
Energy-Efficient Transaction
Scheduling in Data Systems

by

Mustafa Korkmaz

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2021

c© Mustafa Korkmaz 2021

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Alexandra Fedorova
Associate Professor,Electrical and Computer Engineering,
University of British Columbia

Supervisor: Ken Salem
Professor, Cheriton School of Computer Science,
University of Waterloo

Internal Members: Martin Karsten
Associate Professor, Cheriton School of Computer Science,
University of Waterloo

Semih Salihoglu
Assistant Professor, Cheriton School of Computer Science,
University of Waterloo

Internal-External Member: Wojciech Golab
Associate Professor, Electrical and Computer Engineering,
University of Waterloo

ii

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Statement of Contributions

This thesis consists of material all of which I authored or co-authored. Some portions
of the this theses are based on the peer-reviewed joint work with Dr. Ken Salem, Dr.
Martin Karsten and Dr. Semih Salihoglu, in which I am the first author and the primary
contributor [105].

iv

Abstract

Natural short term fluctuations in the load of transactional data systems present an
opportunity for power savings. For example, a system handling 1000 requests per second
on average can expect more than 1000 requests in some seconds, fewer in others. By
quickly adjusting processing capacity to match such fluctuations, power consumption can
be reduced. Many systems do this already, using dynamic voltage and frequency scaling
(DVFS) to reduce processor performance and power consumption when the load is low.
DVFS is typically controlled by frequency governors in the operating system or by the
processor itself. The work presented in this dissertation shows that transactional data
systems can manage DVFS more effectively than the underlying operating system. This is
because data systems have more information about the workload, and more control over
that workload, than is available to the operating system.

Our goal is to minimize power consumption while ensuring that transaction requests
meet specified latency targets. We present energy-efficient scheduling algorithms and sys-
tems that manage CPU power consumption and performance within data systems. These
algorithms are workload-aware and can accommodate concurrent workloads with different
characteristics and latency budgets. The first technique we present is called POLARIS.
It directly manages processor DVFS and controls database transaction scheduling. We
show that POLARIS can simultaneously reduce power consumption and reduce missed
latency targets, relative to operating-system-based DVFS governors. Second, we present
PLASM, an energy-efficient scheduler that generalizes POLARIS to support multi-core,
multi-processor systems. PLASM controls the distribution of requests to the processors,
and it employs POLARIS to manage power consumption locally at each core. We show
that PLASM can save power and reduce missed latency targets compared to generic routing
techniques such as round-robin.

v

Acknowledgements

I would like to express my sincere gratitude to my advisor Dr. Ken Salem for his con-
tinuous guidance and invaluable kindness throughout many years of this journey. Without
his patience and support, this dissertation would not have been possible. Working with
him has been an honour and a privilege.

I would like to thank Dr. Martin Karsten and Dr. Semih Salihoglu for their contribution
to the research projects composed in this thesis.

I would also like to thank the other members of my committee as well: Dr. Alexandra
Fedorova and Dr. Wojciech Golab; for taking the time to read and review this thesis.

I feel grateful and lucky to have my family and owe thanks to my parents Müberra and
Nabi, and my brothers Ömer Faruk and Tolga Ertuğrul for their support and encourage-
ment throughout my life.

Finally, I would like to express special thanks to my wife Zeynep for her support,
understanding and love. I feel blessed to walk through this life with her, and of course
with our lovely daughter and the joy of my life, Elif . . .

vi

Dedication

To my amazing parents and brothers, and my loved wife and daughter. . .

vii

Table of Contents

List of Tables xii

List of Figures xiii

1 Introduction 1

1.1 Latency Critical Data Systems . 2

1.2 Thesis Organisation and Research Contribution 3

2 Background 4

2.1 CPU Power Dissipation . 5

2.1.1 Dynamic Voltage and Frequency Scaling 5

2.1.2 Power Gating . 7

2.2 ACPI . 7

2.2.1 C-States . 7

2.2.2 P-States . 8

2.2.3 Power Control . 8

3 Single-Processor Energy Aware Transaction Scheduler 10

3.1 Overview . 10

3.2 POLARIS . 11

3.2.1 The POLARIS Algorithm . 13

viii

3.3 Execution Time Estimation . 15

3.4 Theory & Competitive Ratio Analysis . 16

3.4.1 Standard Model . 18

3.4.2 Yao-Demers-Schenker (YDS) . 18

3.4.3 Online Preemptive Algorithms . 19

3.4.4 OA vs. POLARIS . 20

3.4.5 Competitive Ratio of POLARIS . 22

3.4.6 Discussion of Competitive Ratio Analysis 24

3.5 POLARIS Prototype . 24

3.6 Evaluation . 25

3.6.1 Methodology . 25

3.6.2 Results: Medium Load . 28

3.6.3 Results: Effect of Load . 31

3.6.4 Results: Time-Varying Load . 34

3.6.5 Results: Workload Differentiation 39

3.6.6 POLARIS Component Analysis . 42

3.7 Conclusion . 42

4 Multi-Processor Energy Aware Scheduling 44

4.1 Overview . 44

4.2 Related Work . 45

4.3 Allocation . 46

4.3.1 Empirical Analysis of Processor Allocation Strategies 47

4.4 Routing . 50

4.4.1 Does Routing Matter? . 52

4.5 PLASM . 53

4.5.1 An Ideal Router . 54

4.5.2 FLARE . 56

ix

4.6 Evaluation . 62

4.6.1 Methodology . 62

4.6.2 Baselines . 64

4.6.3 Results: Medium Load . 66

4.6.4 Results: Effect of Load . 69

4.6.5 Results: FLARE Component Analysis 71

4.7 Conclusion . 74

5 Execution Time Estimation 75

5.1 Overview . 75

5.2 Estimator Properties . 76

5.2.1 Conservative . 76

5.2.2 Tunable . 77

5.2.3 Frequency Monotonic . 78

5.2.4 Lightweight . 78

5.3 Related Work . 79

5.4 POLARIS Estimators . 81

5.4.1 Per-Frequency Mean . 82

5.4.2 Per-Frequency Percentile . 83

5.4.3 Linear Regression . 83

5.4.4 Shifted Linear Regression . 84

5.4.5 Quantile Regression . 85

5.5 Evaluation . 85

5.5.1 Impact of Conservative Estimation 85

5.5.2 How Conservative? . 88

5.5.3 Characterization of Estimates . 89

5.6 Conclusion . 92

x

6 Related Work 94

6.1 Cluster Level Energy Efficiency . 94

6.2 Server-Level Energy Efficiency . 95

6.3 Energy Efficiency in Database Management Systems 96

7 Conclusions & Future Work 97

7.1 Conclusions . 97

7.2 Future Work . 98

References 99

APPENDICES 117

A 118

B 124

B.1 PerformanceBaseline . 124

B.2 EnergyBaseline . 125

xi

List of Tables

xii

List of Figures

2.1 Power Consumption Break down . 5

2.2 Energy per transaction and transaction latency under at different frequencies
in Intel E5-2640 v3 . 6

2.3 P-states of AMD FX 6300 . 8

3.1 Summary of Notation . 13

3.2 POLARIS Processor Frequency Selection 14

3.3 TPC-C mean and 95th percentile (P95) transaction execution times at max-
imum and minimum CPU frequency. Percentages indicate the transaction
mix in the workload. 17

3.4 Energy aware scheduling algorithms. 18

3.5 Performance and power of different power management schemes under medium
load, as functions of slack (S). 29

3.6 An example illustrating the impact of FIFO vs EDF scheduling on frequency
selection. 30

3.7 TPC-E performance and power of different power management schemes un-
der medium load, as functions of slack (S). 32

3.8 Performance and power of different power management schemes under low
load, as functions of slack (S). 33

3.9 Performance and power of different power management schemes under high
load, as functions of slack (S). 35

3.10 World Cup Trace Timeline for Normalized Load Level and power consump-
tions, bins of 5 seconds. 37

xiii

3.11 Average Power consumption and failure rate of baselines in World Cup Trace 37

3.12 World Cup Trace - Normalized. 37

3.13 Successful transactions per joule, as a function of load and slack. 38

3.14 CPU Utilization under various load levels 40

3.15 Per-Workload Performance for Gold and Silver TPC-C Workloads 41

3.16 Performance POLARIS and Variants . 43

4.1 Five different allocation strategies in a multi-processor, multi-socket CPU.
P0 and P1 are packages in sockets and each numbered square represent a
separate core. The cores highlighted with green are the ones selected for
allocation. The strategies from (a) to (e) are named as A4-0, A8-0, A4-4,
A8-4, A8-8, respectively. 47

4.2 Power and failure rate of different allocations strategies 48

4.3 Dynamic and static power consumption residencies of different allocation
strategies at 5000 TPS and slack multiplier 10. Failure rate and power
consumption of each strategy is shown on top of the bars. 49

4.4 Routing Schemes . 51

4.5 Partitioned routing with EDF order and global routing with EDF order,
under different constant CPU speeds. Offered load is 9000 transactions per
second. 52

4.6 Partitioned routing with EDF order and global routing with EDF order,
under different constant CPU speeds. Offered load is 16000 transactions
per second. 53

4.7 PLASM System architecture . 54

4.8 IdealGreedy Processor Router Algorithm 55

4.9 Summary of Notation in FLARE Algorithm 57

4.10 FLARE Processor Router Algorithm . 58

4.11 Load intervals in a POLARIS controlled processor. The first interval (red
requests) is the critical interval. Frequency in the subsequent intervals (red,
green and blue, respectively) are monotonically decreasing. The load of this
processor is the total work (Requests 1 to 7) waiting to be executed. 59

xiv

4.12 How POLARIS plans CPU speed with a new request. The first and second
row show before and after the state after the new request of two different
queues. The first column (a) and the second column (b) show a low and
high load, respectively. Different colors show critical sections and dashed
lines show speed required to run request in during different sections. 61

4.13 States of a 2 socket CPU with 8 cores each before (a) and after (b) a new
request is arrived. Green cores are busy and gray cores are idle. 62

4.14 Failure Rate and Power of different multi-processor schedulers under medium
load, as functions of slack (S) . 67

4.15 PLASM and POLARIS/RR Processor Frequency Residency, under medium
load and the slack multiplier is 60. 68

4.16 Different frequency combinations to execute a unit work. The rectangle
represents a request, similar to the representation in Figure 4.11. The height
is amount of the requests work and the length is the time between the
request’s arrival and deadline. The dashed lines represent execution rate
(work/time). 69

4.17 Failure Rate and Power of different multi-processor schedulers under high
load, as functions of slack (S) . 70

4.18 Failure Rate and Power of different multi-processor schedulers under low
load, as functions of slack (S) . 72

4.19 Power and performance of POLARIS and its variants under the medium load 73

5.1 TPC-C transaction execution time distribution under various CPU frequency
levels. Each distribution is represented by a violin plot. Horizontal bars in
each plot are used to show the minimum, maximum, and mean. Some dis-
tribution is truncated that maximum execution times were as high as 46 ms
for New Order and 38 ms for Payment. 77

5.2 Categorization of the execution time estimation baselines presented in this
chapter. 81

5.3 Summary of Notation . 82

5.4 PLASM with two different estimators, at High Load (23000 TPS) 87

5.5 PLASM with estimators with different conservativeness 88

5.6 Power consumption and failure rate of PLASM under high load (23000 TPS)
with shifted linear regression estimator using different percentiles 89

xv

5.7 Power consumption and failure rate of PLASM under low load (15000 TPS)
with shifted linear regression estimator using different percentiles 90

5.8 TPC-C Payment transaction Estimations 91

5.9 TPC-C New Order transaction Estimations 92

B.1 Short request after running a long request. We use the representation in
Figure 3.6. (a) shows request 1 arrives to an idle worker and the worker
immediately executes it. POLARIS sets a speed level lower than the peak
speed.(b) shows that, right after the execution of request 1 starts, a smaller
request(request 2) arrives to the system. Because of the non-preemptive
environment, Request 2 has to wait until Request 1 is completed. There-
fore POLARIS increases to the peak speed, which is not sufficient to finish
Request 2 within its deadline. 125

B.2 Failure rate of EnergyBaseline . 126

B.3 EnergyBaseline power frontlines . 126

xvi

Chapter 1

Introduction

Servers do not always run at maximum capacity. For example, Twitter and Google have
reported average server utilization of only 20% [51] and 30% [23], respectively. A major
reason for this is that server capacity needs to be scaled to accommodate peak workloads,
but actual workloads fluctuate and can be bursty. For example, e-commerce servers are
busiest during holidays and many production servers are more lightly loaded at night than
during the day. When the load is not at its peak, the energy consumption of underutilized
servers can be reduced. One option is to shut down some servers to save power, leaving
fewer servers to handle the reduced workload.

Workload fluctuations occur on many time scales. In addition to diurnal patterns and
longer term seasonal trends, loads also exhibit shorter-term fluctuations, on time scales
of seconds or less [16]. These short-term fluctuations are caused by natural variations in
the arrival rates of work, as well as variations in the service times of individual requests.
Thus, a system that is handling 1000 requests per second on average may handle only 500
requests in some seconds, and 1500 requests in other seconds.

Like longer-term fluctuations, short term fluctuations also present an opportunity for
reducing server power consumption. Modern CPUs can quickly increase and decrease their
execution speed to adapt to these fluctuations. At lower speeds, CPUs consume less power.
This is the opportunity we seek to exploit in this thesis.

Techniques designed to address longer-term workload fluctuations are generally un-
able to respond to short term load fluctuations. That is because they rely on relatively
heavyweight mechanisms (such as powering servers down or migrating processes) or on
mechanisms such as feedback control that take time to measure load and gradually adjust

1

power consumption. On the other hand, server CPU speed and, thus, power consumption
can be adjusted quickly.

Modern server CPUs’ performance and power consumption can be adjusted using dy-
namic voltage and frequency scaling (DVFS), which is supported by many server proces-
sors. DVFS allows a processor’s voltage and frequency, and hence power consumption,
to be adjusted on the fly. On modern processors, these adjustments can be made very
quickly, e.g., on sub-microsecond time scales. This is fast enough to allow server power
and performance to be adjusted on the time scale of individual server requests, even for
systems with request latencies in the millisecond range.

DVFS must be managed. That is, something must control the scaling and decide
whether and when to adjust voltage and frequency. Currently, DVFS is commonly man-
aged by low-level governors implemented in an operating system (OS) or directly in hard-
ware. Such governors typically base their decisions on low-level metrics, such as processor
utilization, that are directly available to the OS. One advantage of these governors is that
they are generic. Since they rely only on low-level metrics, they can be applied to save
power across a broad range of applications. However, they may miss application-specific
power saving opportunities.

1.1 Latency Critical Data Systems

Latency-critical data-intensive applications are common in data centers. Examples of such
workloads include online transaction processing (OLTP) workloads in relational database
systems [77], search queries [125, 50, 168], and key-value stores [144, 136]. In latency-critical
workloads, units of work are short and well-defined. Furthermore, they often have implicit
or explicit latency targets. In this work we focus on in-memory transactional database
systems. We consider database systems that support multiple concurrent transactional
workloads, each of which may have distinct characteristics and different latency targets.
For example, a workload associated with high priority customers may have a lower latency
target than a workload associated with regular customers.

Our central premise is that, for latency-critical data systems, DVFS can be managed
more effectively by the data systems than by the underlying operating system. The data
system has two main advantages when managing DVFS. First, the data system is aware of
the units of work, such as queries and transactions. It may also have valuable information
about these units of work, such as priorities, service level objectives, or the nature of
the work itself. A data system can use this information to make better DVFS decisions.

2

For example, a data system can slow down the CPU when executing a small transaction.
Second, the data system can also directly control its units of work. For example, it can
reorder requests, or reject low-value requests when the load is high, or route requests among
multiple CPU cores.

Our objective is to use DVFS to minimize server power consumption while ensuring
that all workloads’ latency targets are met. We show that by exploiting knowledge about
transactions and the ability to manage the transaction execution, database systems can
do a better job of both reducing both power consumption and hitting latency targets than
OS-based DVFS managers.

1.2 Thesis Organisation and Research Contribution

In the remainder of this thesis, we first present background information in Chapter 2.
In Chapter 3, we present an algorithm called POLARIS for DVFS-aware scheduling of
tasks with latency targets in single processor CPUs. POLARIS chooses the order of task
execution and controls execution speed to minimize power consumption while avoiding
missed latency targets. POLARIS runs inside the database system, not in the underlying
operating system. We show, empirically, that it is significantly more effective than OS-
based DVFS governors.

In Chapter 4, we generalize the single-processor problem and present an energy-efficient
scheduling algorithm called PLASM that is designed for multi-processor, multi-core CPUs.
PLASM uses POLARIS for power and priority management at each individual CPU core,
and a routing algorithm called FLARE for assigning requests to cores. In the chapter, we
discuss various scheduling problems specific to multi-processor environments. We also em-
pirically show that FLARE is significantly more effective than generic routing techniques.

In Chapter 5, we discuss execution time estimation in POLARIS and PLASM, which is
an essential part of both algorithms. We also explain and empirically show how execution
time estimation is used for trading power and performance. Finally, Chapter 6, presents
related work on improving the energy efficiency of various types of software systems, and
Chapter 7, summarizes our conclusions and offers some directions for future work.

3

Chapter 2

Background

Energy efficiency is a significant concern in data centers [24]. Recent studies show that
data centers are responsible for 1% [128] of worldwide electricity consumption, and that
power constraints can limit data center scale. Therefore there is an ongoing effort to
improve energy efficiency, with many frontiers. Some of these efforts are holistic. For
example, Google has been working on increasing overall power usage effectiveness for its
data centers [2]. Microsoft is exploring the use of underwater data centers to cut cooling
costs [145].

Other efforts focus on individual factors that contribute to overall power consumption.
These factors include the power consumed by servers, storage, networking and infras-
tructure, and cooling [74, 152]. When we break down overall data center power consump-
tion [140], servers account for a significant portion, as shown in Figure 2.1(a). Furthermore,
servers are the primary generators of heat. Therefore, servers are indirectly responsible for
the power used for cooling.

Figure 2.1(b) shows a breakdown of the power consumption of a modern server [163].
CPUs are largest consumers of power and they dominate overall power consumption, es-
pecially when the server utilization is high. Thus, CPUs play a major role in overall data
center power consumption.

In the remainder of the chapter, we provide an overview of CPU power consumption
and introduce some concepts that will be used in the remainder of the thesis. Section 2.1
explains the factors that contribute to CPU power dissipation, and Section 2.2 describes
how power consumption can be managed and controlled.

4

Servers

56%

Cooling

30%
Power Conditioning

8% Networking
5% Lights1%

(a) Data center components

CPU (160 W)

56%

System Board (54 W)

19%

Other (54 W)

19% SSD (10 W)
3% HDD (10 W)3%

(b) Server components

Figure 2.1: Power Consumption Break down

2.1 CPU Power Dissipation

Multiple factors, such as supply voltage, leakage, and switching, affect CPU power con-
sumption [172]. However, a simple general model [32] for CPU power consumption (P) is
given by

P = CV 2f + Ps (2.1)

where C is a constant capacitance value, V is voltage, f is execution frequency, Ps represents
static power dissipation. In this model, the term CV 2f represents the dynamic power
dissipation.

CPUs’ static power dissipation overhead has improved over recent years. For example,
a detailed study on server power consumption breakdown in 2010 [163] reports that static
power consumption accounts for 30% of total CPU power. However, a more recent study
in 2018 [102] shows that this ratio has dropped all the way down to 8%, yet total CPU
power consumption is still the dominant factor in server power consumption.

2.1.1 Dynamic Voltage and Frequency Scaling

Modern processors (and memory [47]) support dynamic voltage and frequency scaling
(DVFS), which allows execution frequency and voltage (f and V in Equation 2.1) to
be controlled [79]. With this capability, processors can operate at different power and
performance levels.

5

1.2 1.6 2.0 2.4 2.8
CPU Frequency (GHz)

0.009

0.010

0.011

0.012

0.013

Jo
ul

e/
Tr

an
sa

ct
io

n

1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7

La
te

nc
y

(m
s)

Figure 2.2: Energy per transaction and transaction latency under at different frequencies
in Intel E5-2640 v3

In practice, V and f are not varied independently. Increasing f requires corresponding
increases in V . Thus, the formula for dynamic power dissipation (Pd) is often simplified
as Pd ∝ fα, where α is typically in the range 1 < α ≤ 3 for server-grade processors [32,
167, 66]. Because α > 1, the dynamic power-frequency relation in CPUs is convex. This
means that the higher the frequency, the more dynamic power the processor uses per unit
of work that it performs. That is, if fslow < ffast and w represents a unit of work, then
w

fslow
(fslow)α < w

ffast
(ffast)

α. Thus, running a job as slowly as possible results in the least

dynamic power consumption.

We experimented and measured power consumption under different CPU frequency
levels to validate the convex relation between dynamic power and frequency, using the
server, Shore-MT system, and TPC-C workload that will be described in more detail in
Chapter 3. In each experiment, we set all of the server’s CPU cores to run a fixed frequency.
Shore-MT workers on each CPU core executed TPC-C NewOrder transactions in a tight
loop, as quickly as possible. After a warm up period, we allowed the system to run for
a fixed amount of time, and measured the average CPU power consumption, the total
number of transactions completed, and the average latency per transaction. From these
measurements, we computed the average energy consumption per NewOrder transaction.

Figure 2.2 summarizes our results, showing energy per transaction and transaction
latency at each CPU frequency. As expected, the CPU consumes more energy per transac-
tion when we use a higher frequency. As the static system power is the approximately the
same across different frequency levels, we attribute the extra energy to the extra dynamic

6

power consumption due to higher frequency. Our observation is consistent with the convex
relation in the CPU power and speed model. As expected, latency decreases as CPU fre-
quency increases, but not in proportion to the frequency increase. For example, doubling
frequency from 1.2GHz to 2.4GHz reduced transaction latency, but does not quite cut it
in half.

2.1.2 Power Gating

Modern server-grade CPUs can also adjust static power consumption by using power gat-
ing [120, 116]. Power gating allows CPUs to save additional power by cutting the supply
voltage to certain parts of the CPU when they are not in use. This reduces static power
consumption. Power gating may also have some impact on performance, because there is
normally some delay involved in waking up and restoring power to gated components.

2.2 ACPI

The Advanced Configuration and Power Interface (ACPI) is a cross-platform industry
standard that defines a power management interface [165]. For CPUs, ACPI defines two
different types of states: C-states (processor power states) and P-states (device and pro-
cessor performance states). P-states are used to abstract DVFS, while C-states abstract
power gating [169, 114].

2.2.1 C-States

ACPI C-states define the different power states of a processor [90], which are normally
implemented by gating [172] different parts of the processor [89, 102]. There are two
types of C-states; core C-states and package C-states. The C-states are numbered starting
from zero, such as C0, C1, and so on. The standard permits different types of CPUs to
implement different subsets of the possible C-states defined by ACPI. However, C0 must
be implemented in all CPUs.

Core C-States

C0 represents the active state, in which the CPU core is fully active and powered. The
remaining C-states represent idle states in which parts of the core are power gated. Higher-

7

numbered C-states represent deeper idle states with greater power reductions from gating.
For example, in C1, the processor clock is stopped via clock gating, but L1 and L2 caches
are still coherent. In C3, L1 and L2 are flushed to the last level cache. In C6, all of the
core’s execution context is flushed to the last level cache, and the whole CPU core is power
gated. The deeper the C-state, the greater the power savings. However, deeper C-states
also require more time to return the core to C0 [97].

Package C-States

In addition to core-level C-states, there are package-level C-states that represent power
gating in other parts of the processor besides the execution cores. To prevent any confusion,
we identify package C-states as PCx. In each package, the core with the lowest C-state
determines the package C-state. Thus, if even a single core is active (in state C0), its
package cannot go into an idle C-state.

2.2.2 P-States

ACPI P-states are used to represent the performance states of an active processor and are
relevant only when a core is in C0 (active) C-state. Each P-state represents an operating
voltage and frequency pair. Different types of processors can define different numbers of
P-states. For example, the AMD FX 6300 offers five distinct P-states for each core, as
shown in Figure 2.3. P-states are numbered starting from zero, such as P0, P1, and so on.
The lower the P-state number, the higher the frequency.

P-State Frequency Voltage

P0 3.5 GHz 1.4 V
P1 3.0 GHz 1.225 V
P2 2.5 GHz 1.125 V
P3 2.0 GHz 1.025 V
P4 1.4 GHz 0.9 V

Figure 2.3: P-states of AMD FX 6300

2.2.3 Power Control

Typically, there is no direct mechanism for software control of processor C-states, although
software may offer control hints. For example, the x86 instruction mwait accepts a target

8

C-state hint and initiates idle wait. The hint recommends a particular C-state for the idle
wait, but the actual C-state(s) that are used are determined by the processor [17].

Unlike C-states, P-states can be directly controlled by software. There are several
mechanisms for doing so. OS-level power manager interfaces allow applications or system
administrators to control P-States. For example, Windows 10 offers several pre-defined
power plans such as Balanced, Power Saving, and Performance. In Linux, the cpufreq

kernel module [31] provides a variety of power governors. cpufreq governors can be cate-
gorized into two groups; static and dynamic governors.

cpufreq’s static governors allow users to set a specific CPU frequency. For example,
the “performance” governor sets the CPU speed to the peak speed, and the “userspace”
governor allows user-level applications to select any of the available P-states. On the
other hand, cpufreq’s dynamic governors adjust CPU speed on the fly according to the
CPU utilization. For example, the “ondemand” governor sets a higher P-state when the
utilization is high and vice versa.

For x86 processors, all of the P-state management mechanisms ultimately rely on Model
Specific Registers (MSRs) [3, 91] to control P-states. MSRs contain CPU-specific informa-
tion which can be read and written by software, and which can be used to control some
aspects of the processor, including core P-states.

Power management can also be implemented directly in the hardware. For example,
recent Intel CPUs are equipped with a mechanism called RAPL (Running Average Power
Limit) [71]. Given a power consumption target and a time window, the RAPL mechanism
adjusts execution frequency to keep the running average power consumption of the proces-
sor (over the specified time window) at or below the specified target level. RAPL allows
finer-grained control of power and execution frequency than P-states. However, it is spe-
cific to Intel CPUs. In this thesis, we use ACPI P-states as, to the best of our knowledge,
all the modern server-grade server CPUs support P-states.

9

Chapter 3

Single-Processor Energy Aware
Transaction Scheduler

3.1 Overview

As described in Chapter 1, latency-critical systems’ workloads fluctuate over time, even on
time scales of seconds or less. Operating system frequency governors can reduce CPU power
consumption by using DVFS to adjust execution speed in response to these fluctuations,
increasing speed when the CPU is heavily utilized, and reducing it when utilization is
low. For systems that handle latency-critical workloads, such as transactional database
systems, we argued that it should be possible to managed DVFS more effectively in the
database system, which has more information about the latency critical workload that it
is supporting.

In this chapter, we test this premise by developing an energy-aware scheduling algorithm
for transactional database systems, and comparing it to operating system based governors.
Like OS governors, our algorithm controls DVFS to take advantage of short-term workload
fluctuations. However, unlike OS governors, it takes advantage of database-system-specific
workload information to guide its decisions.

This chapter makes the following technical contributions:

• We present an on-line workload-aware scheduling and frequency scaling algorithm
called POLARIS (POwer and Latency Aware Request Scheduling). POLARIS con-
trols both transaction execution order and processor frequency to minimize CPU

10

power consumption while observing per-workload latency targets. Many modern in-
memory transaction data processing systems, like VoltDB [159] and Silo [164], are
architected to execute each transaction from start to finish in a single thread on a sin-
gle processor core. POLARIS is a non-preemptive scheduler because non-preemptive
scheduling is a good fit for such systems.

