
An Abstract Machine for Parallel 
Graph Reduction 

Lal George 
Gary Lindstrom 

UUCS-89-003 
January, 1989 

1 



An Abstract Machine for Parallel Graph 
Reduction 

Lal George 
Gary Lindstrom 

Department of Computer Science 
University of Utah 

Salt Lake City, Ur 84112 

January 25 , 1989 

2 



Abstract 

An abstract machine suitable for parallel graph reduction on a shared 
memory multiprocessor is described. Parallel programming is plagued 
with subtle race conditions resulting in deadlock or fatal system errors. 
Due to the nondeterministic nature of program execution the utilization 
of resources may vary from one run to another. The abstract machine 
has been designed for the efficient execution of normal order functional 
languages. The instructions proposed related to parallel activity are sen­
sitive to load conditions and the current utilization of resources on the 
machine. The novel aspect of the architecture is the very simple set of 
instructions needed to control the complexities of parallel execution. This 
is an important step towards building a compiler for multiprocessor ma­
chines and to further language researih in this area. Sample test programs 
hand coded in this instruction set shl>w good performance on our 18 node 
BBN Butterfly as compared to a VAX 8600. 

1 Introduction 

We define an abstract machine suitable for parallel graph reduction on a shared 
memory multiprocessor machine. This provides a level of abstraction that is an 
important step towards building a compiler. The machine is intented for an ML 
like language with compound datatypes executed lazily by default. Our interest 
in lazy functional languages for multiprocessors is motivated by several reasons: 

1. Awkward annotations for synchronization such as those found in Flat Con­
current Prolog (FCP) are not required. In FCP over specification could 
result in deadlock and underspecification could result in a runaway unifica­
tion. The synchronization of functional programs is under the jurisdiction 
of the runtime system that blocks or suspends on access to an object that 
is unevaluated or in the process.of being evaluated. The programmer need 
not be aware of such events. 

2. Parallelism in functional programs is obtained from the evaluation of 
strict arguments to functions and the evaluation of anticipatory work (§ 
Section 5) in parallel with mandatory work. The strict arguments to a 
function can be obtained from strictness analysis or user annotations. 
These annotations are much simplier when compared to the future con­
struct of multilisp for example. It is not obvious what expressions should 
have a future construct wrapped around them to obtain efficient execution. 

3. Due to the side effect free nature of functional languages, expressions can 
be executed in parallel without fear of having violated data dependencies. 
Maintaining data dependencies in an optimistic evaluation strategy may 
require the need for rollback in the computation, while an excessive amount 
of communication traffic can be generated in a conservative strategy. 

:,3 



4. Normal order evaluation which is not easily amenable to efficient execution 
on sequential machines turns out to be of great value on parallel machines. 
The producer consumer property afforded by normal order reduction im­
plies that the consumer may begin execution as soon as data has been 
produced by the producer thus generating concurrent activity. 

5. Functional languages are readily amenable to static analysis and program 
transformation which are often non-trivial for imperative languages. 

Since little is known about programming general purpose multiprocessors 
the benefits afforded by functional languages makes them a better starting point 
compared to other alternatives. 

2 Intended Architecture 

It is straightforward to map the abstract machine we propose onto a shared 
memory MIMD machine where the abstract machine is is emulated on each 
node of the processor. We are interested in tightly coupled shared memory 
machines like the switch connected BBN Butterfly or a bus connected Sequent 
multiprocessor! 

3 Source Language 

The abstract machine is intended for a language like ML which is a strongly 
typed functional language with compound datatypes, i.e., types expressed as 
a product and sum of types. The default evaluation strategy is normal order 
implemented via graph reduction. Parallelism is obtained from: 

1. Evaluation of strict arguments to a function. Such information is derived 
from strictness analysis or user annotations. 

2. Evaluation of anticipatory work from the top level print function. 

4 Memory Management 

Since the heap is a shared memory space, migrating tasks is cheap and conve­
nient. Each abstract machine has a segment of the total heap that is local to 
that machine. Accesses to the local segment of the heap is usually faster than 
accesses to nonlocal segments. Each abstract machine makes allocations out of 
its local heap segment and when exhausted will try and allocate from a remote 

1 The distinction between a shared memory machine and a distributed machine is beginning 
to pale. In the extreme one can consider for example the computers connected by the arpa 
net as a shared memory machine where addresses are site + location + offset. 

