative of the texture class true data distributions. If a distribution of

certain features is unknown then it is assumed to be Gaussian or approximated

using techniques such as mixtures of Gaussians.

We have performed some analysis with k-Nearest Neighbour (k-NN) and the

results were presented in [52]. A leave-one-out approach was used for test-trial

runs while the classification accuracies produced were not very high. However,

the k-NN results showed that GLCM features combined with ADWPT can be

used to effectively differentiate between meningioma subtypes. ADWPT based

GLCM features were found to be better than raw image based GLCM features

for meningioma subtype classification.

Reconstruction Methods

In the reconstruction method, an underlying model of the data structure or fea-

ture space is estimated. The model is learnt. The parameters of the model are
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computed in the training phase and the sampling error is estimated at each stage.

The training is stopped when an acceptable error-rate is attained. Examples of

such a classifier are neural networks such as Self Organizing Maps (SOMs) and

Learning Vector Quantization (LVQ) [159].

Lessmann et al. [67] in their work presented the results of using SOMs for

clustering of the meningioma subtypes under study in this thesis. We used LVQs

for the purpose of classifying meningioma subtypes and presented the results in

[140]. Relatively good classification accuracies were obtained although GLCM

features were not used. Though transitional and fibroblastic subtypes were not

adequately classified with classification accuracies as low as 50%.

Boundary Methods

The boundary method stipulates the estimation of the distance between test fea-

ture vectors and the boundary built around the training feature vectors. The test

samples are classified based upon the minimum distance to a boundary represent-

ing a class. The boundary construction is obtained during the training phase.

Boundary methods are particularly aimed for one-class classification. Support

Vector Machines (SVMs) are an example of boundary method based classifiers.

Our analysis, in the subsequent section, is carried out with an SVM as it is one of

the most powerful and versatile classifiers in use [158]. We will present a detailed

description of SVMs and how they can be used to obtain a multi-class classifier,

since, it is a one-class classifier.

Classification with various kinds of classifiers was carried out to provide an idea as

to how various methods of classification function for our problem. This analysis

was by no means aimed at presenting a comprehensive and exhaustive analysis

of classifiers that may be used for classifying the various meningioma subtypes.

The aim of this thesis is to attain a set of feature vectors that are good represen-

tations of textural patterns under study as the quality of features is extremely

important. A weak classifier with good and optimal feature set can obtain good

classification accuracies but a sophisticated and powerful classifier would fail if

the quality of the feature set is substandard.
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5.1.2 Support Vector Machines (SVMs) for Multi-Class

Classification

As mentioned previously SVM is a supervised classifier which approximates the

decision surfaces of the theoretical Bayes classifier. SVM has found broad area of

applications since its invention in 1995 by Vapnik [160] and it is based upon sta-

tistical learning theory. Its application area ranges from medical image analysis

[161] [162] to spam categorization [163] and face recognition [164]. SVM has also

been used for text classification [165] and time series prediction [166]. Support

Vector Machines (SVMs) have been employed frequently in the literature to per-

form pattern classification. In [161], Nattkemper et al. show that SVM performs

better than decision trees and nearest neighbor (k-NN) classifiers in classification

of breast tumors. It has been proven to be a reliable and efficient tool in wide

variety of applications.

There are various advantages to using an SVM over other classifiers including

the fact that it is computationally less intensive (especially in comparison to

neural networks) and performs well in high dimensional spaces and when training

data is limited. These are good reasons for using an SVM for histological image

classification as the training data available is usually not too large.

SVM uses a kernel trick to map the input space in to a higher dimensional

feature space to make the non-linear hyperplane linear. To achieve this without

increasing computational complexity, a kernel trick is employed. The kernel func-

tion K(xi, xj) computes an equivalent kernel value for the value in the input space

so that no explicit mapping is required. A few popular kernels are presented as

under:

Linear : < xi, xj > (5.8)

Gaussian : e−γ‖xi−xj‖2 (5.9)

Polynomial : (γ < xi, xj > +a)d (5.10)

where < x, y > represents a dot product, while x and y are two arbitrary feature

vectors. As seen in the equation, each of the kernel functions contains some

free parameters. In the Gaussian kernel, parameter γ denotes the width of the
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Gaussian radial basis function. As for the polynomial kernel, d represents the

degree of the polynomial while γ is the coefficient of the polynomial function and

a is the coadditive constant.

In the training phase, the statistical features based on the gray level co-

occurrence matrix of the subbands of the ADWPT decomposition are used as

input feature sets. SVMs are trained using the feature sets extracted from the

training data. The Matlab version of LibSVM developed by Chang and Lin [167]

was used in our analysis. The best results were obtained with a Gaussian SVM.

It is important to note here that SVM is a two-class classifier i.e. it can dis-

tinguish between two classes at a time whereas in our application we are trying to

differentiate between four texture classes at the same time. To acquire multi-class

classification, multiple SVMs are combined using a voting method. Since SVM

is a two-class or binary classifier, a voting based method is followed to achieve

multi-class classification. Nc(Nc−1)
2

SVMs are trained where Nc corresponds to

the number of classes included in the study. A ”one-against-one” approach is

followed where two classes are compared at a time and the sample is assigned to

the class which has the most votes. If a tie in votes is found, then the class with

the smallest index is chosen. This method is often referred to as the wrapper

method in literature.

5.1.3 Distance Functions and Classification Accuracies

As stated earlier, SVM is used to differentiate amongst the four meningioma

subtypes included in the study. We experimented with various types of SVMs

which included the Linear, Gaussian and Polynomial. Gaussian was found to be

the best kernel for our problem. A manual search is carried out to find the best

parameter γ for each test trial run. This implies that a search for the best γ

parameter is performed from a set of predefined values for γ. A range of values

for the γ parameter are advised by the authors of LibSVM [167] that range from

2−13 to 25 with an interval of 22. We search for the best value of γ in this range.

The MAWTT templates using pseudo and standard averaging are obtained.

Each MAWTT subband is then used to extract GLCM features. These features

are then provided to the SVM for classification. 5 different test-trial runs are
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carried out with a different patient’s data left out from the subband decomposition

and the MAWTT template construction phase each time. The overall 5 fold cross

validated results are presented in the next section with a detailed discussion on

the best results acquired.

5.1.4 Classification using SVM

In order to evaluate the various distance functions, we present the 5-fold cross

validated overall results for distance functions selected in the previous chapter.

The classification accuracies for each meningioma subtype are presented later.

Table 5.1 presents the results acquired for each GLCM feature that has been

used in the analysis.

Table 5.1: Overall classification accuracies of the various distance functions

(HLD=Hellinger Distance, KLD=Kullback-Leibler Distance, FD=Fishers Lin-

ear Discriminant, JSD=Jensen-Shannon Distance, BD=Bhattacharya Distance,

MD=Mahalanobis Distance, REneD=Relative Energy Distance) for Intersection

of Decompositions (p=Pseudo-averaging, s=Standard averaging)

HLDp HLDs KLDp KLDs FDp FDs JSDp JSDs BDp BDs

Gς 76 82 76 82 77 75 81 81 77 79
Gυ 84 84 83 84 89 87 85 84 83 89
Gε 77 78 76 79 81 77 76 79 76 79
Gτ 83 85 83 85 85 80 83 85 83 85
Gµ 70 71 70 71 78 71 71 72 64 75
Gσ 71 68 69 69 75 69 70 69 68 76
Gϑ 77 81 76 81 80 78 77 81 77 79
G= 56 58 56 58 56 54 56 57 52 59
G℘ 63 66 67 66 66 67 64 67 58 69

Avg 73 74.78 72.89 75.00 76.33 73.11 73.67 75.00 70.89 76.67

As can be seen from the table, Fishers discriminant with pseudo averaging pro-

duces the highest classification accuracy of 89%. Furthermore, it also produces

an average classification accuracy of 76.33% for the various GLCM features used.
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Table 5.2: Overall classification accuracies contd...
MDp MDs REneDp REneDs Avg

Gς 68 66 76 78 76.71
Gυ 71 65 82 85 82.50
Gε 66 66 72 75 75.50
Gτ 64 65 82 83 80.79
Gµ 48 47 65 66 67.07
Gσ 58 53 67 70 68.00
Gϑ 67 64 76 79 76.64
G= 63 64 52 49 56.43
G℘ 51 52 60 59 62.50

Avg 61.78 60.22 70.22 71.56 71.79

This is consistent with our clustering results and the stability analysis as the Fish-

ers distance produced one of the highest values for M and high Rand indices as

well. The other function that does as well is the Bhattacharyya distance for stan-

dard averaging. Although Bhattacharyya distance produces very high accuracies

but it produces one of the most unstable decompositions for standard averaging.

