47 research outputs found

    Inter-Destination Multimedia Synchronization; Schemes, Use Cases and Standardization

    Full text link
    Traditionally, the media consumption model has been a passive and isolated activity. However, the advent of media streaming technologies, interactive social applications, and synchronous communications, as well as the convergence between these three developments, point to an evolution towards dynamic shared media experiences. In this new model, geographically distributed groups of consumers, independently of their location and the nature of their end-devices, can be immersed in a common virtual networked environment in which they can share multimedia services, interact and collaborate in real-time within the context of simultaneous media content consumption. In most of these multimedia services and applications, apart from the well-known intra and inter-stream synchronization techniques that are important inside the consumers playout devices, also the synchronization of the playout processes between several distributed receivers, known as multipoint, group or Inter-destination multimedia synchronization (IDMS), becomes essential. Due to the increasing popularity of social networking, this type of multimedia synchronization has gained in popularity in recent years. Although Social TV is perhaps the most prominent use case in which IDMS is useful, in this paper we present up to 19 use cases for IDMS, each one having its own synchronization requirements. Different approaches used in the (recent) past by researchers to achieve IDMS are described and compared. As further proof of the significance of IDMS nowadays, relevant organizations (such as ETSI TISPAN and IETF AVTCORE Group) efforts on IDMS standardization (in which authors have been and are participating actively), defining architectures and protocols, are summarized.This work has been financed, partially, by Universitat Politecnica de Valencia (UPV), under its R&D Support Program in PAID-05-11-002-331 Project and in PAID-01-10, and by TNO, under its Future Internet Use Research & Innovation Program. The authors also want to thank Kevin Gross for providing some of the use cases included in Sect. 1.2.Montagud, M.; Boronat Segui, F.; Stokking, H.; Van Brandenburg, R. (2012). Inter-Destination Multimedia Synchronization; Schemes, Use Cases and Standardization. Multimedia Systems. 18(6):459-482. https://doi.org/10.1007/s00530-012-0278-9S459482186Kernchen, R., Meissner, S., Moessner, K., Cesar, P., Vaishnavi, I., Boussard, M., Hesselman, C.: Intelligent multimedia presentation in ubiquitous multidevice scenarios. IEEE Multimedia 17(2), 52–63 (2010)Vaishnavi, I., Cesar, P., Bulterman, D., Friedrich, O., Gunkel, S., Geerts, D.: From IPTV to synchronous shared experiences challenges in design: distributed media synchronization. Signal Process Image Commun 26(7), 370–377 (2011)Geerts, D., Vaishnavi, I., Mekuria, R., Van Deventer, O., Cesar, P.: Are we in sync?: synchronization requirements for watching on-line video together, CHI ‘11, New York, USA (2011)Boronat, F., Lloret, J., GarcĂ­a, M.: Multimedia group and inter-stream synchronization techniques: a comparative study. Inf. Syst. 34(1), 108–131 (2009)Chen, M.: A low-latency lip-synchronized videoconferencing system. In: SIGCHI Conference on Human Factors in Computing Systems, CHI’03, ACM, pp. 464–471, New York (2003)Ishibashi, Y., Tasaka, S., Ogawa, H.: Media synchronization quality of reactive control schemes. IEICE Trans. Commun. E86-B(10), 3103–3113 (2003)Ademoye, O.A., Ghinea, G.: Synchronization of olfaction-enhanced multimedia. IEEE Trans. Multimedia 11(3), 561–565 (2009)Cesar, P., Bulterman, D.C.A., Jansen, J., Geerts, D., Knoche, H., Seager, W.: Fragment, tag, enrich, and send: enhancing social sharing of video. ACM Trans. Multimedia Comput. Commun. Appl. 5(3), Article 19, 27 pages (2009)Van Deventer, M.O., Stokking, H., Niamut, O.A., Walraven, F.A., Klos, V.B.: Advanced Interactive