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Abstract

Background: Colour image segmentation is fundamental and critical for quantitative
histological image analysis. The complexity of the microstructure and the approach
to make histological images results in variable staining and illumination variations.
And ultra-high resolution of histological images makes it is hard for image segmentation
methods to achieve high-quality segmentation results and low computation cost at the
same time.

Methods: Mean Shift clustering approach is employed for histological image
segmentation. Colour histological image is transformed from RGB to CIE L*a*b*
colour space, and then a* and b* components are extracted as features. To speed up
Mean Shift algorithm, the probability density distribution is estimated in feature space
in advance and then the Mean Shift scheme is used to separate the feature space into
different regions by finding the density peaks quickly. And an integral scheme is
employed to reduce the computation cost of mean shift vector significantly. Finally
image pixels are classified into clusters according to which region their features fall
into in feature space.

Results: Numerical experiments are carried on liver fibrosis histological images.
Experimental results demonstrate that Mean Shift clustering achieves more
accurate results than k-means but is computational expensive, and the speed of
the improved Mean Shift method is comparable to that of k-means while the
accuracy of segmentation results is the same as that achieved using standard Mean
Shift method.

Conclusions: An effective and reliable histological image segmentation approach is
proposed in this paper. It employs improved Mean Shift clustering, which is speed up
by using probability density distribution estimation and the integral scheme.

Keywords: Clustering, Colour image segmentation, Mean shift, Histological
image processing
Background
In recent years, with the increasing demands of quantitative analysis, digital

image processing techniques attract more and more attention in histopathology

[1,2]. They are considered to be more reliable than traditional manual assessment

which heavily depends on the operator’s experience and usually can not be repro-

duced. Image segmentation serves as a fundamental and key technique and is

typically the first step in digital image analysis. In histological image analysis, it

partitions a digitized histological image into multiple homogeneous or similar
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regions which corresponding to different tissues or cellular components. As the

result of image segmentation is taken as the input of the successive processing

steps, it is essential and critical to the quality of final result of qualitative image

analysis.

Histological image segmentation is much difficult due to the complex approach

to make histological images. Histological specimens are fixed, processed, embed-

ded, sectioned and then stained into different colours in different tissues.

Coloured histological sections provide anatomical details for the diagnosis and

histopathology, and bring out special features of different tissues at the micro-

scopic level. To identify different tissues or cellular components, histological sec-

tions are segmented according to colour, shape or texture features after acquired

with high-resolution digital camera, and then classified by commonly employing

supervised methods [3-6]. Several methods based on digital image processing and

pattern recognition techniques have been proposed to deal with histological image

segmentation problem in the past years [7-12]. When no training data set is avail-

able in histological image analysis, feature vectors or points representing pixels in

the histological image are usually extracted from their local properties. Then un-

supervised techniques are used to label pixels into different clusters by separating

feature vectors in the feature space. There are many existing approaches in litera-

ture which can be employed for segmenting histological image. These include

clustering based methods (k-Means [13] and Mean Shift [14]), mixture models

based schemes (i.e. Gaussian mixture models based Expectation-Maximization

clustering, GMM-EM [15]) and state-of-the-art energy minimization based ap-

proaches (graph-cuts methods [16-18] and Markov Random Field based method

[19]). However, histological image segmentation still faces several technique chal-

lenges. One of them is how to achieve high-quality segmentation results with low

computation cost, especially for sequential histological image analysis. The size of

acquired histological image is usually very large for better investigation of micro-

structures. It makes most of existing image segmentation algorithms, such as

Mean Shift, very time-consuming and hard to be used in practice. Mean Shift is a

non-parametric clustering approach which has no assumptions on the shape of

the distribution and the number of clusters. So Mean Shift may achieve better

segmentation results than model-based clustering schemes when it is used as a

histological image segmentation method.