Hence, it is undesirable for our problem. The other distance functions produce

different classification accuracies for different features. The average classification

accuracy varies from 60% to 76%, while the highest classification accuracy for a

given distance function ranges from 66% to 89%. This variability is due to the

different subbands selected by each distance function as discussed in the results

for clustering.

The reason why Fishers discriminant (pseudo averaging) and Bhattacharyya

(standard averaging) perform better than Hellinger or Kullback-Leibler is be-

cause many subbands at the 4th level are selected from amongst the descendants

of approximation W1,0,0 and the vertical detail W1,1,0 for these distance functions.

These subbands are not selected in the case of Hellinger or Kullback-Leibler dis-

tance measure based decompositions. A FWPT produces classification accuracies

of around 86% for the correlation feature while the average classification accuracy

over the various features remains at 74%. This indicates that adding subbands

that are not the most discriminant to the feature set reduces classification accu-
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racies. The fact that SVM is a good classifier, for applications where the feature

set is long, is an important factor here. Most other types of classifiers respond

negatively to the increase in feature length. Hence selecting a subset using various

distance functions is viable as it reduces the size of the feature set but increases

the overall classification accuracy for SVMs as well.

The GLCM features that were found to be most useful are correlation (Gυ),

energy (Gε), homogeneity (Gτ ) and dissimilarity (Gϑ). Correlation produces the

highest overall classification accuracy. Contrast produces better results for some

distance functions such as Hellinger and Kullback-Leibler but is not good for

other distance functions. Next, we present the classification accuracies for each

of the meningioma subtypes for the best distance function and GLCM features.

Table 5.3 shows that relatively high classification accuracies are obtained for

each meningioma subtype for the correlation feature for the Fishers discriminant.

It must be noted here that these results are 5-fold cross validated. Table 5.4

shows the results obtained for Fishers discriminant using union of decompositions.

It can be seen that results produced with intersection are consistently better

than the results produced using union. This is consistent with our analysis in

the clustering results. However, just as in the clustering results the difference

between the classification accuracies for union and intersection remains small

but as we shall see in the cross-validated results presented later, the feature

reduction is substantial. Hence, better classification results are achieved with

feature reduction of up to 50%.

Table 5.3: Classification accuracy for 5 Best GLCM features for B∗⋂ using Fishers

Discriminant and pseudo averaging (F=Fibroblastic, M=Meningiotheliamatous,

P=Psammomatous, T=Transitional)

Feature F M P T Avg

Gυ 79 89 97 89 89
Gε 68 83 97 75 81
Gτ 81 89 95 75 85
Gϑ 71 84 95 68 80
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Table 5.4: Classification accuracy for 5 Best GLCM features for B∗⋃ using Fishers

Discriminant and pseudo-averaging (F=Fibroblastic, M=Meningiotheliamatous,

P=Psammomatous, T=Transitional)

Feature F M P T Avg

Gυ 79 89 98 84 87
Gε 75 84 97 63 80
Gτ 78 90 98 70 84
Gϑ 72 84 96 60 78

Table 5.5 shows the results for various test trial runs for Fishers discriminant.

The results presented are for the correlation feature, as it is the best feature

included in our study. We can see that the reduction in features from the union

to intersection is substantial in all of the trial runs but the resulting classification

accuracies are improved. The features produced using intersection and union are

given by,

B∗⋂ =

NB⋂
i=1

B∗
i = B∗

1

⋂
B∗

2

⋂
. . . B∗

NB
(5.11)

B∗⋃ =

NB⋃
i=1

B∗
i = B∗

1

⋃
B∗

2

⋃
. . . B∗

NB
(5.12)

These equations imply that all the terminal subbands found in the intersec-

tion and union decomposition are used for obtaining GLCM features and then

provided to a SVM Gaussian Kernel. The best value of γ is found for each trial

run as described in Section 5.1.3.

The results in Tables 5.3, 5.4 and 5.5 show that high classification accuracies

can be obtained for meningioma subtype classification using Fishers discriminant

based intersection decompositions. The intersection decomposition acquires the

subbands which have the highest probability of being decomposed for a texture

classification problem using ADWPT.

The results show that the most stable subbands i.e. the subbands which have

the highest probability of occurrence are the best for high classification accu-

racies. This is a very important result. The selection of most stable subbands
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indicates that the subbands that are found most discriminant in all the different

test/training runs with different data sets used for training and testing are the

most viable for differentiating between meningioma subtypes. This result resolves

the issue of intra-class variability in real world textures such as meningioma sub-

types. Such textures suffer from the problem that changing test and training data

in various test/trial runs causes variable results and hence, the technique often

fails completely. Using the robust ADWPT which is equivalent to the intersec-

tion of decompositions, we not only achieve reduction in the length of the feature

sets and the selection of a consistent set of features, but the classification and

clustering accuracies improve as well. The intersection decomposition is a robust

ADWPT decomposition which selects only those subbands that are selected for

all the different permutations of test/training data.

Another important factor that effects the classification accuracies is the dis-

crimination power of a subband. We shall see how subband discrimination power

effects the classification accuracies in the next section. Moreover, the relation-

ship between stability and subband discrimination power needs to be investigated.

There is also the issue of selecting the subbands that have a high frequency of

occurrence but are not selected for all the different test trial runs such as the sub-

bands that have a stability index of 0.6 or above. In the next section, we analyse

the affect of subband discrimination power and subband stability on classification

accuracies.

5.2 Subband Discrimination Power and Stabil-

ity for Features Selection

The selection of subbands from a given Full Wavelet Packet Decomposition tree

based upon the subband discrimination power is inherently selection of features.

Feature selection is one of the most critical aspects of any pattern recognition

algorithm. Efficient selection of features can boost the classification accuracy.

The better the features, the higher the classification accuracy. This could be seen

in the context of the intersection and union of subbands. Intersection provides

better results most often as it represents a smaller subset of features that were
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found in all the different ADWPT decompositions whereas union represents a

superset that has a significantly higher number of features but the clustering

efficiency and classification accuracy is lower. Therefore, subband stability has

a direct impact on clustering and classification accuracies as it affects feature

selection. In this section, we evaluate stability and determine a mechanism for

feature selection from an ADWPT representation using the distance function

found best in the previous section. The aim is to maximise the classification

accuracy Ξ,

z = argmax
S,P

Ξ(4f (S,P)) (5.13)

where Ξ represents clustering or classification accuracy. The above equation stip-

ulates that stability and subband discrimination power may be used for feature

selection 4f , in order to consequently maximise accuracy. Maximising stabil-

ity S and subband discrimination power P would lead to better classification

accuracies. Results for selection of features based upon stability and subband

discrimination power are presented to evaluate how they impact the classification

of Meningioma subtypes.

5.2.1 Stability and Classification Accuracy

The results in the previous section indicate that the most stable subbands pro-

duced the most accurate results. This is due to the fact that the intersection of

decompositions, which inherently contains all the subbands that have the max-

imum stability index of 1 produces better results than the union of decomposi-

tions. Union of decompositions contains all the subbands that are found in any

decomposition for a distance function and hence, contains subbands which have

a low probability of occurrence or low stability. These subbands may not be

discriminant for all or the majority of the test trial runs.

It is important to ascertain how stability affects the classification accuracy. In

order to do so, we use the stability index to select subbands from the union tree of

ADWPT decompositions. This is because although high accuracies for intersec-

tion indicate that high stability is good for classification but many subbands that

have a high stability index but not equal to 1 have been ignored. It is important
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to ascertain how these subbands affect the classification accuracy. The union tree

contains all the subbands that are found in the union decomposition along with

their ancestors. We perform a bottom up search and exclude any subbands along

with its descendants which have a stability index lower than the threshold being

used. Though it is evident that the stability index of the children of a subband

is proportional to the stability of the parent. The algorithm used for obtaining a

subband stability based decompositions is presented below.

1. Compute the J-level union decomposition tree for a distance function D.

2. Calculate the stability index of each subband using the equation Sd,p,q =

Nd,p,q/NT where Sd,p,q represents the stability index of a subband, Nd,p,q is

the number of times the p, qth subband at depth d is found in all the various

decompositions and NT is the total number of decompositions.