• We provide a competitive analysis of POLARIS against YDS [182], a well-known
optimal offline preemptive algorithm, as well as a YDS-based on-line preemptive
algorithm (OA [182]). This analysis provides insight into aspects of POLARIS’s be-
haviour, such as the impact of non-preemptiveness and the importance of transaction
scheduling.

• We present a prototype implementation of POLARIS within the Shore-MT storage
manager [95]. Section 3.5 describes some of the practical issues that we had to address
in doing so. We use the prototype to perform an empirical evaluation of POLARIS
under a variety of workloads and load conditions, using in-kernel dynamic DVFS
governors as baselines. Our results show that POLARIS produces greater power
savings, fewer missed transaction deadlines, or both. We also show how POLARIS’
effectiveness is affected by two key factors: (1) the average load on the system, and
(2) scheduling slack, i.e., the looseness of the transactions’ deadlines. Although PO-
LARIS dominates the baselines under almost all conditions, its benefits are greatest
when the average load is neither very high nor very low. Not surprisingly, greater
scheduling slack increases the advantage of deadline-aware schedulers, like POLARIS,
over deadline-blind operating system alternatives.

3.2 POLARIS

Servers in data centers host a broad spectrum of applications [61], including collaboration
and business solutions, database and analytics tools, video streaming and social network-
ing [22, 132]. Data systems of various kinds are among the most commonly used data
center applications. Database management systems, object storage systems, key-value
stores, batch processing and stream processing systems are all counted as data systems,
and they are primarily responsible for the storage and processing of data [88, 139, 125].

Latency-critical workloads are common in data systems. Latency critical workloads
consist of short requests with tight latency objectives, often on the scale of a few seconds or
less. Depending on the workload, latency objectives may be fine-grained (e.g, a deadline for
each unit of work) or may be expressed at the level of an entire workload. For example, some

11

systems have Service Level Agreements(SLA) that require the most requests in a workload
achieve latencies below a specified target [50]. Missing latency targets can have financial
implications for service providers [73, 54], and can affect end-user satisfaction [149, 43].

POLARIS is designed to manage DVFS for latency critical data systems’ workloads.
For the purposes of the presentation in this section, we assume a server with a single
single-core processor that supports DVFS. To manage multiple processors, or processors
with multiple frequency-scalable cores, we can use multiple instances of POLARIS. In
Section 3.5, we describe the POLARIS prototype architecture that uses this approach to
manage a multi-processor, multi-core server.

A server accepts transaction execution requests, each of which is associated with a la-
tency target. POLARIS’s objective is to minimize CPU power consumption while ensuring
that each request is completed within its latency target.

POLARIS is workload-aware. In addition to its latency target, each request is assumed
to be tagged with a workload type to indicate which workload it is part of. Workloads are
important to POLARIS, since POLARIS creates an execution time prediction model per
workload type, as we describe in section 3.3.

Many data systems provide sophisticated workload managers [131, 87, 138, 162, 80, 141]
that allow incoming requests to be assigned to workloads based on the properties of the
request. For example, these properties might include the name of the user, application,
or function that generated the request, the complexity or estimated cost of the request,
the connection over which the request arrived, and so on. Some workload managers track
workloads’ performance or resource consumption, allow priorities or performance targets to
be associated with individual workloads, and take action or make recommendations when
targets are missed. For example, IBM DB2 Workload Manager [86] can monitor workloads’
performance, and can adjust priorities and resource allocations or take other user-specified
actions when targets are missed. POLARIS assumes that incoming requests are assigned
to workloads by such a mechanism. However, POLARIS itself is agnostic with regards to
how this assignment is defined. That is, it neither defines nor depends on specific policies
for workload assignment.

POLARIS’s primary objective is to ensure that transactions meet their workloads’ la-
tency targets. However, because transaction execution speed is limited by the processor’s
highest-frequency P-state and because there are no constraints on the the arrival of trans-
actions or on transaction deadlines, it may not be possible for POLARIS (or any scheduling
algorithm) to ensure that all transactions meet their deadlines. In such cases, POLARIS
will run the processor at the highest frequency, which will have the effect of completing
late transactions as quickly as possible.

12

Notation Meaning

Q transaction request queue
t0 currently running transaction
e0 running time (so far) of t0
W set of workloads
L(c) latency target of workload c ∈ W
c(t) workload of transaction t, c(t) ∈ W
a(t) arrival time of transaction t
d(t) deadline of transaction t, d(t) = a(t) + L(c(t))
F set of possible processor frequencies

µ̂(c, f) estimated execution time of workload c transaction at frequency f
q̂(t, f) estimated queuing time of t at frequency f

Figure 3.1: Summary of Notation

3.2.1 The POLARIS Algorithm

The arrival of a new transaction request or the completion of a request triggers the ex-
ecution of POLARIS. In each of these situations, POLARIS chooses a frequency for the
processor, based on the set of transactions that are running or waiting to run. It assumes
that there is a fixed set of voltage and frequency configurations in which the the processor
can run, corresponding to the processor’s available P-States. Higher frequencies allow the
processor to execute transactions faster, but they also consume more power. Figure 3.1
summarizes notation that we use to describe transactions and processor frequencies.

Figure 3.2 shows the POLARIS frequency selection procedure, SetProcessorFreq,
which runs each time a transaction request arrives or is completed. SetProcessorFreq
chooses the smallest available processor frequency such that all transactions, including the
running transaction and all waiting transactions, will finish running before their deadlines
if the processor were to run at that frequency.

The frequency selection algorithm relies on a transaction execution time model, which
predicts the execution time of a transaction of a given workload at a given processor
frequency. We use µ̂(c, f) (in Figure 3.2) to represent the predicted execution time of
a workload c transaction at frequency f . (We discuss how POLARIS predicts execution
time in Section 3.3.) In Figure 3.2, q̂(t, f) represents the total estimated queueing time
for transaction t ∈ Q, assuming that the processor runs at frequency f . This is defined as

13

State: Q: queue of waiting transactions
State: t0: currently running transaction
State: e0: run time (so far) of t0
State: tnow: current time

1: function SetProcessorFreq()
2: . find minimum freq for current transaction
3: for each fnew in F , in increasing order do
4: if tnow + µ̂(c(t0), fnew)− e0 ≤ d(t0) then break
5: end if
6: end for
7: . ensure all queued transactions finish in time
8: for each t in Q, in EDF order do
9: if tnow + q̂(t, fnew) + µ̂(c(t), fnew) ≤ d(t) then continue

10: end if
11: . fnew is not fast enough for t
12: . find the lowest higher frequency that is
13: for each f ∈ F|f > fnew, in increasing order do
14: fnew ← f
15: if tnow + q̂(t, f) + µ̂(c(t), f) ≤ d(t) then break
16: end if
17: end for
18: . no further checking once we need highest freq
19: if fnew = maximum frequency in F then
20: set processor frequency to fnew
21: return
22: end if
23: end for
24: set processor frequency to fnew
25: return
26: end function

Figure 3.2: POLARIS Processor Frequency Selection

14

follows:
q̂(t, f) = µ̂(c(t0), f)− e0 +

∑
t′∈Q|d(t′)<d(t)

µ̂(c(t′), f)

That is, t must wait for the currently running transaction’s remaining execution time, and
must also wait for all queued transactions with deadlines earlier than t’s.

POLARIS also controls transaction execution order. Transaction requests that ar-
rive while the processor is busy running another transaction are queued in order of their
workloads’ deadlines by POLARIS. When the running transaction finishes, POLARIS dis-
patches the next transaction (the one with the earliest deadline) from the queue. As we
note in Section 3.1, each transaction, once dispatched runs to completion. In Section 3.4,
we relate POLARIS to YDS, a well known, optimal offline frequency scaling and scheduling
algorithm. YDS achieves optimality by identifying batches of so-called “critical” transac-
tions and executing them in earliest deadline first (EDF) order, since this may allow YDS
to run the batch at a lower frequency than would be possible if transactions ran in arrival
order. POLARIS executes transactions in EDF order for the same reason.

3.3 Execution Time Estimation

POLARIS requires estimates of the execution time µ̂(c, f) for transactions of each workload
c ∈ W at each possible processor execution frequency f ∈ F . There is a substantial body of
work on estimating execution times of data system queries [60, 53, 6, 177]. This work varies
in the amount of workload complexity it assumes, the amount of workload information that
is required, and in the use of black-box vs. white-box modeling. For POLARIS, our focus
is on transactional workloads with many short units of work, rather than complex SQL
queries. However, even in this relatively simple setting, accurate prediction of individual
transactions’ execution times is challenging, since factors such as resource contention and
data contention can affect execution. Besides, workload characteristics can change over
time.

For POLARIS, we have taken a simple, conservative, dynamic, black-box statistical
approach to estimate execution time. Specifically, for each combination of workload c and
frequency f inW×F , POLARIS tracks the pth percentile of measured execution times over
a sliding window of the S most recent transactions from workload c that run at frequency f .
The current tracked value is used as µ̂(c, f) in POLARIS’s SetProcessorFreq algorithm
(Figure 3.2).

15

To track these percentiles, we adapted an algorithm of Härdle and Steiger [76] for
tracking a running median to instead tracking the pth percentile of the observed execution
time distribution. For all of the experiments reported in this section, we use S = 1000 and
experimented with percentiles in the range 95 ≤ p ≤ 99.

This approach has several advantages in our setting. First, it is fast, which is important
because we do not want to squander POLARIS’s power savings on estimation overhead.
Second, it requires little space: a few kilobytes per element of W × F . We expect both
W and F to be small; both are less than ten in our experiments. Third, it can adapt
to changing workloads and system conditions, because of the sliding window. Finally, it
requires no information about each transaction, other than its workload label.

This approach is conservative because we are using tail latencies to predict the execu-
tion time of every transaction. For most of the experiments presented in this chapter, we
have used p = 95. This is important because POLARIS’s primary objective is to meet
transaction latency targets. For example, Figure 3.3 illustrates the mean and 95th per-
centile latencies for the individual transactions in our TPC-C workload and also, in the
last row, the latencies for the overall combined workload. In this example, the tail laten-
cies are 2.5 to 4.8 times larger than the means. The use of lower values than p = 95 will
make POLARIS save power more aggressively, but also increases the risk of missed latency
targets.

In Chapter 5, we revisit time estimation, which is needed by both POLARIS and the
transaction routing algorithm we introduce in Chapter 4. In Chapter 5, we describe an
alternative to the quantile-based estimator introduced here. Both estimators allow PO-
LARIS to function effectively. However, the estimator described in Chapter 5 guarantees
that the execution time estimates for each workload class decrease monotonically with fre-
quency. This property, which helps to ensure that POLARIS can fully consider the use of
all available P-states, is not shared by the quantile-based estimator presented here, since
it estimates quantiles independently for each frequency.

3.4 Theory & Competitive Ratio Analysis

In this section we analyze the performance of POLARIS through a competitive analysis
against two existing algorithms YDS [182] (Section 3.4.2) and OA [21, 182] (Section 3.4.3).

We have two objectives in this section. The first is to provide a theoretical justification
for why POLARIS is an effective algorithm. The second is to establish a connection between
the behaviors of POLARIS and OA under certain settings. We provide our analysis under

16

Execution Time (µs)

Request @2.8 GHz @1.2 GHz
Type Mean P95 Mean P95

New Order (45%) 2059 5414 4772 12048
Payment (47%) 301 859 733 2388

Order Status (4%) 250 1682 809 3453
Stock Level (4%) 3435 5106 8062 11495

Combined Workload 1560 4465 3941 13525

Figure 3.3: TPC-C mean and 95th percentile (P95) transaction execution times at max-
imum and minimum CPU frequency. Percentages indicate the transaction mix in the
workload.

the standard theoretical model [15, 21, 182] in which algorithms can scale the speed of
the CPU to arbitrarily high levels and thus execute every transaction before its deadline.
Therefore we focus only on the energy consumption of algorithms and not their success
rates. We review this standard model in Section 3.4.1.

Broadly, energy aware scheduling algorithms can be classified into four categories along
two dimensions as shown in Figure 3.4: (1) preemptive vs non-preemptive; and (2) of-
fline vs online algorithms. Offline preemptive algorithms are the most computationally
powerful algorithms. YDS [182] is the optimal offline preemptive algorithm and therefore
consumes the lowest possible energy among all scheduling algorithms. In contrast, online
non-preemptive algorithms, such as POLARIS, are the most computationally constrained
ones.

The natural algorithm to compare POLARIS against would be the optimal offline non-
preemptive algorithm, which we refer to as OPTnp. However, computing the optimal
offline non-preemptive schedule is NP-hard [15], and an explicit description of OPTnp is
not known. Instead, we provide a competitive ratio of POLARIS against YDS, which also
implies a competitive ratio against OPTnp. As we show in Sections 3.4.4 and 3.4.5, we get
a competitive ratio of POLARIS against YDS indirectly through a competitive analysis
against OA, which is an online preemptive algorithm. In doing so we also meet our second
objective of establishing the connection between POLARIS and OA.

Finally we note that several online non-preemptive algorithms have been developed
in literature for variants of the speed-scaling problem. Examples include maximizing the
throughput [13] or minimizing the total response time [10] of transactions under a fixed
energy budget. However, no prior work studies the problem of minimizing energy con-

17

Figure 3.4: Energy aware scheduling algorithms.

sumption as we do in this section. We refer the reader to references [7] and [62] for a
survey of these algorithms.

3.4.1 Standard Model

In the standard model, a problem instance P consists of n transactions, where each trans-
action t arrives with an arrival time a(t), a deadline d(t), and a load w(t). w(t) represents
the amount of work that a transaction must perform, which is assumed to be known accu-
rately. Algorithms can scale the speed of the processor to arbitrarily high levels. When the
processor is running at frequency (speed) f , a transaction t executes in w(t)/f time. The
power consumption of the processor is assumed to be fα, where α > 1 is a constant [32],
which guarantees that the power-speed function is convex. We observe that in this model
algorithms, including POLARIS, are idealized and can execute every transaction before its
deadline, i.e., achieve 100% success rate. This is because (a) they know transactions’ loads
accurately; and (b) can pick arbitrarily high speeds to finish any transaction on time.

3.4.2 Yao-Demers-Schenker (YDS)

YDS is the optimal offline preemptive algorithm. Given a problem instance P , let an
interval be the time window between the arrival time a(ti) of some transaction ti and
the (later) deadline d(tj) of a possibly different transaction tj in P . Define the density

18

of a given interval I to be Σkw(tk)/|I|, where the summation is over all transactions tk
such that [a(tk), d(tk)) is within I. Given P , YDS iteratively performs the following step
until there are no transactions left in the problem. It finds an interval with the maximum
density, which is called the critical interval. Let CI be the first critical interval YDS finds.
The algorithm schedules the speed of the processor during CI to the density of CI and
schedules execution of the transactions in CI in EDF order. Then, the algorithm removes
CI and the set of transactions in CI from P , constructs a reduced problem P ′, and repeats
the previous step on P ′. P ′ is the same as P except any transaction whose arrival and
deadline intersects with CI is shortened exactly by the time it overlaps with CI.

In its final schedule, YDS potentially preempts a transaction t whenever transaction t
has an arrival time and a deadline that spans a critical interval CI that the algorithm has
picked at some step. That is, YDS might run part of t before the start of the CI, preempt
t when CI starts, and resume executing t after CI.

3.4.3 Online Preemptive Algorithms

OA is an online preemptive algorithm based on YDS [182]. Each time a new transaction
arrives, OA uses YDS to choose a schedule. Suppose that a new transaction arrives at
time τ . OA runs YDS on a problem instance consisting of the following transactions:

• The newly arrived transaction, tnew.

• The currently running transaction, tr, with its load w(tr) taken to be the remaining
load of tr, and with its arrival time taken to be τ .

• Any other transactions waiting in the system, with their arrival times adjusted to be
τ .

We make an important observation here. Note that in the problem instance constructed
by OA, all transactions have the same arrival time τ . Thus, if there are k transactions in
the system, there are exactly k intervals from which YDS chooses the first critical interval.
The first includes just the transaction with the earliest deadline, the second includes the
transactions with the two earliest deadlines, and so on. Furthermore, the first critical
interval will include the transaction with the earliest deadline, since it is part of all of the
possible intervals. Since YDS schedules transactions in EDF order, this first transaction
must be either tr or tnew. Thus, if d(tnew) < d(tr), OA will preempt tr and start running
tnew. If, on the other hand, d(tr) < d(tnew), tr will continue running after tnew’s arrival,
and tnew will run later.

19

In addition to OA, Yao et al. propose another online heuristic for the preemptive
problem, called Average Rate (AVR)[182]. AVR sets CPU speed to the sum of the densities
of the transactions that are not yet competed: Σi(w(ti)/(d(ti)−a(ti))). Yao et al show that
AVR’s competitive ratio against YDS is 2α−1αα. In another work, Bansal et al. showed
that OA is αα competitive against YDS [21]. Bansal et al. also propose another online
algorithm, called BKP [21]. Like OA, BKP uses interval densities. However, it increases
speed by a factor of e. BKP’s competitive ratio against YDS is 2

(
α
α−1

)α
eα. This is better

than OA’s for large values of α. However, α is typically small in server-grade CPUs (e.g,
1 < α ≤ 3), and OA gives a better competitive ratio in that case.

3.4.4 OA vs. POLARIS

Next, we compare the behavior of OA with that of (idealized) POLARIS . We start by
comparing the algorithms under the scenario in which a newly arriving transaction has a
later deadline than the currently running transaction.

Lemma 3.4.1. Suppose that both POLARIS and OA have the same queue at a point in
time, with k total transactions, one running (tr) and k − 1 waiting, with the exact same
loads. Suppose a new transaction tnew arrives, and that d(tr) ≤ d(tnew). Until the arrival
of the next transaction, POLARIS and OA will execute transactions in the same order,
and with the same processor frequency.

Proof. First, we consider execution order. By definition, POLARIS will finish running
tr and then run the remaining transactions in earliest-deadline-first (EDF) order. Since
tr has the earliest deadline, this amounts to running all transactions in (EDF) order.
OA identifies a critical interval, schedules the transactions in that interval in EDF order,
reduces the problem instance by removing the critical interval and its transactions, and
repeats on the reduced instance. However, because all transactions have the same arrival
time, all transactions in the first critical interval chosen by OA will have deadlines earlier
than all remaining transactions. Since the resulting reduced problem instances all have
the same structure as the original instance, each successive critical interval’s transactions’
deadlines will be later than those of previously selected intervals, and earlier than those of
subsequently selected intervals. Thus, by scheduling each critical interval in EDF order,
OA will execute all transactions in EDF order, like POLARIS.

Second, we consider processor speed. Let CIi represent the ith critical interval chosen by
OA. Let P1 represent the original problem instance considered by OA, and let Pi represent
the reduced problem instance under which CIi(i > 1) is chosen. Since both algorithms

20

agree on EDF execution order, we show by induction on the number of transactions that
POLARIS and OA agree on the processor speed used to execute each transaction.

Base Case: Consider the transaction with the earliest deadline in the original, non-
reduced problem instance, P1. OA will run this transaction first, using frequency den(CI1).
Now consider POLARIS. When tnew arrives, POLARIS will use SetProcessorFreq
(Figure 3.2) to set the processor frequency. SetProcessorFreq iterates over the trans-
actions present in the system, including tr and tnew. After iterating over all k+ 1 transac-
tions in the system, the selected frequency will be

max
1≤j≤k+1

den(Ij)

where Ij represents the interval consisting of the j earliest-deadline transactions. Thus,
after considering all k+ 1 transactions, the frequency chosen by POLARIS will correspond
to that required by the interval with the highest density, i.e., the frequency of the critical
interval. Thus, POLARIS , will set the processor speed to den(CI1), the same speed chosen
by OA. Since POLARIS only adjusts processor speed when transactions arrive or finish, it
will remain at den(CI1) until the transaction completes.

Inductive Step: Suppose that the nth transaction is finishing execution under POLARIS,
and that POLARIS has run it and all preceeding transactions at the same frequencies that
were chosen by OA. Consider the n+ 1st transaction. There are two cases:

Case 1: Suppose that the nth and n+1st transactions belong to the same critical interval
under OA. Suppose it is the mth critical interval, which implies that both transactions ran
at speed den(CIm) under OA. By our inductive hypothesis, the nth transaction also ran
at speed den(CIm) under POLARIS. When the nth transaction completes, POLARIS will
run SetProcessorFreq. The set of transactions over which it runs will be exactly those
in Pm, minus those transactions in CIm that have already finished executing, including the
nth transaction. When POLARIS runs SetProcessorFreq, the highest density interval
it finds will be CIm, but shortened to account for transactions from that interval that have
already finished. The density it finds for this interval will be exactly den(CIm), since the
work of the already-completed transactions in CIm was done at rate den(CIm). Thus,
POLARIS chooses den(CIm) as the execution frequency for transaction n+ 1.

Case 2: Suppose than the nth transaction belongs to CIm and the n+1st belongs to CIm+1.
In this case, when transaction n finishes and POLARIS runs SetProcessorFreq, the
set of transactions remaining at the processor is exactly those in Pm+1. Furthermore,
transaction n + 1 has the earliest deadline of all transactions in Pm+1. Thus, by the
same argument used in the base case, both OA and POLARIS choose den(CIm+1) as the
processor speed for transaction n+ 1.

21

Next, we consider the situation in which the newly arriving transaction tnew has an
earlier deadline than the running transaction tr. In such a situation, OA will preempt tr
and start running tnew. POLARIS , which is non-preemptive, cannot do this. Instead,
POLARIS will continue to run tr, but will increase the speed of the processor to ensure
that both tnew and tr finish by tnew’s deadline. This is captured by the following lemma:

Lemma 3.4.2. Suppose that both POLARIS and OA have the same queue at a point in
time, with k total transactions, one running (tr) and the rest waiting, with the exact same
loads. Suppose a new transaction tnew arrives,and that d(tnew) < d(tr). Until the arrival
of the next transaction, POLARIS will execute transactions in the same order, and with
the same processor frequency, as OA would have if d(tr) were decreased to d(tnew).

Proof. The proof is similar to that of Lemma 3.4.1. In the modified problem instance in
which the deadline of tr is reduced, no other transactions have deadlines earlier than tr
and tnew. Thus, there are two possibilities for CI1, the first critical interval chosen by OA.
Either it includes only tr and tnew, or it includes tr, tnew, and some additional transactions.
In the former case, den(CI1) = (w(tr) + w(tnew))/d(tnew). In the latter case, it is higher.

Now consider POLARIS. When tnew arrives, POLARIS keeps executing tr since it is
non-preemptive. However, it runs SetProcessorFreq to adjust the processor frequency.
Because of the definition of q̂(t, f), the miminum frequency identified for each transaction
includes the (remaining) time for tr, even if tr has a later deadline. Thus, SetProces-
sorFreq will identify frequency (w(tr) + w(tnew))/d(tnew) when it checks tnew, and will
set this frequency if CI1 includes just tr and tnew. If CI1 includes more transactions,
SetProcessorFreq will find den(CI1) when it checks the last transaction in CI1.

3.4.5 Competitive Ratio of POLARIS

We next prove POLARIS’ competitive ratio against OA and YDS both on arbitrary and
agreeable instances. Arbitrary problem instances are those in which transactions can have
arbitrary loads, arrival times, and deadlines. Agreeable instances are those in which trans-
actions have arbitrary loads but their arrival times and deadlines are such that for any pair
of transactions ti and tj if a(ti) ≤ a(tj) then d(ti) ≤ d(tj). Intuitively, agreeable problem
instances capture workloads in which sudden short deadline transactions do not occur.
Throughout the rest of the section, Pow[POLARIS(P)] and Pow[Y DS(P)] denote the
power consumed by POLARIS and YDS on a problem instance P , respectively.

We next make a simple observation about POLARIS’ competitive ratio on agreeable
problem instances.

22

Theorem 3.4.3. Under agreeable problem instances
Pow[POLARIS(P)] ≤ ααPow[Y DS(P)]. Therefore POLARIS has αα competitive ra-
tio against YDS and therefore OPTnp.

Proof. Recall from Section 3.4.4 that the only difference in the behaviors of OA and PO-
LARIS is when a new transaction with the earliest deadline in the queue arrives. Since
this never happens in agreeable instances, POLARIS behaves the same as OA, which has
a competitive ratio of αα with respect to YDS [21].

Next we analyze POLARIS’ competitiveness on arbitrary problem instances. In the
rest of this section, given an arbitrary problem instance P , we let wmax and wmin be the
maximum and minimum loads of any transaction in P . Let c = (1 + wmax

wmin
). Given a

problem instance P = t1, ..., tn, let P ′ = t′1, ..., t
′
n be the problem instance in which each ti

and t′i have the same arrival times and deadlines, but w(t′i) = c × w(ti). Essentially P ′ is
the problem instance where we keep the same transactions as P but increase their loads
by a factor of c. Our analysis consists of two steps.

Theorem 3.4.4. Pow[POLARIS(P)] ≤ ααPow[Y DS(P ′)]

Proof. Our proof is an extension of the proof used by Bansal et al. to show that OA has
an αα competitive ratio against YDS [21], and is provided in Appendix A.

We next show that YDS on P ′ consumes exactly cα times the power it does on P .

Theorem 3.4.5. Pow[Y DS(P ′)] = cαPow[Y DS(P)].

Proof. Since the load of each transaction increases by a factor of c, YDS on P ′ will find
exactly the same set of critical intervals, but with c times larger densities. Therefore, YDS’
processor speed on P ′ will be a factor c faster than on P at any moment. Let s(t) be the
processor speed of YDS on P. Since

∫
t
(cs(t))α = (cα)

∫
t
s(t)α, YDS will consume exactly cα

more energy on P ′ than P .

The next corollary is immediate from Theorems 3.4.4 and 3.4.5.

Corollary 3.4.6. POLARIS has a (cα)α competitive ratio against YDS and therefore
OPTnp.

23

3.4.6 Discussion of Competitive Ratio Analysis

The competitive ratio in Corollary 3.4.6 has two components: αα and cα. Recall that
(idealized) POLARIS has two disadvantages against YDS. First, it does not know the
future, and second it cannot preempt transactions. Recall that the OA algorithm, which
does not know the future but can preempt transactions, has αα competitive ratio [21].
Thus, one interpretation is that the αα component captures POLARIS’ disadvantage of
not knowing the future. In contrast, the cα component captures POLARIS’ disadvantage of
not being able to preempt. For an example of this disadvantage, consider two transactions
t1 and t2. t1 has load wmax and arrives at time 0 and has a very late deadline. t2 has a load
wmin and arrives after an infinitesimally small time after 0, and has a very short deadline.
POLARIS will start t1 will receive t2 and will finish both t1 and t2 by the deadline of t2.
Instead YDS would execute t2 first and then t1. By appropriate choices of the deadlines
for t1 and t2, POLARIS will perform cα worse than YDS.

3.5 POLARIS Prototype

To test POLARIS, we implemented it in Shore-MT [95]. Shore-MT is a multi-threaded data
storage manager which is designed for multiprocessors. Shore-Kits [1] provides a front-end
driver for Shore-MT. It includes implementations of several database management systems
benchmarks, including TPC-C and TPC-E. For the remainder of this chapter, we refer to
the combination of Shore-Kits and Shore-MT as Shore-MT.

Shore-MT has multiple worker threads, each with an associated request queue. Each
request corresponds to a transaction of a particular type, e.g., NewOrder in the TPC-C
workload. Each worker sequentially executes requests from its queue, using the storage
manager to access data.

There are also request handling (RH) threads that handle incoming requests from clients
and routes them to worker queues. To simplify our experimental setup, we do not drive
the Shore-MT server using remote clients. Instead, a request handler simulates a set of
remote clients by generating randomized requests and then handling them as if they had
arrived over the network from remote clients.