4 



heap segment. This means that the heap allocation routine must be a critical 
section. Since functional programs tend to be memory intensive this is a bottle 
neck as locking would be required for every allocation. The heap allocation can 
be optimized by locally managing a sufficiently large buffer space allocated out 
of the heap. Test programs showed an improvement of between 7-17%. 

5 Top Level Print 

A functional program compiled with no strictness information or annotations 
may exhibit parallelism from the top level print function. The purpose of the top 
level print function is to perform 10 of the top level expression being evaluated. 
Parallelism is obtained by spawning if possible the remaining components of the 
expression only if they are in unevaluated form. We call this work anticipatory 
work since its need is anticipated. Mandatory work on the other hand is related 
to whatever is currently being printed. Functionally the top level print is defined 
by2 

print (int x) true = {output Xj return true} 
I 

print [xlxs] true = print (spawn xs) (print x true) 

Output x sends the integer represented by x to the output stream. The way 
print is defined above does not yield much parallelism since parallel activity is 
only generated when the second statement of the print definition is matched. 
It would be desirable if the unevaluated subcomponents of xs were evaluated 
in anticipation of their use. In our implementation each task has an exhaus­
tiveness bit that when set indicates that any unevaluated subcomponents may 
be spawned on available processors. ~his is low priority work and is only per­
formed if resources are available. The 'xhaustiveness bit is propagated down to 
the unevaluated components. Figure 1 shows a stream being evaluated where 
each component of the stream is implemented as a fixed delay to represent 
some computation being performed. The only parallelism is that obtained from 
anticipatory work. 

6 Abstract Machine 

The abstract machine is derived from J ohnsson's G-machine[2] but modified for 
parallel execution. The abstract machine running on every node is described by 
the tuple <5, C, G, F, D> where: 

• 5 = evaluation stack or pointers to heap nodes. 

2 Assumes that the only basic types are integers and lists. Trus is easily extended to 
generalised types. int refers to a datatype constructor or tag. 

5 



50 ~ 

45 \ 

40 \ 

T 35 \ 

1 30 \ 
m \ 
e 25 \ 
s 20 ~ e 
c 15 " 10 

.... ... _-
5 - - - - - - - - - - -e 
0 

1 3 5 7 9 11 13 15 

N umber of Processors 

Figure 1: Parallelism from Antic ipatory Work 

• C = code sequence being executed. 

• G = heap space shared by all processors. 

• F = a status register with fields (currently only one!) that get set/ reset 
by specific instruction. 

I 

• D = sequence of return or continua,ionfPoints and saved stack segments. 

• T = task queue. 

The abstract machine is mapped onto each node of the multiprocessor. The 
only component shared among all processors is the heap and task queue. All 
others are local to the node and may reside in its local store. 

7 Function Evaluation 

A task has the following components: 

• TAG -+ A tag value that may either be CLOSURE or BUSY. 

• f -+ A code pointer. 

• we -+ A wait count for synchronization. 

• ne -+ A notification chain consisting of pointers to closure 

• env -+ A pointer to an environment/ argument block. 

6 



There are certain other components that we have omitted for compactness in 
this exposition. These include the exhausti veness bit mentioned in Section 5, 
and a lock bit. 

We use the following conventions when representing the state of the ma­
chine. The evaluation stack will normally be represented by So : "'Sk : ... : Sn 

where So, sk and Sn are references to objects on the heap. The code sequence 
is represented as a list within [ and ]. We will use 1-+ to dereference a pointer. 
Rather than displaying the entire heap, only the references of interest will be 
shown within { and }, and all other references can be assumed to be unchanged. 
A tag with an accent such as Tag will indicate that the tag is locked. Absence 
of the accent would indicate that it mayor may not be locked. 

As in the original G-machine, the S stack is used to cache the arguments of 
a closure and maintain an environment during execution of the closure. Prior to 
the execution ofthe code pointer associated with the closure, the argument block 
is unwound or copied onto the S stack. The state of the machine immediately 
after the unwind would be represented by : 

. l' [1] { So 1-+ BUSY 1 wc nc env < So . S . ",Sn, , 1 
env 1-+ S : "'Sn 

},F,D,T> 

8 Instructions 

The following discussion is motivated by presenting typical programming sit­
uations and the corresponding code generated. A thorough description of the 
instructions related to parallel evaluation is then presented. It will be shown in 
the following sections that the generation and synchronization of parallel activ­
ity can be largely achieved by the use of two instructions, demand and block. 