3. Initialize d = J − 1.

4. For all 0 ≤ p < 2j, 0 ≤ q < 2j, do the following:

a. If Sd,p,q ≤ TS (where TS is the stability threshold)

Remove the four child subbands at depth d

b. otherwise keep the subband at depth d and all its sibling subbands.

5. Decrement d by 1.

6. If d < 0, then stop, otherwise goto step 4.

Analysis using various thresholds was carried out and the results are presented

in Table 5.6.

It can be seen in Table 5.6 that the overall classification accuracies steadily

improve as the stability threshold is raised. As the stability threshold rises, fewer

and fewer subbands are selected but the classification accuracies still improve.

A steady rise in classification accuracies is observed for all the different GLCM

features except for homogeneity. Although the number of subbands is reduced

from 243 to 148, the classification accuracies for the GLCM feature correlation

rises from 87% to 89%, for energy from 79% to 81%, for homogeneity from 84% to
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85% and for dissimilarity from 78% to 80%. The average classification accuracies

over all the GLCM features included rises from 82% to 83.8%. Therefore, choos-

ing subbands based upon their stability index is a good idea as the number of

subbands are reduced whereas the classification accuracies improve. The results

in Table 5.6 are 5-fold cross validated i.e. 5 different combinations of test-training

data using the leave one patient out from each class method was used and the

results presented in the table are the average of all the trial run results.

The results show that the classification accuracies improve as more stable

subbands are selected. This is an important result, as it reasserts the fact that

the subbands that are selected most often are the most discriminant as these

have been selected due to their subband discrimination power in most test-trial

runs with different test and training data. Therefore, we select the decomposition

obtained when the stability is at 1.0 and use it for further analysis in the rest of

this chapter. Next, we investigate how the discrimination power of the subbands

in the most stable decomposition affects the classification accuracies.

5.2.2 Subband Discrimination Power and Classification

Accuracy

The effect of subband discrimination power on classification accuracy must be

positive i.e. the higher the discrimination power of a subband included, the

higher the classification accuracy must be. Our analysis indicates that there is

a direct correlation between subband discrimination power of a feature set and

classification accuracy obtained. Pearson’s linear correlation coefficient obtained

for classification accuracy with subband discrimination power is 0.9 i.e. as the

subband discrimination power rises the classification accuracy rises as well. This

mean that subband discrimination power is highly correlated with classification

accuracy as the maximum value for the Pearson’s linear correlation coefficient is

1.0.
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Table 5.5: 5 fold cross validation results for Union feature set F⋃ and Intersec-

tion feature set F⋂ of Decompositions for Fishers discriminant (F=Fibroblastic,

M=Meningiotheliamatous, P=Psammomatous, T=Transitional)

Test Trial # Features N AccF AccM AccP AccT AccOverall

1 B⋃ 247 65 83 94 73 79
B⋂ 154 65 81 92 83 80

2 B⋃ 247 92 98 100 75 91
B⋂ 169 92 100 100 81 93

3 B⋃ 244 83 67 100 92 85
B⋂ 139 88 67 98 94 87

4 B⋃ 244 67 100 96 94 89
B⋂ 139 71 100 96 92 90

5 B⋃ 244 88 98 98 88 93
B⋂ 139 81 96 100 94 93

Avg B⋃ 245 79 89 97 84 87
B⋂ 148 79 89 97 89 89

TS Subbands Gυ Gε Gτ Gϑ Avg

0.1 243 87 79 84 78 82.0
0.3 218 88 79 83 79 82.3
0.5 205 88 80 83 80 82.8
0.7 200 88 80 84 80 83.0
0.9 153 88 80 85 80 83.3
1.0 148 89 81 85 80 83.8

Table 5.6: 5 fold cross-validated classification accuracies for the decompositions

obtained using stability based thresholding (Gυ=GLCM Correlation, Gε=GLCM

Energy, Gτ=GLCM Homogeneity, Gϑ=GLCM Dissimilarity)
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To investigate how selection of the more discriminant subbands affects the

classification accuracies, we select a subset of subbands from the most stable

decomposition i.e. intersection decomposition, using the subband discrimination

power as a basis. The subbands are selected in the way that first the subbands

representing 50% of the total subband discrimination power are selected with the

most discriminant subbands selected first and then the less discriminant subbands

and so forth. The results are presented in Tables 5.7 and 5.8. It must be noted

here that the results in these Tables have been 5-fold cross validated.

% P ND F M P T Avg

50 12 78 72 83 68 76
60 15 80 81 89 71 80
70 20 82 79 89 65 79
80 27 79 90 88 69 81
85 31 82 82 93 75 83
90 38 81 81 93 73 82
94 47 83 85 93 70 83
96 55 84 86 95 72 84
99 82 78 86 98 80 85

Table 5.7: 5 fold cross-validated classification accuracies for the sub-

band selection using the most discriminant subbands ND for the correla-

tion feature (F=Fibroblastic, M=Meningiotheliamatous, P=Psammomatous and

T=Transitional)

The results in Table 5.7 show that the overall classification accuracy improves

with the inclusion of more features. Important thing to note is that with just 12

most discriminant features representing 50% of the total subband discrimination

power, an overall classification accuracy of 76% is obtained. As we add the other

features, the classification accuracy improves but there are instances when the

overall classification accuracy falls as seen in the case when subbands representing

70% and 90% of the subband discrimination power are selected. The maximum

classification accuracy attainable is 89% with 148 subbands. We can see in the

table that with 82 features that represent 99% of the subband discrimination
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power, a classification accuracy of 85% is achieved while the rest of the 56 sub-

band features improve the classification accuracy by only 4% to raise it to 89%.

Another important aspect of the results presented in the table is that the classi-

fication accuracies of individual meningioma subtypes do not always improve as

the subband discrimination power of the feature set increases. As mentioned ear-

lier, this is due to the fact that overall subband discrimination power is a sum of

the subband discrimination power of pairwise comparisons between meningioma

subtypes. Hence, each subband selected may not be good for differentiating all

meningioma subtypes included in the study.

% Disc No. Subbands F M P T Avg

50 12 81 80 90 71 80
60 15 66 89 93 76 81
70 20 79 87 90 73 82
80 27 83 90 84 81 85
85 31 73 88 94 82 85
90 38 79 87 94 83 86
94 47 81 88 93 80 86
96 55 75 90 96 81 86
99 82 80 87 95 78 85

Table 5.8: 5 fold cross-validated classification accuracies for the sub-

band selection using the most discriminant subbands for the homogene-

ity feature (F=Fibroblastic, M=Meningiotheliamatous, P=Psammomatous and

T=Transitional)

The results for the homogeneity feature in Table 5.8 show that for the homo-

geneity feature, the 12 most discriminant subbands produce an overall classifica-

tion accuracy of as high as 80%. The subbands are ordered based upon there sub-

band discrimination power with the most discriminant subbands features added

to the feature set first and then subbands with lower subband discrimination

power are added to the feature set. For the homogeneity feature, addition of less

discriminant subbands causes the classification accuracy to fall as can be seen in

the table. Hence, 38 subbands which represent 90% of the subband discrimina-
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tion power produce the highest classification accuracy in case of the homogeneity

feature which is 86%.

From the results in Tables 5.7 and 5.8, it is evident that the discrimination

power of a subband has an effect on the classification accuracy. The higher the

discrimination power of a subband the higher the classification accuracy obtained

using it. However, it may be observed that the most discriminant subbands alone

may not be sufficient, as its a collection of subbands representing information

from all the different frequency channels that together achieve high classification

accuracies. This is obvious from the results in Tables 5.7 and 5.8, since a few

most discriminant subbands alone are not sufficient for obtaining the highest clas-

sification accuracies but a sizable collection of them representing subbands from

various frequency channels provide the best results. Another issue, as mentioned

earlier is that all highly discriminant subbands may not be able to differentiate

between all the meningioma subtypes included in the study with equal efficiency.

Hence, a fall in classification accuracy for some subbands is observed for individ-

ual meningioma subtypes while the overall classification accuracy improves. In

the next section, we will investigate how the selection of a subset of subbands

that always improve the classification accuracy impacts the overall results.