Our test server’s multi-core CPUs allow CPU frequency to be controlled separately for
each core. In our prototype, we fix the number of workers to match the number of cores in
our server and pin each worker to a single core. We run a separate POLARIS instance for
each core, which manages the request queue of that core’s worker and controls the core’s
execution frequency.

24

POLARIS requires action when two types of events occur: the arrival of a new trans-
action request, and completion of a request. In our prototype, RH threads handle the
POLARIS’s request arrival action. When a new request arrives, one of the RH threads
enqueues the request to one worker queue and then runs the POLARIS SetProcessor-
Freq algorithm (Figure 3.2) to adjust the execution frequency of that worker’s core. We
modified Shore-MT’s request queues so that requests are queued in EDF order, as required
by POLARIS. The worker threads handle POLARIS’s request completion action. On com-
pletion of a request, workers pull the earliest-deadline request from their queues and run
SetProcessorFreq to set their core’s frequency before executing the dequeued request.

POLARIS’s overhead depends on the length of the request queue. The longer the
queue, the higher the overhead. At high load, when queues are longest, we measured its
execution time at about 10 microseconds, which is one or two orders of magnitude less than
the mean execution times, at peak frequency, of the transactions in our TPC-C workload.

The POLARIS SetProcessorFreq function requires some means of actually adjust-
ing a core’s P-State. As noted in Chapter 2, there are several mechanisms for doing so in
which all of the alternatives ultimately rely on MSRs for x86 processors. Since POLARIS
adjusts execution frequencies frequently (potentially on each transaction request arrival or
completion), the RH and worker threads in our prototype modify the MSRs directly via
the MSR driver, which is much faster [169].

3.6 Evaluation

We use our prototype to conduct an empirical evaluation of POLARIS. The primary goal
of our evaluation is to compare POLARIS against low-level, OS frequency governors. We
want to determine whether the extra information available to POLARIS leads to greater
power savings than can be achieved with the OS baselines. We test POLARIS under a
variety of load conditions. In addition, we test POLARIS’s ability to differentiate among
concurrent workloads with different latency targets.

3.6.1 Methodology

In our experiments, we use Shore-Kits’ TPC-C and TPC-E implementations. For both
benchmarks, Shore-MT’s buffer pool is configured to be large enough to hold the entire
database. For each experimental run, we choose a method for controlling core frequen-
cies (POLARIS, or one of the baselines), and then run the benchmark workload against

25

our Shore-MT prototype. Each run consists of three phases: (1) a warmup phase, during
which each worker executes 30,000 transactions, (2) a short training phase for warming
up POLARIS’ execution time estimators by filling the initial sliding window for each fre-
quency level and workload type combination, and (3) the test phase, during which power
consumption and system performance are measured.

The training phase is used only so that we can test POLARIS in a state in which its
estimation model has been fully initialized. In practice, the execution time estimates for
all workloads at all frequencies can be initialized to zero. This will cause POLARIS to
gradually explore and initialize its estimators for unexplored frequencies, from lowest to
highest, as it encounters load conditions under which the already-explored frequencies are
not fast enough to handle the load. POLARIS performance may suffer as it initializes
these estimators, but this is a transient effect, and the number of estimators is relatively
small (W ×F).

We change Shore-Kits request generation from a closed-loop design to an open-loop
design, so that we can specify a mean offered load (transaction requests per second) for
the system for each experiment. Request interarrival delays are chosen randomly from a
uniform distribution with the mean determined by the target request rate, a minimum
of zero, and a maximum of twice the mean. Thus, the actual instantaneous request rate
fluctuates randomly around the target. We run experiments at three target load levels:
high, medium, and low. High load is 90% of the peak throughput for our test system, which
is about 21250 transactions per second for TPC-C, and 14900 transactions per second for
TPC-E. The medium and low loads correspond to 60% and 30% of the peak throughput,
respectively.

In addition to these “steady” loads, we use World Cup site access traces [16] to generate
TPC-C workloads with time-varying target request rates. To do this, we vary the target
request arrival rate between 30% and 90% of the peak TPC-C throughput for our server
to match the observed normalized fluctuations in the World Cup trace. The target rate is
adjusted once per second.

For each experiment, transactions are assigned to one or more workloads, each with
an associated latency target. We use the notion of slack to provide a uniform way of
describing the tightness of the latency targets. We define slack as the ratio between a
workload’s latency target and the mean execution time of the workload’s transactions, at
the highest processor frequency. For example, for a TPC-C New Order transaction, which
has an average execution time of 2059 µs (recall Figure 3.3) at the highest frequency level,
a slack of 20 indicates latency target of 41180 µs. We experiment with slack values ranging
from 10 to 100 to illustrate the effect of the tightness of latency targets on the algorithm’s

26

behavior.

For each run, we measure the average power consumed by the server during the test
phase. To measure server power draw, we used a Watts up? PRO [82] wall socket power
meter, which has a rated ±1.5% accuracy. We measure the power consumption in one-
second intervals (the finest granularity of the power meter) and average those over the
test duration. We also measure the power consumption of the CPUs (alone), as reported
through the RAPL MSRs. However, we use the whole server power, as reported by the
Watts up? meter, as our primary power metric.

In addition to the power metric, we also measure performance during the test phase.
In each of our experiments, the mean system throughput is fixed and controlled by our
open-loop request generator. Thus, we are primarily interested in transaction latency.
Specifically, we measure the percentage of transactions that do not finish execution before
their deadline, which we refer to as the failure rate.

We run experiments with POLARIS and with several operating system baselines:

Dynamic Kernel Governors: In these tests, Shore-MT uses its default transaction schedul-
ing and did not control core frequencies. Instead, we use the Linux cpufreq dynamic
governors to manage core frequencies. We experiment with two dynamic governors:
Conservative and OnDemand. The former favors performance over power savings,
while the latter adjusts core frequencies more aggressively to save power.

Static Frequencies: In these tests, Shore-MT uses its default transaction scheduling and
does not control core frequencies. Instead, we use MSRs to set all cores to run at a
fixed frequency.

In our experiments, we use a server with two Intel R© Xeon R© E5-2640 v3 processors with
128 GB memory using Ubuntu 14.04 with kernel version 4.2.8, where the cpufreq driver
is loaded by default. For the experiments with in-DBMS power scheduling algorithms and
those with the static frequencies, we disable the CPU ACPI software control in the BIOS
configuration to prevent the cpufreq driver from interfering with power control. For the
experiments using the dynamic kernel governors, we enable ACPI software control in the
BIOS. To reduce non-uniform memory access (NUMA) effects and get more homogeneous
memory access patterns, we enable memory interleaving in the BIOS.

Each E5-2640 CPU has 8 physical and 16 logical cores (hyper-threads), thus our system
has a total of 16 physical (32 logical) cores. Each physical core’s power level can be set
separately. The CPU has 15 frequency levels from 1.2 GHz to 2.6 GHz with 0.1 GHz steps,

27

plus 2.8 GHz. In our experiments, we chose five of the frequency levels, 1.2, 1.6, 2.0, 2.4
and 2.8 GHz, as the possible target frequency levels for POLARIS.

For all of our experiments, our Shore-MT prototype is configured to use two Request
Handler (RH) threads and sixteen worker threads. We pin each worker thread to a one
logical core (hyperthread) in one of the 16 physical cores. The RH threads are free to
run on any of the remaining logical cores, as determined by the kernel’s thread scheduler.
Each RH thread distributes requests to the workers round robin, regardless of the requests’
workload types. For TPC-C, we set the database scale factor to 48 and for TPC-E, we use
a database with 1000 customers and set the benchmark’s working days and scale factor
parameters to 300 and 500, respectively, which are given as their default values in the
TPC-E specification [45]. We use Shore-MT’s default staged group commit configuration,
under which log I/O is forced at least once per 100 transactions, and we observe multiple
log flushes throughout the test phase of the experiments.

3.6.2 Results: Medium Load

We consider both TPC-C and TPC-E workloads. We begin with TPC-C, and present
TPC-E in Section 3.6.2.

For TPC-C, we define four workloads for POLARIS, one corresponding to each of the
four TPC-C transactions implemented by Shore-Kits. For each transaction, the target
latency is set to slack times the mean execution time (at high frequency) for that trans-
action’s workload type. These mean execution times ranged from about 0.25 milliseconds
for Order Status transactions to about 3.4 milliseconds for Stock Level as we show in Fig-
ure 3.3. Thus, when the slack is 50 (for example), the latency target for the Order Status
transaction workload is set to about 0.25 ∗ 50 = 12.5 milliseconds, and the target for Stock
Level transactions is 3.4 ∗ 50 = 170 milliseconds. We vary slack in the range from 10 to
100.

TPC-C Medium Load

Figure 3.5 shows the results of this experiment, as a function of slack. In addition to
POLARIS, we report the results for the two Linux dynamic governors (OnDemand and
Conservative), as well as the results for two highest static frequency governors.

In this test, running all cores at the highest frequency (2.8 GHz) causes the server to
consume about 170 watts of power. When slack is tight, about 15% of transactions exceed

28

0.0

0.1

0.2

Fa
ilu

re
R

at
e

(#
Fa

ile
d

Tr
x

/#
O

�
er

ed
Tr

x)

10 40 70 100
Slack

120

130

140

150

160

170

Av
er

ag
e

Po
w

er
(W

a�
)

POLARIS
OnDemand

Conservative
2.4 GHz

2.8 GHz

Figure 3.5: Performance and power of different power management
schemes under medium load, as functions of slack (S).

29

Request 3

Request 2

Request 1

time

work

a)First in first out(FIFO)

Request 1

time

work

Request 3

Request 2

Request 1

b)Earliest Deadline First(EDF)

Figure 3.6: An example illustrating the impact of FIFO vs EDF schedul-
ing on frequency selection.

their latency targets. Moving to a lower static frequency (2.4 GHz) results in almost 30
watts of power savings, but at the expense of more missed latency targets.

In this setting, the Linux Conservative governor’s behavior is similar to that of the
static, high-frequency governor. Indeed, the Conservative governor rarely lowers frequency
below 2.8 GHz in these experiments. The Linux OnDemand governor reduces core frequen-
cies more aggressively. This produces power savings, but at the expense of more missed
latency targets when slack is tight.

POLARIS performs better because it is deadline-aware. With tight slack, POLARIS
lowers power consumption by about 40 watts relative to consumption at peak frequency
- about 15 watts more than the OnDemand governor. These power savings do not come
at the expense of missed latency targets. Indeed, when slack is tight, POLARIS misses
fewer latency targets than the high-frequency (2.8 GHz) static governor. This is because
POLARIS is able to re-order transactions and run them in EDF order, which the static
governors cannot do.

Figure 3.6 shows a three-transaction example which illustrates the impact of request
reordering. Each rectangle represents a transaction request. Rectangle height indicates the
amount of work required to complete the request, and width indicates the request deadline.
We assume that the large transaction arrives second. The scenario on the left shows FIFO
ordering, and the slope of the dashed line represents the execution frequency chosen by a
deadline-aware algorithm, like POLARIS. The scenario on the right shows EDF execution
of the same transactions, and the reduced execution frequency that results.

As slack increases, POLARIS produces greater power savings, since it reduce processor
frequencies to take advantage of the extra slack. The baselines are unaware of slack, and
hence are insensitive to it. In loose-slack settings (slack greater than 50), POLARIS reduces

30

total server power by about 40 watts relative to peak frequency, almost twice the reduction
achieved by the OnDemand governor.

TPC-E Medium Load

For the TPC-E medium load experiment, we define ten POLARIS workloads, each corre-
sponding to one TPC-E request type. Mean execution times for requests range from 0.06
to 2.3 milliseconds at peak frequency. We use slack to assign a latency target for each
workload, as for TPC-C.

Figure 3.7 shows the results of the TPC-E experiment, which are similar to those
for TPC-C. POLARIS reduces power consumption by about 40 watts relative to peak
frequency execution. As for TPC-C, the power savings are greater with greater slack,
although the effect is not as strong. The operating system’s OnDemand governor does
better (relative to POLARIS) than it did for TPC-C, but it still consumes more power and
misses more transaction deadlines than POLARIS.

One difference between the TPC-E and TPC-C results is that, for very tight slack,
POLARIS’s rate of missed latency targets is higher than that of the Conservative governer.
However, this is achieved at the cost of about 35 watts.

3.6.3 Results: Effect of Load

To investigate the effects of system load on POLARIS, we repeat our medium-load TPC-C
experiment under low and high load conditions. Low load means an average request arrival
rate of 30% of the systems peak sustainable load, while high load corresponds to 90% of
peak.

TPC-C Low Load

Figure 3.8 shows the results of this experiment under low load. POLARIS results in power
savings of about 40 watts, relative to execution at peak frequency. This is similar to the
savings that were achieved at medium load. In this setting, the Conservative governor
is able to achieve the same power savings as POLARIS, but it does so at the expense of
significantly higher rates of missed latency targets when slack is tight. The OnDemand
governor has in-between performance, and is dominated by POLARIS.

31

0.0

0.1

0.2

Fa
ilu

re
R

at
e

(#
Fa

ile
d

Tr
x

/#
O

�
er

ed
Tr

x)

10 40 70 100
Slack

130

140

150

160

170

180

Av
er

ag
e

Po
w

er
(W

a�
)

POLARIS
OnDemand

Conservative
2.4 GHz

2.8 GHz

Figure 3.7: TPC-E performance and power of different power manage-
ment schemes under medium load, as functions of slack (S).

32

0.0

0.1

0.2

Fa
ilu

re
R

at
e

(#
Fa

ile
d

Tr
x

/#
O

�
er

ed
Tr

x)

10 40 70 100
Slack

100

110

120

130

140

150

Av
er

ag
e

Po
w

er
(W

a�
)

POLARIS
OnDemand

Conservative
2.4 GHz

2.8 GHz

Figure 3.8: Performance and power of different power management
schemes under low load, as functions of slack (S).

33

A comparison of the medium and low load experiments (Figures 3.5 and 3.8) shows
that the two baseline dynamic governors switch roles in these two settings. At medium
load, the OnDemand governor results in lower power consumption but more missed latency
targets than Conservative, which rarely leaves the highest frequency. However, at lower
load, it is the Conservative governor that results in greater power savings but more missed
latency targets. This illustrates the challenges of relying on low-level metrics, like processor
utilization, to achieve latency targets. POLARIS, in contrast, has stable behavior in both
settings.

TPC-C High Load

Finally, Figure 3.9 shows the results of the high-load experiments. This is a challeng-
ing setting for both POLARIS and the baselines, as there is little opportunity for power
optimization under such an intense workload.

All of the methods, including POLARIS, have higher rates of missed latency targets,
especially when those targets are tight. This is simply because there are periods when
requests come in too fast for the system to handle, even at peak frequency. Under high
load, both POLARIS and the OnDemand governor are able to reduce power only by about
10 watts (relative to peak frequency), although POLARIS does so with fewer missed latency
targets.

As we note in Chapter 1, real systems may experience both longer term and shorter
term load fluctuations. Our results with low, medium, and high load experiments suggest
that POLARIS can function effectively as load fluctuates over the longer terms. When
load is in the low or medium range, which is common, POLARIS can reduce power sub-
stantially without compromising latency targets. During windows of peak load there is
little opportunity for power savings, but POLARIS performs at least as well as running
the processors at peak frequency in that setting.

3.6.4 Results: Time-Varying Load

In our previous experiments, we test with workloads that exhibit random fluctuations
around a steady average request rate. In our next experiment, we consider a workload in
which the average request rate fluctuates to match the request trace of a real application.
We use a World Cup trace [16] to generate the request rate fluctuations.

Specifically, we vary the target TPC-C request rate in the range from 6400 transactions
per second to 19440 requests per second. (These rates correspond to our steady “low” and

34

0.0

0.1

0.2

0.3

0.4

Fa
ilu

re
R

at
e

(#
Fa

ile
d

Tr
x

/#
O

�
er

ed
Tr

x)

10 40 70 100
Slack

160

170

180

190

Av
er

ag
e

Po
w

er
(W

a�
)

POLARIS
OnDemand

Conservative 2.8 GHz

Figure 3.9: Performance and power of different power management
schemes under high load, as functions of slack (S).

35

“high” workload levels.) We set a new target rate every second, according to the (normal-
ized) request rate from the World Cup trace. Otherwise, the experimental configuration is
identical to the configuration we used for the steady load TPC-C experiments.

Figure 3.12(a) illustrates the normalized request rate we generated, as well as the
power consumption of POLARIS and the Conservative and OnDemand baselines. Power
consumption is normalized to the minimum and maximum consumption (of any algorithm)
observed during our experiments, so that the reported values are comparable across algo-
rithms. Figure 3.12(b) summarizes the average power consumption and failure rate (per-
centage of transactions that missed latency targets) over the entire experiment. As is the
case in the steady load experiments, POLARIS results in both lower power consumption
and fewer missed latency targets than either of the operating system benchmarks. All of
the algorithms adjust power consumption in response to the load changes, but POLARIS’s
adjustments tend to be sharper and deeper.

Energy Efficiency

So far, we have used two metrics (power and transaction failure rate) to evaluate the be-
havior of POLARIS and the baselines. Figure 3.13 summarizes and restates these results
using a single, combined efficiency metric that reflects both power consumption and trans-
action latencies. This metric is the mean number of successful transactions completed per
joule of energy consumed. Under this metric, the energy consumed by transactions that
miss their latency targets is considered to have been wasted.

Figure 3.13 shows that POLARIS is at least as energy efficient as all of the baselines
at all load levels and all slack levels. The figure shows that energy efficiency is higher
at higher load levels. This is a consequence of the fact that processors are not power
proportional, and it has been noted by other researchers [23]. It can also be observed in
SPECpower ssj2008 server benchmark results [158]. The figure also shows that POLARIS’
efficiency advantage over the baselines is greatest at medium loads, and at tight (low)
slack levels. Medium loads allow POLARIS to utilize the entire dynamic power range of
the processor. At low loads, both POLARIS and the baselines are limited in their ability
to improve efficiency by the processor’s lower bound on execution speed. The maximum
speed of the processor is similarly limiting when load is high.

CPU Utilization

Another way to think of processor frequency scaling is as a kind of fast, fine-grained capacity
provisioning mechanism. Increasing the processor frequency increases its capacity to do

36

0 50 100 150 200 250

Time (sec.)

0

20

40

60

80

100

N
or

m
al

iz
ed

Lo
ad

an
d

Po
w

er
C

on
su

m
pt

io
n

Load
POLARIS

OnDemand
Conservative

Figure 3.10: World Cup Trace Timeline for Normalized Load Level and
power consumptions, bins of 5 seconds.

Baseline Avg. Power (Watt) Failure Rate
Conservative 168.9 0.09
OnDemand 152.9 0.13
POLARIS 139 0.07

Figure 3.11: Average Power consumption and failure rate of baselines in
World Cup Trace

Figure 3.12: World Cup Trace - Normalized.

37

80

90

100

110

120

130

M
edium

 Load

20 40 60 80 100
Slack

60

80

100

120

140

H
igh Load

60

65

70

75

Low
 Load

POLARIS
LAPS

LAPS Arrival
Ondemand

Conservative
1.6 GHz

2.0 GHz
2.8 GHz

En
er

gy
 E

ff
ic

ie
nc

y
(S

uc
ce

ss
fu

l T
ra

ns
ac

tio
ns

 /
Jo

ul
e)

Figure 3.13: Successful transactions per joule, as a function of load and
slack.

38

work, at a cost of increased power consumption. Reducing frequency reduces capacity.
From this perspective, the role of frequency scaling algorithms, like POLARIS and the
baselines, is to reduce processor capacity as much as possible without causing transactions
to miss their latency targets.

By measuring CPU utilization, we can quantify algorithms’ success at adjusting proces-
sor capacity. Ideally, with a perfect frequency scaling technique and processor with a wide
range of possible frequencies, we would see CPU utilization approaching 100%. Figure 3.14
reports the actual CPU utilization we observed for POLARIS and the baseline algorithms
at all load and slack levels.

At low load, the utilization of the processor is less than 60% even at the lowest proces-
sor frequency (1.2 GHz). Higher utilizations (and greater power savings) would require the
ability to reduce execution frequency below 1.2 GHz. With sufficient slack, POLARIS and
the in-DBMS baselines are able to approach this limit, indicating that they are achieving
the maximum possible capacity (and hence power) reductions on this processor. In con-
trast, the in-kernel baselines have lower utilizations. At high load, the figure shows that
all of the frequency scaling algorithms have little room to maneuver, as processor utiliza-
tion is barely below 80% even at peak frequency. Medium load, however, allows plenty of
room for capacity adjustment, with processor utilization varying from about 50% at the
highest frequency to almost 100% at the lowest. All of the in-DBMS algorithms, including
POLARIS, are much more effective than the in-kernel baselines at driving down frequency
and increasing utilization.

3.6.5 Results: Workload Differentiation

In this experiment, we focus on how POLARIS and the baselines react when the are
multiple similar workloads with different latency targets. For this purpose, we define two
TPC-C workloads, each consisting of all four types of TPC-C transactions, in the standard
proportions. Requests for each workload are generated at half of our medium TPC-C
workload rate, so that the total load (on average) is equivalent to our TPC-C medium load.
For one workload, which we refer to as gold, we set a latency target of 7.5 milliseconds.
For the other, which we refer to as silver, we set a latency target of 37.5 milliseconds. We
track the failure rate (late transactions) separately for the gold and silver workloads.

Figure 3.15 shows the failure rate for each workload, under POLARIS, the Linux dy-
namic governors, and the high frequency static governor. Each failure rate is plotted
against the total power consumption for that run, as we cannot separately attribute power
to individual workloads.

39

40

60

80

100

C
PU

 U
til

iz
at

io
n

(M
ed

iu
m

 L
oa

d)

20 40 60 80 100
Slack

60

80

100

C
PU

 U
til

iz
at

io
n

(H
ig

h
Lo

ad
)

POLARIS
LAPS

LAPS Arrival
Ondemand

Conservative
1.6 GHz

2.8 GHz

20

40

60

C
PU

 U
til

iz
at

io
n

(L
ow

 L
oa

d)

Figure 3.14: CPU Utilization under various load levels

40

0.00 0.02 0.04 0.06 0.08 0.10

Failure Rate

130

140

150

160

170

Av
er

ag
e

Po
w

er
(W

a�
)

POLARIS-Gold
POLARIS-Silver
OnDemand-Gold

OnDemand-Silver
Conservative-Gold
Conservative-Silver

2.8 GHz-Gold
2.8 GHz-Silver

Figure 3.15: Per-Workload Performance for Gold and Silver TPC-C
Workloads

41

Non-POLARIS managers have a large gap between the failure rates of gold and the
silver, as they are not able to take SLA into account. Thus, gold requests fail more because
of their tighter latency target. POLARIS, because it is deadline aware, produces similar
failure rates for both workloads. Gold transactions are much less likely to miss their latency
targets, while silver transactions are slightly more likely.

3.6.6 POLARIS Component Analysis

In our final experiment, we evaluate the importance of different aspects of POLARIS by
comparing it to two variants. The first, POLARIS-FIFO, is identical to POLARIS but runs
transactions in FIFO order, rather than EDF. The second, POLARIS-FIFO-NOARRIVE,
runs transactions in FIFO order and adjusts frequency only on transaction completion, not
on arrival. Figure 3.16 shows the power and performance of POLARIS and the variants
for TPC-C under medium load.

The results show that both EDF and frequency adjustment on arrival are important
for achieving latency targets when slack is tight. The latter allows POLARIS to react
quickly to the arrival of new transactions by increasing frequency when necessary. They
also show that EDF contributes to power savings, because it allows POLARIS to meet
latency targets with lower frequencies.

3.7 Conclusion

In this chapter, we have presented a workload-aware frequency scaling and scheduling
technique for latency-critical data systems, and related it to other well-known off-line and
on-line algorithms.

Unlike operating system power governors, POLARIS is aware of per-transaction latency
targets and takes advantage of them to keep processor execution frequency, and hence
power consumption, as low as possible. On our server, POLARIS was able to reduce power
consumption substantially, with no increase in missed transaction deadlines. Operating
system governors, in contrast, either save little power or save power at the expense of
missed deadlines. Through comparison of several variations of POLARIS, we showed that
it is necessary for POLARIS to control transaction execution order and processor frequency
to achieve this performance.

42

0.0

0.1

0.2

0.3

Fa
ilu

re
R

at
e

(#
Fa

ile
d

Tr
x

/#
O

�
er

ed
Tr

x)

10 40 70 100
Slack

120

130

140

150

Av
er

ag
e

Po
w

er
(W

a�
)

POLARIS POLARIS-FIFO POLARIS-FIFO-NOARRIVE

Figure 3.16: Performance POLARIS and Variants

43

Chapter 4

Multi-Processor Energy Aware
Scheduling

4.1 Overview

In Chapter 3, our focus is on single processor routing, and we use POLARIS at each
core to simultaneously control the transaction execution order and the core’s execution
frequency. In this chapter, we consider the same problem in a more general setting. We
focus on multi-processor energy-aware scheduling in modern servers that employ multiple
multi-core processors [152].

As in Chapter 3, our target is an in-memory database system that works on a server with
multiple homogeneous processors that can operate at different frequencies. The system
accepts sporadic requests with arbitrary deadlines. Each request belongs to a workload
type, and each workload has a latency target for its transactions. The system executes
requests non-preemptively, and no migration is allowed across the processors [48]. Our
problem is to decide which CPU core will execute each transaction, and in which order
and at what speed they will be executed. The primary goal is to meet transactions’ latency
targets. The secondary goal is to use as little energy as possible to execute the transactions.

In this multi-processor, multi-core setting, a scheduler must address several new prob-
lems in addition to those we considered in Chapter 3. Specifically, it must consider which
and how many cores to use, and it must consider how to distribute transaction executions
across those cores. In Chapter 3, we assumed simple round-robin (RR) distribution of
transactions across all of the cores. Here, we consider energy-aware strategies for alloca-

44

tion (which and how many cores to use) and transaction routing. We provide overviews of
these two problems in Sections 4.3 and 4.4.

In Section 4.5, we then present an on-line workload-aware scheduling and frequency
scaling algorithm called PLASM (POwer and Latency Aware Request Scheduling in Multi-
processor CPUs). PLASM controls request execution order, processor speed and routing of
requests to processors to minimize CPU power consumption while observing per-workload
latency targets.

We evaluate a prototype implementation of PLASM under a variety of load conditions.
Our results (Section 4.6) show that PLASM produces greater power savings and fewer
missed transaction deadlines than POLARIS with RR routing. We also show how PLASM’s
effectiveness is affected by two key factors: (1) the average load on the system, and (2)
scheduling slack, i.e., the looseness of the transactions’ deadlines.

4.2 Related Work

There is a body of existing work related to energy-efficient multi-processor scheduling.
Many variations of this problem are known to be NP-hard [38], including the one we focus
on in this chapter.

Much of the existing work focuses on offline settings in which all of the requests are
known in advance. Albers et al.[11] present offline scheduling solutions for the preemptive
execution model. They show that RR is an optimal offline algorithm for unit size requests
with agreeable deadlines, which means that requests with earlier arrival times have an
earlier deadlines. For requests of arbitrary size, the authors present an algorithm called
Earliest Deadline and List scheduling (EDL). EDL first orders the request according to
the Earliest Deadline First (EDF) policy and then assigns the requests to the least loaded
worker. They show EDL’s approximation ratio for the case where all the requests have a
common arrival time with arbitrary deadlines. They also provide an approximation ratio
for CRR (Classified Round Robin) for arbitrary size requests with agreeable deadlines.
CRR classifies requests according to their density, which corresponds to a request’s work
divided by its relative deadline. After that, CRR uses a separate RR order for each class to
distribute requests across the processors. Similar to CRR, Bell et al. [27] proposes another
grouped RR technique called DCRR, which prevents adversarial cases in the original CRR
algorithm [11] by grouping the request according both density and size. In a variation of
the classical problem where preempted requests can migrate across the processors, Albers
et al. [8] show that the optimal schedule can be computed in polynomial time. The CRR

45

and EDL algorithms assume that each individual processor uses the YDS algorithm [182]
to schedule the requests that have been routed to it. As described in Chapter 3, YDS offers
an optimal offline solution for single processor preemptive scheduling.