8.1 Example 1 

There are several situations where the environment needs to be pre-evaluated 
to some degree before some computation can proceed. Consider the merge3 

program below 

1. merge [ ] L = L 

2. merge L [ ] = L 
3. merge (11 as x: :xs) (12 as y: :ys) 

if (x > y) then 
x .. 

else y :: 
merge xs 12 

merge 11 ys 

Before the body of the third definition can be executed it is necessary to pre­
evaluate or demand x and y, since their value is needed in the relational test, 

3:: is infix cons operator 

7 



(x > y). The following scenarios may be present before entering the body of 
statement 3 . 

1. Both x and yare evaluated. In this situation the control should jump 
immediately into the code for the body of the definition. 

2. Both x and yare unevaluated. A simple analysis shows that it is worth­
while to retain the larger computation in the sequential thread of execution 
and spawn off the smaller ones. In this situtation we cannot know which 
is the larger of the two, so we must arbitrarily spawn one off and retain 
the other in the sequential thread of execution. Since both executions 
may block a closure must be built representing the continuation that will 
be notified upon completion of both tasks. The last task to perform the 
notification awakens the continuation. This allows the continuation to be 
executed on any processor that happens to be available. 

3. Only one of x or y is evaluated or under evaluation. In this case the 
unevaluated one is reduced locally. The same comments regarding the 
continuation and notification above apply. 

4. Both x and yare under evaluation. In this case the machine must find some 
other work to do after setting up the proper continuation and notification 
chains. 

In all of the above cases where parallel activity is generated, it may be the 
case that all processors are busy and the task pool T is also full. In this case 
the object demanded must be evaluated inline. This could result in deadlock as 
explained in Section 8.7. 

The code that is generated in this very simple example must be able to 
handle all the cases mentioned above. The code to be executed on our abstract 
machine before entering the body of statement 3 of the merge program is shown 
below. 

set_wtcnt(O, 3); % wait count on redex 3 
Reset..ResrvClsrO; % Reset flag 

push(l, 3) ; % 11 to offset 3 
hd(3); % replace with head of 11 
demand(3); % evaluate 

push(2, 4); % 12 to offset 4 
hd(4) ; % replace with head of 12 
demand(4); % evaluate 

block(S, 2, gJllerge) ; % barrier synchronization 

8 



The subcomponents, x and yare accessed onto locations on the stack and 
demanded. gJllerge is a code pointer for the body of statement 3. 

In general, the nature of code generated has the following structure: 

1. Set the wait count on the root red ex. 

2. Reset flag, F. 

3. One or more occurences of task creation (typically closure building) or 
subcomponent access of a structure, followed by the demand instruction. 

4. Creation of an environment on the top of the stack for the continuation 
followed by the block instruction. 

We do not attempt to describe immediately how the instructions handle and 
all the cases mentioned above. This is deferred to a more thorough rendering 
in Section 8.6 where each instruction is described in detail. In the above code 
sequence we have assumed that the arguments must have been previously evalu­
ated to at least a pair with possibly unevaluated components. Hence we are at 
liberty to access the head without checking for a pair. This sort of information 
can be determined from strictness analysis or user annotations. 

8.2 Example 2 

The same requirements occur when a closure is built representing a delayed com­
putation. The imports to the closure from the outer environment are captured 
in a new environment. The code pointer associated with the closure may need 
to pre-evaluate some of these imports before proceeding. This case is analogous 
to the situation described in example 1. Again it is not difficult to determine 
what needs to be pre-evaluated from static analysis or user annotations. 

8.3 Example 3 

Having evaluated the imports or arguments of a closure we can obtain further 
parallelism by evaluating the strict arguments of functions in parallel. For 
example, consider the fibonnaci function: 

1. 
2. 
3. 

fib 0 
fib 1 

fib n 

1 
1 
fib(n-l) + fib(n-2) 

Since the + is strict in both its arguments, we can do them in parallel. Unlike 
the previous case, we know this time exactly what the parallel computations are, 
namely fib (n - 1) and fib (n - 2). We can thus apply heuristics as to 
which one to spawn off and which to retain in the sequential thread of execution. 
The code generated is similar to that above and would look like: 