In this paper, we focus on pixel-level segmentation by colours in histological image

with unsupervised method. A fast Mean Shift clustering approach is proposed and

applied to segment histological images properly. The new method estimates the prob-

ability density distribution in advance and then separates the feature space into differ-

ent regions by employing Mean Shift to find the density peaks. Feature points are

divided into clusters according to the region that they fall into. And an integral scheme

is employed to speed up the computation of mean shift vector. To apply the proposed

method to histological image segmentation, CIE L*a*b* colour space is used as feature

space.

The rest parts of this article are organized as follows: Section 2 describes the

main ideas and schemes employed to speed up Mean Shift clustering approach in

details. The framework of histological image segmentation based on the proposed
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method is also given in this section. Section 3 shows numerical experimental re-

sults from live fibrosis histological images, and followed by the study conclusion

in Section 4.

Methods
Feature extraction in L*a*b* color space

To obviously identify different tissues in histological specimens, they are stained into

different colours. Digitized histological images are usually acquired and stored in RGB.

CIE L*a*b* colour space is a non-linear transformation of RGB, and models all visible

colours approximate to human vision. So the simple Euclidean distance in L*a*b* space

could differentiate among colours perceptually. We convert histological images from

RGB space to L*a*b* space and only extract a* and b* components as features for

clustering to ignore variations in brightness. Thus histological image segmentation be-

comes a 2D clustering problem. Denote Vab the feature space consisting of a* and b*

components.

Fast mean shift clustering

Given a set of points {x1,x2,…xn} in Vab, mean shift vector (MSV) with uniform kernel

is defined as follows

mh xð Þ ¼ 1
KS

X
xi∈Sh xð Þ

xi−xð Þ; ∀x ∈Vab ; ð1Þ

where Sh is a sphere with center x and radius h, and Ks is the number of points located
in Sh. h is termed the window size.

Standard Mean Shift clustering method employs an iterative gradient ascent

procedure to estimate local density. For a given point x in the feature space, it

sets x ← x + mh(x) and repeats this step until convergence. The stationary points

of this procedure represent the modes of the underlying distribution. Points asso-

ciated with the same stationary point are considered as members of the same

cluster.

Mean shift vector estimation

To find out the mean shift vector at x, one has to compute the distances from all points

to the specified centre x and selects out those located in Sh. Thus the computational

cost of mean shift vector is very high and results in standard Mean Shift a very slow

clustering approach.

Notice that all points are located in a square R in Vab. Split R into tiny squares

{r1,r2,…,rm whose sides have the length of 2e. For each tiny square ri, denote the

frequency of points in it by wi and the center by ci. Denote the closest external

square of Sh by Rh which consists of tiny squares (Figure 1 illustrates the relationship of

Sh and Rh in Vab). We replace Rh with Rh and approximate mh at x with

m̂h xð Þ ¼ 1
KR

X
xi∈Rh xð Þ

xi − xð Þ: ð2Þ



Figure 1 The relationship of Sh and Rh in two dimension case. Black points represent observations. The
region R is split into tiny squares which are used to represent the observations located in them.
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Here, KR is the number of observations located in Rh, and now h is half of the side

length of Rh in what follows. Considering the definition of wi, we can rewrite (2) as

m̂h xð Þ ¼

X
xi∈Rh xð Þ

xi

X
ri∈Rh xð Þ

wi

−x: ð3Þ

Given e ≪ h, we have a further approximation
m̂h xð Þ≈

X
ri∈Rh xð Þ

wici

X
ri∈Rh xð Þ

wi

−x: ð4Þ

If wi and ci are computed in advance and stored in the frequency matrix w and the
centre matrix c respectively, Rh corresponds to a sub-region of these matrices. Thus
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for a given x, it is not needed to find out the points located in Sh by computing the

distances from all points to the x. So the computation cost of m̂h is much lower than

that of mh.

Using of integral image scheme

We employ the above method to estimate mean shift vector in a*b* colour space. For

the convenience of description, we use two subscripts to index variants defined in the

above section. Rewrite Eq. (4) as follows

m̂h xð Þ≈

X
m−h≤i≤mþ h
n−h≤j≤nþ h

w i; jð Þc i; jð Þ

X
m−h≤i≤mþ h
n−h≤j≤nþ h

w i; jð Þ −x; ð5Þ

where (m,n) satisfies ‖c(m, n) − x‖∞ ≤ e.