For offline non-preemptive multiprocessor scheduling where each processor can have a
different convex speed to power relation(heterogeneous), Cohen-Addad et al. [42] present
offline algorithms for both arbitrary and unit-size tasks. The algorithm divides all the jobs
into sets where no two jobs in a set’s life span (arrival to deadline) intersect to transform
the problem into preemptive heterogeneous multiprocessor scheduling. They then use a
randomized routing algorithm [20] to solve the transformed problem.

Some existing research focuses on online multi-processor scheduling. Albers et al.’s
study [11] provides competitive ratio analyses of online versions of RR (RR-ON) for unit
size requests with agreeable deadlines and CRR (CRR-ON) for requests with arbitrary
size and agreeable deadlines. Greiner et al. [65] give approximation bounds for any pre-
emptive single-processor energy-efficient scheduling algorithms in a multi-processor setting,
assuming random routing. CRR-ON and RR-ON use AVR [182] and BKP [21], respec-
tively, for scheduling requests at the individual processors. AVR and BKP are described
in Section 3.4.3.

In our experimental evaluation of PLASM (Section 4.6), we have used both a grouped
RR approach similar to the idea behind CRR-ON and an on-line version of EDL (Lowest
Load First) as baselines.

4.3 Allocation

In this section, we present the allocation problem for energy-aware multi-processor, multi-
core task scheduling. This is the problem of deciding how many and which cores should
be used to execute tasks, allowing the unused cores to idle.

Allocation strategies affect both power consumption and performance. On the power
front, using a subset of cores while idling the others is one way to trade static and dynamic
power consumption. When cores or entire processors are idled, they can go into sleep states
and consume less power by reducing their static power draw. However, the workload must
then be handled by remaining active cores. Those cores may have to run at higher speeds
to meet the performance requirements of the workload, resulting higher dynamic power
consumption.

On the performance front, using fewer processors may cause more missed deadlines.
Since active processors and cores must handle higher loads when others are idled, they

46

Figure 4.1: Five different allocation strategies in a multi-processor, multi-
socket CPU. P0 and P1 are packages in sockets and each numbered
square represent a separate core. The cores highlighted with green are
the ones selected for allocation. The strategies from (a) to (e) are named
as A4-0, A8-0, A4-4, A8-4, A8-8, respectively.

have less performance headroom. As a result, they are more sensitive to load fluctuations
as they have less potential for handling extra work. More requests may miss their latency
targets as a consequence.

4.3.1 Empirical Analysis of Processor Allocation Strategies

In this section, we evaluate the power and performance impact of allocation through some
experiments. We aim to determine first whether idling cores or entire processors results
in net power savings. That is, do the static power savings obtained by idling cores make
up for the higher dynamic power consumption of the active cores? Second, we want to
characterize the performance risk associated with idling some cores. Are transactions more
likely to miss their latency targets?

In the experiments, we configure our test system to use different allocation strategies, as
shown in Figure 4.1. We use five different allocation strategies for a two-socket server with
8 cores per CPU. These strategies allocate from 4 to 16 cores. Each allocation strategy
represents a distinct point at the trade-off of static and dynamic power consumption and
performance. We name the allocation strategies as A4-0, A8-0, A4-4, A8-4, and A8-8. The
first number in each name indicates the number of allocated cores on package 1, and the
second indicates the number of allocated cores on package 2.

In each experiment, we apply a fixed workload to the system under each allocation

47

0

50

100

150

200
A4-0 A4-4 A8-0 A8-4 A8-8

5K 10K 15K 20K
0

5

10

15

20

25

Offered Load (TPS)

Fa
ilu

re
 R

at
e(

%
)

Po
w

er
 (W

at
t)

Figure 4.2: Power and failure rate of different allocations strategies

configuration and measure both power consumption and failure rate, i.e, the percentage of
transactions that miss their deadlines. We repeat the experiment for several different fixed
load levels.

These experiments used the same test system and TPC-C workload that is used in
Section 3.6. The system uses round robin (RR) routing to distribute transactions to the
allocated cores, and uses POLARIS to control the execution order and execution speed at
each core. We experimented with TPC-C load levels ranging from 5000 transaction/second
to 20000 transactions/second, in steps of with 5000 transactions/second. Transaction dead-
lines are set using a slack multiplier of 10.

48

A4-0 A8-0 A8-4 A8-8
Allocation Strategy

0

20

40

60

80

100
Pr

oc
es

so
r

Fr
eq

ue
nc

y
R

es
id

en
cy

(%
)

Idle
1.2 GHz
1.6 GHz
2.0 GHz
2.4 GHz
2.8 GHz

Figure 4.3: Dynamic and static power consumption residencies of dif-
ferent allocation strategies at 5000 TPS and slack multiplier 10. Failure
rate and power consumption of each strategy is shown on top of the bars.

Figure 4.2 shows the power consumption and failure rate (percentage of transactions
that miss their deadlines) for the five different allocation strategies as a function of offered
load. For each load level, we consider only those allocations that are able to handle the
load with a failure rate of less than 25%.

Our results show that the best allocation strategy is to use all of the available cores, at
least on our test system. At all load levels, using more processors (A8-8) results in fewer
failed requests. Thus, it is the safest option. In addition, A8-8 results in the lowest power
consumption at every load level, although the differences in power consumption among the
different allocations are small. Although Figure 4.2 only shows results for a slack level of
10, we saw similar results in experiments with looser slack, although differences in failure
rates among the allocation strategies were smaller.

At lower loads, we expected to see that allocations A4-0 and A8-0, which direct all
work to just one of the two processors in our test system, would save power by completely
idling one processor. In fact, this is not the case. A8-0 does have slightly lower power
consumption than A4-4 because the former idles a processor while the latter does not.
However, both have higher power consumption (and more missed deadlines) than A8-8.

To better understand why allocating all the cores results in the lowest overall power
consumption, we look more closely at processor frequency and idleness residency at the

49

experiments we present in this section. We calculate the residency using the data from
within the database system by recording the times of frequency and idleness transition
times throughout the experiments. Figure 4.3 shows CPU frequency and idleness residency
of the different allocation strategies. As A4-4’s residency is similar to A8-0, we do not depict
it in the figure. The residency values are based on the sum of all sixteen cores’ residency
values, counting unallocated processors (for example, cores 4-15 in A4-0) as idle. The
results show that the restricted allocation strategies such as A4-0 result in higher overall
idleness, as expected, which means lower static power consumption. However, the results
also show that such restricted allocations spend more time at higher frequency levels,
which causes higher dynamic power consumption. These two effects, lower static power
and higher dynamic power consumption counterbalance each other. As a result, different
allocation strategies’ power consumption levels are similar.

4.4 Routing

In this section we describe the routing problem, which is the problem of determining which
core, on which processor, should be used to execute each transaction. Routing is closely
related to the way that wait queues are formed [48]. Broadly, there are two classes of
routing techniques in use: partitioned and global [64]. In partitioned routing, there is
a separate work queue for each transaction executor (core). When transaction request
arrives, they are assigned to one of the per-core work queues. In global routing, arriving
requests are placed in a single centralized work queue which is shared by all cores. Each
core pulls work from the centralized queue when it needs new work to do. Each approach
has advantages, and there is no clear winner among them [18]. Empirical evaluations are
often used distinguish their performance [26].

There are also hybrid scheduling solutions [35] that lie between the partitioned and
global extremes. For example, a scheduler can have multiple queues, each shared by a
different group of cores. However, in this section, we focus on the ”pure” global and
partitioned alternatives.

Partitioned routing is illustrated in Figure 4.4(a). In static partitioned routing, re-
quests are never moved once they have been placed in a queue. In dynamic partitioned
routing, requests can migrate across the different queues while they are waiting to be exe-
cuted. Dynamic routing is more flexible, but it adds additional complexities to the routing
problem, such as potential concurrency problems due to inter-queue transfers.

Partitioned routing offers several advantages. One of them is that the per-worker queue
scheme mitigates the problem of contention on the waiting queues. Each queue has one

50

(a) Partitioned Routing (b) Global Routing

Figure 4.4: Routing Schemes

subscriber (the worker thread) and one publisher (central request handler). One other
advantage is that unexpectedly long running transactions affect only requests in the local
queue. Finally, since requests are routed without any delay and are accumulated in per-
core queues, each core has information about its upcoming workload. This allows cores
to take advantage of well-studied single-processor scheduling algorithms to manage their
queues. Thus, having separate per-core queues enables a simple end-to-end solution to
the multi-processor energy aware scheduling problem: combine a request router with an
existing single-server energy-aware scheduling algorithm such as POLARIS.

Global routing is illustrated in Figure 4.4(b). In the global setting, the routing and
request ordering problems are coupled because of the single queue. Requests are prioritized
in the global queue according to the scheduling objective, and processors pull highest
priority request request when they need work. Thus, there is no explicit routing policy.

One major advantage of global routing is that it provides automatic load-balancing
across the processors, as any transaction can be executed by any worker. Thus, scheduling
is work-conserving; that is, no processor stays idle as long as there are waiting requests
in the queue. A disadvantage of global routing is contention for the work queue, which is
shared by the request executors at all cores.

51

1.2 1.6 2.0 2.4 2.8
CPU Frequency (GHz)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Fa
ilu

re
 R

at
e

(%
)

Partitioned-RR-EDF
Global-EDF

Figure 4.5: Partitioned routing with EDF order and global routing with
EDF order, under different constant CPU speeds. Offered load is 9000
transactions per second.

4.4.1 Does Routing Matter?

In Chapter 3, we used simple partitioned round robin (RR) routing. Here, we would
like to understand whether a different choice might have a significant effect on the overall
performance of the scheduler. To shed some light on this question, we ran some preliminary
experiments comparing two simple schedulers, one based on partitioned RR routing and one
based on global routing. Both schedulers prioritize transactions in EDF order, and both
schedulers execute transactions at the same fixed core frequency. Since all transactions
run at the same frequency, we do not expect to see any difference in power consumption
between these alternatives. However, we may see differences in performance, measured as
the percentage of transactions that fail to hit their latency targets.

For these experiments, we use the Shore-MT system and server described in Chapter 3.
We used the TPC-C workload at two distinct loads: a relatively low load of 9000 transac-
tions/second, and a high load of 16000 transactions/second. Transaction deadlines were set
using a slack multiplier of 10. All available cores were allocated, and we ran experiments
using five different fixed core frequencies. In each experiment, we measured the percentage
of transactions that failed (missed their deadline), as well as power consumption. However,
we report only the failure rates, since power consumption at each combination of execution
frequency and load level is approximately the same for the two alternatives.

52

2.0 2.4 2.8
CPU Frequency (GHz)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Fa
ilu

re
 R

at
e

(%
)

Partitioned-RR-EDF
Global-EDF

Figure 4.6: Partitioned routing with EDF order and global routing with
EDF order, under different constant CPU speeds. Offered load is 16000
transactions per second.

Figures 4.5 and 4.6 show the failure rate of the two schedulers at each of the two load
levels. At both load levels, and at all execution frequencies, the global scheduler results in
much lower failure rates than partitioned RR. The absolute performance gap is higher at
lower frequencies, since the cores have less capacity to overcome load imbalances causes by
the RR routing.

These results suggest that it is worth investigating routing strategies other than parti-
tioned RR. Our scheduling objective is to reduce energy consumption while avoiding missed
latency targets. The results do not directly show whether reduced energy consumption is
possible through better routing, but they do show that there is at least a substantial
opportunity for improvement on the latency front.

4.5 PLASM

This section presents our multi-processor energy-efficient scheduling algorithm PLASM
(Power and Latency Aware Scheduling in Multi-processor CPUs). PLASM works online
and schedules requests non-preemptively. It addresses the allocation problem by using all
of the available processors in the system, for the reasons described in Section 4.3.

PLASM uses partitioned routing. This allows it to take advantage of the POLARIS

53

Figure 4.7: PLASM System architecture

algorithm from Chapter 3 to manage the single-server work queues at each core. In Sec-
tion 4.4.1, we showed that partitioned RR routing results in higher-than-necessary trans-
action failure rates. For this reason, PLASM uses a custom workload- and energy-aware
routing strategy FLARE, which we present here.

Figure 4.7 gives an overview of the PLASM design. PLASM schedules requests across
multiple workers, where each worker is pinned to a separate processor core. Each worker has
a separate request queue, and schedules its requests using POLARIS. Requests submitted
by clients are sent to a centralized router. The router uses FLARE to choose a worker to
handle the request, and immediately adds the request to that worker’s queue. There is no
queueing at the global (router) level.

4.5.1 An Ideal Router

The off-line version of our multi-processor scheduling problem is NP-hard, and existing
on-line energy-aware scheduling techniques use heuristic routing strategies (like RR), as
described in Section 4.2. PLASM’s routing strategy, FLARE, is also heuristic. To moti-
vate FLARE’s design, we begin by describing an idealized but impractical greedy routing
strategy, which we call IdealGreedy. FLARE is fast, lightweight router that is intended to
approximate IdealGreedy’s behavior.

Figure 4.8 presents the IdealGreedy routing algorithm. The simulatePOLARIS func-
tion simulates the execution of the transactions in a worker’s request queue, and reports
the total amount of energy that will be consumed, and the number of transactions that
will miss their deadlines. simulatePOLARIS’s simulation assumes that the transactions
are executed as determined by POLARIS.

54

State: H: set of workers
State: pdest: destination worker

1: function IdealGreedy(Request r)
2: pdest ← 0
3: missedlow ← inf
4: energylow ← inf
5: for each p in H do

6: . Get the current state of the waiting requests
7: Qbefore ← Q(p)
8: . Simulate POLARIS on the current state of the queue
9: (missedbefore, energybefore)← simulatePOLARIS(Qbefore)

10: . Insert the new request to current queue
11: Qafter ← insertEDFOrder(Qbefore, r)
12: . Simulate POLARIS with the new request
13: (missedafter, energyafter)← simulatePOLARIS(Qafter)

14: . Calculate extra missed deadlines and energy with the new request
15: extraMissed← missedafter −missedbefore
16: extraEnergy ← energyafter − energybefore

17: if extraMissed < missedlow then
18: missedlow ← extraMissed
19: energylow ← extraEnergy
20: pdest ← p
21: else if extraMissed = missedlow ∧ extraEnergy < energylow then
22: energylow ← extraMissed
23: pdest ← p
24: end if

25: end for
26: return pdest
27: end function

Figure 4.8: IdealGreedy Processor Router Algorithm

55

To route a transaction, IdealGreedy performs a series of “what if” analyses. For each
worker, it determines how many new transaction failures and how much additional power
consumption would result if it were to route the transaction to that worker. It does so
by comparing the results of simulatePOLARIS with and without the new transaction
in the worker’s queue (lines 6-16 in Figure 4.8). With the results of the what-if analyses
in hand, IdealGreedy routes the new transaction to the worker that will result in the
fewest additional missed deadlines, since its primary goal is to meet latency targets. When
there are multiple such workers, IdealGreedy chooses the one that will result in the lowest
additional power consumption (lines 17-24 in Figure 4.8).

Using its what-if analyses, IdealGreedy greedily makes a locally optimal decision to
route each new transaction. However, there are at least two problems with this approach
in practice. First, the simulations themselves are imperfect, as they are must be based on
estimates of transaction execution times rather than actual execution times, as discussed in
Chapter 5. Second, IdealGreedy is very expensive, since it runs two simulations per worker
on every transaction arrival. These simulations would introduce latency and would also
consume power, working against the goals PLASM is trying to achieve. FLARE, which
we present in the next section, is intended to approximate IdealGreedy’s decisions, but at
much lower cost.

4.5.2 FLARE

FLARE (Frequency and Load Aware Routing) is a light-weight energy-efficient routing
algorithm. Like IdealGreedy, it greedily routes transaction so as to minimize missed dead-
lines and keep energy consumption low. However, instead of running POLARIS simulations
to choose a routing target, FLARE bases its routing decisions on summary information
maintained by each worker.

FLARE expects each worker to maintain two pieces of information. Each worker up-
dates its information each time it runs the POLARIS scheduling algorithm on its local
queue. The first piece of information is the current execution frequency of the worker’s
core, which is adjusted by POLARIS each time a new transaction request arrives in the
worker’s queue or is completed by the worker. The second piece of information is load
level of the worker’s queue. Load level characterizes the total amount of work that has
been assigned to the worker. Load level is quantified as the total estimated processing
time required to complete all of the requests in the worker’s queue, including the currently
running request. Since processing time depends on the worker’s core’s execution frequency,
FLARE arbitrarily uses estimated processing time at peak frequency as its canonical load

56

Notation Meaning

H set of workers
Q(p) wait queue of processor p
s(p) processor frequency of worker p, p ∈ P
l(p) load level of worker p, p ∈ P
F set of possible processor frequencies

µ̂(w, f) estimated execution time of workload w transaction at frequency f

Figure 4.9: Summary of Notation in FLARE Algorithm

metric. Each worker piggybacks maintenance of its current load level on its POLARIS
executions.

Figure 4.9 summarizes the notation we use to describe FLARE, and Figure 4.10 shows
the FLARE algorithm. As shown in Figure 4.10, FLARE chooses the worker(s) with the
lowest execution frequency (line 6). If there is a tie, FLARE breaks it in favour of the
worker(s) with lowest load level (line 10). If there are multiple such workers with the same
speed and load level, FLARE will pick the worker running on the lowest-numbered core.
FLARE’s complexity is O(M) where M is the number of workers/CPU cores.

Why Execution Frequency?

The primary objective of the IdealGreedy algorithm is route transactions such that the
number of additional missed transaction deadlines is minimized. FLARE uses execution
frequency as its primary routing criterion to try to achieve the same goal. When a new
transaction is assigned to a worker’s queue, the POLARIS algorithm will increase the
frequency of the worker’s core as much as necessary to avoid missing transaction deadlines.
FLARE routes to a worker with the lowest current execution frequency because those
workers have the most frequency headroom that POLARIS can use to accommodate a new
request without creating new deadline misses.

When the POLARIS algorithm runs on a worker’s queue, it plans the execution of all
requests that are currently in the queue, choosing execution frequencies for all of them
(under the assumption that new requests will arrive). A property of POLARIS’s plans is
that the execution frequencies for later transactions in the queue are never greater than
those of earlier transactions, as explained in Section 3.4.4. Hence, the current frequency
represents a lower bound on the worker’s frequency headroom throughout POLARIS’s
execution plan. This is illustrated in Figure 4.11 which shows the requests in a wait queue
and how POLARIS would order them choose execution frequencies. In the figure, each
rectangle represents a request. Rectangle height indicates the amount of work required to

57

State: H: set of workers
State: flow: lowest frequency speed of workers (so far)
State: llow: lowest load of a worker p where s(p) = flow (so far)
State: pdest: destination worker

1: function FLARE()
2: pdest ← 0
3: flow ← inf
4: llow ← inf
5: for each p in H, in order of increasing ID do
6: if s(p) < flow then
7: flow ← s(p)
8: llow ← l(p)
9: pdest getsp

10: else if s(p) = flow ∧ l(p) < llow then
11: llow ← l(p)
12: pdest ← p
13: end if
14: end for
15: return pdest
16: end function

Figure 4.10: FLARE Processor Router Algorithm

58

Figure 4.11: Load intervals in a POLARIS controlled processor. The
first interval (red requests) is the critical interval. Frequency in the sub-
sequent intervals (red, green and blue, respectively) are monotonically
decreasing. The load of this processor is the total work (Requests 1 to
7) waiting to be executed.

complete the request, and the width indicates the request deadline. Dashed lines show the
execution rate, i.e., the execution frequency. Different colours represent different intervals,
with each interval consisting of requests to be executed with the same frequency.

Why Low Load?

The secondary goal of the IdealGreedy algorithm is to minimize energy consumption.
If there are multiple workers with the same execution frequency, FLARE uses load level
as a proxy for the likely impact of a new request on a worker’s energy consumption. The
energy consumed by a worker depends on the execution frequencies chosen by POLARIS.
Those, in turn, depend on both the load level in the worker’s queue, and on the deadlines of
the queued transaction requests. Thus, it is difficult to accurately predict the impact of a
new transaction on a worker’s energy consumption without simulating the execution of the
queued transactions, as IdealGreedy does. In practice, however, since POLARIS adjusts
execution frequency in discrete steps, it can typically accommodate some amount of extra
load before it is forced to increase frequency to avoid missing deadlines. Thus, absent

59

detailed information about the deadlines of the individual requests in the worker’s queue,
FLARE uses the worker’s load levels as a proxy for the extra room they have available to
accommodate an extra transaction.

To give an intuition for this choice, Figure 4.12 shows two processor queues with dif-
ferent load levels, and shows how POLARIS plans power consumption with the arrival of
a new request in each case. In both queues, the first three requests are the same and are
scheduled to run at the same frequency. In the lower load case (a), there are four requests
and two frequency intervals, shown in red and blue. When the new request arrives, it is
inserted into the second to last position according to the EDF order. This insertion causes
the last transaction to run at a slightly higher frequency (dotted blue line versus the dashed
purple line). The first frequency interval does not change.

The new request’s has a much greater impact in the higher load case (b). In that case,
there are five requests with three frequency intervals (red, green and blue). When the new
request arrives, it is inserted into the second last position according to the EDF order,
and the last request’s frequency is slightly increased, much as in the low load case (a).
However, in the high load case, the arrival of the new request also forces an increase in the
execution frequency of the first four requests in the queue, which will result in a greater
increase in overall power consumption.

Why the Lowest-Numbered Core?

If there are multiple processors with the same speed and load, then FLARE breaks
the tie ultimately in favour of the worker with the lowest core ID. This final tie-breaker is
mostly arbitrary. However, since cores are numbered one processor at a time (in Linux),
this rule will have the effect of routing the available work to the processor(s) with the
lowest-numbered cores, leaving the remaining processors idle. This may allow processors
with no active cores to use lower package C-states, potentially resulting in some power
savings.

Figure 4.13 shows how FLARE works when load is light and there are idle cores. In
Figure 4.13 (a), CPUs 0 and 1 each have idle (grey) cores. When a request arrives, all
idle cores have the same lowest speed (zero), and all have zero load. Therefore FLARE
breaks the tie using core IDs and hence routes the request to CPU 0 (Figure 4.13 (b)). As
a consequence, CPU 1 remains fully idle, and may take advantage of package C-states.

60

Figure 4.12: How POLARIS plans CPU speed with a new request. The
first and second row show before and after the state after the new request
of two different queues. The first column (a) and the second column (b)
show a low and high load, respectively. Different colors show critical
sections and dashed lines show speed required to run request in during
different sections.

61

Figure 4.13: States of a 2 socket CPU with 8 cores each before (a) and
after (b) a new request is arrived. Green cores are busy and gray cores
are idle.

4.6 Evaluation

We implemented PLASM in Shore-MT, adding FLARE routing to the existing POLARIS
implementation that is described in Section 3.5. Using this implementation, we aim to com-
pare PLASM against several multi-processor scheduling baselines, which are explained in
Section 4.6.2. We want to determine whether PLASM results in better power consumption
and performance than can be achieved using the baselines.

4.6.1 Methodology

For our PLASM evaluation, we use a methodology very similar to the one explained in
Section 3.6.1. We use Shore-MT TPC-C benchmark implementation and a database scale
factor of 48. Shore-MT’s buffer pool is configured to accommodate the entire database in
memory.

62

In each experimental run, we choose PLASM or one of the scheduling baselines and run
the benchmark workload against our Shore-MT prototype. There are three phases at each
run. First, there is a warmup phase during which each worker executes 30,000 requests.
Second, there is a short training phase for collecting data for the execution time estimation
model tht is used by POLARIS and FLARE. Finally, there is a test phase, during which
we measure power consumption and transaction performance.

We changed Shore-MT’s request generation from a closed-loop design to an open-loop
design so that we can target a specific offered load for each experimental run. The request
interarrival times are randomly chosen from a uniform distribution where the minimum
is zero and the maximum is twice the mean interarrival time that results in the target
load. We used three target load levels in our experiments, referred to as low, medium and
high. These correspond to request rates of 15000, 19000 and 23000 transactions/second,
respectively. For reference, the maximum capacity of our test server is about 11000 trans-
actions/second (TPS) if the processors run at their lowest speed all the time, and is about
24000 TPS if they run at peak frequency all of the time. These limits are illustrated in
Figure B.2 in Appendix B.

We use the notion of slack to provide a uniform way to control the deadline tightness
of requests in our TPC-C workload. The slack multiplier represents the ratio between a
request’s relative deadline and its mean execution time under the peak speed level. For
example, for a TPC-C New Order transaction, which has an average execution time of
2059 µs (recall Figure 3.3) at the highest frequency level, a slack of 20 indicates a latency
target of 41180µs (20 × 2059). In our experiments, we use slack values ranging from 10
to 100 to explore the effect of different latency tightness on different scheduling baselines’
power consumption and performance.

For each run, we measure the average power consumed by the server during the test
phase. To measure server power draw, we used a Watts up? PRO [82] wall socket power
meter, which has a rated ±1.5% accuracy. We measure the power consumption in one-
second intervals (the finest granularity of the power meter) and average those over the test
duration. In addition to the power metric, we also measure performance during the test
phase. In each of our experiments, the mean system throughput is fixed and controlled by
our open-loop request generator. Thus, we are primarily interested in transaction latency.
Specifically, we measure the failure rate, which is defined as the percentage of transactions
that do not finish execution before their deadline.

We also measure CPU frequency and idleness residencies, i.e., the percentage of time
that each core spends in each P-state, and in idle states (C-states other than C0). There
are several ways to measure these residencies. MSRs can be used, but these only expose

63

the instantaneous frequency level. Thus, they must be sampled repeatedly to determine
frequency residencies. Instead, since our Shore-MT prototype directly controls the fre-
quencies of all processor cores, we collected the residency data from within Shore-MT by
logging the times at which it triggers frequency changes and idlings at each core.

In our experiments, we use a server with two Intel R© Xeon R© E5-2640 v3 processors with
128 GB memory, running Ubuntu 14.04 with kernel version 4.17. For the experiments we
disable the CPU ACPI software control in the BIOS configuration to prevent the cpufreq

driver from interfering with power control. To reduce non-uniform memory access (NUMA)
effects and get more homogeneous memory access patterns, we enable memory interleaving
in the BIOS. Also, Shore-MT’s log flusher is configured to use a flushing interval long
enough to ensure that flushing does not occur during the test phase of an experimental
run.

Each E5-2640 CPU has eight physical and sixteen logical cores (hyper-threads); thus,
our system has a total of 16 physical (32 logical) cores. Each physical core’s power level
can be set separately. The CPU has 15 frequency levels from 1.2 GHz to 2.6 GHz with 0.1
GHz steps, plus 2.8 GHz. In our experiments, we chose five of the frequency levels, 1.2,
1.6, 2.0, 2.4 and 2.8 GHz, as the possible target frequency levels for POLARIS.

For all of our experiments, our Shore-MT prototype is configured to use two Request
Handler (RH) threads and sixteen worker threads. We pin one worker thread to a logical
core (hyperthread) in each of the 16 physical cores. In most of our experiments, except
those using a global routing baseline, each worker thread has a transaction request queue
which it manages using POLARIS or a baseline scheduler.

The RH threads are responsible for receiving incoming requests from clients and routing
those requests to workers. Routing is done using FLARE or a baseline routing policy,
depending on the experiment. RH threads are free to run on any of the remaining logical
cores in the first socket, as determined by the kernel’s thread scheduler.