5.2.3 Feature Selection

The selection of the wavelet based representation that best differentiates be-

tween meningioma subtypes is essentially selection of subband features. This is

analogous to dimensionality reduction. Many techniques exist for dimensional-

ity reduction, including linear techniques such as Principal Component Analysis

(PCA) and non-linear techniques such as Diffusion Maps (DM).

However, as our results in the previous section indicate, there may still be

room for improvement. As we see from the results in the previous section, not all

subbands with a higher subband discrimination power yield higher classification

accuracies. The theory of feature selection states that for any given problem with

a defined number of elements Ne in a feature set X, a subset of the said feature

set Y may be found that would improve the classification accuracy Ξ. Therefore

for any feature set X, a feature set Y ⊂ X exists such that Ξ(Y ) > Ξ(X), where
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Ξ(X) and Ξ(Y ) represent the classification accuracies obtained using the feature

set X and Y respectively.

Many studies have been proposed advocating various approaches for feature

selection [168] [169]. Lei et al. [169] propose feature selection based upon rel-

evance and redundancy of the features. While Jain et al. [168] found floating

selection as the best approach for feature selection in texture analysis. We com-

bine the two approaches into a technique that adds 1 subband feature to the

feature set at a time and keeping it if it improves the classification accuracy or

discarding it if the classification accuracy falls. The relevance of a subband is

measured based upon its discrimination power. A subband that is highly dis-

criminant but causes the classification accuracy to fall is considered redundant.

It is a greedy approach and finds a local optima as per the set of features used

for differentiating between meningioma subtypes.

We employ two approaches for selection of subbands using the greedy algo-

rithm, so that the usefulness of more discriminant subbands can be evaluated.

In the first instance, we provide subband features in the frequency ordered mode

while in the second instance we sort the subbands in terms of their discrimination

power and then use them for classification.

Table 5.9 shows the results obtained for various test trial runs when subbands

are selected using the greedy approach, in which the subbands that improve or

maintain the classification accuracy are retained.

It can be clearly seen from the table that greedy selection using the most

discriminant subbands often produces higher classification accuracies with fewer

features. Hence, selection of features based upon the subband discrimination

power aids in obtaining higher classification accuracies. The results obtained are

encouraging as our technique is able to classify correctly all the various menin-

gioma subtypes with greater than 90% accuracy. The psammomatous subtype

is classified correctly almost 100% of the time with just one case producing a

classification accuracy of 98% for this meningioma subtype.

The results in this section indicate that ADWPT is a robust and efficient

technique that provides high classification accuracies by selecting subbands rep-

resenting the most important spatial and frequency information. It not only

achieves feature reduction by retaining the best features but also achieves high
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Table 5.9: 5 fold cross validation results for Greedy feature set with

frequency sorted subbands F and the Greedy feature set with subbands

sorted based upon there discrimination power computed using Fishers Dis-

criminant FD (F=Fibroblastic, M=Meningiotheliamatous, P=Psammomatous,

T=Transitional)

Test Trial # Feature Selection N AccF AccM AccP AccT AccOverall

1 F 35 87.5 77.1 95.8 87.5 87
FD 32 85.4 79.2 97.9 93.8 89.1

2 F 77 95.8 100 100 91.7 96.9
FD 80 93.8 100 100 87.5 95.3

3 F 54 89.6 72.9 97.9 95.8 89.1
FD 49 93.8 77.1 100 89.6 90.1

4 F 47 93.8 100 95.8 97.9 96.9
FD 38 89.6 100 100 93.8 95.8

5 F 60 83.3 97.9 100 93.8 93.8
FD 50 89.6 100 100 97.9 96.9

Avg F 55 90 89.58 97.9 93.34 92.74
FD 50 90.44 91.26 99.58 92.52 93.44

classification accuracies. ADWPT also provides a means of ranking features based

upon the subband discrimination power and stability of the subbands the features

are acquired from. The results in this chapter indicate that there is a direct rela-

tionship between subband discrimination power and classification accuracy, and

between stability and classification accuracy. Hence, ADWPT is an highly ef-

fective technique which is not only robust to variation in the data samples but

also provide a means of ranking features and at the same time provides high

classification accuracies.

5.3 Conclusions

In this chapter, we presented the classification accuracies that may be obtained

using the various distance functions for the two different mechanisms for MAWTT

template construction. Some distance functions are found to be better than other
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distance functions. The classification accuracies using SVMs are obtained for each

of the distance functions and the results for the two types of MAWTT template

construction modes is investigated. The best results are obtained for Fishers

discriminant using pseudo-averaging. Overall classification accuracies as high as

89% are obtained for the intersection of ADWPT decompositions. Hence, we

provide a technique that resolves the problem of texture variation by selecting

the subbands that are selected for all the different permutations of test/training

data i.e. the most stable subbands. Although substantial reduction in features

is acquired using the intersection of decompositions, the classification accuracies

for the meningioma subtypes are still improved. Hence, a robust ADWPT de-

composition is acquired using the intersection of decompositions which not only

resolves the issue of intra-class texture variation but also improves classification

accuracies.

In this chapter, we also analysed how selection of subbands based upon their

discrimination power and stability index affects the classification performance.

We have shown that increasing the stability of a decomposition i.e. selecting

the most stable subbands improves the classification accuracy. Therefore, the

more stable a subband, the better it is for discriminating between meningioma

subtypes. Another important factor that affects the classification accuracy is

the discrimination power of a subband. The results show that there is a direct

relationship between the discrimination power of a subband and its effectiveness

in differentiating between meningioma subtypes. We show that selecting the more

discriminant subbands improves the classification accuracy more substantially in

comparison to selecting any other subband. A feature selection technique using

subband discrimination power as a guide is presented which performs better than

greedy selection of subband features.

Hence, ADWPT is a powerful approach for subband selection to acquire fea-

tures for meningioma subtype classification. It not only makes it possible to

acquire high classification accuracies by selecting the most relevant spatial fre-

quency resolution subbands but also overcomes the issue of wavelet packet de-

composition variability due to high intra-class texture variation in meningioma

subtypes. ADWPT is a robust mechanism for selection of a consistent set of fea-
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tures that provide high classification accuracies. It also provide a mechanism for

sorting features based upon subband discrimination power and stability index.
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Chapter 6

Conclusions

The thesis presents a wavelet packet transform based technique for histological

image texture classification. The approach overcomes the issue of high intra-

class and low inter-class variation in the texture found in meningioma images.

High classification accuracies are obtained using the technique. In this chapter,

we will present a summary review of the technique and also discuss the main

contributions of this thesis. The limitations of the technique are also presented

with a section on future directions.

6.1 Thesis Summary

In this thesis, we have developed a technique that borrows from various ap-

proaches to pattern classification. The target application is a real world problem

from the domain of histological image analysis.

Since human beings are the best pattern recognizers, therefore the Human

Visual System (HVS) holds important clues and ideas for the construction of

a viable pattern recognition technique. It is known that the HVS is composed

of various types of cells at various layers that perform different functions. The

visual stimuli is processed by the different layers before interpretation by the

brain. There is sufficient evidence to suggest that the layers acquire the data

and process it so that the edge information is separated from the rest of the

texture. Texture orientation is also extracted separately and the visual scene

is interpreted in terms of statistical properties as determined by Julesz et al.
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[107, 170]. These statistical features include first-order, second-order and higher-

order features. These features make different contributions to the overall texture

description in the process of visual cognition.

Many theories that represent the process of pattern recognition have been

presented in the first chapter. These include template matching, statistical and

syntactic features, structural approaches and topological or transform based tech-

niques. Just like the HVS, these techniques aim at simplifying the process of pat-

tern recognition by breaking up the visual stimuli into constituent features (sta-

tistical and structural) and transforming the signal into different more descriptive

representations. Hence, it is ascertained that efficient recognition of complex vi-

sual patterns from the real world involves acquiring different more meaningful

representations of the pattern and extraction of statistical features that represent

the pattern. The idea is to develop a technique that would transform the data

so that the textural edge and the non-edge information is extracted separately

and a mechanism is evolved to capture this information in terms of the statistical

properties just as the HVS does. This forms the basis of our technique.

In this thesis, we present a technique that we call the Adaptive Discriminant

Wavelet Packet Transform (ADWPT). ADWPT transforms an input signal, in

the case of this thesis, histological images of Meningioma samples into a mul-

tiresolution representation that decomposes the image in to various spatial and

frequency resolutions. This decomposition represents the edges and other textu-

ral information in the image at multiple resolutions. The ADWPT finds the best

spatial-frequency resolutions to describe the signal so that the most discriminant

features that differentiate between the various meningioma subtypes are selected.

