7,174 research outputs found

    System configuration and executive requirements specifications for reusable shuttle and space station/base

    Get PDF
    System configuration and executive requirements specifications for reusable shuttle and space station/bas

    CellSim: a validated modular heterogeneous multiprocessor simulator

    Get PDF
    As the number of transistors on a chip continues increasing the power consumption has become the most important constraint in processors design. Therefore, to increase performance, computer architects have decided to use multiprocessors. Moreover, recent studies have shown that heterogeneous chip multiprocessors have greater potential than homogeneous ones. We have built a modular simulator for heterogeneous multiprocessors that can be configure to model IBM's Cell Processor. The simulator has been validated against the real machine to be used as a research tool.Peer ReviewedPostprint (published version

    Dynamic resource allocation in a hierarchical multiprocessor system: A preliminary study

    Get PDF
    An integrated system approach to dynamic resource allocation is proposed. Some of the problems in dynamic resource allocation and the relationship of these problems to system structures are examined. A general dynamic resource allocation scheme is presented. A hierarchial system architecture which dynamically maps between processor structure and programs at multiple levels of instantiations is described. Simulation experiments were conducted to study dynamic resource allocation on the proposed system. Preliminary evaluation based on simple dynamic resource allocation algorithms indicates that with the proposed system approach, the complexity of dynamic resource management could be significantly reduced while achieving reasonable effective dynamic resource allocation

    C-MOS array design techniques: SUMC multiprocessor system study

    Get PDF
    The current capabilities of LSI techniques for speed and reliability, plus the possibilities of assembling large configurations of LSI logic and storage elements, have demanded the study of multiprocessors and multiprocessing techniques, problems, and potentialities. Evaluated are three previous systems studies for a space ultrareliable modular computer multiprocessing system, and a new multiprocessing system is proposed that is flexibly configured with up to four central processors, four 1/0 processors, and 16 main memory units, plus auxiliary memory and peripheral devices. This multiprocessor system features a multilevel interrupt, qualified S/360 compatibility for ground-based generation of programs, virtual memory management of a storage hierarchy through 1/0 processors, and multiport access to multiple and shared memory units

    A fault-tolerant multiprocessor architecture for aircraft, volume 1

    Get PDF
    A fault-tolerant multiprocessor architecture is reported. This architecture, together with a comprehensive information system architecture, has important potential for future aircraft applications. A preliminary definition and assessment of a suitable multiprocessor architecture for such applications is developed

    Validation of a fault-tolerant multiprocessor: Baseline experiments and workload implementation

    Get PDF
    In the future, aircraft must employ highly reliable multiprocessors in order to achieve flight safety. Such computers must be experimentally validated before they are deployed. This project outlines a methodology for validating reliable multiprocessors. The methodology begins with baseline experiments, which tests a single phenomenon. As experiments progress, tools for performance testing are developed. The methodology is used, in part, on the Fault Tolerant Multiprocessor (FTMP) at NASA-Langley's AIRLAB facility. Experiments are designed to evaluate the fault-free performance of the system. Presented are the results of interrupt baseline experiments performed on FTMP. Interrupt causing exception conditions were tested, and several were found to have unimplemented interrupt handling software while one had an unimplemented interrupt vector. A synthetic workload model for realtime multiprocessors is then developed as an application level performance analysis tool. Details of the workload implementation and calibration are presented. Both the experimental methodology and the synthetic workload model are general enough to be applicable to reliable multiprocessors beside FTMP

    An abstract machine for parallel graph reduction

    Get PDF
    technical reportAn abstract machine suitable for parallel graph reduction on a shared memory multiprocessor is described. Parallel programming is plagued with subtle race conditions resulting in deadlock or fatal system errors. Due to the nondeterministic nature of program execution the utilization of resources may vary from one run to another. The abstract machine has been designed for the efficient execution of normal order functional languages. The instructions proposed related to parallel activity are sensitive to load conditions and the current utilization of resources on the machine. The novel aspect of the architecture is the very simple set of instructions needed to control the complexities of parallel execution. This is an important step towards building a compiler for multiprocessor machines and to further language research in this area. Sample test programs hand coded in this instruction set show good performance on our 18 node BBN Butterfly as compared to a VAX 8600

    Fault-free validation of a fault-tolerant multiprocessor: Baseline experiments and workoad implementation

    Get PDF
    In the future, aircraft employing active control technology must use highly reliable multiprocessors in order to achieve flight safety. Such computers must be experimentally validated before they are deployed. This project outlines a methodology for doing fault-free validation of reliable multiprocessors. The methodology begins with baseline experiments, which test single phenomenon. As experiments progress, tools for performance testing are developed. This report presents the results of interrupt baseline experiments performed on the Fault-Tolerant Multiprocessor (FTMP) at NASA-Langley's AIRLAB. Interrupt-causing excepting conditions were tested, and several were found to have unimplemented interrupt handling software while one had an unimplemented interrupt vector. A synthetic workload model for realtime multiprocessors is then developed as an application level performance analysis tool. Details of the workload implementation and calibration are presented. Both the experimental methodology and the synthetic workload model are general enough to be applicable to reliable multi-processors besides FTMP
    • …
    corecore