To simplify our experiments, we do not drive the Shore-MT server using remote clients.
Instead, each RH thread simulates a set of remote clients by generating randomized requests
and then handling them as if they had arrived over the network from remote clients.

4.6.2 Baselines

In our experiments, we compared PLASM against the following baseline multi-processor
scheduling algorithms:

64

• POLARIS/RR: POLARIS/RR is the partitioned scheduling technique that we
used in Chapter 3. It uses our energy-aware single processor scheduling algorithm,
POLARIS, to manage the work queue at each worker, and round robin routing to
distribute requests to the workers. We showed in Chapter 3 that POLARIS/RR
results better performance and energy efficiency than OS-based frequency governors.
Here, we want to determine whether we can further improve on POLARIS/RR by
using energy aware routing (FLARE).

• PerformanceBaseline: PerformanceBaseline represents a multi-processor sched-
uler whose sole objective is to minimize failure rate, regardless of the power con-
sumption. In PerformanceBaseline, all the processor cores are set to peak frequency.
Global routing is used, with a single centralized work queue. Requests in the global
queue are prioritized in EDF order. We are primarily interested in the failure rate
achieved by PerformanceBaseline, since its power consumption will be quite high.
Since PLASM’s primary goal is to avoid missed deadlines, we hope that PLASM’s fail-
ure rate will be similar to that of the PerformanceBaseline - though with lower power
consumption. We discuss the PerformanceBaseline in more detail in Appendix B.1.

• EnergyBaseline: EnergyBaseline represents a multi-processor scheduler whose sole
objective is to minimize power consumption, regardless of the failure rate, while ac-
commodating the offered load. Like the PerformanceBaseline, the EnergyBaseline
uses global routing, with centralized EDF-prioritized work queue. An ideal Ener-
gyBaseline would fix the frequencies of all cores at the lowest frequency that can
accommodate the offered transaction request rate. In practice, however, we are lim-
ited in the frequencies that we can choose since our test server’s processors support a
limited set of P-States. Thus, the power consumption we report for the EnergyBase-
line is determined by interpolating between measured power consumptions obtained
using P-States with frequencies near the workload-specific minimum frequency. The
details of this interpolation are described in Appendix B.2.

Since the EnergyBaseline is unconcerned with transaction latencies, transaction fail-
ure rates are very high, near 100%. That is, most transactions miss their deadlines.
For this reason, we report only power consumption for this baseline, not failure rates.

• GRR: GRR (Grouped Round Robin) works based on the idea behind the grouped
RR routers CRR [11] and DCRR [27] that we describe in Section 4.2. CRR classi-
fies requests according to their work density, and requests of each class are routed
according to a separate round-robin order. The benefit of CRR is that it avoids the
adversarial cases in which high-density requests are queued up together on some pro-
cessors while other processors have lower-density requests. In our experiments, we

65

apply the same slack multiplier to all workload types; therefore, densities are equal.
This means CRR would have a single group and effectively make the same routing
decisions as RR. Instead, our GRR baseline classifies the requests according to their
workload type, and routes each type separately using RR. This is similar to DCRR,
which groups requests according to their size when densities are equal. Like PLASM
and the POLARIS/RR baseline, the GRR baseline uses POLARIS to managed the
work queues at each core.

4.6.3 Results: Medium Load

Figure 4.14 shows the failure rate and power consumption of PLASM and the scheduling
baselines under the medium load(19000 TPS), as a function of slack.

These results show that PLASM results in fewer missed deadlines than POLARIS/RR
across all the slack levels while consuming less power. Unlike RR, PLASM’s FLARE router
steers new requests away from workers that have less frequency headroom, making deadline
misses less likely. When slack is loose, this makes little difference, since all schedulers have
very low failure rates. However, at tighter slacks, FLARE cut failure rates almost in half,
compared to RR. Furthermore, except at the tightest slack level (10), PLASM’s failure rate
is almost identical to that of PerformanceBaseline, which uses centralized routing and runs
at peak speed all of the time. This suggests that there is little room for any scheduling
and routing algorithm to improve on PLASM, except perhaps when the slack is very tight.

GRR resulted in slightly lower failure rates than POLARIS/RR’s, but not as low as
FLARE’s. GRR is designed to prevent adversarial cases that can result in deadline misses
when plain RR routing is used. For example, in an arrival order of requests where RR ends
up routing all the large requests to one of the processors and smalls to the others, GRR
can distribute the load more evenly. However, such extreme adversarial cases are not likely
in our workload.

On the power consumption front, PLASM reduces server power consumption by 10W-
15W relative to both POLARIS/RR and GRR. In Figure 4.14, the power gap between the
PerformanceBaseline (>180W) and the EnergyBaseline (∼150 W) represents the power
saving opportunity for this workload. POLARIS/RR and GRR capture about one half to
two-thirds of this opportunity, depending on the slack. PLASM captures almost all of it.
Its power consumption is as low as EnergyBaseline’s at most of the slack levels and is only
slightly higher in others. Since EnergyBaseline represents the minimum energy required to
handle this request rate, this suggests that no other routing and scheduling algorithm can
significantly improve on PLASM’s power consumption, at least for this workload.

66

0

2

4

6

8

10

Fa
ilu

re
 R

at
e

(%
)

20 40 60 80 100
Slack

150

160

170

180

Po
w

er
 (W

at
t)

POLARIS/RR
PLASM

EnergyBaseline
PerformanceBaseline

GRR

Figure 4.14: Failure Rate and Power of different multi-processor sched-
ulers under medium load, as functions of slack (S)

67

POLARIS\RR PLASM
Scheduler

0

20

40

60

80

100
Pr

oc
es

so
r

Fr
eq

ue
nc

y
R

es
id

en
cy

(%
)

159 W 150 W

Idle
1.2 GHz
1.6 GHz
2.0 GHz
2.4 GHz
2.8 GHz

Figure 4.15: PLASM and POLARIS/RR Processor Frequency Resi-
dency, under medium load and the slack multiplier is 60.

To understand why PLASM saves power relative to POLARIS/RR, we considered the
frequency residency distributions of the two schedulers. Figure 4.15 shows these distribu-
tions for the medium load with a slack multiplier 60.

Even though both schedulers use POLARIS at each core to regulate frequency, different
routing techniques result in quite visibly different frequency residencies. Under PLASM,
workers spends most of their time at two consecutive intermediate frequency levels, 2.0 and
2.4 GHz. In contrast, workers under POLARIS/RR spend most of their time either at the
lowest speed (1.2 GHz) or highest speed (2.8 GHz) and relatively less time at intermediate
frequencies. Since RR does not understand workers’ speeds and load states, it may route
requests to relatively busy workers, forcing them to to increase frequency even though other
workers are relatively idle. In contrast, FLARE deliberately routes requests to worker that
it believes are least likely to require a frequency increase, which tends to keep worker
frequencies away from the extremes.

POLARIS/RR’s frequency residency distribution results in higher power consumption
because of the convex relationship between frequency and power. It is better to run a steady
“just right” frequency than to swing between too fast and too slow. Figure 4.16 illustrates
this choice, showing different ways to complete a request (represented by the rectangle)
within its deadline. At one end, S1 uses a single steady frequency level throughout the

68

Figure 4.16: Different frequency combinations to execute a unit work.
The rectangle represents a request, similar to the representation in Fig-
ure 4.11. The height is amount of the requests work and the length is
the time between the request’s arrival and deadline. The dashed lines
represent execution rate (work/time).

execution, whereas the other options have two parts: first a higher frequency, then a lower
one. Because of the convex relation, S1 consumes the least power, whereas S5 consumes
the most as the gap between high and low parts is the greatest[94].

4.6.4 Results: Effect of Load

To investigate the effects of system load on PLASM, we repeat our medium load experiment
under low and high load conditions. Here, we offer 23000 TPS and 15000 TPS loads to
generate high and low load, respectively.

High Load

Figure 4.17 shows the power consumption and failure rate of PLASM and the baselines
under high load, as a function of slack. In high load, the power gap between EnergyBaseline
and PerformanceBaseline is narrow, indicating that there is little power saving opportunity.
PLASM is able to capture the available opportunity when there is sufficient slack, but can

69

0

10

20

30

Fa
ilu

re
 R

at
e

(%
)

20 40 60 80 100
Slack

182

184

186

188

190

Po
w

er
 (W

at
t)

POLARIS/RR
PLASM

EnergyBaseline
PerformanceBaseline

GRR

Figure 4.17: Failure Rate and Power of different multi-processor sched-
ulers under high load, as functions of slack (S)

70

only partially do so at tighter slacks. POLARIS and GRR are able to capture about half
of the opportunity when slack is high.

Although high load does not offer substantial power saving opportunity, our results
show that PLASM results in much lower rates of missed transaction deadlines than both
POLARIS/RR and GRR, at all slack levels. This is because FLARE steers incoming re-
quests to workers that have the most frequency or load headroom to accommodate them
without missing deadlines. PLASM’s failure rate is almost identical to that of the central-
ized high-frequency PerformanceBaseline.

Low Load

Finally, Figure 4.18 shows the failure rate and power consumption of scheduling baselines
under the low load. At this load, the power saving opportunity is more than 40W. PLASM
results in slightly lower power than POLARIS/RR and GRR, but all three algorithms
are able to capture most of the available opportunity. All three algorithms are also able
to achieve near-zero failure rates when slack is loose. When slack is tight, PLASM’s
headroom-aware routing results in about half of the failure rate achieved by POLARIS/RR
and GRR, though not as low as the PerformanceBaseline. There is almost no difference
between POLARIS/RR and GRR in the low-load setting, since request queues are very
short.

4.6.5 Results: FLARE Component Analysis

FLARE’s routing decisions depends on two factors: the current speed and the current load
of each worker. In our final experiments, our goal is to test whether POLARIS needs to
take both of these factors into account. To test this, we compared FLARE against two
variants; one that considers only the frequency and one that considers only the load.

The first variant is called SSF (Slowest Speed First). The SSF router picks the processor
with the slowest speed, and if there is a tie, it breaks in favour of a random processor. The
second variant is called LLF (Least Load First). The LLF router picks the processor with
the lowest load, and if there is a tie, it breaks in favour of a random processor. As it
is noted in Section 4.2, the energy-efficient multi-processor scheduling algorithm EDL [11]
uses the least-load-first criteria and works similar to LLF, except it is designed for an offline
setting.

Figure 4.19 shows the power consumption and performance of PLASM and the two
variants for TPC-C under a medium load (19000 TPS) as a function of slack.

71

0

2

4

6

8

Fa
ilu

re
 R

at
e

(%
)

20 40 60 80 100
Slack

130

140

150

160

170

Po
w

er
 (W

at
t)

POLARIS/RR
PLASM

EnergyBaseline
PerformanceBaseline

GRR

Figure 4.18: Failure Rate and Power of different multi-processor sched-
ulers under low load, as functions of slack (S)

72

0

2

4

6

Fa
ilu

re
 R

at
e

(%
)

PLASM
POLARIS-SSF
POLARIS-LLF

20 40 60 80 100
Slack

150

152

154

156

158

160

Po
w

er
 (W

at
t)

Figure 4.19: Power and performance of POLARIS and its variants under
the medium load

73

When we compare PLASM with POLARIS-LLF, both schedulers perform similarly,
except PLASM achieves a slightly better failure rate at tight deadline levels. However,
POLARIS-LLF consumes more power than PLASM across all the load and slack levels.
FLARE uses frequency as its primary factor for routing and uses load for breaking ties,
whereas LLF uses load. When the least loaded worker runs at the lowest speed level,
these FLARE and LLF will make the same routing decisions. However, if the least loaded
worker is running at higher frequency than other workers - which may occur depending on
the deadlines of requests in the workers’ queues - LLF will route to the higher frequency
worker while FLARE will route elsewhere. This can result in missed deadlines, when slack
is tight. However, the more significant effect is increased power consumption.

PLASM and SSF perform similarly, but PLASM consumes slightly less power across all
slack levels. These results indicate that PLASM’s load-based tie-breaker has little effect
on failure rates, but does result in some additional power savings.

We also compared PLASM with POLARIS-SSF and POLARIS-LLF in low and high
loads where we offer 15000 and 23000 TPS, respectively. We observe similar relative results
in both high and low load.

4.7 Conclusion

In this chapter, we have explored multi-processor specific energy-efficient scheduling prob-
lems in latency-critical systems, discussed the solution space and presented an energy-
efficient scheduling algorithm for latency-critical systems running on multi-processor CPUs.

PLASM uses a FLARE, which, unlike the generic routers, uses per-processor informa-
tion. FLARE is a lightweight mechanism and approximates an expensive greedy router that
simulates POLARIS at each processor for each routing decision. On our server, PLASM
saved both power consumption and failed request comparing to other routing baselines
that work with POLARIS, including POLARIS with RR. More importantly, in almost all
load and slack levels, PLASM performs very close to ideal minimum power consumption
and maximum performance baselines. By comparing FLARE variations, we showed that
both CPU speed and load level are essential for FLARE to achieve this energy efficiency.

74

Chapter 5

Execution Time Estimation

5.1 Overview

Typical execution time estimation techniques predict how much time it takes to run a given
instance of a program in an execution environment such as a data center server. These
techniques may use some features about the program instance and the environment for
estimation. In general, their objective is to minimize estimation error [134, 177].

Execution time estimation is an essential part of POLARIS, as described in Chapter 3.
It is also important for PLASM, since PLASM relies on POLARIS to manage each core’s
work queues, and PLASM uses POLARIS estimates to characterize the load on each worker.
POLARIS imposes some particular requirements on its estimates. First, it requires an es-
timator that can predict program execution times at the different CPU frequencies under
which the program might be run. Furthermore, as we describe in Section 5.2, these esti-
mates are not independent. For a given program, the execution time estimates for higher
frequencies should be lower than estimates for lower frequencies. Second, POLARIS needs
conservative estimates. That is, underestimation is a bigger problem than overestimation.

In this Chapter, our goal is to define an execution time estimator that produces ex-
ecution time estimation for a given workload type and a frequency level. Similar to the
model in Section 3.3, the execution time estimator uses observed execution times for each
frequency level and workload type combinations to model the underlying system.

In the remainder of this chapter, we first (Section 5.2) describe the desired estimator
characteristics for POLARIS in more detail. After surveying some existing execution time
estimation techniques in Section 5.3, we introduce (Section 5.4) a variety of estimation

75

techniques that can be used with POLARIS, and discuss their strengths and weaknesses
with respect to POLARIS’s requirements. Finally, in Section 5.5, we present an empirical
analysis of the impact of estimation on the performance of POLARIS and provide an
empirical look at the properties of the various POLARIS estimators.

5.2 Estimator Properties

POLARIS relies on an estimator that predicts the execution time of a single transaction
from a specified workload class, at a specified execution frequency. In this section, we
describe the desired properties of this estimator in more detail.

5.2.1 Conservative

The first property of a POLARIS estimator is that it should be conservative. That is,
it should prefer overestimation to underestimation. Estimation errors are inevitable, and
error margins can be significant when there is a high execution time variance, as is common
in data intensive systems [50, 99, 123, 144]. For example, Figures 5.1(a) and (b) show the
execution time distributions of TPC-C New Order and Payment transactions at different
frequencies. Execution times for each type of transaction vary significantly. The underlying
cause of these variations is contention for resources, including hardware resources, software
resources, and data. Previous work [77] has shown that the lifetime of a request may
contain a significant overhead caused by contention in shared resources such as buffer pool
and lock manager, and contention for shared resources is a well-known source of variability
and tail latency in latency-critical systems [50].

In POLARIS, underestimation can lead to missed transaction deadlines. This is be-
cause underestimation may cause POLARIS to choose a processor frequency that is too
low, resulting in one or more missed transaction deadlines. Perhaps surprisingly, under-
estimates may also result in increased power consumption. When a transaction’s actual
execution time is longer than POLARIS’ estimate, POLARIS may be forced to compen-
sate for that by increasing the execution frequencies for later transactions. Because of the
convex relationship between frequency and dynamic power consumption, such slow-then-
fast executions result in greater power consumption than steady execution an intermediate
frequency.

In contrast to this, overestimates can lead to increased power consumption in POLARIS,
but they do not cause transactions to miss deadlines. Since POLARIS’s primary objective

76

1.2 1.6 2.0 2.4 2.8
CPU Frequency (GHz)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

E
xe

cu
tio

n
T

im
e

(m
s)

(a) New Order

1.2 1.6 2.0 2.4 2.8
CPU Frequency (GHz)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

E
xe

cu
tio

n
T

im
e

(m
s)

(b) Payment

Figure 5.1: TPC-C transaction execution time distribution under various CPU frequency
levels. Each distribution is represented by a violin plot. Horizontal bars in each plot are
used to show the minimum, maximum, and mean. Some distribution is truncated that
maximum execution times were as high as 46 ms for New Order and 38 ms for Payment.

is to avoid missing deadlines, its estimates should be conservative.

5.2.2 Tunable

We have argued that POLARIS should prefer overestimation to underestimation, but at
what point does overestimation become excessive? Extreme overestimation will cause
POLARIS to choose high-frequency execution all of the time, squandering opportunities
for power savings while doing little to reduce the likelihood of transaction deadline misses.
Thus, the degree of conservativeness of the POLARIS estimator controls a trade-off between
deadline misses and power savings. Ideally, the estimator should be conservative enough

77

to eliminate most of the risk of deadline misses while still allowing POLARIS to choose
power-saving frequencies.

Since this tradeoff may depend on the workload and the execution environment, the
conservativeness of POLARIS’s estimator should be tunable. A tunable estimator allows
POLARIS itself to be tuned to balance potential power savings against the risk of missed
transaction deadlines.

5.2.3 Frequency Monotonic

The POLARIS algorithm assumes that increasing the execution frequency will not increase
the execution time of any request, an assumption that generally holds in practice. Since
POLARIS uses an estimator to predict the execution times of individual tasks, it is impor-
tant that that estimator preserve this property. Thus, if f1 and f2 are execution frequencies
(f1 < f2) and x̂f1 and x̂f2 are execution time estimates for those frequencies (for a given
workload class), then it should be the case that x̂f1 ≥ x̂f2 . We refer to this property as
frequency monotonicty.

If POLARIS uses an estimator that is not frequency monotonic, it may fail to make
effective use of some of the CPU frequencies available to it. That is, if x̂f1 < x̂f2 , POLARIS
will never choose to set the processor frequency to f2. If f1 is inadequate, POLARIS will
jump to some f3 > f2 instead of choosing f2, since f2 appears to offer no benefit. As a
result, the system may end up consuming more power than is actually necessary to handle
the given load.

5.2.4 Lightweight

Finally, a POLARIS estimator needs to be lightweight, due to the practical challenges
of scheduling in latency-aware data systems. The POLARIS algorithm needs to obtain
execution time estimates each time it runs, which means each time a request arrives or
is completed. Since latency-critical tasks are short, we need to ensure that estimation
overhead is not significant. Similarly, estimation consumes power, which works against
the objectives of POLARIS and FLARE. Therefore the estimation mechanism must be
lightweight, to minimize its impact on performance and power consumption.

78

5.3 Related Work

Execution time estimation is a common problem. In this section, we give a brief overview
of work in this area.

One body of related work focuses on generic performance estimation techniques which
can be applied to a wide range of applications. Some of this work explicitly considers DVFS
and the impact of CPU frequency on execution time [56, 100, 146, 160]. One approach is to
profile application execution at a particular frequency and then use the profile to estimate
execution time for the same application at different frequencies. Profiling is used to break
down total execution time into frequency-sensitive and frequency-insensitive parts, such as
delays due to memory access. The estimator can then linearly scale the CPU frequency
sensitive portion to estimate execution times at different frequencies.

Other techniques rely on extracting information from application source code that can
be used to guide estimation. Brandolese et al. [30] define a set of elementary components
in an arbitrary C source code called atoms, and they analyze source code to find the count
of these atoms. Finally, they estimate execution time with a white-box approach using the
atom counts and unit atom costs. Huang et al. [85] use a black-box model for source-code-
based estimation. They propose machine learning techniques for identifying features, such
as loop and branch counts, the most strongly affects execution time, and then they use
these features in a polynomial regression to make execution time estimates.

These techniques are complementary to the approaches we discuss in this chapter, in
that they identify features of programs or program executions that provide useful input
for execution time estimation. Such features could be included in the estimators used by
POLARIS, allowing it to refine its estimates and perhaps allowing some of the observed
execution time variance to be explained.

Execution time estimation has also been widely studied in the context of database
management systems, to address a variety of problems including resource sizing [170],
progress monitoring [176] and request scheduling [68, 105]. In the database setting, the
units of work are typically database queries rather than arbitrary programs. Execution time
estimators can take advantage of knowledge of query structure and database characteristics
to help estimate execution times.

Wu et al. [177] use PostgreSQL’s query cost model for execution time estimation. The
cost model describes the cost of query operations in terms of primitive costs, such as page
accesses and normalized CPU time units. To estimate execution times, the authors cali-
brate primitive cost units for the underlying hardware. Similarly, in a separate work [176]
focusing on parallel query execution, the authors uses a similar approach to model the

79

execution time of subqueries, and then model parallel subquery interaction to estimate
overall query execution time. Wu et al [178] further extended this approach to incorporate
an explicit notion of uncertainty into their cost-based approach. Instead of reporting point
estimates, this allows them to report a range of possible execution times, with an associ-
ated probability distribution.. This approach could potentially be adapted to produce the
conservative execution time estimates needed by POLARIS, by choosing estimates near
the tail of the reported distribution.

Cost estimates from database query optimizers can also be used as input features for
black-box query execution time models. Akdere et al. [6] use support vector machine
for query-level estimation and linear regression for operator level estimation. For both
approaches, they rely on features exposed by the query optimizer. Ganapathi et al. [60]
also rely on query optimizer features for estimation. They first identify critical features
using canonical correlation analysis before mapping features to query performance.

Duggan et al. [53] use linear regression to estimate execution time as a function of
buffer access latencies in I/O-bound systems. They also model buffer access latency in
the presence of concurrent queries to estimate performance of parallel queries. Gupta et
al. [70] use both historical data and system load information to perform execution time
classification of database queries. Their approach uses a decision tree to classify queries,
and associates an execution time range with each leaf classification.

A relatively small body of works focuses on estimation in latency-critical data sys-
tems. Mozafari et al. [134] build a white box model tailored for MySQL, for predicting the
maximum system throughput. They analyze three different factors in database transac-
tions: I/O, CPU and concurrency, and identify a bottleneck resource to estimate maximum
throughput. For that they use related events such as log writes, dirty pages writebacks, and
I/O due to cache misses. The results show that their system-specific white-box approach
can successfully estimate the throughput for I/O-bound, CPU-bound, and lock-bound
workloads. In a separate work [135], the authors consider a linear regression technique
that uses a separate linear-regression model per workload type (e.g., I/O-bound work-
loads), instead of using a single global linear regression model.

Rubik [99] models the amount of work per request with a probability distribution, and
uses convolution to determine a probability distribution over the total amount of work
required for a sequential queue of requests. For better accuracy, the Rubik’s estimator
splits work into memory and CPU parts, and assumes that only the execution time for the
CPU part will scale with CPU frequency. Since Rubik works directly with full probability
distributions, it can easily make conservative estimates of the amount of time that will be
required to execute individual requests or all of the requests in the queue. However, Rubik

80

Figure 5.2: Categorization of the execution time estimation baselines
presented in this chapter.

assumes that there is only a single type of request, which simplifies the task of determining
the probably distribution for the total execution time of all of the requests in a queue.

5.4 POLARIS Estimators

In this section, we describe a space of possible estimators that can be used with POLARIS.
We describe specific estimators within this space, and consider them in the light of the
estimator properties that we define in Section 5.2.

Figure 5.2 shows the space of estimators that we consider. We first categorize them
as either independent or linear. Independent estimators use a separate model for each
frequency level and do not enforce any constraints across the estimates at different fre-
quency levels. On the other hand, linear estimators use a single model parameterized by
frequency, allowing them to enforce a linear (or other) relationship between estimates at
different frequencies.

The second dimension classifies estimators as either conservative or mean-based. As
the name suggests, mean-based estimators estimate mean execution times. Mean-based
estimators are widely used [53, 134, 176, 177]. Conservative estimators, on the other hand,
estimate other statistics - such as quantiles - that describe the tail of the execution time
distribution.

81

Notation Meaning

F set of possible processor frequencies
f a specific processor frequency from F
Xf set of execution time observations of under frequency f
X set of execution time observations under all frequency levels f ∈ F
xif ith observation in Xf

x̂f execution time estimation for frequency f
Pi ith percentile

Figure 5.3: Summary of Notation

All of the estimators that we consider are black-box estimators that use actual execution
time observations to construct estimates. We collect the observations before running the
actual tests during a separate training phase. In the following, we assume that we have a
set X of measurements of execution times of requests from the workload class for which we
are trying to construct an estimator. X includes measurements taken at all possible CPU
frequencies, and we use Xf ⊂ X to represent the set of measurements taken at frequency
f . Figure 5.3 summarizes the notation that we use to describe the estimators.

5.4.1 Per-Frequency Mean

The simplest approach to estimation in our space is to separately and independently esti-
mate the mean execution time at each possible execution frequency in F . We can get an
unbiased estimate of the mean by taking the mean of our observations at each frequency:

x̂f =

∑
xif∈Xf

xif

|Xf |
, f ∈ F (5.1)

Although this approach is simple, it is neither conservative nor tunable, and we will
show later that using estimates of the the mean can lead to large numbers of missed
deadlines, since many requests may have execution times well above the mean.

Since this approach generates a separate estimator for each frequency, estimates pro-
duced by this approach are also not guaranteed to be frequency monotonic. In practice,
however, we do expect mean execution times to decrease with increasing frequency. Mod-
ulo sample error, estimated execution times should also decrease with increasing frequency
under this approach.

82

We used this simple technique for estimation in our preliminary energy-efficiency schedul-
ing mechanism called LAPS [106].

5.4.2 Per-Frequency Percentile

The second type of estimator we consider also constructs a separate independent execution
time estimate for each execution frequency. However, instead of estimating the mean, this
approach estimates a specified quantile or percentile in the execution time distribution
based on the observations at each frequency (Xf). The selected quantile or percentile is a
tunable parameter of the estimator. For example, a P90 estimator estimates an execution
time (for a particular frequency) such that 90% of requests should have execution times at
or below the estimated value.

There are many techniques for estimating the quantiles or percentiles of a distribution
from a set of observations [107]. By choosing high percentiles or quantiles, this approach
generates conservative estimates, e.g., with a P90 estimator, actual execution times are
much more likely to be below the estimate than above it. Furthermore, these estimators
are easily tunable, as they are parameterized by a target percentile or quantile. In our
evaluation of POLARIS in Chapter 3, we used per-frequency quantile estimates because
of these properties.

One challenge with per-frequency quantile estimation is that it does not guarantee
frequency monotonicity. In contrast with per-frequency means, which are likely to be
frequency monotonic in practice, we regularly observed per-frequency quantile estimates
that are non-monotonic, particularly for conservative quantiles that are out on the tail of
the distribution. We show examples of non-monotonic per-frequency quantile estimates
later in this chapter.

5.4.3 Linear Regression

The two per-frequency estimators we have presented so far have the common shortcoming
that they do not guarantee frequency monotonicity. We can avoid this problem by moving
away from constructing a separate estimator for each frequency. Instead, we can construct
a single estimator that estimates execution time as a function of frequency. This allows us
to constrain the relationship between estimates at different frequencies.

A widely used technique in this category is linear regression, which generates an esti-
mate of the form

x̂f = a+ bf, f ∈ F (5.2)

83

The intercept (a) and slope (b) of the regression line are chosen to minimize the mean
squared error of the line with respect to the available execution time observations at all
frequencies (all observations in X).