9 



set_wtcnt(O, 3); % wait count on redex = 3 
Reset-ResrvClsr(); % reset flag 

push(l, 3) ; % n to offset 3 
mkClosure(fibl, 3); % make closure with n as argument 
demand(3); % evaluate 

push(l, 4) ; % n to offset 4 
mkClosure(fib2, 4); % make closure with n as argument 
demand(4); % evaluate 

block(S, 2, g_add) ; % barrier synchronization 

fi bl computes fib( n - 1), fi b2 computes fib( n - 2) and g_add is a function 
that adds two numbers. In this case it so happens that we have opted to perform 
fib (n-l) in the sequential thread of execution; we could have opted otherwise 
(§Section 8.6). 

We now proceed to describe the instructions used in more detail. 

8.4 SeLwtcnt k v 

Sets the wait count on a closure to a specific value. k is the depth on the S stack 
of the closure and v is the value of the new wait count. 

< So : .. Sk"Sn, [(seLwtcnt k v) I Cj, { Sk 1-+ CLOSURE f WCk nCk enVk }, F, D, T > => 
< So : .. Sk "Sn, [Cj, { Sk 1-+ CLOSURE f v nCk envk }, F, D, T > 

It should be noted that for proper synchronization in the above examples the 
wait count should be set to one more than the number of demand instructions in 
that block; or one more than the number of processes that need to be synchro­
nized. Thus when the wait count is one, all the parallel activity that needs to 
be synchronized has been completed. 

8.5 Reset-ResrvClsr 

This instruction resets the flag associated with the machine. The flag being set 
is used during the synchronization phase to indicate that some work has been 
retained for the sequential thread of execution, (§Section 8.8). 

< S, [(ReseLResrvClsr) I Cj, { G }, F, D, T > => 
< S, [C], { G }, 0, D, T > 

10 



8.6 Demand k 

The demand instruction generates a child task by possibly spawning it off to 
another processor. The offset of the object on the S stack is k. The object 
demanded is assumed to be a child of the root redex. 

Ifthe object being demanded has already been evaluated then the wait count 
we, associated with the root redex is decremented. All operations on the wait 
count are assumed to be performed atomically. Otherwise (else part), the 
redex is locked so that the proper notification can be set up and a case analysis 
performed. whnt is an instruction that checks if its argument is in weak head 
normal form, WHNF4. 

< so: .. Sk : .. Sn, [(demand k) I C], { So I--t BUSY f wc nc env }, F,D, T > =? 
Sk I--t xxx 

it whnf(sk) then 

{
So I--t BUSY f (wc-I) nc env } 

<SO: .. Sk: .. Sn,[C], ,F,D,T> 
Sk I--t xxx 

else 

[

(lack k) : 
< so: .. Sk .. Sn, ~emand* k) I 1 {

So I--t BUSY f wc ne env } F D T> 
, Sk I--t xxx ' , , 

In attempting to lock the object, there is a potential for a race condition 
in which the object may have got evaluated before the lock was obtained. For 
this reason it is important that the lock bit is at the same position on the closure 
and its evaluated form. If it was evaluated we merely decrement the wait count 
atomically as before. 

* { So I--t BUSY f wc nc env } < so: .. Sk .. Sn, [(demand k) I C], _ ,F, D, T > =? 
Sk I--t xxx 

it whnf(sk) then 

{
So I--t BUSY f (wc -1) nc env } < So : .. Sk : .. Sn, [(unlock k) : C], _ , F, D, T > Ik I--t xxx 

If the object is not in WHNF then if it is under evaluation indicated by a 
BUSY tag, we merely set up the notification, decrement the wait count on the 
root redex and unlock the demanded object. 

.. • { So I--t BUSY f we nc env } 
<so ... sk ... sn,[demand kl C], - f ,F,D,T>=? 

Sk I--t BUSY k WCk nCk envk 

4 A object is in weak head normal form if it is a basic type (Le. integer, boolean, char), a 
nullary construct, or a product type with possibly unevaluated components. 

11 



{
So f-+ BUSY f (wc - 1) nc env } 

< so: .. Sk··Sn, [(unlock k) I ej, B-USY f ( ) ,F, D, T > 
Sk f-+ k WCk SO: nCk envk 

If the object being demanded is unevaluated, then we can either retain this 
for the sequential thread of execution or spawn it off to another processor. This 
decision is made on the basis of the flag. If the flag is reset, then it is set to 
the offset of the object being demanded otherwise the latter is spawned off to 
another processor (Section 8.7). 

