9 research outputs found

    Multiprocessor speed scaling for jobs with arbitrary sizes and deadlines

    Get PDF
    In this paper we study energy efficient deadline scheduling on multiprocessors in which the processors consumes power at a rate of sα when running at speeds, where α ≥ 2. The problem is to dispatch jobs to processors and determine the speed and jobs to run for each processor so as to complete all jobs by their deadlines using the minimum energy. The problem has been well studied for the single processor case. For the multiprocessor setting, constant competitive online algorithms for special cases of unit size jobs or arbitrary size jobs with agreeable deadlines have been proposed by Albers et al. (2007). A randomized algorithm has been proposed for jobs of arbitrary sizes and arbitrary deadlines by Greiner et al. (2009). We propose a deterministic online algorithm for the general setting and show that it is O(logαP)-competitive, where P is the ratio of the maximum and minimum job size

    Non-preemptive Scheduling in a Smart Grid Model and its Implications on Machine Minimization

    Get PDF
    We study a scheduling problem arising in demand response management in smart grid. Consumers send in power requests with a flexible feasible time interval during which their requests can be served. The grid controller, upon receiving power requests, schedules each request within the specified interval. The electricity cost is measured by a convex function of the load in each timeslot. The objective is to schedule all requests with the minimum total electricity cost. Previous work has studied cases where jobs have unit power requirement and unit duration. We extend the study to arbitrary power requirement and duration, which has been shown to be NP-hard. We give the first online algorithm for the general problem, and prove that the problem is fixed parameter tractable. We also show that the online algorithm is asymptotically optimal when the objective is to minimize the peak load. In addition, we observe that the classical non-preemptive machine minimization problem is a special case of the smart grid problem with min-peak objective, and show that we can solve the non-preemptive machine minimization problem asymptotically optimally

    Multiprocessor Speed Scaling for Jobs with Arbitrary Sizes and Deadlines

    No full text
    In this paper we study energy efficient deadline scheduling on multiprocessors in which the processors consumes power at a rate of s α when running at speed s, where α ≥ 2. The problem is to dispatch jobs to processors and determine the speed and jobs to run for each processor so as to complete all jobs by their deadlines using the minimum energy. The problem has been well studied for the single processor case. For the multiprocessor setting, constant competitive online algorithms for special cases of unit size jobs or arbitrary size jobs with agreeable deadlines have been proposed [4]. A randomized algorithm has been proposed for jobs of arbitrary sizes and arbitrary deadlines [13]. We propose a deterministic online algorithm for the general setting and show that it is O(log α P)-competitive, where P is the ratio of the maximum and minimum job size

    Energy-Efficient Transaction Scheduling in Data Systems

    Get PDF
    Natural short term fluctuations in the load of transactional data systems present an opportunity for power savings. For example, a system handling 1000 requests per second on average can expect more than 1000 requests in some seconds, fewer in others. By quickly adjusting processing capacity to match such fluctuations, power consumption can be reduced. Many systems do this already, using dynamic voltage and frequency scaling (DVFS) to reduce processor performance and power consumption when the load is low. DVFS is typically controlled by frequency governors in the operating system or by the processor itself. The work presented in this dissertation shows that transactional data systems can manage DVFS more effectively than the underlying operating system. This is because data systems have more information about the workload, and more control over that workload, than is available to the operating system. Our goal is to minimize power consumption while ensuring that transaction requests meet specified latency targets. We present energy-efficient scheduling algorithms and systems that manage CPU power consumption and performance within data systems. These algorithms are workload-aware and can accommodate concurrent workloads with different characteristics and latency budgets. The first technique we present is called POLARIS. It directly manages processor DVFS and controls database transaction scheduling. We show that POLARIS can simultaneously reduce power consumption and reduce missed latency targets, relative to operating-system-based DVFS governors. Second, we present PLASM, an energy-efficient scheduler that generalizes POLARIS to support multi-core, multi-processor systems. PLASM controls the distribution of requests to the processors, and it employs POLARIS to manage power consumption locally at each core. We show that PLASM can save power and reduce missed latency targets compared to generic routing techniques such as round-robin

    Advances and Technologies in High Voltage Power Systems Operation, Control, Protection and Security

    Get PDF
    The electrical demands in several countries around the world are increasing due to the huge energy requirements of prosperous economies and the human activities of modern life. In order to economically transfer electrical powers from the generation side to the demand side, these powers need to be transferred at high-voltage levels through suitable transmission systems and power substations. To this end, high-voltage transmission systems and power substations are in demand. Actually, they are at the heart of interconnected power systems, in which any faults might lead to unsuitable consequences, abnormal operation situations, security issues, and even power cuts and blackouts. In order to cope with the ever-increasing operation and control complexity and security in interconnected high-voltage power systems, new architectures, concepts, algorithms, and procedures are essential. This book aims to encourage researchers to address the technical issues and research gaps in high-voltage transmission systems and power substations in modern energy systems
    corecore