These spatial-frequency subbands are used to extract Gray Level Co-occurrence

Matrix (GLCM) based statistical features. These features are used to describe

the texture and to perform classification using various pattern classifiers. The

technique aims to mimic the HVS as it acquires a textural representation with

edge and non-edge information in different subbands and subsequently uses the

statistical features extracted (as per the statistical approach), for texture descrip-

tion and classification.

The technique is shown to be robust as it finds the texture representation

that does not change when the data samples for meningioma subtypes used to
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construct it are changed. These representations provide features that acquire high

classification accuracies. Various features are extracted from the subbands in the

ADWPT decomposition. The features that provide the best results are Gray

Level Co-occurrence Matrix (GLCM) features. Other features such as first-order

and second order statistical features were also used for analysis.

Various classifiers were used for analysis with Support Vector Machines (SVMs)

providing the best results. Other classifiers used were Learning Vector Quanti-

zation (LVQ) and k nearest neighbours (k-NN). Classification accuracies of as

high as 90% may be achieved using SVMs for the various meningioma subtypes

with the psammomatous subtype providing near perfect results. Clustering using

k-means clustering is also carried out and the results are presented.

In essence, this thesis presents a technique that aims to mimic the HVS in

terms of how visual images are interpreted. This is a very simplistic approxi-

mation to the HVS which is far more complex and sophisticated. The results

produced indicate that the technique is good for differentiating between complex

real world textures.

6.2 Main Contributions

The main contributions of the work presented in this thesis are:

1. Discriminant Subband Selection: In Chapter 3, an algorithm for the selec-

tion of most discriminant subbands is presented. The algorithm compares

how various distance functions capture the ability of a subband to differen-

tiate between two meningioma subtypes. The results indicate that certain

distance functions are better than others for the problem of meningioma

subtype classification with Fisher’s discriminant providing the best results.

The approach selects subbands from an overcomplete wavelet packet repre-

sentation and acquires high accuracy results as shown in Chapter 5.

2. Stability Analysis: Chapter 3 introduces the concept of ADWPT stability

and Chapter 4 presents a detailed analysis of the stability of decompositions

for a distance function. Stability represents the probability of a decompo-

sition to remain consistent when the data used to construct the ADWPT
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decomposition changes. This is an important factor because if the decom-

positions change greatly when the data changes then it would be difficult to

identify the subbands that contain information important for meningioma

subtype classification. Our analysis showed that the higher the stability of

the ADWPT decomposition, the higher the classification accuracy.

3. ADWPT Feature Analysis: Chapter 4 describes the various feature extrac-

tion techniques for capturing the information contained in a subband. Apart

from other features this thesis presents a detailed discussion and analysis of

various feature extraction techniques from subbands in the ADWPT decom-

positions. The results show that GLCM features are the best features from

amongst those tried for meningioma subtype classification when combined

with ADWPT.

4. Subband Discrimination Power and Classification Accuracy: In chapter 5,

we have presented a detailed analysis of the relationship between the dis-

crimination power of a subband and its impact on the overall classification

accuracy. The results show that there is a direct relationship between the

discrimination power of a subband and the classification accuracy achieved

when features extracted from it are used for classification. As the more dis-

criminant subband features are added to the feature set, a jump in the over-

all classification accuracy is observed in most cases. This implies that the

approach followed in this thesis for subband selection based upon the dis-

crimination power is valid since the discrimination power is a good measure

for describing the ability of a subband to differentiate between meningioma

subtypes.

6.3 Limitations of the Work

The main limitation of the work is in the method used to compute the discrimina-

tion power of a subband. As stated earlier, the discrimination power of a subband

is a sum of the distances computed for six different comparisons amongst the 4

different meningioma subtypes being analysed. Although the results in Chapters

4 and 5 indicate that the subbands with higher discrimination power most often
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impact the classification accuracy positively i.e. they increase the accuracies, but

certain subbands that have a relatively high discrimination power are seen to

decrease the overall classification accuracy. This is due to the fact that a sub-

band that is good for differentiating between two subtypes may not be as good

for discriminating between all the other meningioma subtypes. Therefore, the

computation of discrimination power is susceptible to the bias introduced due

to a high distance value between two textures under study and low values for

comparison between other texture types. This problem would be compounded

as the number of textures for comparison was increased. Hence, the technique is

suited to instances where the number of texture classes under study is limited.

The results are near perfect for most two class cases using meningioma subtype

images.

In future work, we will try to overcome this problem and make the technique

more efficient. There are various avenues of further research that may be explored

in order to improve the technique and the classification accuracy obtained using

it.

6.4 Future Directions

There are various future directions in which the research may be carried out.

These are presented in a summary form as follows:

1. Averaging for MAWTT construction: In this thesis we have explored two

means of averaging of subband coefficients to construct the MAWTTs. As

stipulated in the chapter 3, there could be various other mechanisms to

acquire the templates. These could be various other averaging approaches

that use different averaging windows. In averaging the size of the window

would be an important factor as a small window would be more suited to

frequent changes in coefficient values whereas a long window would be more

suited for instances where the coefficient values are more consistent. These

averaging windows could be different for the various subbands depending

upon the frequency content they represent which in turn depends upon the

texture samples being analysed. Hence, the search for the optimal averaging
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window could be a subject of further research. Something conclusive can be

ascertained with thorough analysis. Although it is important to realize here

that the ultimate aim is to obtain stable decompositions which represent

subbands that can be used to attain high classification accuracies.

2. Distance functions analysis: In this thesis, we have presented various dif-

ferent distance functions and obtained ADWPT representations using each

for classifying meningioma subtypes. More distance functions may be used

with an emphasis on obtaining a more accurate estimation of the discrimina-

tion power of each subband. The important issue to resolve is the accurate

estimation of discrimination power for differentiating between multiple tex-

ture classes, so that a high distance value for two texture classes does not

bias the discrimination power. It may also be found that out of the var-

ious short listed distance functions included in the classification analysis

in chapter 4 different distance functions may be found better for different

texture classification problems.

3. Binary classification and combination: Currently we have tried to compare

all the various meningioma subtypes at the same time. A viable alternative

would be to compare them two at a time i.e. computation of the various

decompositions and classification using the various classifiers. This would

raise the issue of ties and generation of multiple ADWPT decompositions for

different pairs of meningioma textures. However, more elaborate analysis

and experimentation may be carried out to explore all possible modalities

of ADWPT and classifier combination in a binary classification mode.

4. Segmentation and structural analysis: Segmentation has been a more pop-

ular approach for classification in the domain of histological image analysis

with textural analysis not being explored more vigorously. For meningioma

subtype classification, segmentation may provide information that could fa-

cilitate meningioma subtype classification. Various segmentation schemes

may be applied to extract structural information from the histological image

samples and these may be combined with our textural analysis technique

for better classification results.
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6.4 Future Directions

5. Colour information: In our study, we have not explored colour information

at all for image analysis. Colour based techniques such as colour features,

colour histograms and colour wavelets may be applied to Meningioma sub-

type classification.

This thesis presents a novel wavelets based technique that is robust to intra-

class variation and achieves efficient feature selection for high accuracy classi-

fication results in image classification problems that suffer with low inter-class

differences such as Meningioma subtype classification.
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Appendix B

Distance Functions,
Decompositions and Stability
Graphs

B.1 Distance Functions

The calculation of the most discriminant decomposition is of paramount impor-

tance in our study. The structure of the ADWPT decomposition is dependent on

the discriminant function D. We have used some of the popular linear and sta-

tistical measures to compute D and have also derived some of our own measures.