Linear regression is will suited to estimating the effect of frequency on execution time,
since that effect is expected to be linear [56, 100, 146]. Its primary drawback is that, like
per-frequency estimates of the mean, linear regression estimates are not conservative.

Another potential challenge with linear regression is that it does not guarantee fre-
quency monotonicity. Specifically, it does not guarantee that the slope of the regression
line (b) will be negative, so that higher frequencies lead to lower execution time estimates.
This problem can be fixed by modifying the regression to include an explicit constraint
on the sign of the slope b. However, we have found that this problem is unlikely to occur
in practice. Higher frequencies do result in faster executions, so linear regression over a
sufficiently large set of observations is likely to produce a regression line with a negative
slope. We will return to this issue in Section 5.5.

5.4.4 Shifted Linear Regression

One approach for obtaining estimates that are both conservative and monotonic is to start
with a linear regression, and then shift the regression line up to make the estimates more
conservative.

Suppose that linear regression finds the relationship

x̂f = a+ bf (5.3)

for some intercept a and slope b. In shifted linear regression, we shift the line by replacing
a with a new intercept aτ , while keeping the slope (b) constant. Here, 0 ≤ τ ≤ 1, is a
parameter that controls the conservativeness of the new estimator.

Suppose that Pτ (f) represents the per-frequency τ -percentile estimate for frequency f .
To shift the regression line, we choose the smallest aτ such that

aτ + bf ≥ Pτ (f) (5.4)

for all frequencies f ∈ F . That is, we lift the linear regression line until the execution time
estimate at every frequency is at least as high as the per-frequency τ -percentile estimate.

Shifted linear regression estimates are frequency monotonic as long as the underlying
linear regression is frequency monotonic. They are also conservative and tunable, through
the choice of τ .

84

5.4.5 Quantile Regression

Another way to obtain a linear estimator that is conservative is to use linear quantile re-
gression [103]. Linear quantile regression estimates conditional quantiles (or percentiles)
of the execution time distribution. Linear quantile regression is similar to linear regres-
sion, except that overestimation and underestimation errors are treated asymmetrically.
For example, in the quantile regression described by Koenker [103], for P90 linear quan-
tile estimate, underestimation errors are weighted with 0.9, whereas underestimations are
weighted with 0.1. Frequency level is the independent variable in quantile regression, as it
is for the linear regression and shifted linear regression estimators.

Unlike linear regression, linear quantile regression can produce estimates that are con-
servative (by choosing high quantiles) and tunable. However, like linear regression, linear
quantile estimates are not guaranteed to be frequency monotonic. That is, execution time
estimates for higher frequencies are not guaranteed to be lower than estimates at lower
frequencies. For linear regression, this is not a problem in practice. However, it is a more
significant problem for linear quantile regression, particularly for quantiles far out on the
tail of execution time distribution, because outlying quantiles are not as well-behaved as
the mean. In Section 5.5, we will show that linear quantile estimation can result in practice
in execution time estimates that are not frequency monotonic.

5.5 Evaluation

In this section, we present an empirical comparison of the various types of estimators
described in Section 5.4. Our primary goal is to understand the impact of conservativeness:
how important is it to have a conservative estimator, and how conservative should it be?
Our secondary goal is to gain some insight into the estimates themselves. In particular,
we would like to understand how independent per-frequency estimators differ from linear
estimators in practice.

5.5.1 Impact of Conservative Estimation

In our first set of experiments, we consider the impact of two different estimators on the
performance (failure rate) and power consumption of PLASM. The two estimators are
shifted linear regression and linear regression, one of which is conservative, the other is
not.

85

In our evaluation, we use the same experimental setup and methodology described
in Section 4.6, running the TPC-C benchmark using Shore-MT with PLASM scheduling
requests and managing CPU speed. We run experiments at three different load levels, and
with varying deadline slacks.

Figure 5.4 shows failure rate and power consumption achieved by PLASM using the
two different estimators, under high load (23000 TPS). Our first observation is that having
a conservative estimator is important for keeping failure rates low. With non-conservative
estimates obtained from linear regression, failure rates are much higher, and the “failure
gap” grows as slack gets tighter. When slack is tight, the POLARIS scheduler has less
flexibility and is more sensitive to estimation errors. A single unexpectedly slow transac-
tion can result not only in the slow transaction missing its deadline, but in other queued
transactions missing their deadlines as well.

The impact of conservativeness on power consumption is less clear. As we showed
earlier, power savings are not very significant at high load because the opportunity gap is
small. We expected to see that PLASM would consume less power with the linear regression
estimates than with the conservative estimates, and this is true when slack is tight. When
slack is loose, however, conservative estimates result in both lower failure rates and slightly
lower power consumption. When slack is loose, POLARIS tries to take advantage of this
flexibility to run transactions slowly and save power. This allows request queues to build
up. If a transaction takes much longer to run than POLARIS estimated, POLARIS has
to react by switching to a higher frequency to ensure that the remaining transactions in
the queue do not miss their deadlines. These slow-then-fast frequency patterns lead to
higher power consumption. In contrast, with conservative estimates, POLARIS tends to
start with a higher frequency. It is less likely to underestimate execution times in the first
place, and if an underestimation does occur it is less likely to force POLARIS to increase
frequency to accommodate the remaining transactions in the queue. Thus, conservative
estimates allow POLARIS to maintain a steady frequency and avoid slow-then-fast cycles.

Figure 5.5 shows the results of similar experiments under medium and low loads. The
results at these load levels are qualitatively similar to the high-load results. There is still
a “failure gap”. It is not as large in absolute terms as the gap at high-load. Nonetheless,
failure rates with linear regression estimates can be two or three times as high as those
with the conservative estimator when slack is tight. Differences in power consumption are
small.

In summary, conservative estimators result in lower failure rates, especially at higher
loads. Conservative estimation sometimes results in higher power consumption, particu-
larly when load is high and slack is tight, but differences in power consumption are small.

86

0

5

10

15

20

Fa
ilu

re
 R

at
e

(%
)

20 40 60 80 100
Slack

180

182

184

186

188

Po
w

er
 (W

at
t)

PLASM-Conservative PLASM-Linear Regression

Figure 5.4: PLASM with two different estimators, at High Load (23000
TPS)

87

0

2

4

6

Fa
ilu

re
 R

at
e

(%
)

20 40 60 80 100
Slack

130

135

140

145

150

Po
w

er
 (W

at
t)

PLASM-Conservative PLASM-Linear Regression

(a) Low Load (15000 TPS)

0

2

4

6

Fa
ilu

re
 R

at
e

(%
)

20 40 60 80 100
Slack

150

155

160

165

170

Po
w

er
 (W

at
t)

PLASM-Conservative PLASM-Linear Regression

(b) Medium Load (19000 TPS)

Figure 5.5: PLASM with estimators with different conservativeness

5.5.2 How Conservative?

In our previous experiments, we showed that a conservative estimator reduces failure rates
without introducing a substantial power penalty. Here, we consider the question of how
conservative an estimator needs to be to achieve these benefits.

To answer this question, we ran experiments with PLASM using a shifted linear regres-
sion estimator with varying degrees of “shift”, ranging from P60 to P99. Again, we use the
same experimental setup and methodology described in Section 4.6. We run experiments
at two slack settings (10 and 40) and at high (23000 TPS) and low (15000 TPS) loads.

Figure 5.6 shows failure rate and power consumption as a function of the conserva-
tiveness of the shifted linear regression model, at high load (23000 TPS). These results
show that the conservativeness of the estimator controls a tradeoff between transaction
failures and power consumption. For our workload, increasing the regression percentile
(conservativeness) of the estimator results in substantial reductions in failure rates until
the percentile reaches 90%, after which there is little additional benefit. One the power
front, we see little change in power consumption for percentiles in the 50%-80% range, but
power does increase when the regression percentile exceeds 80%. Thus, at least for our
workload, there is a “sweet spot” in the range of 80%-90% in which PLASM achieves most

88

50 60 70 80 90 95 99
Shifted Linear Regression Percentile

178

180

182

184

186

188

190

A
ve

ra
ge

 P
ow

er
 (W

at
t)

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

Fa
ilu

re
 R

at
e

(%
)

(a) Tight deadline (slack 10)

50 60 70 80 90 95 99
Shifted Linear Regression Percentile

178

180

182

184

186

A
ve

ra
ge

 P
ow

er
 (W

at
t)

0

2

4

6

8

Fa
ilu

re
 R

at
e

(%
)

(b) Loose deadline (slack 40)

Figure 5.6: Power consumption and failure rate of PLASM under high load (23000 TPS)
with shifted linear regression estimator using different percentiles

of the failure rate reduction without a significant power penalty.

Figure 5.7 shows the result of the same experiment run at low load. Absolute failure
rates and power consumption are lower at low load, but we observe behavior that is similar
to what we observed under high load. Specifically, using a regression percentile in the 80%-
90% range achieves most of the available failure rate reduction with little power penalty.

5.5.3 Characterization of Estimates

Our previous experiments have focused on how the choice of estimator, and estimator
parameters, affects the overall performance of the PLASM scheduler. In our next set of
experiments, we hope to gain some insight into different types of estimators by directly
observing and comparing the estimates they produce.

In these experiments, we use our PLASM prototype and the TPC-C workload to run
only the training (estimator calibration) phase of our usual experimental methodology.
That is, after warming up the system, we run TPC-C workload with an average of 320000
instances of each transaction type, including 64000 instances at each frequency level. and
we record the transaction execution times. Using this execution time dataset, we then
construct estimators using the five different techniques described in Section 5.4. For all of
the conservative estimators, we used the P95 percentile. Finally, we compare the estimates
generated by each technique.

89

50 60 70 80 90 95 99
Shifted Linear Regression Percentile

133

134

135

136

137

A
ve

ra
ge

 P
ow

er
 (W

at
t)

4

5

6

7

8

9

Fa
ilu

re
 R

at
e

(%
)

(a) Tight deadline (slack 10)

50 60 70 80 90 95 99
Shifted Linear Regression Percentile

130

131

132

133

134

135

136

A
ve

ra
ge

 P
ow

er
 (W

at
t)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Fa
ilu

re
 R

at
e

(%
)

(b) Loose deadline (slack 40)

Figure 5.7: Power consumption and failure rate of PLASM under low load (15000 TPS)
with shifted linear regression estimator using different percentiles

Figure 5.8 shows the execution time estimates produced for the TPC-C Payment trans-
action type by all five estimators described in Section 5.4. In addition to the estimates
themselves, the figure also includes a box plot at each frequency to illustrates the distri-
bution of our execution time measurements, on which the estimates are based.

Our first observation is that both mean-based estimators (per-frequency mean and lin-
ear regression) produce very similar estimates. Although the per-frequency mean estimator
does not guarantee frequency monotonic estimates, the estimates it produces are in fact
frequency monotonic - we observed this to be the case for all TPC-C transaction types.
This reflects the fact that the impact of a frequency increase on the execution time of
any individual Payment transaction should be a decrease in execution time. Thus, over
the entire sample of transactions at each frequency, we should expect a decrease in mean
execution time as frequency increases.

For the conservative estimators, we cannot be so certain about frequency monotonicity.
Both of the linear conservative estimators (shifted linear regression and quantile regression)
produce frequency monotonic estimates for the Payment transaction, but the per-frequency
quantile estimator does not - its estimate for 2 GHz is higher than its estimate for 1.6
GHz. This simply reflects the fact that estimates far out on the tail of the execution time
distribution are not as well-behaved as the mean, and the per-frequency estimator has no
constraints that force its estimates to be linear or frequency-monotonic.

Another observation is that the shifted linear estimator results in much more conser-
vative estimates at high frequency than the linear quantile estimator. This is because the
shifted linear estimator preserves the slope of the linear regression estimate, while the lin-

90

1.2 1.6 2.0 2.4 2.8
CPU Frequency (GHz)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
E

xe
cu

tio
n

T
im

e
(

s)

Per-Frequency Mean
Per-Frequency Percentile
Linear Regression

Shifted Linear Regression
Quantile Regression

Figure 5.8: TPC-C Payment transaction Estimations

ear quantile estimator does not. For the Payment transaction, both the mean execution
time and the execution time variance drop as frequency increases. Thus, the linear quantile
estimates drop more quickly than the mean as frequency increases.

Finally, Figure 5.9 show the estimates for the TPC-C NewOrder transaction, which is
larger and more complex than the Payment transaction. As was the case for the Payment
transaction, the linear regression and per-frequency mean estimators produce almost iden-
tical estimates. Also, the per-frequency quantile estimates are once again non-monotonic
with frequency, including a very substantial jump in the estimate as frequency increases
from 1.2 GHz to 1.6 GHz. One significant difference between the NewOrder and Payment
estimates is that the NewOrder estimates produced by the linear quantile estimator are not
frequency monotonic either - higher frequencies result in higher execution time estimates.

These results illustrates that while we can expect frequency monotonicity when esti-
mating mean execution time, we cannot expect it when making conservative estimates

91

1.2 1.6 2.0 2.4 2.8
CPU Frequency (GHz)

0

1

2

3

4

5

6
E

xe
cu

tio
n

T
im

e
(

s)

Per-Frequency Mean
Per-Frequency Percentile
Linear Regression

Shifted Linear Regression
Quantile Regression

Figure 5.9: TPC-C New Order transaction Estimations

further out on the tail of the execution time distribution. Thus, in order to use linear
quantile estimation with PLASM, it is important to explicitly constrain the resulting es-
timate to have a negative slope. Alternatively, shifted linear regression can be used, as it
will produce conservative frequency monotonic estimates as long as the linear regression
line is frequency monotonic.

5.6 Conclusion

In this chapter, we examine the execution time estimation component of PLASM. We
discuss some properties that help an estimator work well with PLASM and presented a
variety of estimation techniques that offer some or all of these properties. By comparing
PLASM results using different estimators, we showed that conservative estimation is im-

92

portant - particularly for keeping transaction failure rates low. We also showed that it can
be challenging to obtain estimates that are both conservative and frequency monotonic,
since execution time quantiles are not as well behaved as the mean as execution frequency
is varied.

93

Chapter 6

Related Work

Previous chapters presented some related work specific to those chapters. Section 3.4,
presents theoretical work on single-processor energy-efficient scheduling. Sections 4.2
and 4.4, cover work on energy-efficient and general multi-processor scheduling. Finally,
Section 5.3 presents work on execution time estimation techniques.

This chapter presents related work on energy-efficiency in software systems, in several
broad categories. Section 6.1 presents techniques that are designed to operate across
multiple servers, while Section 6.2 covers single-server techniques. Finally, in Section 6.3,
we consider techniques that have been specifically targeted at database systems.

6.1 Cluster Level Energy Efficiency

Some approaches for improving data center energy efficiency operate at the scale of a
cluster or data center as a whole. One technique is to shut down servers when they are
idle [112, 118]. Another set of techniques focus on the energy-efficient virtual machine
placement across the cluster [113, 179]. Facebook controls server power consumption to
prevent data center power overloads [175].

These techniques typically operate at much longer time scales (e.g., minutes or hours)
than POLARIS and PLASM, typically because the actions used to control power consump-
tion, such as placing or migrating virtual machines, or powering servers up and down, are
relatively time consuming. POLARIS and PLASM are complementary to some of these
techniques. For example, they can be used to manage DVFS on servers that are not shut
down by a cluster-level manager.

94

6.2 Server-Level Energy Efficiency

Another body of work targets single server energy efficiency, like POLARIS and PLASM.
GreenRT [36] finds the slowest CPU speed that satisfies the deadlines of periodic tasks in
soft real-time systems. Spiliopoulos et al. [156] propose an operating system power gov-
ernor which uses memory stalls as an input and tries to optimize CPU energy efficiency
accordingly. Sen and Wood [150] propose an operating system governor that predicts the
system power/performance pareto optimality frontier and keeps the power/performance at
this frontier. Like the Linux DVFS governors we have used as baselines in Section 3.6,
these do not take advantage of application-level workload information. Weiser et al. [171]
propose a generic energy-efficient scheduling algorithm at the operating system level to
maximize the number of instructions per unit of energy. We refer to Zhuravlev et al. [184]
for a comprehensive survey of energy-aware scheduling techniques at the operating system
level.

PAT [181] and PEGASUS [123] apply feedback control to manage processor DVFS.
PAT uses a control mechanism based on a simple system model to maintain a target sys-
tem throughput as the I/O intensity of the workload fluctuates. However, similar to other
feedback mechanisms, it focuses on history for power adjustment, and it does not under-
stand the latency requirements of waiting requests. as the I/O intensity of the workload
fluctuates. However, this may be difficult to apply in a system in which the intensity of the
offered load is fluctuating. PEGASUS, like POLARIS, targets request latency in so-called
on-line data intensive (OLDI) applications. PEGASUS assumes a homogeneous workload,
with a target request latency, and it manages DVFS to try to barely meet this target, so
as to maximize power savings. Thus, its broad objectives are similar to POLARIS’s. How-
ever, because it uses feedback control over a large distributed system, which requires time
to observe system state and adjust to fluctuations, it is intended to react to changes over
longer time scales (minutes, hours, days), not in response to individual request comple-
tions and arrivals, like POLARIS. Unlike POLARIS, PEGASUS is unable to accommodate
multiple concurrent workloads.

Rubik [99] manages DVFS on the time scale of individual transaction arrivals, like
POLARIS. Rubik uses statistical models to try to predict the tail latency of the response
times of all queued transactions, and uses DVFS to try to ensure that they hit latency
targets. However, this approach does not extend to multiple workloads, since the response
time prediction must be done periodically, off-line, and it assumes that all requests have
identical service time distributions. Both techniques are limited to controlling DVFS, and
do not reorder transactions like POLARIS.

95

Several studies explore the use of C- States for energy efficiency. These studies show
that using C-states is challenging either because workloads are rarely idle enough to exploit
sleep states [124, 130] or because processors consume a lot of energy to recover from deep
sleep states [97, 148]. Therefore, some work encourages deeper C-States by extending sleep
periods [12, 129]. In contrast, we focus only on P-states in this work.

6.3 Energy Efficiency in Database Management Sys-

tems

Several studies describe techniques for improving the energy efficiency of database manage-
ment systems through query optimization and query operator configuration. Tsirogiannis
et al. [163] investigate servers equipped with multi-core CPUs by studying power consump-
tion characteristics of parallel operators and query plans using different numbers of cores
with different placement schemes. Their findings suggest that using all of the available
cores is the most power-efficient option for DBMSs if the system is fully loaded, while
DVFS may allow further power/performance tradeoffs. Unfortunately, this does not pro-
vide guidance on how to improve energy efficiency in the common case of systems that
are not 100% loaded. In the same direction, Psaroudakis et al. [143] take CPU frequency
into account along with core selection. They show that different CPU frequency levels
can be more energy efficient for execution of different relational operators. Both Xu et
al. [180] and Lang et al. [111] explore possibilities of energy aware query optimization in
relational DBMSs. For this, they propose a cost function where both performance and
power contributes to the cost. They show that DBMSs can execute queries according to
specific power/performance requirements. These techniques are largely complementary to
POLARIS.

96

Chapter 7

Conclusions & Future Work

7.1 Conclusions

In this thesis, we provide a solution to the energy efficiency problem in servers hosting
latency critical data systems. We presented energy-efficient algorithms and techniques
to achieve the objective of minimizing power consumption while maintaining the desired
quality of service defined by latency targets.

In Chapter 3, we presented a workload aware single-processor scheduling technique
called POLARIS. POLARIS controls processor power as well as execution order. We es-
tablished a competitive ratios for POLARIS’s against an optimal offline non-preemptive
energy aware scheduler, and also showed how the on-line non-preemptive nature of PO-
LARIS affects its competitiveness. We prototyped POLARIS in a data system, and showed
that it achieves both lower power consumption and fewer missed deadlines under various
workload scenarios, relative to OS-based dynamic power governors.

Chapter 4 extended POLARIS to a more generalized case in which there are multi-
ple parallel homogeneous processors. For the multi-processor version of the problem, we
presented an energy-efficient multi-processor scheduling algorithm called PLASM. PLASM
uses a routing mechanism called FLARE that distributes requests across the processors,
each managed by POLARIS. FLARE is a light-weight router and uses summary data to
make decisions. We implemented a prototype of PLASM, and showed that it consumes less
power with fewer missed deadlines than POLARIS combined with a generic round robin
routing. Our results also suggest that there is little room to improve on PLASM, except
in settings where latency targets are very tight.

97

In Chapter 5, we discussed the execution time estimation problem, which is an essen-
tial component of both PLASM and FLARE. We identified desirable characteristics for
estimators used by POLARIS and FLARE, and presented a simple regression-based esti-
mator with the desired characteristics. We demonstrated empirically that POLARIS’s esti-
mates need to be conservative, and showed how conservativeness controls a latency/power
scheduling tradeoff.

7.2 Future Work

There are many research directions that would extend the work presented in this thesis.
POLARIS and FLARE are both online algorithms, and both make their decisions under the
assumption that there will be no future requests in the system. We expect that speculating
about the future load would improve energy efficiency. One essential step in this direction
would be forecasting the future load [127] and dynamically integrating it to the online
schedular.

Other hardware components besides the CPU cores, such as the uncore part of CPUs [102]
and memory [98], contribute to overall CPU and server power consumption. The schedul-
ing algorithms presented in this thesis, manage only CPU cores’ power. Energy-efficiency
could be improved through energy-aware management of those other components.

Another future extension is energy-efficiency in server clusters. In this thesis, we present
the energy-efficiency first in single-processors and then in multi-processors. As a future
direction, having energy-efficient resource management at the cluster level that possibly
works with POLARIS or PLASM can potentially improve energy efficiency at the cluster
level.

98

References

[1] Epfl Official Shore-MT Page, Shore-Kits. https://sites.google.com/site/

shoremt/shore-kits. Accessed: Feb. 2017.

[2] Efficiency – data centers. https://www.google.com/about/datacenters/

efficiency/, 2020.

[3] Advanced Micro Devices(AMD). Architecture programmer’s manual: Volume 2:
System programming. (24593), 2017.

[4] Mumtaz Ahmad, Ashraf Aboulnaga, Shivnath Babu, and Kamesh Munagala.
Interaction-aware scheduling of report-generation workloads. The VLDB Journal,
20(4):589–615, 2011.

[5] Anastasia Ailamaki. The next 700 transaction processing engines. In Proceedings of
the 2017 ACM International Conference on Management of Data, pages 1–2. ACM,
2017.

[6] M. Akdere et al. Learning-based query performance modeling and prediction. In
Proc. ICDE, pages 390–401, 2012.

[7] Susanne Albers. Algorithms for dynamic speed scaling. In Symposium on Theoretical
Aspects of Computer Science (STACS2011), volume 9, pages 1–11, 2011.

[8] Susanne Albers, Antonios Antoniadis, and Gero Greiner. On multi-processor speed
scaling with migration. In Proceedings of the twenty-third annual ACM symposium
on Parallelism in algorithms and architectures, pages 279–288, 2011.

[9] Susanne Albers, Antonios Antoniadis, and Gero Greiner. On multi-processor speed
scaling with migration. In Proceedings of the twenty-third annual ACM symposium
on Parallelism in algorithms and architectures, pages 279–288, 2011.

99

https://sites.google.com/site/shoremt/shore-kits
https://sites.google.com/site/shoremt/shore-kits
https://www.google.com/about/datacenters/efficiency/
https://www.google.com/about/datacenters/efficiency/

[10] Susanne Albers and Hiroshi Fujiwara. Energy-efficient algorithms for flow time min-
imization. ACM Transactions on Algorithms (TALG), 3(4), 2007.

[11] Susanne Albers, Fabian Müller, and Swen Schmelzer. Speed scaling on parallel pro-
cessors. Algorithmica, 68(2):404–425, 2014.

[12] Hrishikesh Amur, Ripal Nathuji, Mrinmoy Ghosh, Karsten Schwan, and Hsien-Hsin S
Lee. Idlepower: Application-aware management of processor idle states. In Proceed-
ings of the Workshop on Managed Many-Core Systems, MMCS, volume 8, 2008.

[13] Eric Angel, Evripidis Bampis, Vincent Chau, and Nguyen Kim Thang. Throughput
maximization in multiprocessor speed-scaling. Theoretical Computer Science, 630:1–
12, 2016.

[14] Eric Angel, Evripidis Bampis, Fadi Kacem, and Dimitrios Letsios. Speed scaling on
parallel processors with migration. In European Conference on Parallel Processing,
pages 128–140. Springer, 2012.

[15] Antonios Antoniadis and Chien-Chung Huang. Non-preemptive speed scaling. Jour-
nal of Scheduling, 16(4):385–394, 2013.

[16] Martin Arlitt and Tai Jin. A workload characterization study of the 1998 world cup
web site. IEEE network, 14(3):30–37, 2000.

[17] Hadi Asgharimoghaddam and Nam Sung Kim. Spinwise: A practical energy-efficient
synchronization technique for cmps. ACM SIGARCH Computer Architecture News,
44(1):1–8, 2016.

[18] Theodore P Baker. Comparison of empirical success rates of global vs. partitioned
fixed-priority and edf scheduling for hard real time. 2005.

[19] Theodore P. Baker. A comparison of global and partitioned edf schedulability tests for
multiprocessors. Technical report, In International Conf. on Real-Time and Network
Systems, 2005.

[20] Evripidis Bampis, Alexander Kononov, Dimitrios Letsios, Giorgio Lucarelli, and
Maxim Sviridenko. Energy-efficient scheduling and routing via randomized rounding.
Journal of Scheduling, 21(1):35–51, 2018.

[21] Nikhil Bansal, Tracy Kimbrel, and Kirk Pruhs. Speed scaling to manage energy and
temperature. Journal of the ACM (JACM), 54(1):1–39, 2007.

100

[22] Thomas Barnett and Arielle Sumits. Cisco global cloud index 2015–2020. Cisco
Knowledge Network (CKN) Session, 2016.

[23] Luiz André Barroso, Jimmy Clidaras, and Urs Hölzle. The datacenter as a computer:
An introduction to the design of warehouse-scale machines. Synthesis lectures on
computer architecture, 8(3):1–154, 2013.

[24] Luiz André Barroso and Urs Hölzle. The case for energy-proportional computing.
Computer, 40(12):33–37, 2007.

[25] Sanjoy K Baruah. The non-preemptive scheduling of periodic tasks upon multipro-
cessors. Real-Time Systems, 32(1-2):9–20, 2006.

[26] Andrea Bastoni, Bjorn B Brandenburg, and James H Anderson. An empirical com-
parison of global, partitioned, and clustered multiprocessor edf schedulers. In 2010
31st IEEE Real-Time Systems Symposium, pages 14–24. IEEE, 2010.

[27] Paul C Bell and Prudence WH Wong. Multiprocessor speed scaling for jobs with
arbitrary sizes and deadlines. Journal of Combinatorial Optimization, 29(4):739–
749, 2015.

[28] Marko Bertogna, Michele Cirinei, and Giuseppe Lipari. Improved schedulability
analysis of edf on multiprocessor platforms. In 17th Euromicro Conference on Real-
Time Systems (ECRTS’05), pages 209–218. IEEE, 2005.

[29] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex optimization.
Cambridge university press, 2004.

[30] Carlo Brandolese, William Fornaciari, Fabio Salice, and Donatella Sciuto. Source-
level execution time estimation of c programs. In Proceedings of the ninth interna-
tional symposium on Hardware/software codesign, pages 98–103, 2001.

[31] Dominik Brodowski and Nico Golde. CPU frequency and voltage scaling code in the
linux (tm) kernel. linux cpufreq. cpufreq governors, 2015.

