19 research outputs found

    Automatic diagnosis of tuberculosis disease based on Plasmonic ELISA and color-based image classification

    Get PDF
    Tuberculosis (TB) remains one of the most devastating infectious diseases and its treatment efficiency is majorly influenced by the stage at which infection with the TB bacterium is diagnosed. The available methods for TB diagnosis are either time consuming, costly or not efficient. This study employs a signal generation mechanism for biosensing, known as Plasmonic ELISA, and computational intelligence to facilitate automatic diagnosis of TB. Plasmonic ELISA enables the detection of a few molecules of analyte by the incorporation of smart nanomaterials for better sensitivity of the developed detection system. The computational system uses k-means clustering and thresholding for image segmentation. This paper presents the results of the classification performance of the Plasmonic ELISA imaging data by using various types of classifiers. The five-fold cross-validation results show high accuracy rate (>97%) in classifying TB images using the entire data set. Future work will focus on developing an intelligent mobile-enabled expert system to diagnose TB in real-time. The intelligent system will be clinically validated and tested in collaboration with healthcare providers in Malaysia

    Layered And Feature Based Image Segmentation Using Vector Filtering

    Get PDF
    A Sensor is a device that reads the attribute and changes it into a signal that can be simply examined by an observer or instrument. Sensors are worked in daily objects like touch-sensitive elevator buttons, road traffic monitoring system and so on. Each sensor would carry distinctive capabilities to utilize. The objects obtained in the sensor are tracked by many techniques which have been presented earlier. The techniques which make use of the information from diverse sensors normally termed as data fusion. The previous work defined the object tracking using Multi-Phase Joint Segmentation-Registration (MP JSR) technique for layered images. The downside of the previous work is that the MP JSR technique cannot be applied to the natural objects and the segmentation of the object is also being an inefficient one. To overcome the issues, here we are going to present an efficient joint motion segmentation and registration framework with integrated layer-based and feature-based motion estimation for precise data fusion in real image sequences and tracking of interested objects. Interested points are segmented with vector filtering using random samples of motion frames to derive candidate regions. The experimental evaluation is conducted with real image sequences samples to evaluate the effectiveness of data fusion using integrated layer and feature based image segmentation and registration of motion frames in terms of inter frame prediction, image layers, image clarity

    Automated fundus image quality assessment and segmentation of optic disc using convolutional neural networks

    Get PDF
    An automated fundus image analysis is used as a tool for the diagnosis of common retinal diseases. A good quality fundus image results in better diagnosis and hence discarding the degraded fundus images at the time of screening itself provides an opportunity to retake the adequate fundus photographs, which save both time and resources. In this paper, we propose a novel fundus image quality assessment (IQA) model using the convolutional neural network (CNN) based on the quality of optic disc (OD) visibility. We localize the OD by transfer learning with Inception v-3 model. Precise segmentation of OD is done using the GrabCut algorithm. Contour operations are applied to the segmented OD to approximate it to the nearest circle for finding its center and diameter. For training the model, we are using the publicly available fundus databases and a private hospital database. We have attained excellent classification accuracy for fundus IQA on DRIVE, CHASE-DB, and HRF databases. For the OD segmentation, we have experimented our method on DRINS-DB, DRISHTI-GS, and RIM-ONE v.3 databases and compared the results with existing state-of-the-art methods. Our proposed method outperforms existing methods for OD segmentation on Jaccard index and F-score metrics

    Shadow detection from very high resoluton satellite image using grabcut segmentation and ratio-band algorithms

    Get PDF
    Very-High-Resolution (VHR) satellite imagery is a powerful source of data for detecting and extracting information about urban constructions. Shadow in the VHR satellite imageries provides vital information on urban construction forms, illumination direction, and the spatial distribution of the objects that can help to further understanding of the built environment. However, to extract shadows, the automated detection of shadows from images must be accurate. This paper reviews current automatic approaches that have been used for shadow detection from VHR satellite images and comprises two main parts. In the first part, shadow concepts are presented in terms of shadow appearance in the VHR satellite imageries, current shadow detection methods, and the usefulness of shadow detection in urban environments. In the second part, we adopted two approaches which are considered current state-of-the-art shadow detection, and segmentation algorithms using WorldView-3 and Quickbird images. In the first approach, the ratios between the NIR and visible bands were computed on a pixel-by-pixel basis, which allows for disambiguation between shadows and dark objects. To obtain an accurate shadow candidate map, we further refine the shadow map after applying the ratio algorithm on the Quickbird image. The second selected approach is the GrabCut segmentation approach for examining its performance in detecting the shadow regions of urban objects using the true colour image from WorldView-3. Further refinement was applied to attain a segmented shadow map. Although the detection of shadow regions is a very difficult task when they are derived from a VHR satellite image that comprises a visible spectrum range (RGB true colour), the results demonstrate that the detection of shadow regions in the WorldView-3 image is a reasonable separation from other objects by applying the GrabCut algorithm. In addition, the derived shadow map from the Quickbird image indicates significant performance of the ratio algorithm. The differences in the characteristics of the two satellite imageries in terms of spatial and spectral resolution can play an important role in the estimation and detection of the shadow of urban objects

    Retina layer segmentation using kernel graph cuts and continuous max-flow

    Get PDF
    Circular scan Spectral-Domain Optic Coherence Tomography imaging (SD-OCT) is one of the best tools for diagnosis of retinal diseases. This technique provides more comprehensive detail of the retinal morphology and layers around the optic disc nerve head (ONH). Since manual labelling of the retinal layers can be tedious and time consuming, accurate and robust automated segmentation methods are needed to provide the thickness evaluation of these layers in retinal disorder assessments such as glaucoma. The proposed method serves this purpose by performing the segmentation of retinal layers boundaries in circular SD-OCT scans acquired around the ONH. The layers are detected by adapting a graph cut segmentation technique that includes a kernel-induced space and a continuous multiplier based max-flow algorithm. Results from scan images acquired with Spectralis (Heidelberg Engineering, Germany) prove that the proposed method is robust and efficient in detecting the retinal layers boundaries in images. With a mean root-mean-square error (RMSE) of 0.0835 ± 0.0495 and an average Dice coefficient of 0.9468 ± 0.0705 pixels for the retinal nerve fibre layer thickness, the proposed method demonstrated effective agreement with manual annotations
    corecore