A discussion of these functions is as follows:

B.1.1 Hellinger Distance

The pairwise discrimination power of the (p, q)th subband located at depth d is

calculated using the Hellinger distance [171] as follows:

D
a,b
d,p,q =

M−1∑
m=0

N−1∑
n=0

[√
Aa

d,p,q(m, n)−
√

Ab
d,p,q(m,n)

]2

(B.1)

where Aa
d,p,q(m,n) and Ab

d,p,q(m,n) denote the standard average or pseudo-average

ppdes of the (p, q)th subband Ta
d,p,q and Tb

d,p,q at depth d for classes a and b

respectively. The m and n represent the (m,n)th coefficient of the template

subband.
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B.1 Distance Functions

B.1.2 Kullback-Leibler Distance

The pairwise discrimination power of the (p, q)th subband located at depth d is

calculated using the Kullback-Leibler distance [129] as follows:

D
a,b
d,p,q =

M−1∑
m=0

N−1∑
n=0

(
Aa

d,p,q(m,n)log

(
Aa

d,p,q(m,n)

Ab
d,p,q(m,n)

)
+ Ab

d,p,q(m,n)log

(
Ab

d,p,q(m,n)

Aa
d,p,q(m,n)

))

(B.2)

B.1.3 Fishers Linear Discriminant

The pairwise discrimination power of the (p, q)th subband located at depth d is

calculated using the Fishers Linear Discriminant [129] as follows:

D
a,b
d,p,q =

(µa
d,p,q − µb

d,p,q)
2

(σa
d,p,q)

2 + (σb
d,p,q)

2
(B.3)

where µa
d,p,q and µb

d,p,q represent the mean of the (p, q)th template subbands Ta
d,p,q

and Tb
d,p,q at depth d for classes a and b and σa

d,p,q and σb
d,p,q represent the variance

of the (p, q)th MAWTT subband at depth d for classes a and b respectively.

B.1.4 Jensen-Shannon Distance

The pairwise discriminating power of the (p, q)th subband located at depth d is

calculated using the Jensen-Shannon distance [172] as follows:

D
a,b
d,p,q =

M−1∑
m=0

N−1∑
n=0

[
Aa

d,p,q(m,n)log

(
Aa

d,p,q(m,n)

Â
a,b
d,p,q(m,n)

)
+ Ab

d,p,q(m,n)log

(
Ab

d,p,q(m,n)

Â
a,b
d,p,q(m,n)

)]
/2

(B.4)

where Â
a,b
d,p,q(m,n) denotes the average of the two ppdes being analysed, given by

Â
a,b
d,p,q(m,n) =

(Aa
d,p,q(m,n) + Ab

d,p,q(m, n))

2
(B.5)

The Jensen-Shannon distance is unique as it incorporates the averaging of the

ppdes of the respective subbands.
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B.1.5 Bhattacharyya Distance

The pairwise discrimination power of the (p, q)th subband located at depth d is

calculated using the Bhattacharyya distance [129] as follows:

D
a,b
d,p,q =

1

4

[
log

(
(σ2

a,d,p,q − σ2
b,d,p,q)

2

4σ2
a,d,p,qσ

2
b,d,p,q

)
+ FDa,b

d,p,q

]
(B.6)

where σd,p,q,a and σd,p,q,b represent the standard deviations of the (p, q)th MAWTT

subband Td,p,q at depth d for classes a and b respectively and FDa,b
d,p,q is the value

of the Fishers discriminant between the respective subbands as defined above in

Eq. 3.10.

B.1.6 Mahalanobis Distance

The pairwise discrimination power of the (p, q)th subband located at depth d is

calculated using the Mahalanobis distance [173] as follows:

D
a,b
d,p,q =

√
|Xa,b

d,p,qC
a,b
d,p,q(X

a,b
d,p,q)

t| (B.7)

where |.| denotes the determinant and X is a mean matrix containing the differ-

ences of µ of the ppdes under study and is given by,

Xa,b
d,p,q =

(
µa,a

d,p,q µa,b
d,p,q

µb,a
d,p,q µb,b

d,p,q

)
(B.8)

where µa,b
d,p,q = µa

d,p,q−µb
d,p,q denotes the mean of the ppde of the (p, q)th subband

at depth d for classes a and b respectively and Ca,b
d,p,q represents the covariance of

the distributions of the MAWTT subbands Ta
d,p,q and Tb

d,p,q representing the two

classes a and b respectively. The standard deviation of the subband would be

given by νa
d,p,q =

∑M−1
m=0

∑N−1
n=0

√
(Aa

d,p,q(m,n)−µa
d,p,q)2

M×N
. The covariance matrix Ca,b

d,p,q for

two classes can then be represented as,

Ca,b
d,p,q =

(
νa

d,p,qν
a
d,p,q νa

d,p,qν
b
d,p,q

νb
d,p,qν

a
d,p,q νb

d,p,qν
b
d,p,q

)
(B.9)

For n classes, the covariance matrix is given as,

173



B.1 Distance Functions

Cc1,c2,...,cn

d,p,q =




ν1
d,p,qν

1
d,p,q ν1

d,p,qν
2
d,p,q . . . ν1

d,p,qν
n
d,p,q

ν2
d,p,qν

1
d,p,q ν2

d,p,qν
2
d,p,q . . . ν2

d,p,qν
n
d,p,q

...
...

. . .
...

νn
d,p,qν

1
d,p,q νn

d,p,qν
2
d,p,q . . . νn

d,p,qν
n
d,p,q


 (B.10)

This also brings us to an important result. From the equations above, it could

be implied that the Mahalanobis distance could be used to compare any number

of textural classes. The Mahalanobis distance for four classes can be written as,

D
a,b,c,d
d,p,q =

√
|Xa,b,c,d

d,p,q Ca,b,c,d
d,p,q (Xa,b,c,d

d,p,q )t| (B.11)

where

Xu,v,w,x
d,p,q =




µu,u
d,p,q µu,v

d,p,q µu,w
d,p,q µu,x

d,p,q

µv,u
d,p,q µv,v

d,p,q µv,w
d,p,q µv,x

d,p,q

µw,u
d,p,q µw,v

d,p,q µw,w
d,p,q µw,x

d,p,q

µx,u
d,p,q µx,v

d,p,q µx,w
d,p,q µx,x

d,p,q


 (B.12)

denotes an array of the difference of means of the (p, q)th subband at depth d for

classes u, v, w and x respectively and Cu,v,w,x
d,p,q represents the covariance matrix

of the ppdes representing the classes u, v, w and x.

B.1.7 Energy Distance

The energy distance is fundamentally the difference in energy of respective sub-

bands of the decompositions representing classes a and b and is given by,

D
a,b
d,p,q = (Ea

d,p,q − Eb
d,p,q)

2 (B.13)

where Ea
d,p,q =

∑M−1
m=0

∑N−1
n=0 (Aa

d,p,q(m,n))2. Hence, Ea
d,p,q represents the energy of

the (p, q)th MAWTT subband at depth d for class a.

B.1.8 Relative Energy Distance

In this section, we propose a novel metric for comparison of subbands. This

metric has not been used for subband selection yet to the best of our knowledge.

The relative energy distance may be given as,
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D
a,b
d,p,q =

(
Ea

d,p,q

Eb
d,p,q

+
Eb

d,p,q

Ea
d,p,q

)
/2− 1 (B.14)

The relative energy distance function may be derived as,

F (Ea
d,p,q,E

b
d,p,q) =

(
Ea

d,p,q

Eb
d,p,q

+
Eb

d,p,q

Ea
d,p,q

)
/2− 1 (B.15)

⇒ F (Ea
d,p,q, E

b
d,p,q) =

(
(Ea

d,p,q)
2 + (Eb

d,p,q)
2

2Ea
d,p,qE

b
d,p,q

)
− 1 (B.16)

⇒ F (Ea
d,p,q,E

b
d,p,q) =

(
(Ea

d,p,q)
2 + (Eb

d,p,q)
2 − 2Ea

d,p,qE
b
d,p,q

2Ea
d,p,qE

b
d,p,q

)
(B.17)

⇒ F (Ea
d,p,q, E

b
d,p,q) =

(Ea
d,p,q − Eb

d,p,q)
2

2Ea
d,p,qE

b
d,p,q

(B.18)

Therefore, the relative energy distance differs from the simple energy distance

given in the previous section.

B.2 Union of Decompositions

This section presents the union decompositions (defined in section 4.1.1) acquired

for various distance functions.

B.2.1 Hellinger Distance

Figures B.1 B.2 show the union of the ADWPT decompositions obtained using

Hellinger distance.

175



B.2 Union of Decompositions

Figure B.1: Union of ADWPT decompositions obtained using the Hellinger dis-
tance (Standard averaging)
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B.2 Union of Decompositions

Figure B.2: Union of ADWPT decompositions obtained using the Hellinger dis-
tance (Pseudo averaging)
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B.2 Union of Decompositions

The green number indicates the scaled discriminance value of a subband (max-

imum being 100 and minimum being 0) whereas the magenta is the number of

the subband ordered in terms of increasing frequency.