[32] David M Brooks, Pradip Bose, Stanley E Schuster, Hans Jacobson, Prabhakar N
Kudva, Alper Buyuktosunoglu, John Wellman, Victor Zyuban, Manish Gupta, and
Peter W Cook. Power-aware microarchitecture: Design and modeling challenges for
next-generation microprocessors. IEEE Micro, 20(6):26–44, 2000.

[33] Yang Cai and MC Kong. Nonpreemptive scheduling of periodic tasks in uni-and
multiprocessor systems. Algorithmica, 15(6):572–599, 1996.

101

[34] J Calandrino and J Anderson. Quantum support for multiprocessor pfair scheduling
in linux. In Proc. of the 2nd Int’l Workshop on Operating System Platforms for
Embedded Real-Time Applications, 2006.

[35] John M Calandrino, James H Anderson, and Dan P Baumberger. A hybrid real-
time scheduling approach for large-scale multicore platforms. In 19th Euromicro
Conference on Real-Time Systems (ECRTS’07), pages 247–258. IEEE, 2007.

[36] Bo Chen, William Pak Tun Ma, Yan Tan, Alexandra Fedorova, and Greg Mori.
Greenrt: a framework for the design of power-aware soft real-time applications.

[37] Jian-Jia Chen. Partitioned multiprocessor fixed-priority scheduling of sporadic real-
time tasks. In 2016 28th Euromicro Conference on Real-Time Systems (ECRTS),
pages 251–261. IEEE, 2016.

[38] Jian-Jia Chen, Heng-Ruey Hsu, Kai-Hsiang Chuang, Chia-Lin Yang, Ai-Chun Pang,
and Tei-Wei Kuo. Multiprocessor energy-efficient scheduling with task migration
considerations. In Proceedings. 16th Euromicro Conference on Real-Time Systems,
2004. ECRTS 2004., pages 101–108. IEEE, 2004.

[39] Tao Chen, Alexander Rucker, and G Edward Suh. Execution time prediction for
energy-efficient hardware accelerators. In Proceedings of the 48th International Sym-
posium on Microarchitecture, pages 457–469, 2015.

[40] Yanpei Chen, Sara Alspaugh, and Randy Katz. Interactive analytical processing in
big data systems: A cross-industry study of mapreduce workloads. arXiv preprint
arXiv:1208.4174, 2012.

[41] Hsiang-Yun Cheng, Jia Zhan, Jishen Zhao, Yuan Xie, Jack Sampson, and Mary Jane
Irwin. Core vs. uncore: The heart of darkness. In 2015 52nd ACM/EDAC/IEEE
Design Automation Conference (DAC), pages 1–6. IEEE, 2015.

[42] Vincent Cohen-Addad, Zhentao Li, Claire Mathieu, and Ioannis Milis. Energy-
efficient algorithms for non-preemptive speed-scaling. In International Workshop
on Approximation and Online Algorithms, pages 107–118. Springer, 2014.

[43] Brian F Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silberstein, Philip
Bohannon, Hans-Arno Jacobsen, Nick Puz, Daniel Weaver, and Ramana Yerneni.
Pnuts: Yahoo!’s hosted data serving platform. Proceedings of the VLDB Endowment,
1(2):1277–1288, 2008.

102

[44] Transaction Processing Performance Council. Tpc-energy specification, 2010.

[45] Transaction Processing Performance Council. Tpc benchmark e-standard
specification-version 1.14.0. 2015.

[46] CPU-World. Amd fx-6300 specifications. https://www.cpu-world.com/CPUs/

Bulldozer/AMD-FX-Series%20FX-6300.html. Accessed: Oct. 2020.

[47] Howard David, Chris Fallin, Eugene Gorbatov, Ulf R Hanebutte, and Onur Mutlu.
Memory power management via dynamic voltage/frequency scaling. In Proceedings of
the 8th ACM international conference on Autonomic computing, pages 31–40, 2011.

[48] Robert I Davis and Alan Burns. A survey of hard real-time scheduling for multipro-
cessor systems. ACM computing surveys (CSUR), 43(4):1–44, 2011.

[49] Robert Ian Davis and Liliana Cucu-Grosjean. A survey of probabilistic schedulability
analysis techniques for real-time systems. LITES: Leibniz Transactions on Embedded
Systems, pages 1–53, 2019.

[50] Jeffrey Dean and Luiz André Barroso. The tail at scale. Communications of the
ACM, 56(2):74–80, 2013.

[51] Christina Delimitrou and Christos Kozyrakis. Quasar: resource-efficient and qos-
aware cluster management. ACM SIGPLAN Notices, 49(4):127–144, 2014.

[52] Marios D Dikaiakos, Anne Rogers, and Kenneth Steiglitz. Fast: A functional algo-
rithm simulation testbed. In Proceedings of International Workshop on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems, pages 142–
146. IEEE.

[53] Jennie Duggan, Ugur Cetintemel, Olga Papaemmanouil, and Eli Upfal. Performance
prediction for concurrent database workloads. In Proceedings of the 2011 ACM SIG-
MOD International Conference on Management of data, pages 337–348, 2011.

[54] Kit Eaton. How one second could cost amazon $1.6 billion in sales. Fast Company,
14, 2012. Accessed: Oct. 2020.

[55] Jakob Engblom, Andreas Ermedahl, Mikael Sjödin, Jan Gustafsson, and Hans Hans-
son. Worst-case execution-time analysis for embedded real-time systems. Interna-
tional Journal on Software Tools for Technology Transfer, 4(4):437–455, 2003.

103

https://www.cpu-world.com/CPUs/Bulldozer/AMD-FX-Series%20FX-6300.html
https://www.cpu-world.com/CPUs/Bulldozer/AMD-FX-Series%20FX-6300.html

[56] Stijn Eyerman and Lieven Eeckhout. A counter architecture for online dvfs prof-
itability estimation. IEEE Transactions on Computers, 59(11):1576–1583, 2010.

[57] Jason Flinn and Mahadev Satyanarayanan. Energy-aware adaptation for mobile ap-
plications, volume 33. ACM, 1999.

[58] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of statistical
learning, volume 1. Springer series in statistics New York, 2001.

[59] Kenji Funaoka, Shinpei Kato, and Nobuyuki Yamasaki. Work-conserving optimal
real-time scheduling on multiprocessors. In 2008 Euromicro Conference on Real-
Time Systems, pages 13–22. IEEE, 2008.

[60] Archana Ganapathi, Harumi Kuno, Umeshwar Dayal, Janet L Wiener, Armando Fox,
Michael Jordan, and David Patterson. Predicting multiple metrics for queries: Better
decisions enabled by machine learning. In 2009 IEEE 25th International Conference
on Data Engineering, pages 592–603. IEEE, 2009.

[61] Dennis Gannon, Roger Barga, and Neel Sundaresan. Cloud-native applications. IEEE
Cloud Computing, 4(5):16–21, 2017.

[62] Marco E. T. Gerards, Johann L. Hurink, and Philip K. F. Hölzenspies. A survey of
offline algorithms for energy minimization under deadline constraintsa. Journal of
Scheduling, 19(1):3–19, 2016.

[63] Daniel Gmach, Jerry Rolia, Ludmila Cherkasova, and Alfons Kemper. Workload
analysis and demand prediction of enterprise data center applications. In 2007 IEEE
10th International Symposium on Workload Characterization, pages 171–180. IEEE,
2007.

[64] Giovani Gracioli, Antônio Augusto Fröhlich, Rodolfo Pellizzoni, and Sebastian Fis-
chmeister. Implementation and evaluation of global and partitioned scheduling in a
real-time os. Real-Time Systems, 49(6):669–714, 2013.

[65] Gero Greiner, Tim Nonner, and Alexander Souza. The bell is ringing in speed-scaled
multiprocessor scheduling. In Proceedings of the twenty-first annual symposium on
Parallelism in algorithms and architectures, pages 11–18, 2009.

[66] Ed Grochowski and Murali Annavaram. Energy per instruction trends in intel mi-
croprocessors. Technology@ Intel Magazine, 4(3):1–8, 2006.

104

[67] Nan Guan, Wang Yi, Zonghua Gu, Qingxu Deng, and Ge Yu. New schedulability
test conditions for non-preemptive scheduling on multiprocessor platforms. In 2008
Real-Time Systems Symposium, pages 137–146. IEEE, 2008.

[68] Shenoda Guirguis, Mohamed A Sharaf, Panos K Chrysanthis, Alexandros Labrinidis,
and Kirk Pruhs. Adaptive scheduling of web transactions. In 2009 IEEE 25th
International Conference on Data Engineering, pages 357–368. IEEE, 2009.

[69] Shenoda Guirguis, Mohamed A Sharaf, Panos K Chrysanthis, Alexandros Labrinidis,
and Kirk Pruhs. Adaptive scheduling of web transactions. In 2009 IEEE 25th
International Conference on Data Engineering, pages 357–368. IEEE, 2009.

[70] Chetan Gupta, Abhay Mehta, and Umeshwar Dayal. Pqr: Predicting query execution
times for autonomous workload management. In 2008 International Conference on
Autonomic Computing, pages 13–22. IEEE, 2008.

[71] Daniel Hackenberg, Robert Schöne, Thomas Ilsche, Daniel Molka, Joseph Schuchart,
and Robin Geyer. An energy efficiency feature survey of the intel haswell processor.
In 2015 IEEE international parallel and distributed processing symposium workshop,
pages 896–904. IEEE, 2015.

[72] Charles A Hall and W Weston Meyer. Optimal error bounds for cubic spline inter-
polation. Journal of Approximation Theory, 16(2):105–122, 1976.

[73] James Hamilton. The cost of latency. https://perspectives.mvdirona.com/2009/
10/the-cost-of-latency/, 2009. Accessed: Oct. 2020.

[74] James Hamilton. Overall data center costs. https://perspectives.mvdirona.com/
2010/09/overall-data-center-costs/, 2010. Accessed: Oct. 2020.

[75] Per Hammarlund, Alberto J Martinez, Atiq A Bajwa, David L Hill, Erik Hallnor,
Hong Jiang, Martin Dixon, Michael Derr, Mikal Hunsaker, Rajesh Kumar, et al.
Haswell: The fourth-generation intel core processor. IEEE Micro, 34(2):6–20, 2014.

[76] W. Hardle and W. Steiger. Algorithm as 296: Optimal median smoothing. Journal
of the Royal Statistical Society. Series C (Applied Statistics), 44(2):258–264, 1995.

[77] Stavros Harizopoulos, Daniel J Abadi, Samuel Madden, and Michael Stonebraker.
Oltp through the looking glass, and what we found there. In Making Databases
Work: the Pragmatic Wisdom of Michael Stonebraker, pages 409–439. 2018.

105

https://perspectives.mvdirona.com/2009/10/the-cost-of-latency/
https://perspectives.mvdirona.com/2009/10/the-cost-of-latency/
https://perspectives.mvdirona.com/2010/09/overall-data-center-costs/
https://perspectives.mvdirona.com/2010/09/overall-data-center-costs/

[78] Scott Hendrickson, Stephen Sturdevant, Tyler Harter, Venkateshwaran Venkatara-
mani, Andrea C Arpaci-Dusseau, and Remzi H Arpaci-Dusseau. Serverless com-
putation with openlambda. In 8th {USENIX} Workshop on Hot Topics in Cloud
Computing (HotCloud 16), 2016.

[79] Sebastian Herbert and Diana Marculescu. Analysis of dynamic voltage/frequency
scaling in chip-multiprocessors. In Proceedings of the 2007 international symposium
on Low power electronics and design (ISLPED’07), pages 38–43. IEEE, 2007.

[80] Hewlett Packard Enterprise. Hpe global workload manager 7.6. https://support.

hpe.com/hpsc/doc/public/display?sp4ts.oid=3725908, 2017. Accessed: Oct.
2017.

[81] Dominic Hillenbrand, Yuuki Furuyama, Akihiro Hayashi, Hiroki Mikami, Keiji
Kimura, and Hironori Kasahara. Reconciling application power control and operat-
ing systems for optimal power and performance. In 2013 8th International Workshop
on Reconfigurable and Communication-Centric Systems-on-Chip (ReCoSoC), pages
1–8. IEEE, 2013.

[82] Jason M Hirst, Jonathan R Miller, Brent A Kaplan, and Derek D Reed. Watts up?
pro ac power meter for automated energy recording: A product review. Behavior
Analysis in Practice, 6(1):82, 2013.

[83] Dorit S Hochbaum and David B Shmoys. Using dual approximation algorithms for
scheduling problems theoretical and practical results. Journal of the ACM (JACM),
34(1):144–162, 1987.

[84] Jiamin Huang, Barzan Mozafari, Grant Schoenebeck, and Thomas Wenisch. Identify-
ing the major sources of variance in transaction latencies: Towards more predictable
databases. arXiv preprint arXiv:1602.01871, 2016.

[85] Ling Huang, Jinzhu Jia, Bin Yu, Byung-Gon Chun, Petros Maniatis, and Mayur
Naik. Predicting execution time of computer programs using sparse polynomial re-
gression. In Advances in neural information processing systems, pages 883–891, 2010.

[86] IBM Corporation. Db2 workload management guide and reference.
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_10.1.0/com.ibm.

db2.luw.admin.wlm.doc/com.ibm.db2.luw.admin.wlm.doc-gentopic1.html,
2013. Accessed: Dec. 2020.

106

https://support.hpe.com/hpsc/doc/public/display?sp4ts.oid=3725908
https://support.hpe.com/hpsc/doc/public/display?sp4ts.oid=3725908
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_10.1.0/com.ibm.db2.luw.admin.wlm.doc/com.ibm.db2.luw.admin.wlm.doc-gentopic1.html
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_10.1.0/com.ibm.db2.luw.admin.wlm.doc/com.ibm.db2.luw.admin.wlm.doc-gentopic1.html

[87] IBM Corporation. Db2 workload manager. https://www.ibm.com/support/

knowledgecenter/en/SSEPGG_10.1.0/com.ibm.db2.luw.admin.wlm.doc/com.

ibm.db2.luw.admin.wlm.doc-gentopic1.html, 2017. Accessed: Oct. 2017.

[88] Stratos Idreos, Lukas M Maas, and Mike S Kester. Evolutionary data systems. arXiv
preprint arXiv:1706.05714, 2017.

[89] Thomas Ilsche, Marcus Hähnel, Robert Schöne, Mario Bielert, and Daniel Hacken-
berg. Powernightmares: The challenge of efficiently using sleep states on multi-core
systems. In European Conference on Parallel Processing, pages 623–635. Springer,
2017.

[90] Intel. Intel R© xeon R© processor e5-1600/e5-2600/e5-4600 v2 product families,
datasheet - volume one of two. Technical report, 2014. Accessed: Oct. 2020.

[91] Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s Manual,
September 2016.

[92] Yannis E Ioannidis. Query optimization. ACM Computing Surveys (CSUR),
28(1):121–123, 1996.

[93] Canturk Isci, Alper Buyuktosunoglu, Chen-Yong Cher, Pradip Bose, and Margaret
Martonosi. An analysis of efficient multi-core global power management policies:
Maximizing performance for a given power budget. In 2006 39th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO’06), pages 347–358. IEEE,
2006.

[94] Tohru Ishihara and Hiroto Yasuura. Voltage scheduling problem for dynamically
variable voltage processors. In Proceedings of the 1998 international symposium on
Low power electronics and design, pages 197–202, 1998.

[95] Ryan Johnson, Ippokratis Pandis, Nikos Hardavellas, Anastasia Ailamaki, and Babak
Falsafi. Shore-mt: a scalable storage manager for the multicore era. In Proceedings
of the 12th International Conference on Extending Database Technology: Advances
in Database Technology, pages 24–35, 2009.

[96] Robert Kallman, Hideaki Kimura, Jonathan Natkins, Andrew Pavlo, Alexander
Rasin, Stanley Zdonik, Evan PC Jones, Samuel Madden, Michael Stonebraker, Yang
Zhang, et al. H-store: a high-performance, distributed main memory transaction
processing system. Proceedings of the VLDB Endowment, 1(2):1496–1499, 2008.

107

https://www.ibm.com/support/knowledgecenter/en/SSEPGG_10.1.0/com.ibm.db2.luw.admin.wlm.doc/com.ibm.db2.luw.admin.wlm.doc-gentopic1.html
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_10.1.0/com.ibm.db2.luw.admin.wlm.doc/com.ibm.db2.luw.admin.wlm.doc-gentopic1.html
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_10.1.0/com.ibm.db2.luw.admin.wlm.doc/com.ibm.db2.luw.admin.wlm.doc-gentopic1.html

[97] Svilen Kanev, Kim Hazelwood, Gu-Yeon Wei, and David Brooks. Tradeoffs be-
tween power management and tail latency in warehouse-scale applications. In 2014
IEEE International Symposium on Workload Characterization (IISWC), pages 31–
40. IEEE, 2014.

[98] Alexey Karyakin and Kenneth Salem. Dimmstore: memory power optimization for
database systems. Proceedings of the VLDB Endowment, 12(11):1499–1512, 2019.

[99] Harshad Kasture, Davide B. Bartolini, Nathan Beckmann, and Daniel Sanchez. Ru-
bik: Fast analytical power management for latency-critical systems. In Proceedings of
the 48th International Symposium on Microarchitecture, MICRO-48, pages 598–610.
ACM, 2015.

[100] Georgios Keramidas, Vasileios Spiliopoulos, and Stefanos Kaxiras. Interval-based
models for run-time dvfs orchestration in superscalar processors. In Proceedings of
the 7th ACM international conference on Computing frontiers, pages 287–296, 2010.

[101] In Kee Kim, Jacob Steele, Yanjun Qi, and Marty Humphrey. Comprehensive elastic
resource management to ensure predictable performance for scientific applications on
public iaas clouds. In 2014 IEEE/ACM 7th International Conference on Utility and
Cloud Computing, pages 355–362. IEEE, 2014.

[102] Thomas Kissinger, Dirk Habich, and Wolfgang Lehner. Adaptive energy-control for
in-memory database systems. In Proceedings of the 2018 International Conference
on Management of Data, pages 351–364, 2018.

[103] Roger Koenker and Gilbert Bassett Jr. Regression quantiles. Econometrica: journal
of the Econometric Society, pages 33–50, 1978.

[104] Roger Koenker and Kevin F Hallock. Quantile regression. Journal of economic
perspectives, 15(4):143–156, 2001.

[105] Mustafa Korkmaz, Martin Karsten, Kenneth Salem, and Semih Salihoglu. Workload-
aware CPU performance scaling for transactional database systems. In Proceedings
of the 2018 International Conference on Management of Data, pages 291–306, 2018.

[106] Mustafa Korkmaz, Alexey Karyakin, Martin Karsten, and Kenneth Salem. Towards
dynamic green-sizing for database servers. In International Workshop on Accelerat-
ing Data Management Systems Using Modern Processor and Storage Architectures -
ADMS@VLDB, pages 25–36, 2015.

108

[107] Medhat Korna. Estimating percentiles of skewed data. Technical report, DAYTON
UNIV OH RESEARCH INST, 1981.

[108] David Koufaty and Deborah T Marr. Hyperthreading technology in the netburst
microarchitecture. IEEE Micro, 23(2):56–65, 2003.

[109] Pawan Kumar and Rakesh Kumar. Issues and challenges of load balancing techniques
in cloud computing: A survey. ACM Computing Surveys (CSUR), 51(6):1–35, 2019.

[110] Woo-Cheol Kwon and Taewhan Kim. Optimal voltage allocation techniques for
dynamically variable voltage processors. ACM Transactions on Embedded Computing
Systems (TECS), 4(1):211–230, 2005.

[111] Willis Lang, Ramakrishnan Kandhan, and Jignesh M Patel. Rethinking query pro-
cessing for energy efficiency: Slowing down to win the race. IEEE Data Eng. Bull.,
34(1):12–23, 2011.

[112] Willis Lang and Jignesh M Patel. Energy management for mapreduce clusters. Pro-
ceedings of the VLDB Endowment, 3(1-2):129–139, 2010.

[113] Gregor Von Laszewski, Lizhe Wang, Andrew J. Younge, and Xi He. Power-aware
scheduling of virtual machines in dvfs-enabled clusters, in. In Proc. IEEE Int’l Conf.
Cluster Computing, pages 1–10, 2009.

[114] Etienne Le Sueur and Gernot Heiser. Dynamic voltage and frequency scaling: The
laws of diminishing returns. In Proceedings of the 2010 international conference on
Power aware computing and systems, pages 1–8, 2010.

[115] Hyungro Lee, Kumar Satyam, and Geoffrey Fox. Evaluation of production serverless
computing environments. In 2018 IEEE 11th International Conference on Cloud
Computing (CLOUD), pages 442–450. IEEE, 2018.

[116] Jungseob Lee and Nam Sung Kim. Optimizing throughput of power-and thermal-
constrained multicore processors using dvfs and per-core power-gating. In 2009 46th
ACM/IEEE Design Automation Conference, pages 47–50. IEEE, 2009.

[117] Scott T Leutenegger and Daniel Dias. A modeling study of the tpc-c benchmark.
ACM Sigmod Record, 22(2):22–31, 1993.

[118] Jacob Leverich and Christos Kozyrakis. On the energy (in)efficiency of hadoop clus-
ters. SIGOPS Oper. Syst. Rev., 44(1):61–65, 2010.

109

[119] Jacob Leverich and Christos Kozyrakis. Reconciling high server utilization and sub-
millisecond quality-of-service. In Proceedings of the Ninth European Conference on
Computer Systems, pages 1–14, 2014.

[120] Jacob Leverich, Matteo Monchiero, Vanish Talwar, Parthasarathy Ranganathan, and
Christos Kozyrakis. Power management of datacenter workloads using per-core power
gating. IEEE Computer Architecture Letters, 8(2):48–51, 2009.

[121] Chung Laung Liu and James W Layland. Scheduling algorithms for multiprogram-
ming in a hard-real-time environment. Journal of the ACM (JACM), 20(1):46–61,
1973.

[122] Zhen Liu and Don Towsley. Optimality of the round-robin routing policy. Journal
of applied probability, pages 466–475, 1994.

[123] David Lo, Liqun Cheng, Rama Govindaraju, Luiz André Barroso, and Christos
Kozyrakis. Towards energy proportionality for large-scale latency-critical workloads.
ACM SIGARCH Computer Architecture News, 42(3):301–312, 2014.

[124] David Lo, Liqun Cheng, Rama Govindaraju, Luiz André Barroso, and Christos
Kozyrakis. Towards energy proportionality for large-scale latency-critical workloads.
In Proceeding of the 41st Annual International Symposium on Computer Architecu-
ture, ISCA ’14, pages 301–312. IEEE Press.

[125] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ranganathan, and Chris-
tos Kozyrakis. Heracles: Improving resource efficiency at scale. In Proceedings of the
42nd Annual International Symposium on Computer Architecture, pages 450–462,
2015.

[126] José Maŕıa López, José Luis Dı́az, and Daniel F Garćıa. Utilization bounds for edf
scheduling on real-time multiprocessor systems. Real-Time Systems, 28(1):39–68,
2004.

[127] Lin Ma, Dana Van Aken, Ahmed Hefny, Gustavo Mezerhane, Andrew Pavlo, and Ge-
offrey J Gordon. Query-based workload forecasting for self-driving database manage-
ment systems. In Proceedings of the 2018 International Conference on Management
of Data, pages 631–645, 2018.

[128] Eric Masanet, Arman Shehabi, Nuoa Lei, Sarah Smith, and Jonathan Koomey. Recal-
ibrating global data center energy-use estimates. Science, 367(6481):984–986, 2020.

110

[129] David Meisner, Brian T. Gold, and Thomas F. Wenisch. Powernap: Eliminating
server idle power. SIGARCH Comput. Archit. News, 37(1):205–216, 2009.

[130] David Meisner, Christopher M Sadler, Luiz André Barroso, Wolf-Dietrich Weber, and
Thomas F Wenisch. Power management of online data-intensive services. In Com-
puter Architecture (ISCA), 2011 38th Annual International Symposium on, pages
319–330. IEEE, 2011.

[131] Microsoft Corporation. Microsoft sql server resource governor. https://

docs.microsoft.com/en-us/sql/relational-databases/resource-governor/

resource-governor, 2017. Accessed: Oct. 2017.

[132] Asit K Mishra, Joseph L Hellerstein, Walfredo Cirne, and Chita R Das. Towards
characterizing cloud backend workloads: insights from google compute clusters. ACM
SIGMETRICS Performance Evaluation Review, 37(4):34–41, 2010.

[133] Bruce Momjian. PostgreSQL: introduction and concepts, volume 192. Addison-
Wesley New York, 2001.

[134] Barzan Mozafari, Carlo Curino, Alekh Jindal, and Samuel Madden. Performance
and resource modeling in highly-concurrent oltp workloads. In Proceedings of the
2013 acm sigmod international conference on management of data, pages 301–312,
2013.

[135] Barzan Mozafari, Carlo Curino, and Samuel Madden. Dbseer: Resource and perfor-
mance prediction for building a next generation database cloud. In CIDR, 2013.

[136] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Herman Lee,
Harry C Li, Ryan McElroy, Mike Paleczny, Daniel Peek, Paul Saab, et al. Scaling
memcache at facebook. In Presented as part of the 10th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 13), pages 385–398, 2013.

[137] Graham R Nudd, Darren J Kerbyson, Efstathios Papaefstathiou, Stewart C Perry,
John Stuart Harper, and Daniel V Wilcox. Pace—a toolset for the performance
prediction of parallel and distributed systems. The International Journal of High
Performance Computing Applications, 14(3):228–251, 2000.

[138] Oracle Corporation. Managing resources with oracle database resource manager.
https://docs.oracle.com/database/121/ADMIN/dbrm.htm, 2017. Accessed: Oct.
2017.

111

https://docs.microsoft.com/en-us/sql/relational-databases/resource-governor/resource-governor
https://docs.microsoft.com/en-us/sql/relational-databases/resource-governor/resource-governor
https://docs.microsoft.com/en-us/sql/relational-databases/resource-governor/resource-governor
https://docs.oracle.com/database/121/ADMIN/dbrm.htm

[139] Pekka Pääkkönen and Daniel Pakkala. Reference architecture and classification of
technologies, products and services for big data systems. Big data research, 2(4):166–
186, 2015.

[140] Steven Pelley, David Meisner, Thomas F Wenisch, and James W VanGilder. Under-
standing and abstracting total data center power. In Workshop on Energy-Efficient
Design, volume 11, pages 1–6, 2009.

[141] Pivotal Corporation. Greenplum workload manager. https://gpcc.docs.pivotal.
io/220/gp-wlm/topics/gpwlm-docs.html, 2017. Accessed: Oct. 2017.

[142] Danica Porobic, Ippokratis Pandis, Miguel Branco, Pınar Tözün, and Anastasia
Ailamaki. Oltp on hardware islands. arXiv preprint arXiv:1208.0227, 2012.

[143] Iraklis Psaroudakis, Thomas Kissinger, Danica Porobic, Thomas Ilsche, Erietta
Liarou, Pınar Tözün, Anastasia Ailamaki, and Wolfgang Lehner. Dynamic fine-
grained scheduling for energy-efficient main-memory queries. In Proceedings of the
Tenth International Workshop on Data Management on New Hardware, DaMoN ’14,
pages 1:1–1:7. ACM, 2014.

[144] Waleed Reda, Marco Canini, Lalith Suresh, Dejan Kostić, and Sean Braithwaite.
Rein: Taming tail latency in key-value stores via multiget scheduling. In Proceedings
of the Twelfth European Conference on Computer Systems, pages 95–110, 2017.

[145] John Roach. Microsoft finds underwater datacenters are reliable, practical and use
energy sustainably, 2020.

[146] Barry Rountree, David K Lowenthal, Martin Schulz, and Bronis R De Supinski.
Practical performance prediction under dynamic voltage frequency scaling. In 2011
International Green Computing Conference and Workshops, pages 1–8. IEEE, 2011.