Television Service Require Synchronization, IWSSIP 2008. Bratislava, June (2008)Premchaiswadi, W., Tungkasthan, A., Jongsawat, N.: Enhancing learning systems by using virtual interactive classrooms and web-based collaborative work. In: Proceedings of the IEEE Education Engineering Conference (EDUCON 2010), pp. 1531–1537. Madrid, Spain (2010)Diot, C., Gautier, L.: A distributed architecture for multiplayer interactive applications on the internet. IEEE Netw 13(4), 6–15 (1999)Mauve, M., Vogel, J., Hilt, V., Effelsberg, W.: Local-lag and timewarp: providing consistency for replicated continuous applications. IEEE Trans. Multimedia 6(1), 45–57 (2004)Hosoya, K., Ishibashi, Y., Sugawara, S., Psannis, K.E.: Group synchronization control considering difference of conversation roles. In: IEEE 13th International Symposium on Consumer Electronics, ISCE ‘09, pp. 948–952 (2009)Roccetti, M., Ferretti, S., Palazzi, C.: The brave new world of multiplayer online games: synchronization issues with smart solution. In: 11th IEEE Symposium on Object Oriented Real-Time Distributed Computing (ISORC), pp. 587–592 (2008)Ott, D.E., Mayer-Patel, K.: An open architecture for transport-level protocol coordination in distributed multimedia applications. ACM Trans. Multimedia Comput. Commun. Appl. 3(3), 17 (2007)Boronat, F., Montagud, M., Guerri, J.C.: Multimedia group synchronization approach for one-way cluster-to-cluster applications. In: IEEE 34th Conference on Local Computer Networks, LCN 2009, pp. 177–184, ZĂŒrich (2009)Boronat, F., Montagud, M., Vidal, V.: Smooth control of adaptive media playout to acquire IDMS in cluster-based applications. In: IEEE LCN 2011, pp. 617–625, Bonn (2011)Huang, Z., Wu, W., Nahrstedt, K., Rivas, R., Arefin, A.: SyncCast: synchronized dissemination in multi-site interactive 3D tele-immersion. In: Proceedings of MMSys, USA (2011)Kim, S.-J., Kuester, F., Kim, K.: A global timestamp-based approach for enhanced data consistency and fairness in collaborative virtual environments. ACM/Springer Multimedia Syst. J. 10(3), 220–229 (2005)Schooler, E.: Distributed music: a foray into networked performance. In: International Network Music Festival, Santa Monica, CA (1993)Miyashita, Y., Ishibashi, Y., Fukushima, N., Sugawara, S., Psannis K.E.: QoE assessment of group synchronization in networked chorus with voice and video. In: Proceedings of IEEE TENCON’11, pp. 393–397 (2011)Hesselman, C., Abbadessa, D., Van Der Beek, W., et al.: Sharing enriched multimedia experiences across heterogeneous network infrastructures. IEEE Commun. Mag. 48(6), 54–65 (2010)Montpetit, M., Klym, N., Mirlacher, T.: The future of IPTV—Connected, mobile, personal and social. Multimedia Tools Appl J 53(3), 519–532 (2011)Cesar, P., Bulterman, D.C.A., Jansen, J.: Leveraging the user impact: an architecture for secondary screens usage in an interactive television environment. ACM/Springer Multimedia Syst. 15(3), 127–142 (2009)Lukosch, S.: Transparent latecomer support for synchronous groupware. In: Proceedings of 9th International Workshop on Groupware (CRIWG), Grenoble, France, pp. 26–41 (2003)Steinmetz, R.: Human perception of jitter and media synchronization. IEEE J. Sel. Areas Commun. 14(1), 61–72 (1996)Stokking, H., Van Deventer, M.O., Niamut, O.A., Walraven, F.A., Mekuria, R.N.: IPTV inter-destination synchronization: a network-based approach, ICIN’2010, Berlin (2010)Mekuria, R.N.: Inter-destination media synchronization for TV broadcasts, Master Thesis, Faculty of Electrical Engineering, Mathematics and Computer Science, Department of Network architecture and Services, Delft University of Technology (2011)Pitt Ian, CS2511: Usability engineering lecture notes, localisation of sound sources. http://web.archive.org/web/20100410235208/http:/www.cs.ucc.ie/~ianp/CS2511/HAP.htmlNielsen, J.: Response times: the three important limits. http://www.useit.com/papers/responsetime.html (1994)ITU-T Rec G. 1010: End-User Multimedia QoS Categories. International Telecommunication