B.2.2 Kullback-Leibler Distance

Figures B.3 B.4 show the union of the ADWPT decompositions obtained using

Kullback-Leibler distance.

Figure B.3: Union of ADWPT decompositions obtained using the Kullback-
Leibler distance (Standard averaging)
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B.2 Union of Decompositions

Figure B.4: Union of ADWPT decompositions obtained using the Kullback-
Leibler distance (Pseudo averaging)
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B.2 Union of Decompositions

B.2.3 Fishers Linear Discriminant

Figures B.5 B.6 show the union of the ADWPT decompositions obtained using

Fishers Linear Discriminant.

Figure B.5: Union of ADWPT decompositions obtained using the Fishers Linear
Discriminant based distance (Standard averaging)
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B.2 Union of Decompositions

Figure B.6: Union of ADWPT decompositions obtained using the Fishers Linear
Discriminant based distance (Pseudo averaging)
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B.2 Union of Decompositions

B.2.4 Jensen-Shannon Distance

Figures B.7 B.8 show the union of the ADWPT decompositions obtained using

Jensen-Shannon distance.

Figure B.7: Union of ADWPT decompositions obtained using the Jensen-
Shannon distance (Standard averaging)
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B.2 Union of Decompositions

Figure B.8: Union of ADWPT decompositions obtained using the Jensen-
Shannon distance (Pseudo averaging)
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B.2 Union of Decompositions

B.2.5 Bhattacharya Distance

Figures B.9 B.10 show the union of the ADWPT decompositions obtained using

Bhattacharya distance.

Figure B.9: Union of ADWPT decompositions obtained using the Bhattacharya
distance (Standard averaging)
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B.2 Union of Decompositions

Figure B.10: Union of ADWPT decompositions obtained using the Bhattacharya
distance (Pseudo averaging)
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B.2 Union of Decompositions

B.2.6 Mahalanobis Distance

Figures B.11 B.12 show the union of the ADWPT decompositions obtained using

Mahalanobis distance.

a.

Figure B.11: Union of ADWPT decompositions obtained using the Mahalanobis
distance (Standard averaging)
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B.2 Union of Decompositions

Figure B.12: Union of ADWPT decompositions obtained using the Mahalanobis
distance (Pseudo averaging)
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B.2 Union of Decompositions

Figures B.13 B.14 show the union of the ADWPT decompositions obtained

using Mahalanobis distance for multiple classes i.e. 4 in our case.

Figure B.13: Union of ADWPT decompositions obtained using the Multiple Class
Mahalanobis distance (Standard averaging)
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B.2 Union of Decompositions

Figure B.14: Union of ADWPT decompositions obtained using the Multiple Class
Mahalanobis distance (Pseudo averaging)
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B.2 Union of Decompositions

B.2.7 Energy Distance

Figurea B.15 B.16 show the union of the ADWPT decompositions obtained using

Energy distance.

Figure B.15: Union of ADWPT decompositions obtained using the Energy dis-
tance (Standard averaging)
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B.2 Union of Decompositions

Figure B.16: Union of ADWPT decompositions obtained using the Energy dis-
tance (Pseudo averaging)

191



B.2 Union of Decompositions

B.2.8 Relative Energy Distance

Figures B.17 B.18 show the union of the ADWPT decompositions obtained using

the Relative Energy distance.

Figure B.17: Union of ADWPT decompositions obtained using the Relative En-
ergy distance (Standard averaging)
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B.2 Union of Decompositions

Figure B.18: Union of ADWPT decompositions obtained using the Relative En-
ergy distance (Pseudo averaging)
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B.3 Intersection of Decompositions

This section presents the intersection decompositions (defined in section 4.1.2)

acquired for various distance functions.

B.3.1 Hellinger Distance

Figures B.19 B.20 show the intersection of the ADWPT decompositions obtained

using Hellinger distance.

Figure B.19: Intersection of ADWPT decompositions obtained using the Hellinger
distance (Standard averaging)
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B.3 Intersection of Decompositions

Figure B.20: Intersection of ADWPT decompositions obtained using the Hellinger
distance (Pseudo averaging)
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B.3 Intersection of Decompositions

Again, the magenta number indicates the number of the subband when they

are ordered in terms of increasing frequency content whereas the green number

is the discriminant value of the subband concerned, scaled so that the maximum

value is 100 and minimum 0.

B.3.2 Kullback-Leibler Distance

Figures B.21 B.22 show the intersection of the ADWPT decompositions obtained

using Kullback-Leibler distance.

Figure B.21: Intersection of ADWPT decompositions obtained using the
Kullback-Leibler distance (Standard averaging)

196



B.3 Intersection of Decompositions

Figure B.22: Intersection of ADWPT decompositions obtained using the
Kullback-Leibler distance (Pseudo averaging)
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B.3 Intersection of Decompositions

B.3.3 Fishers Linear Discriminant

Figures B.23 B.24 show the intersection of the ADWPT decompositions obtained

using Fishers Linear Discriminant distance.

Figure B.23: Intersection of ADWPT decompositions obtained using the Fishers
Linear Discriminant (Standard averaging)
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B.3 Intersection of Decompositions

Figure B.24: Intersection of ADWPT decompositions obtained using the Fishers
Linear Discriminant (Pseudo averaging)
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B.3.4 Jensen-Shannon Distance

Figurea B.25 B.26 show the intersection of the ADWPT decompositions obtained

using Jensen-Shannon distance.

Figure B.25: Intersection of ADWPT decompositions obtained using the Jensen-
Shannon distance (Standard averaging)
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B.3 Intersection of Decompositions

Figure B.26: Intersection of ADWPT decompositions obtained using the Jensen-
Shannon distance (Pseudo averaging)
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B.3.5 Bhattacharya Distance

Figures B.27 B.28 show the intersection of the ADWPT decompositions obtained

using Bhattacharya distance.

Figure B.27: Intersection of ADWPT decompositions obtained using the Bhat-
tacharya distance (Standard averaging)
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B.3 Intersection of Decompositions

Figure B.28: Intersection of ADWPT decompositions obtained using the Bhat-
tacharya distance (Pseudo averaging)
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B.3.6 Mahalanobis Distance

Figures B.29 B.30 show the intersection of the ADWPT decompositions obtained

using Mahalanobis distance.

Figure B.29: Intersection of ADWPT decompositions obtained using the Maha-
lanobis distance (Standard averaging)
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Figure B.30: Intersection of ADWPT decompositions obtained using the Maha-
lanobis distance (Pseudo averaging)
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B.3 Intersection of Decompositions

Figures B.31 B.32 show the intersection of the ADWPT decompositions ob-

tained using Mahalanobis distance for multiple classes i.e. 4 in our case.

Figure B.31: Intersection of ADWPT decompositions obtained using the Multiple
Class Mahalanobis distance (Standard averaging)
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B.3 Intersection of Decompositions

Figure B.32: Intersection of ADWPT decompositions obtained using the Multiple
Class Mahalanobis distance (Pseudo averaging)
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B.3.7 Energy Distance

Figures B.33 B.34 show the intersection of the ADWPT decompositions obtained

using Energy distance.

Figure B.33: Intersection of ADWPT decompositions obtained using the Energy
distance (Standard averaging)
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Figure B.34: Intersection of ADWPT decompositions obtained using the Energy
distance (Pseudo averaging)
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B.3.8 Relative Energy Distance

Figures B.35 B.36 show the intersection of the ADWPT decompositions obtained

using Relative Energy distance.

Figure B.35: Intersection of ADWPT decompositions obtained using the Relative
Energy distance (Standard averaging)
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B.3 Intersection of Decompositions

Figure B.36: Intersection of ADWPT decompositions obtained using the Relative
Energy distance (Pseudo averaging)
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B.4 Stability of a Decomposition

B.4.1 Standard Averaging

B.4.1.1 Kullback-Leibler Distance

A total of 114 different decompositions for Kullback-Leibler distance are com-

puted in the case of standard averaging of the probability density estimates.

Most of the decomposition again occur only once or twice. This can be seen

in the stability decomposition. The stability decomposition obtained using the

Kullback-Leibler distance is given in the Figure B.37.

B.4.1.2 Fishers-Linear Discriminant

As many as 316 different decompositions were obtained for Fishers Linear Dis-

criminant incase of the standard averaging of the probability density estimates.