* { So f-+ BUSY f wc nc env } 
< So: .. Sk··Sn, [demand k I ej, eLO-SURE .f ,0, D, T > => 

Sk f-+ J k WCk nCk envk 

{ 
sof-+BUSY fwcncenv } 

< so: .. Sk··Sn, [(unlock k) I ej, eLO-URE .f ( ) ,k, D, T > 
Sk f-+ S Jk WCk So: nCk envk 

• { So f-+ BUSY f wc nc env } 
< So: .. Sk .. Sn, [demand k I ej, eLO-SUR.f ,k,D,T> => 

Sk f-+ E Jk WCk nCk envk 

[

(unlock k) : 1 { } So f-+ BUSY f we nc env 
< so: .. Sk·.Sn, (spawn k n) I, eO-SURE .f ( ) ,k, D, T > e Sk f-+ L Jk WCk So: nCk enVk 

8.7 Spawn k n 

Spawn tries to enqueue a reference onto the task queue. TrySpawn is a boolean 
function that returns immediately with true if the object could be enqueued 
and :false otherwise. If the object coul4 not be enqueued then the computation 
is performed inline by saving the status of the machine. 

{
So f-+ BUSY f wc nc env } < So : .. Sk .. Sn, [(spawn k n) I ej, ,F, D, T > => 
Sk f-+ xxx 

it (TrySpawn k n) then 

. [ej { So f-+ BUSY f wc nc env < So . .. Sk .. Sn, , 
Sk f-+ xxx 

} ,F,D,(Sk : T) > 

else 

[

(save_machine n) : 
(eval k) : < so : .. s .. s . 

k n, ~estore_machme) I 1 
{So f-+ BUSY f wc nc env 

, Sk f-+ xxx 

Note that saveJllachine saves the status of the machine on the dump D. 
This in practice is a limited resource and the state transition is not as simple 
as indicated above. If the saveJllachine instruction is unsuccessful then the 
machine enters a trapped state where it must persistently try to enqueue the 
object spawned onto the task pool T. It could be the case that all processors are 
in this state which is a deadlock situation. Our implementation uses a simple 

12 

},F,D,T> 



counter to detect deadlock at which point a fatal error is reported. The inline 
evaluation of the object results in a sequential thread of execution based on the 
system load. 

8.8 Block n m f 

The block instruction is where the synchronization of all the parallel activity 
takes place. Control may: 

• Branch directly to the continuation if all the parallel activity has com­
pleted. 

• May continue with some sequential thread of control if such exists 

• Find something else to do. 

n is the current top of the stack, In is the number of arguments for the 
continuation5 and t is the code pointer for the continuation. When the wait 
count on the redex being reduced is 1, then a tail recursion optimization is 
performed to the the function t assuming that the arguments (rn in number) were 
previously created on top of the evaluation stack. As mentioned in Section 8.4 
the wait count must be set to one more than the number of processes being 
synchronized. 

< so: sl: "Sn, [(block n m J) I C], { So 1-+ BUSY g 1 nc env } ,F,D, T > =? 

< So : Sn-m+l : "Sn, [I I C], { So 1-+ BUSY g 0 nc env }, F, D, T > 

When the wait count is not one, then the root red ex is locked to perform 
the appropriate case analysis. 

< So : "Sn, [(block n m J) I C], { So 1-+ BUSY g wc nc env }, F,D, T > =? 

[

(lock 0) : 1 
< So : "Sn, ~lock* n m f) I ,{ So 1-+ BUSY g we ne env }, F, D, T > 

As usual a check must be made after the lock to ensure that the wait count 
has not been reduced to one during the lock attempt. If it has then the root is 
unlocked and the tail recursion optimization performed. 

< So: sl : "Sn, [(block* n m f) I C], { So 1-+ BUSy g 1 nc env }, F,D, T > =? 

[

(unlock 0) 1 
<SO:sn-m+l: .. sn, ~I ,{ sOI-+BUSYgOneenv },F,D,T> 

5We assume that the arguments to the continuation have been built on top of the stacie 

13 



The interesting case is when the wait count is not 1. It is either the case 
that a a closure was reserved to continue the sequential thread of execution 
or all objects that were demanded were under evaluation. We discover this 
information from the flag, F. In either case the wait count is decremented, and 
the continuation built. ! 