[147] Barry Rountree, David K Lownenthal, Bronis R De Supinski, Martin Schulz, Vin-
cent W Freeh, and Tyler Bletsch. Adagio: making dvs practical for complex hpc
applications. In Proceedings of the 23rd international conference on Supercomputing,
pages 460–469. ACM, 2009.

[148] Robert Schöne, Daniel Molka, and Michael Werner. Wake-up latencies for processor
idle states on current x86 processors. Computer Science-Research and Development,
30(2):219–227, 2015.

112

https://gpcc.docs.pivotal.io/220/gp-wlm/topics/gpwlm-docs.html
https://gpcc.docs.pivotal.io/220/gp-wlm/topics/gpwlm-docs.html

[149] Eric Schurman and Jake Brutlag. The user and business impact of server delays,
additional bytes, and http chunking in web search. In Velocity Web Performance
and Operations Conference. oreilly, 2009.

[150] Rathijit Sen and David A. Wood. Pareto governors for energy-optimal computing.
ACM Trans. Archit. Code Optim., 14(1):6:1–6:25, 2017.

[151] Ilya Sharapov, Robert Kroeger, Guy Delamarter, Razvan Cheveresan, and Matthew
Ramsay. A case study in top-down performance estimation for a large-scale parallel
application. In Proceedings of the eleventh ACM SIGPLAN symposium on Principles
and practice of parallel programming, pages 81–89, 2006.

[152] Arman Shehabi, Sarah Smith, Dale Sartor, Richard Brown, Magnus Herrlin,
Jonathan Koomey, Eric Masanet, Nathaniel Horner, Inês Azevedo, and William
Lintner. United states data center energy usage report. Technical report, Lawrence
Berkeley National Lab.(LBNL), Berkeley, CA (United States), 2016.

[153] Rekha Singhal and Manoj Nambiar. Predicting sql query execution time for large
data volume. In Proceedings of the 20th International Database Engineering & Ap-
plications Symposium, pages 378–385, 2016.

[154] Sukhdeep Sodhi, Jaspal Subhlok, and Qiang Xu. Performance prediction with skele-
tons. Cluster Computing, 11(2):151–165, 2008.

[155] Leonid B Sokolinsky. Survey of architectures of parallel database systems. Program-
ming and Computer Software, 30(6):337–346, 2004.

[156] Vasileios Spiliopoulos, Stefanos Kaxiras, and Georgios Keramidas. Green governors:
A framework for continuously adaptive dvfs. In Green Computing Conference and
Workshops (IGCC), 2011 International, pages 1–8. IEEE, 2011.

[157] Vaidyanathan Srinivasan, Gautham R Shenoy, Srivatsa Vaddagiri, Dipankar Sarma,
and Venkatesh Pallipadi. Energy-aware task and interrupt management in linux. In
Ottawa Linux Symposium, 2008.

[158] Standard Performance Evaluation Corporation(SPEC). Power and Performance
Benchmark Methodology V2.1. https://www.spec.org/power/docs/SPEC-Power_
and_Performance_Methodology.pdf, November 2012. Accessed: Feb. 2017.

[159] Michael Stonebraker and Ariel Weisberg. The voltdb main memory dbms. IEEE
Data Eng. Bull., 36(2):21–27, 2013.

113

https://www.spec.org/power/docs/SPEC-Power_and_Performance_Methodology.pdf
https://www.spec.org/power/docs/SPEC-Power_and_Performance_Methodology.pdf

[160] Bo Su, Joseph L. Greathouse, Junli Gu, Michael Boyer, Li Shen, and Zhiying Wang.
Implementing a leading loads performance predictor on commodity processors. In
2014 USENIX Annual Technical Conference (USENIX ATC 14), Philadelphia, PA,
June 2014. USENIX Association.

[161] Bo Su, Junli Gu, Li Shen, Wei Huang, Joseph L Greathouse, and Zhiying Wang.
Ppep: Online performance, power, and energy prediction framework and dvfs space
exploration. In 2014 47th Annual IEEE/ACM International Symposium on Microar-
chitecture, pages 445–457. IEEE, 2014.

[162] Teradata Corporation. Teradata workload manager. http://www.teradata.com/

products-and-services/workload-management, 2017. Accessed: Oct. 2017.

[163] Dimitris Tsirogiannis, Stavros Harizopoulos, and Mehul A Shah. Analyzing the
energy efficiency of a database server. In Proceedings of the 2010 ACM SIGMOD
International Conference on Management of data, pages 231–242, 2010.

[164] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden.
Speedy transactions in multicore in-memory databases. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles, pages 18–32, 2013.

[165] EFI Unified. Advanced configuration and power interface specification. https://

uefi.org/sites/default/files/resources/ACPI_6_3_final_Jan30.pdf, 2016.
Accessed: Oct. 2020.

[166] EFI Unified. Advanced configuration and power interface specification, 2016.

[167] Rahul Urgaonkar, Ulas C Kozat, Ken Igarashi, and Michael J Neely. Dynamic
resource allocation and power management in virtualized data centers. In 2010
IEEE Network Operations and Management Symposium-NOMS 2010, pages 479–
486. IEEE, 2010.

[168] Ashish Vulimiri, Philip Brighten Godfrey, Radhika Mittal, Justine Sherry, Sylvia
Ratnasamy, and Scott Shenker. Low latency via redundancy. In Proceedings of the
ninth ACM conference on Emerging networking experiments and technologies, pages
283–294, 2013.

[169] Jons-Tobias Wamhoff, Stephan Diestelhorst, Christof Fetzer, Patrick Marlier, Pascal
Felber, and Dave Dice. The {TURBO} diaries: Application-controlled frequency scal-
ing explained. In 2014 {USENIX} Annual Technical Conference ({USENIX}{ATC}
14), pages 193–204, 2014.

114

http://www.teradata.com/products-and-services/workload-management
http://www.teradata.com/products-and-services/workload-management
https://uefi.org/sites/default/files/resources/ACPI_6_3_final_Jan30.pdf
https://uefi.org/sites/default/files/resources/ACPI_6_3_final_Jan30.pdf

[170] Ted J Wasserman, Patrick Martin, David B Skillicorn, and Haider Rizvi. Developing
a characterization of business intelligence workloads for sizing new database systems.
In Proceedings of the 7th ACM International Workshop on Data Warehousing and
OLAP, pages 7–13, 2004.

[171] Mark Weiser, Brent Welch, Alan Demers, and Scott Shenker. Scheduling for reduced
CPU energy. In Mobile Computing, pages 449–471. Springer, 1994.

[172] Neil H. E. Weste and David Money Harris. CMOS VLSI design: a circuits and
systems perspective. Pearson India, 2015.

[173] Michael Widenius, David Axmark, and Kaj Arno. MySQL reference manual: docu-
mentation from the source. ” O’Reilly Media, Inc.”, 2002.

[174] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan
Thesing, David Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heckmann,
Tulika Mitra, et al. The worst-case execution-time problem—overview of methods
and survey of tools. ACM Transactions on Embedded Computing Systems (TECS),
7(3):1–53, 2008.

[175] Qiang Wu, Qingyuan Deng, Lakshmi Ganesh, Chang-Hong Hsu, Yun Jin, San-
jeev Kumar, Bin Li, Justin Meza, and Yee Jiun Song. Dynamo: facebook’s data
center-wide power management system. In Computer Architecture (ISCA), 2016
ACM/IEEE 43rd Annual International Symposium on, pages 469–480. IEEE, 2016.

[176] Wentao Wu, Yun Chi, Hakan Haćıgümüş, and Jeffrey F Naughton. Towards predict-
ing query execution time for concurrent and dynamic database workloads. Proceed-
ings of the VLDB Endowment, 6(10):925–936, 2013.

[177] Wentao Wu, Yun Chi, Shenghuo Zhu, Junichi Tatemura, Hakan Hacigümüs, and
Jeffrey F Naughton. Predicting query execution time: Are optimizer cost models
really unusable? In 2013 IEEE 29th International Conference on Data Engineering
(ICDE), pages 1081–1092. IEEE, 2013.

[178] Wentao Wu, Xi Wu, Hakan Hacıgümüş, and Jeffrey F Naughton. Uncertainty aware
query execution time prediction. arXiv preprint arXiv:1408.6589, 2014.

[179] Jing Xu and Jose A. B. Fortes. Multi-objective virtual machine placement in vir-
tualized data center environments. In Proceedings of the 2010 IEEE/ACM Int’L
Conference on Green Computing and Communications & Int’L Conference on Cy-
ber, Physical and Social Computing, pages 179–188, 2010.

115

[180] Z. Xu, Y. C. Tu, and X. Wang. Exploring power-performance tradeoffs in database
systems. In 2010 IEEE 26th International Conference on Data Engineering (ICDE
2010), pages 485–496, 2010.

[181] Zichen Xu, Xiaorui Wang, and Yi cheng Tu. Power-aware throughput control for
database management systems. In Proceedings of the 10th International Conference
on Autonomic Computing (ICAC 13), pages 315–324, 2013.

[182] Frances Yao, Alan Demers, and Scott Shenker. A scheduling model for reduced CPU
energy. In Proceedings of IEEE 36th annual foundations of computer science, pages
374–382. IEEE, 1995.

[183] Kai-Hau Yeung, Kam-Wa Suen, and Kin-Yeung Wong. Least load dispatching algo-
rithm for parallel web server nodes. IEE Proceedings-Communications, 149(4):223–
226, 2002.

[184] Sergey Zhuravlev, Juan Carlos Saez, Sergey Blagodurov, Alexandra Fedorova, and
Manuel Prieto. Survey of energy-cognizant scheduling techniques. IEEE Transactions
on Parallel and Distributed Systems, 24(7):1447–1464, 2012.

116

APPENDICES

117

Appendix A

In this appendix, we present the proof of Theorem 3.4.4. As noted in Section 3.4.5, this
theorem shows the relation between the power consumption of POLARIS and YDS [182],
in case two algorithms run over problem instances where each instance has the same set
of requests with arbitrary arrival time and deadline. However, the request sizes in YDS’
problem instance are increased by a factor of a particular value based on the ratio between
the largest and smallest request size.

We assume w.l.o.g., that P and therefore P ′ are contiguous. In other words, for each
time t ∈ [0, d(tn) = d(t′n)] there is a transaction tj, such that a(tj) ≤ t ≤ d(tj). If the P and
P ′ are not contiguous, we can break it into a finite number of contiguous parts and analyze
POLARIS competitiveness in each part and get the same result. We let sP (t) and sY (t)
be the speed of POLARIS’s and YDS’s processors at time t when executing P and P ′,
respectively. There are three types of events that will happen at any point of time. Either
a new transaction arrives, POLARIS or YDS completes a transaction, or an infinitesimal
dt amount of time elapses. We use the same potential function φ(t) as in reference (defined
momentarily). We will show that:

(1) φ(t) is 0 at time t and at the end of the final transaction.

(2) φ(t) does not increase as a result of a task arrival or a completion of a task by
POLARIS or YDS.

(3) At any time t between arrival events the following inequality holds:

sP (t)α +
dφ(t)

dt
≤ ααsαY (A.1)

118

Note that if these conditions hold, integrating equation A.1 between each arrival events
and summing gives:

Pow[POLARIS(P)] ≤ ααPow[Y DS(P ′)].

.

We next define φ(t) and prove that all three conditions hold. Let sPna(t) (for POLARIS
no arrival) denote the speed at which POLARIS would be executing if no new tasks were
to arrive after the current time. By Lemma 3.4.1 we proved that when no tasks arrive
POLARIS’ behavior is identical to OA, which simply executes YDS on the transactions
on its queue. Note POLARIS may have modified its queue to be T or T ′ in the latest
arrival event prior to current time but after it finalizes its queue, it simply executes YDS
on the transactions on its queue (recall Lemma 3.4.1). Throughout the proof we denote the
current time always as t0. Let CI1, ..., CIk be POLARIS’s current critical intervals (note
that k will change over time) and let ti be the end of critical interval CIi. Let wP (t, t′) and
wY (t, t′) be the unfinished work that POLARIS and YDS have on their queue at t0 with
deadlines in interval (t, t′]. Therefore, assuming that no new tasks arrive, at time t, where

ti < t ≤ ti+1, POLARIS has a planned speed sPna(t) = den(CIi) = wP (ti,ti+1)
ti+1−ti . In particular

note that sPna(ti) is the planned speed of POLARIS at time ti when critical interval CIi
begins and the processor speed remains the same until CIi+1 begins.

We next make a simple observation about sPna(t). Since POLARIS runs YDS on the
transactions of its queue by considering their arrival times as the current time, the density
of each critical interval is a non-increasing sequence. That is, when no new transactions
arrive, POLARIS has a planned processor speed that decreases (or stays the same) over
time, i.e. sPna(ti) ≥ sPna(ti+1) for all i. We refer the reader to reference [21] for a formal
proof of this observation (proved for OA).

The potential function we use is the following:

φ(t) = α
∑
i≥0

sPna(ti)
α−1(wP (ti, ti+1)− αwY (ti, ti+1))

We next show that claims (1), (3), and (2) are true, in that order.

Proof of claim (1): First observe that at time 0 and after the final transaction ends
(call tmax), both algorithms have empty queues so all wP and wY values are 0 so φ(0) and
φ(tmax) are 0, so claim (1) holds.

Proof of claim (3): This part of the analysis is identical to the analysis presented by
Bansal et al [21] for OA.

119

We need to show that when no transactions arrive in the next dt time equation A.1
holds. Notice that when no transactions arrive in the next dt time, sPna(ti) remains fixed
for each i and YDS executes at the constant speed of sY (t0). Therefore:

sPna(t0)
α − ααsY (t0)

α +
d

dt
(φ(t)) ≤ 0 (A.2)

Let’s first analyze how dφ(t)
dt

changes in the next dt time. Notice that POLARIS will be
working at one of the transactions in interval (t0, t1] at speed sPna(t0), so wP (t0, t1) will
decrease at rate sPna and other wP (ti, ti+1) remain unchanged. YDS will be running one
transaction tY DS at speed sY (t0). W.l.o.g., let tY DS be in interval (tk, tk+1]. So wY (tk, tk+1)

will decrease at rate sY (t0) and all other wY (ti, ti+1) will remain the same. Therefore dφ(t)
dt

is decreasing at a rate:

dφ(t)

dt
= α(sPna(t0)

α−1(−sPna(t0))− αsPna(tk)α−1(−sY (t0)))

= −αsPna(t0)α + α2sPna(tk)
α−1(sY (t0))

Substituting this into equation A.2 and recalling the observation we made above that
sPna(ti) are a decreasing sequence, gives us:

(1− α)sPna(t0)
α + α2sPna(t0)

α−1sY (t0)− αα ≤ 0

Let z = sPna(t0)
sY (t0)

. Note we assumed w.l.o.g. that P and P ′ are contiguous so both POLARIS
and YDS will always be working on a transaction, so z ≥ 0. Substituting z into the above
equation gives us:

f(z) = (1− α)zα + α2zα−1 − αα ≤ 0

By looking at the value f(0), f(∞) and the derivative of f , one can show that f(z) is
indeed less than or equal to 0 for all z ≥ 0. completing the proof. We refer the reader to
reference [21] for the full derivation.

Proof of claim (2): We analyze the changes to φ(t), sP (t) and sY (t) under two possible
events:

Completion of a transaction by YDS and POLARIS: This part of the analysis is the
same as the proof in reference [21]. Notice that the completion of a transaction by YDS
has no effect on the sPna(ti), wP (ti, ti+1), and wY (ti, ti+1) for all i, so does not increase
φ(t). Similarly the completion of a transaction by POLARIS has no effect on sPna(ti),
wP (ti, ti+1), and wY (ti, ti+1), it merely shifts in the index in the summation of φ(t) by 1.
This proves partially that claim (2) holds.

120

Arrival of a new transaction: Suppose a new transaction tnew arrives to POLARIS and
t′new arrives to YDS’s queue. Recall that cw(tnew) = w(t′new). Suppose ti < d(tnew) ≤ ti+1.
Here our proof differs from the proof in reference [21] in two ways. First we need to consider
two cases depending on whether tnew is the earliest deadline transaction or not. If tnew has
the earliest deadline then, POLARIS’ adds two transactions to its queue and removes one
from its queue. This behavior does not occur in OA so does not need to be argued when
comparing OA to YDS in reference [21]. Second transactions added to POLARIS’s queue
and YDS’s queue are different. The proof in reference [21] needs to consider only arrival
of same transactions.

We note that the case when tnew does not have the earliest deadline is similar to the
argument in reference [21]. Below we slightly simplify the proof in reference [21].

tnew does not have the earliest deadline: Note that tnew may change POLARIS’s
critical intervals but we think of the changes to the critical intervals a sequence of smaller
changes. Specifically, we view the arrival of tnew and t′new initially as arrivals of new
transactions tnew′ and t′new′ with deadlines d(tnew) and workload of 0. We then increase
tnew′ ’s and t′new′ ’s workloads in steps by some amount x ≤ w(tnew), where the increase
of tnew′ ’s workload by x increases the density of one of POLARIS’s critical interval CIj
from

wP (tj ,tj+1)

(tj+1−tj) to
wP (tj ,tj+1+x)

(tj+1−tj) but does not change the structure of the critical intervals1.

In addition, after we increase t′new’s workload by x, optionally, one of two possible events
occurs:

1. Interval CIj splits into two critical intervals with the same increased density of CIj..

2. Interval CIj merges with one or more critical intervals with the same increased density
of CIj.

In each step we find the minimum amount of x that will result in this behavior, and recurse
on the remaining workload of tnew. We argue that in each recursive step the potential
function does not increase. Once tnew′ ’s workload becomes equal to w(tnew), we have a
final step where we add a workload of w(t′new)−w(tnew) to t′new′ and again argue that this
does not increase the potential function.

Recursive step: This analysis is the same as the recursive step from reference [21]. We
start by noting that after the increase in the density of CIj, the splitting or merging of
critical intervals have no effect on φ(t) because it just increases or decreases the number

1Note that YDS’s critical intervals are irrelevant for our analysis because φ(t) is defined in terms of
POLARIS’s critical intervals.

121

of indices in the summation but does not change the value of φ(t). So we only analyze
increasing the density of CIj by amount of x. In this case, sPna(tj) (or the density of CIj)

increases from
wP (tj ,tj+1)

(tj+1−tj) to
(wP (tj ,tj+1)+x))

(tj+1−tj) . Thus the potential function changes as follows:

α(
(wP (tj, tj+1) + x)

(tj+1 − tj)
)α−1((wP (tj, tj+1) + x)− α(wY (tj, tj+1) + x))−

α(
(wP (tj, tj+1))

(tj+1 − tj)
)α−1(wP (tj, tj+1)− α(wY (tj, tj+1)))

Let q = wP (tj, tj+1), δ = x and r = wY (tj, tj+1) and rearranging the terms we get:

α((q + δ)α−1(q − αr − (α− 1)δ)− qα−1(q − αr))
(tj+1 − tj)α−1

which is nonpositive by Lemma 3.3 in reference [21] when q, r, δ ≥ 0 and α ≥ 1.

Final step: Note that at the end of the recursive step, we added only w(tnew) workload to
t′new′ , so there is still a workload of w(t′new)− w(tnew) to be added to t′new′ to replicate the
addition of t′new. Note however that this can only decrease the potential function because
increasing the weight of t′new′ has no effect on the final sPna and wP (tj, tj+1) values and will
only increase the wY (tj, tj+1) value for the final critical interval CIj (after the recursive
steps) that tnew′ now falls into.

tnew has the earliest deadline: In this case POLARIS changes its queue by adding tnew,
t′cur, and removing tcur. YDS changes its queue by only adding t′new. Note that tnew and
t′cur can be seen as one transaction because they have the same deadline and their total
weight is less than w(t′new). That is because:

w(tnew) + w(t′cur) ≤ w(tnew) + wmax ≤ w(tnew) +
wmaxw(tnew)

wmin

≤ (1 +
wmax
wmin

)w(tnew) = cw(tnew) = w(t′new)

Therefore by the same analysis we gave above we can argue that the addition of tnew and
t′cur to POLARIS’s queue and t′new’s to YDS’s queue does not increase φ(t). We next need
to argue that the removal of tcur from POLARIS’s queue also does not increase φ(t). The
argument is similar to the argument we made when breaking the addition of tnew and t′new
in recursive steps. We can view the removal of a transaction in recursive steps in which
we decrease the workload of tcur by some amount of x that decreases the density of some
critical interval CIj by x. Optionally, after this decrease, CIj can split into two critical

122

intervals with the same decreased density of CIj or merge with one or more critical intervals
with this same density. Note that the merging or splitting has no effect on the value of
φ(t) because it just increases or decreases the number of indices in the summation but does
not change the value of φ(t). These operations only change the indices in the summation
of φ(t). Note also that decreasing the density of CIj cannot increase φ(t) because it can
only decrease sPna(tj), decrease wP (tj, tj+1) and does not change the other wP (ti, ti+1)’s.
Similarly it does not change any of wY (ti, ti+1) because we are not altering YDS’s queue,
completing the proof.

123

Appendix B

This Appendix provides details about the PerformanceBaseline and EnergyBaseline used
in the PLASM experiments presented in Section 4.6.

B.1 PerformanceBaseline

The objective of the PerformanceBaseline is to ensure that transaction deadlines are met,
regardless of power consumption. All CPU cores are set to run at peak frequency, and
global routing is used for request distribution. The centralized global queue prioritizes the
waiting requests according to EDF.

By using peak speed, the PerformanceBaseline avoids failures that result from running
transactions too slowly, e.g., because of misprediction of the transaction execution time
in a scheduling algorithm like POLARIS. By using a centralized global request queue, the
PerformanceBaseline also avoids failures that can result in non-preemptive systems from
short-after-long request arrival patterns. That is, if a small request arrives in an empty
wait queue right after the worker starts running a large request, the small request may fail
no matter how fast the CPU core is running because a non-preemptive must complete the
long request before starting the short one. Such a short-after-long pattern is represented
in Figure B.1. In Figure B.1 (a), the CPU runs at peak frequency(dashed line). When
the small request arrives, as shown in Figure B.1 (b), even though the processor keeps
running at peak speed(dashed line), it is not possible to complete both requests within
their deadlines.

124

Figure B.1: Short request after running a long request. We use the repre-
sentation in Figure 3.6. (a) shows request 1 arrives to an idle worker and
the worker immediately executes it. POLARIS sets a speed level lower
than the peak speed.(b) shows that, right after the execution of request
1 starts, a smaller request(request 2) arrives to the system. Because of
the non-preemptive environment, Request 2 has to wait until Request 1
is completed. Therefore POLARIS increases to the peak speed, which is
not sufficient to finish Request 2 within its deadline.

B.2 EnergyBaseline

The objective of the EnergyBaseline is to accommodate the offered transaction load using
a little power as possible, without regard for transaction deadlines. Like the Performance-
Baseline, the EnergyBaseline uses a global request queue and the waiting requests are
prioritized according to EDF. However, instead of setting the cores to run at their max-
imum frequency, the EnergyBaseline sets them to run at the lowest frequency that will
accommodate the workload. The question we need to answer here is how to determine
that frequency.

Figure B.2 shows the failure rates for scheduler with a global EDF-ordered request
queue and all cores set to run a fixed frequency, as a function of offered load (TPC-C
transaction request rate). The figure shows results for 5 different core frequency settings,
covering the full range of frequencies available on our test system’s processors. As shown
in the figure, for each frequency, our test system saturates at a particular load level, and
its failure rate gets close to 100%. For example, at 1.6 GHz, the system can sustain an
offered load level up to 15000 TPS, whereas 2.4 GHz can handle a load level up to 21000
TPS.

Figure B.3 shows power consumption for the same experiments reported in Figure B.2.

125

10000 12500 15000 17500 20000 22500 25000 27500
Offered Load (TPS)

0

20

40

60

80

100
Fa

ilu
re

 R
at

e
(%

)

1.2 GHz
1.6 GHz
2.0 GHz
2.4 GHz
2.8 GHz

Figure B.2: Failure rate of EnergyBaseline

12000 14000 16000 18000 20000 22000 24000
Offered Load (TPS)

100

120

140

160

180

200

A
ve

ra
ge

 P
ow

er
(W

at
t)

1.2 GHz
1.6 GHz
2.0 GHz
2.4 GHz
2.8 GHz
EnergyBaseline

Figure B.3: EnergyBaseline power frontlines

126

At each frequency setting, power consumption increases with offered load until the system
reaches saturation, and which point it levels off since system throughput stops increasing.

In Figure B.3, we marked the saturation point for each frequency using a black dot. For
example, for 1.6GHz, the system saturates at about 14000 TPS, while consuming about
125 Watts. This represents the minimum possible power consumption for an offered load of
14000 TPS, since any decrease in frequency would leave the system unable to accommodate
the offered load. The black line connecting these dots represents an estimate of the power
frontier for this workload, representing the minimum power consumption at any offered
load level. The power consumption that we report for the EnergyBaseline in Section 4.6
is this frontier power, for whatever load level is being used in a given experiment. We use
cubic spline [72] interpolation to determine the power frontier between the measured points
(black dots), which is suitable for the relation between frequency and power consumption,
P ∝ fα, where α is typically in the range 1 < α ≤ 3 for server-grade processors.

On processors with a fixed set of available P-States, it should be possible to approximate
the power frontier at any load level by switching processor frequency between two P-
States. For example, to approximate minimum power while accommodating an offered
load of 16000 TPS, we can switch the processor between 1.6 GHz and 2.0 GHz. The
power-optimal way of doing such switching is to switch between at most two consecutive
frequency levels [110, 94]. We did not implement this switching for our EnergyBaseline.
Instead, we report spline-interpolated power values for load levels in between the measured
points on the power frontier.

127

	List of Tables
	List of Figures
	Introduction
	Latency Critical Data Systems
	Thesis Organisation and Research Contribution

	Background
	CPU Power Dissipation
	Dynamic Voltage and Frequency Scaling
	Power Gating

	ACPI
	C-States
	P-States
	Power Control

	Single-Processor Energy Aware Transaction Scheduler
	Overview
	POLARIS
	The POLARIS Algorithm

	Execution Time Estimation
	Theory & Competitive Ratio Analysis
	Standard Model
	Yao-Demers-Schenker (YDS)
	Online Preemptive Algorithms
	OA vs. POLARIS
	Competitive Ratio of POLARIS
	Discussion of Competitive Ratio Analysis

	POLARIS Prototype
	Evaluation
	Methodology
	Results: Medium Load
	Results: Effect of Load
	Results: Time-Varying Load
	Results: Workload Differentiation
	POLARIS Component Analysis

	Conclusion

	Multi-Processor Energy Aware Scheduling
	Overview
	Related Work
	Allocation
	Empirical Analysis of Processor Allocation Strategies

	Routing
	Does Routing Matter?

	PLASM
	An Ideal Router
	FLARE

	Evaluation
	Methodology
	Baselines
	Results: Medium Load
	Results: Effect of Load
	Results: FLARE Component Analysis

	Conclusion

	Execution Time Estimation
	Overview
	Estimator Properties
	Conservative
	Tunable
	Frequency Monotonic
	Lightweight

	Related Work
	POLARIS Estimators
	Per-Frequency Mean
	Per-Frequency Percentile
	Linear Regression
	Shifted Linear Regression
	Quantile Regression

	Evaluation
	Impact of Conservative Estimation
	How Conservative?
	Characterization of Estimates

	Conclusion

	Related Work
	Cluster Level Energy Efficiency
	Server-Level Energy Efficiency
	Energy Efficiency in Database Management Systems

	Conclusions & Future Work
	Conclusions
	Future Work

	References
	APPENDICES
	
	
	PerformanceBaseline
	EnergyBaseline