Notice that the sum operations in Eq. (5) are over all elements in a specified squared

sub-region. So the integral image scheme can be employed to speed up the computa-

tion of m̂h . Integral image, also known as summed area table, was proposed for texture

mapping in [20] and then widely used in pattern recognition and image processing

[21,22]. It can be used to rapidly calculate summations over sub-regions of an image.

The value at location (i,j) in the integral image is defined as the sum of all elements

within the top and left side of (i,j). As Figure 2 shows, the sum of elements within the

region Rh can be simply computed by using four integral image values at its four

corners.
Figure 2 Integral image scheme used to speed up the computation of mean shift vector. The sum
of elements within the region Rh can be simply computed by using four integral image values at its
four corners.
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To employ the integral image scheme, we define

W k; lð Þ ¼
X
i≤k;j≤l

w i; jð Þ ð6Þ

and

M k; lð Þ ¼
X
i≤k;j≤l

w i; jð Þc i; jð Þ: ð7Þ

Then we obtain
X
m−h≤i≤mþ h
n−h≤j≤nþ h

w i; jð Þc i; jð Þ ¼ M mþ h; nþ hð Þ þM m−h;n−hð Þ−M mþ h; n−hð Þ−M m−h; nþ hð Þ

ð8Þ

and
X
m−h≤i≤mþ h
n−h≤j≤nþ h

w i; jð Þ ¼ W mþ h; nþ hð Þ þW m−h; n−hð Þ−W mþ h;n−hð Þ−W m−h; nþ hð Þ:

ð9Þ

Thus mean shift vector can be approximately computed as following

m̂h xð Þ≈ M mþ h; nþ hð Þ þM m−h; n−hð Þ−M mþ h; n−hð Þ−M m−h; nþ hð Þ
W mþ h; nþ hð Þ þW m−h; n−hð Þ−W mþ h; n−hð Þ−W m−h; nþ hð Þ−x:

ð10Þ

The above formula shows that the computation cost of mean shift vector is no longer

related to the number of points and can be performed in constant time.

Histological image segmentation framework

Based on the above discussion, the framework of the proposed fast mean shift method

(FMShift) for histological image segmentation is summarized as follows:

Algorithm: Fast mean shift clustering for histological image segmentation

Initialization:

Input color histological image I, e and h (≫e).

Main:

Step 1: Transform I from RGB to L*a*b* color space, and extract a* and b* color

components to build a feature space Vab. Then separate the feature space into tiny

squares with side length of 2e, and compute the frequency matrix w of feature points

and center matrix c.

Step 2: Compute W and M by using Eq. (6) and (7). Employ Mean Shift approach to

separate the feature space into different regions by finding the density peaks.

Step 3: Divide pixels of histological image into clusters according to which region

their corresponding feature point falls into.

Output:

Segmentation labels
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Experiments and discussion
Quantitation of connective tissue and collagen is important in the assessment of

fibrosis progression in chronic liver diseases. To evaluate our proposed method, a

liver histological specimen from a Wistar rat, in which liver fibrosis was induced

by albumin antigen-antibody complex, was used for the evaluation. With the use

of Masson’s trichrome staining, connective tissue and collagen were stained in

light blue while smooth muscle in red and nucleus of hepatocytes in light dark.

And blood vessels and sinusoids are in white. As shown in Figure 3, twenty histo-

logical images in 24-bit RGB colour were obtained by digitizing several sections

from this specimen at different regions with an objective magnification of 20x.