< So : s1 : "Sn, [(block" n m 1) I e], { So 1-+ BUSy g k nc env }, F, D, T > => 

< [] [ (unlo~k 0) : ] { So 1-+ BUSy f (k - 1) nc envnew }, F, D, T > 
, (cont2nue) Ie' envnew 1-+ Sn-m+l : "Sn 

If the flag is still reset then we go back to the top level eval which fetches 
another task from the task pool T. This means that nothing was kept for the 
sequential thread of execution. 

< So : s1 : "Sn, [(continue) I e], { So 1-+ BUSY g k nc env }, 0, D, T > => 
< [],[e],{ sOI-+BUSYgkncenv },F,D,T> 

If the flag is set the the top of the evaluation stack is replaced with the object 
demanded and a return to the top level eval is performed which proceeds with 
the unwind, etc. 

< So: .. Sk: "Sn, [(continue) I el, { So 1-+ BUSY g k nc env } ,k,D,T > => 
< Sk, [e], { So 1-+ BUSY g k nc env }, k, D, T > 

9 Optimizations 

It is possible to optimize the basic model to improve locality and memory usage. 

9.1 Data Caching 

ML objects are typically represented as boxed or un boxed structures. An unboxed 
structure is used to represent nullary constructors and small integers that can 
be represented in a word of the machine (in our case 32 bits). Boxed structures 
are used to represent product types and have a descriptor (32 bits) followed 
by a vector of the component types. If all references are to word boundaries 
and all allocation are multiples of a word, then the least significant two bits 
of a reference will always be zero. These can be used as a tag to discriminate 
between refrences, boxed and unboxed structures. This further means that 
unboxed structures can be created on the S stack, rather than on the heap as 
in the traditional G-machine. The advantages are: 

• Reduction in memory requirements since unboxed objects may be built 
on the S stack. 

14 



T 
I 

m 
e 
s 
e 
c 

30 

27 
24 
21 
18 
15 
12 

9 
6 

3 

0 
0 

" , ., ' , ' , " 

3 

, ' , ' 
" ,0.... .... 

6 

-

o Without Data Caching 
• With Data Caching 

--::-0 ___ _ 
.... ----=~=----El ----e 

9 12 15 

N umber of Processors 

Figure 2: Sieve Program with Data Caching 

• When a closure is created an argument block is formed by grouping re­
frences on the S stack. If data ca<lhing is used, then the data goes directly 
into the argument block and wlien unwound on some remote processor 
becomes a local access. This should be compared to exporting a global 
reference in the argument block. On a shared memory machine this results 
in less switch traffic. 

The main drawback is that a check now has to be made each time a reference 
is followed from the S stack. 

All programs tested showed an improvement ranging from 11 - 20 % keeping 
everything else constant (see Figures 9.1 and 9.1). 

9.2 Argument Block Reusage 

When a continuation is created a new argument block is created on the heap 
as indicated by the transition in Section 8.6. If the old argument block can 
accommodate the new, then it can be reused. While this saves on the memory 
used, there is an advantage to creating a new environment block; namely the 
new environment will be allocated on the local processor and the subseqent 
writes will be local. 

9.3 Two Level Scheduling 

To avoid contention on the centralized task pool, a small local task pool can 
be maintained. Thus excess work spills over from the local task pool to the 

15 



30 
27 
24 

r 21 
1 18 

m 
15 e 

s 12 e 
c 9 

6 

3 
0 

0 

, , 
-- , , ,,, 

" " , "-

" " , 0.. 

' .... 

3 6 

o Without Data Caching 
• With Data Caching 

'0-

----

9 

_-G----_-E> - .... ---- ... 

12 15 

N umber of Processors 

Figure 3: 8 Queens Program with Data Caching 

centralized task pool. Search for work begins at the local task pool and ends 
at the centralized task pool. We have found in the examples tried that a local 
task pool greater than 1 degrades the performance. Figure 9.3 and 9.3 shows 
the results obtained. 

10 Future Directions 

• The above implementation was developed in the context of the Chrysalis 
operating system on the BBN Butterfly. It will be interesting to see how 
this would turn out in the context of the Mach[l] operating system. 

• Under Mach it should be possible to kill unwanted tasks by sending them 
a signal. It should be possible to implement a model for speculative com­
putation. 