Union, Geneva (2001)Biersack, E., Geyer, W.: Synchronized delivery and playout of distributed stored multimedia streams. ACM/Springer Multimedia Syst 7(1), 70–90 (1999)Xie, Y., Liu, C., Lee, M.J., Saadawi, T.N.: Adaptive multimedia synchronization in a teleconference system. ACM/Springer Multimedia Syst. 7(4), 326–337 (1999)Laoutaris, N., Stavrakakis, I.: Intrastream synchronization for continuous media streams: a survey of playout schedulers. IEEE Netw. Mag. 16(3), 30–40 (2002)Ishibashi, Y., Tsuji, A., Tasaka, S.: A group synchronization mechanism for stored media in multicast communications. In: Proceedings of the INFOCOM ‘97, Washington (1997)Ishibashi, Y., Tasaka, S.: A group synchronization mechanism for live media in multicast communications. IEEE GLOBECOM’97, pp. 746–752 (1997)Boronat, F., Guerri, J.C., Lloret, J.: An RTP/RTCP based approach for multimedia group and inter-stream synchronization. Multimedia Tools Appl. J. 40(2), 285–319 (2008)Ishibashi, I., Tasaka, S.: A distributed control scheme for group synchronization in multicast communications. In: Proceedings of International Symposium Communications, Kaohsiung, Taiwan, pp. 317–323 (1999)Lu, Y., Fallica, B., Kuipers, F.A., Kooij, R.E., Van Mieghem, P.: Assessing the quality of experience of SopCast. Int. J. Internet Protoc. Technol 4(1), 11–19 (2009)Shamma, D.A., Bastea-Forte, M., Joubert, N., Liu, Y.: Enhancing online personal connections through synchronized sharing of online video, ACM CHI’08 Extended Abstracts, Florence (2008)Ishibashi, Y., Tasaka, S.: A distributed control scheme for causality and media synchronization in networked multimedia games. In: Proceedings of 11th International Conference on Computer Communications and Networks, pp. 144–149, Miami, USA (2002)Ishibashi, Y., Tomaru, K., Tasaka, S., Inazumi, K.: Group synchronization in networked virtual environments. In: Proceedings of the 38th IEEE International Conference on Communications, pp. 885–890, Alaska, USA (2003)Tasaka, S., Ishibashi, Y., Hayashi, M.: Inter–destination synchronization quality in an integrated wired and wireless network with handover. IEEE GLOBECOM 2, 1560–1565 (2002)Kurokawa, Y., Ishibashi, Y., Asano, T.: Group synchronization control in a remote haptic drawing system. In: Proceedings of IEEE International Conference on Multimedia and Expo, pp. 572–575, Beijing, China (2007)Hashimoto, T., Ishibashi, Y.: Group Synchronization Control over Haptic Media in a Networked Real-Time Game with Collaborative Work, Netgames’06, Singapore (2006)Nunome, T., Tasaka, S.: Inter-destination synchronization quality in a multicast mobile ad hoc network. In: Proceedings of IEEE 16th International Symposium on Personal, Indoor and Mobile Radio Communications, pp. 1366–1370, Berlin, Germany (2005)Brandenburg, R., van Stokking, H., Van Deventer, M.O., Boronat, F., Montagud, M., Gross, K.: RTCP for inter-destination media synchronization, draft-brandenburg-avtcore-rtcp-for-idms-03.txt. In: IETF Audio/Video Transport Core Maintenance Working Group, Internet Draft, March 9 (2012)ETSI TS 181 016 V3.3.1 (2009-07) Telecommunications and Internet converged Services and Protocols for Advanced Networking (TISPAN); Service Layer Requirements to integrate NGN Services and IPTVETSI TS 182 027 V3.5.1 (2011-03) Telecommunications and Internet converged Services and Protocols for Advanced Networking (TISPAN); IPTV Architecture; IPTV functions supported by the IMS subsystemETSI TS 183 063 V3.5.2 (2011-03) Telecommunications and Internet converged Services and Protocols for Advanced Networking (TISPAN); IMS-based IPTV stage 3 specificationBrandenburg van, R., et al.: RTCP XR Block Type for inter-destination media synchronization, draft-brandenburg-avt-rtcp-for-idms-00.txt. In: IETF Audio/Video Transport Working Group, Internet Draft, Sept 24, 2010Williams, A., et al.: RTP Clock Source Signalling, draft-williams-avtcore-clksrc-00. In: IETF Audio/Video Transport Working Group, Internet Draft, February 28, 201