The size of each image is 1280 × 800.

k-Means++ [23], GMM-EM, Mean Shift, Kernel Graph-cuts (KGC) [18], hidden

Markov Random Field with Expectation-Minimization algorithm (HMRF-EM) [19]

and the proposed FMShift method had been implemented using MATLAB (The

MathWorks, Inc., Natick, MA, USA), and were employed for histological image seg-

mentation. a* and b* colour components of histological images were used as input fea-

tures for previous three methods and FMShift while RGB for KGC and HMRF-EM. For

the convenience of comparisons, the number of clusters k was given in prior. The clus-

tering results of FMShift and Mean Shift were sorted by the number of assigned points

in descent order. Then only the top k clusters were kept and others were reassigned

into the nearest cluster. Considering that the objective of the segmentation is to iden-

tify fibrosis and vessels from other liver tissues, we set k = 3 in all experiments. In
Figure 3 Original liver fibrosis histological images for performance evaluation. Twenty histological
images obtained for performance evaluation by digitizing several sections from a liver histological specimen
of a Wistar rat.
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FMShift method, we set the parameter e to one thousandth of maximum range of

a* and b* colour components, and h to 40 times e. Radial basis function with σ = 0.5 was

used as the kernel function in KGC method. And the number of iterations of EM

algorithm in HMRF-EM and GMM-EM is limited up to 100.

For quantitative comparison, we took manually segmentation results as references,

and employed three performance metrics: Dice index, Rand index [24] and Variation of

Information [25]. Dice and Rand indexes were used to measure the similarity between

segmentations obtained by using different methods and their corresponding references.

Denote S the segmentation result and R the reference. For a given pixel xi of the seg-

mented image, it is labelled with li and l’i respectively in S and R. The Dice Index (DI)

is defined as the size of the intersection divided by the average size of S and R as

follows

DI S;Rð Þ ¼ 2 S∩Rj j
Sj j þ Rj j : ð11Þ

And the Rand Index (RI) is defined as the ratio of the number of pairs of pixels which
have a compatible label relationship between S and R, and is computed as follows:

RI S;Rð Þ ¼ 1

N
2

� �X
i; j
i≠j

Ι li ¼ lj ∧ l
′
i ¼ l′j

� �
þ Ι li≠lj ∧ l

′
i≠l

′
j

� �h i
: ð12Þ

where I is the identity function. The Variation of Information (VoI) [25] is an

information-based performance metric and can be used to measure the distance

between S and R. VoI satisfies

VoI R; Sð Þ ¼ H Rð Þ þ H Sð Þ−2I R; Sð Þ; ð13Þ

where H(X) is the entropy of X, and I(X,Y) is the mutual information between X and Y.
Larger values of DI and RI and a smaller value of VoI mean higher segmentation

accuracy.

Figure 4 shows the segmentation results of four histological images selected

from the dataset by using k-Means++, GMM-EM, KGC, HMRF-EM, Mean Shift

and our proposed FMShift respectively. Fibrosis, vessels (including sinusoids) and

other tissues are represented in light blue, white and lavender respectively. Table 1

illustrates the average accuracies with standard deviation over segmentation results

obtained from twenty histological images using different methods. The perform-

ance of six segmentation methods is quantified by Rand Index and Variation of

Information for global evaluations. And the segmentation results of fibrosis and

vessels are also measured by Dice Index independently at the same time. Table 2

summaries the average computation times for each method. All the above results

are obtained with a standard Windows computer equipped with a 2.4 GHz Intel

Core i5 processor and 8 GB RAM.

It is shown in Figure 4 that the tissues adjacent to collagen tend to be wrong seg-

mented as fibrosis using HMRF-EM and KGC. The possible reason is that the shape of

collagen is thin and elongated. Graph cut based image segmentation method has the

problems to segment them due to shrinkage bias, and HMRF-EM uses spatial informa-

tion through the mutual influences of neighbours. So it results in small values of Dice



Figure 4 Segmentation results of four liver fibrosis histological imageS by using k-Means, GMM-EM,
HMRF-EM, KGC, Mean Shift, and FMShift. Four columns are corresponding to four histological images.
Fibrosis, vessels and other tissues are represented in light blue, white and lavender respectively. From top
to bottom are original histological images, manual segmentations, and segmentations using k-Means,
GMM-EM, HMRF-EM, KGC, Mean Shift and the proposed FMShist method.