• It was observered that the node on which the task pool resided performed 
approximately half the number of reductions that the other nodes were 
able to do. This may suggest that a distributed task pool may work a 
little better, with a load balancing scheme to migrate tasks around. 

11 Concluding Remarks 

In this Chapter we have described an abstract machine and some simple instruc­
tions that control the complexities of parallel execution. This is an important 

16 



30 .., 
27 "- a Two Level Schedule 

24 
"-

\. 
• Centralized Task Pool 

T 21 

1 18 
m 

15 e 

\. 

G.. 
, 

"-
, 

"- '. .... 
"-

"-s 12 e "-
\. ... -

c 9 
6 

-0_ - ___ n _ 

~ ----€) 

- .... _-- - ... Go. 

3 VAX 8600, Std ML of NJ, vO.22 -----------------------------o 
o 3 6 9 12 15 

N umber of Processors 

Figure 4: Two Level Scheduling and the Sieve Program 

21.--------r------------------------------------~ 
~~ 

18 ~ o Two Level Scheduling 
... 

15 , 

" 
• Centralized Task Pool 

T , 
'.--

rh 12 
e 
s 
e 
c 

9 
... ...... ... ... _- --

VAX 8600 Std ML of NJ vO.22 .... - - - - ... 
3r-----~-----~----------------

6 

O+--------r--------r-------,--------.--------.-~ 
o 3 6 9 12 15 

N umber of Processors 

Figure 5: Two Level Schedule and the 8 Queens Program 

17 



step towards building a compiler for multiprocessor machines. Figures 9.3 and 9.3 
show the performance against the Standard ML of New Jersey compiler, run­
ning on a VAX 8600. Section 12 shows the functional specification of the sieve 
program for prime numbers. At first sight it is not obvious where the major 
parallelism is or how it should be exploited or if parallelism exists in the first 
place or that the performance of this program dependents of how fast (filter 
2) can execute. It is encouraging that a straightforward compilation to our ab­
stract machine should show such significant speedup and performance matching 
the VAX 8600. 

References 

[1] Avadis Tevaninan, Jr., Rashid, R. F., Golub, D. B., Black, D. L., and Young, 
M. W. Mach threads and the unix kernel: the battle for control. Tech. 
Rep. CMU-CS-87-149, Carnegie-Mellon University, August 1987. 

[2] Johnsson, T. Efficient compilation of lazy evaluation. In Proc. Symp. on 
Compiler Construction (Montreal, 1984), ACM SIGPLAN. 

18 



12 Sieve Program 

12.1 Functional Specification 

12.2 Code Generated 

Lfilter: 
set_wtcnt(O, 2); 
ResetJResrcClsr(); 
demand(2); % demand 2nd argument 
block(3, 2, g_filter); 

g_filter: 
isNIL(2) 
jfalse L1 

updtNILO; 
L1 : 

set_wtcnt(O, 3); 
ResetJResrvClsr(); 
demand(1); % demand 1st argument 
push(2, 3); 
hd(3); 
demand(3); % demand head of second argument 
block(3, 2, g_filter1); 

g_filter1 : 
push(2, 3); 
hd(3); 
push(2, 4); 
tl(4) ; 
getInt(3) ; 
getInt(4); 
mod(1); 
eqConst(O, 0); 
jfalse L2 

set_wtcnt(O, 2); 
ResetJResrvClsr(); 
push(1, 5); 

push(4, 6); 

% x 

% xs 
% v[O] 
% v[1] 
% v[O] 
% v[O] 

=x 
= p 
:= v[O] mod v[t] 
== 0 

demand(6, 0); % demand xs 

L2: 
block(7, 2, g_filter); 

push(3, 5); 
push(1, 6); 

19 



g_sieveO 

push(4, 7); 
mkArgs(2, 8); 
mkClosure(r_filter, 6); 
updtStrictCons(5); % spawns in anticipation its components 

isNIL(1) 
jfalse L3 

updtNILO; 
L3: 

push(1, 2); 
hd(2) ; 
push(2, 3); 
push(1, 4); 
tl(4) ; 
mkArgs(2, 5); 
mkClosure(r_filter, 3); 
mkClosure(r_sieve, 3); 
updtStrictCons(2); 

LsieveO: 
set_wtcnt(O, 2); 
ResetJResrvClsr(); 
demand(1); 
block(2, 1, g_sieve); 

20 