Most of the decomposition occur only once or twice. The stability decomposition

obtained using the Fishers Linear distance function is given in the Figure B.38.

B.4.1.3 Jensen-Shannon Distance

A total of 118 different decompositions for the Jensen-Shannon distance are com-

puted in the case of standard averaging of the probability density estimates. Most

of the decompositions occur only a few times and this could be seen from the

stability decomposition. The stability decomposition obtained using the Jensen-

Shannon distance is given in the Figure B.39.

B.4.1.4 Bhattacharya Distance

Using the Bhattacharya distance based analysis, our algorithm produces 557 dif-

ferent decompositions with each decomposition not repeating more than twice.

Hence, the decompositions were very unstable. The stability decomposition ob-

tained using the Bhattacharya distance is given in the Figure B.40.

B.4.1.5 Two Class Mahalanobis Distance

Again a great variety of decompositions, as many as 618, are obtained using

the Mahalanobis distance over MAWTTs using standard averaging. Most of the
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decompositions are not repeated i.e. they are only found once. The stability of

the decomposition using the two class Mahalanobis distance is given in the Figure

B.41.

B.4.1.6 Multi-class Mahalanobis Distance

Mahalanobis distance in the multi-class mode produces 619 different decompo-

sitions. The stability of the decomposition using the Multi-class Mahalanobis

distance is given in the Figure B.42.

B.4.1.7 Energy Distance

The Energy distance again produces only one decomposition which is equivalent

to the Full Wavelet Packet Transform. The stability decomposition obtained

using the Energy distance is given in the Figure B.43.

B.4.1.8 Relative Energy Distance

The Relative Energy distance produces 340 different decompositions. The sta-

bility decomposition obtained using the Relative Energy distance is given in the

Figure B.44.
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Figure B.37: Decomposition stability obtained using the Kullback-Leibler dis-
tance function over Standard Averaging based MAWTTs
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Figure B.38: Decomposition stability obtained using the Fishers Linear distance
function over Standard Averaging based MAWTTs
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B.4 Stability of a Decomposition

Figure B.39: Decomposition stability obtained using the Jensen-Shannon distance
function over Standard Averaging based MAWTTs
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B.4 Stability of a Decomposition

Figure B.40: Decomposition stability obtained using the Bhattacharya distance
function over Standard Averaging based MAWTTs
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Figure B.41: Decomposition stability obtained using the Mahalanobis distance
function over Standard Averaging based MAWTTs
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Figure B.42: Decomposition stability obtained using the Multi-class Mahalanobis
distance function over Standard Averaging based MAWTTs
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Figure B.43: Decomposition stability obtained using the Energy distance function
over Standard Averaging based MAWTTs
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B.4 Stability of a Decomposition

Figure B.44: Decomposition stability obtained using the Relative Energy Sub-
bands distance function over Standard Averaging based MAWTTs
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B.4 Stability of a Decomposition

B.4.2 Pseudo-averaging

B.4.2.1 Kullback-Leibler Distance

A total of 16 different decompositions are obtained for the Kullback-Leibler

distance function. The Figure B.45 displays the stability decomposition for

Kullback-Leibler distance function.

Figure B.45: Decomposition stability obtained using the Kullback Leibler dis-
tance over Pseudo-averaging based MAWTTs
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B.4.2.2 Fishers Linear Discriminant

The Fishers Linear Discriminant produces a total of 16 different decompositions.

The stability decomposition obtained using the Fishers Linear Discriminant is

given in the Figure B.46.

Figure B.46: Decomposition stability obtained using the Fishers Linear Discrim-
inant over Pseudo-averaging based MAWTTs
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B.4.2.3 Jensen-Shannon Distance

The Jensen Shannon distance also produces 16 different decompositions. The

stability decomposition obtained using the Jensen Shannon distance is given in

the Figure B.47.

Figure B.47: Decomposition stability obtained using the Jensen Shannon distance
over Pseudo-averaging based MAWTTs
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B.4.2.4 Bhattacharya Distance

Bhattacharya distance produced 16 different decompositions. The stability de-

composition obtained using the Bhattacharya distance is given in the Figure B.48.

Figure B.48: Decomposition stability obtained using the Bhattacharya distance
function over Pseudo-averaging based MAWTTs
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B.4.2.5 Two Class Mahalanobis Distance

The Mahalanobis distance produces a total of 43 different decompositions. The

stability of the decomposition obtained using the two class Mahalanobis distance

is given in the Figure B.49.

Figure B.49: Decomposition stability obtained using the Mahalanobis distance
function over Pseudo-averaging based MAWTTs

The decompositions obtained are interesting in the sense that the low-level

subband has not been decomposed to the fourth level in all instances. This would
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have an impact on the clustering and classification accuracies produced using the

distance function as we would see later.

B.4.2.6 Multi-class Mahalanobis Distance

As stated in the previous chapter, the multi-class Mahalanobis distance (MCMD)

may be used to obtain a measure of differentiation between textures simultane-

ously and there is no need to add up the pairwise distances as in the case of

all other distances. The MCMD produces a total of 81 different and unique de-

compositions. However, the decomposition showing the stability of the subbands

obtained using the Multi-class Mahalanobis distance is given in the Figure B.50.

B.4.2.7 Energy Distance

The energy based distance function produces only one decomposition which is

equivalent to the Full Wavelet Packet Transform(FWPT). The decomposition

obtained using the energy-based distance function is presented in the figure B.51

and the stability information is also presented.

B.4.2.8 Relative Energy Distance

The Relative energy distance (RED) function produced 16 different decompo-

sitions. The stability decomposition obtained using the Relative Energy based

Subbands distance is given in the Figure B.52.
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Figure B.50: Decomposition stability obtained using the Mahalanobis distance
function in multi-class mode over Pseudo-averaging based MAWTTs
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Figure B.51: Decomposition stability obtained using the Energy distance function
over Pseudo-averaging based MAWTTs
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Figure B.52: Decomposition stability obtained using the Relative Energy distance
function over Pseudo-averaging based MAWTTs
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B.5 Decomposition Stability using Graph Match-

ing

The graphs obtained for the graph distances obtained using the maximum com-

mon subgraph based Bunke’s distance metric for different distance functions are

given below.

B.5.1 Kullback-Leibler Distance

The Kullback-Leibler distance based decompositions are almost as unstable as

the Hellinger distance. The various decompositions computed and the graph of

the distances is given in the Figure B.53.

a.
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b.

Figure B.53: Graph showing distances between various decompositions from the
Union of all decompositions obtained using Kullback-Leibler distance over a.
Standard Averaging, b. Pseudo-averaging based MAWTTs
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B.5.2 Jensen Shannon Distance

Jensen-Shannon behaves similarly to Hellinger. This can be seen from the graphs

in Figure B.54.

a.

b.

Figure B.54: Graph showing distances between various decompositions from
the Union of all decompositions obtained using Jensen-Shannon distance over
a. Standard Averaging, b. Pseudo-averaging based MAWTTs
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B.5.3 Fishers Linear Discriminant

It can be seen from the distance function curves produced by the Fishers Linear

Discriminant that some decompositions are repeated more frequently than others

(Figure B.55). There is some variability in the beginning i.e. decompositions

different from the later more frequently repeated ones are found but later on the

same decompositions are repeated. Hence, the distance function is stable.

a.

b.

Figure B.55: Graph showing distances between various decompositions from the
Union of all decompositions obtained using Fishers Linear distance over a. Stan-
dard Averaging, b. Pseudo-averaging based MAWTTs
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B.5.4 Bhattacharya Distance

Behaviour of the Bhattacharya distance is similar to Fishers linear discriminant.

This can seen in the Figure B.56.

a.

b.

Figure B.56: Graph showing distances between various decompositions from the
Union of all decompositions obtained using Bhattacharya distance over a. Stan-
dard Averaging, b. Pseudo-averaging based MAWTTs
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B.5.5 Relative Energy Distance

The relative energy distance is similar to Bhattacharya and Fishers linear dis-

criminant when it comes to decomposition stability. This is quite interesting as

it does not rely on statistical measures such as mean and variance for computa-

tion but relies on subband energy. The Figure B.57 shows the graph distances

obtained using Relative energy as a distance measure.

a.

b.

Figure B.57: Graph showing distances between various decompositions from the
Union of all decompositions obtained using Relative Energy distance over a. Stan-
dard Averaging, b. Pseudo-averaging based MAWTTs
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