Table 1 Comparison of segmentation accuracies

Method Dice index Rand index Variation of information

Fibrosis Vessels

k-Means 0.67 ± 0.24 0.52 ± 0.24 0.69 ± 0.08 1.25 ± 0.20

GMM-EM 0.60 ± 0.13 0.68 ± 0.22 0.76 ± 0.10 1.03 ± 0.29

HMRF-EM 0.28 ± 0.14 0.76 ± 0.22 0.62 ± 0.10 1.35 ± 0.24

KGC 0.23 ± 0.10 0.69 ± 0.19 0.55 ± 0.08 1.62 ± 0.16

Mean Shift 0.87 ± 0.05 0.84 ± 0.09 0.91 ± 0.03 0.53 ± 0.12

FMShift 0.86 ± 0.05 0.84 ± 0.07 0.91 ± 0.02 0.54 ± 0.12
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Table 2 Comparison of average computation times

Method k-Means++ GMM-EM HMRF-EM KGC Mean Shift FMShift

Avg. times (sec.) 4.2 117.0 954.2 14.8 732.3 6.6
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Indexes for fibrosis segmentation by using HMRF-EM and KGC methods and also de-

creases the Rand Indexes as listed in Table 1. At the same time, k-Means method can

successfully detect spherical clusters with similar size but is not a good scheme for

others. This limitation makes it easy to assign points to wrong clusters. Thus the tissues

adjacent to sinusoids are segmented wrong by k-Means++ as shown in Figure 4.

GMM-EM is based Gaussian mixture models and is sensitive to the distribution of

feature points. However, this requirement is usually hard to meet in the case of histo-

logical image segmentation. So GMM-EM does not achieve high Dice and Rand in-

dexes as shown in Table 1.

The quantitative results listed in Tables 1 and 2 show that the speed of FMShift

method is comparable to that of k-Means++ and much faster than other schemes

including standard Mean Shift clustering approach while the segmentation accuracies

obtained by FMShift and Mean Shift are almost the same but much better than that of

other methods. By estimating the probability density distribution in advance and

employing the integral image scheme, FMShift reduces the computation cost of stand-

ard Mean Shift clustering significantly. And because histological images are stained

manually, the range of colour components is restricted. This makes the frequency

matrix w sparse and also speeds it up to find the density peaks in FMShift. The above

reasons make FMShift a very fast approach even in handling large-scale histological

image segmentation problems. At the same time, FMShift is Mean Shift scheme based.

So it has no demands on the shape of underlying distribution and thus achieves high

accuracies in liver histological image segmentation.

Conclusions
We have developed a histological image segmentation approach by employing im-

proved Mean Shift clustering. To eliminate illumination variations, colour histo-

logical image is transformed into CIE L*a*b* colour space, and then a* and b*

components are extracted as features for clustering. The clustering approach con-

sists of three steps. In the first step, the probability density distribution is esti-

mated by splitting the effective feature space located with observations into tiny

squares and computing the frequencies of observations occurring in each square.

The second step is to separate the feature space into different regions by employ-

ing Mean Shift scheme to finding density peaks. Then all observations are

assigned into different clusters according to which square they fall into in the last

step. And an integral image scheme is used to speed up the computation of mean

shift vector at the same time. By employing the probability density estimation and

integral scheme, the computation cost of standard Mean Shift clustering method

is significantly reduced while keeping the accuracy the same. From the results of

numerical experiments on liver fibrosis histological images, we have the conclu-

sion that the proposed method is a fast and reliable approach for color image seg-

mentation, especially for large-scale histological image segmentation.
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In this paper, we only use two dimensional color features of histological images

and discuss how to accelerate Mean Shift method in the two-dimension case. Our

future work includes extending fast Mean Shift scheme to high dimensional case

and taking more features, such as shape and texture, into consideration for better

performance.
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