    System Integration for Medical Data Dissemination and Multimedia Communication in the Implementation of Tele-ECG and Teleconsultation

    Get PDF
    One of the options to extend medical services coverage is deploying a telemedicine system, where medical personnel make use of ICT (Information and Communication Technology) to overcome distance and time constraints. The implementation of telemedicine systems in Indonesia faces challenges posed by the lack of ICT infrastructure availability, such as communication networks, data centres, and other computing resources. To deal with these challenges, a telemedicine innovation needs to produce a modular and flexible system that is adaptive to medical services needed and the available ICT infrastructure. This paper presents research and development of a telemedicine system prototype for tele-electrocardiography (tele-ECG) and teleconsultation. The contributions offered are integrating system from various open-source modules and the system operational feasibility based on its function and performance. The research is conducted on a testbed which represents various components involved in the telemedicine system operation. Experiments are carried out to assess the system functionality and observe whether tele-ECG and teleconsultation reach their expected performance. Experiment results show that the system works properly and recommend several multimedia communication modes to achieve the target quality based on the available network bandwidth

    Inter-destination Multimedia Synchronization: A Contemporary Survey

    Get PDF
    The advent of social networking applications, media streaming technologies, and synchronous communications has created an evolution towards dynamic shared media experiences. In this new model, geographically distributed groups of users can be immersed in a common virtual networked environment in which they can interact and collaborate in real- time within the context of simultaneous media content consumption. In this environment, intra-stream and inter-stream synchronization techniques are used inside the consumers’ playout devices, while synchronization of media streams across multiple separated locations is required. This synchronization is nown as multipoint, group or Inter-Destination Multimedia Synchronization (IDMS) and is needed in many applications such as social TV and synchronous e-learning. This survey paper discusses intraand inter-stream synchronization issues, but it mainly focuses on the most well-known IDMS techniques that can be used in emerging distributed multimedia applications. In addition, it provides some research directions for future work

    Applications of satellite technology to broadband ISDN networks

    Get PDF
    Two satellite architectures for delivering broadband integrated services digital network (B-ISDN) service are evaluated. The first is assumed integral to an existing terrestrial network, and provides complementary services such as interconnects to remote nodes as well as high-rate multicast and broadcast service. The interconnects are at a 155 Mbs rate and are shown as being met with a nonregenerative multibeam satellite having 10-1.5 degree spots. The second satellite architecture focuses on providing private B-ISDN networks as well as acting as a gateway to the public network. This is conceived as being provided by a regenerative multibeam satellite with on-board ATM (asynchronous transfer mode) processing payload. With up to 800 Mbs offered, higher satellite EIRP is required. This is accomplished with 12-0.4 degree hopping beams, covering a total of 110 dwell positions. It is estimated the space segment capital cost for architecture one would be about 190Mwhereasthesecondarchitecturewouldbeabout190M whereas the second architecture would be about 250M. The net user cost is given for a variety of scenarios, but the cost for 155 Mbs services is shown to be about $15-22/minute for 25 percent system utilization

    Interoperability of wireless communication technologies in hybrid networks : evaluation of end-to-end interoperability issues and quality of service requirements

    Get PDF
    Hybrid Networks employing wireless communication technologies have nowadays brought closer the vision of communication “anywhere, any time with anyone”. Such communication technologies consist of various standards, protocols, architectures, characteristics, models, devices, modulation and coding techniques. All these different technologies naturally may share some common characteristics, but there are also many important differences. New advances in these technologies are emerging very rapidly, with the advent of new models, characteristics, protocols and architectures. This rapid evolution imposes many challenges and issues to be addressed, and of particular importance are the interoperability issues of the following wireless technologies: Wireless Fidelity (Wi-Fi) IEEE802.11, Worldwide Interoperability for Microwave Access (WiMAX) IEEE 802.16, Single Channel per Carrier (SCPC), Digital Video Broadcasting of Satellite (DVB-S/DVB-S2), and Digital Video Broadcasting Return Channel through Satellite (DVB-RCS). Due to the differences amongst wireless technologies, these technologies do not generally interoperate easily with each other because of various interoperability and Quality of Service (QoS) issues. The aim of this study is to assess and investigate end-to-end interoperability issues and QoS requirements, such as bandwidth, delays, jitter, latency, packet loss, throughput, TCP performance, UDP performance, unicast and multicast services and availability, on hybrid wireless communication networks (employing both satellite broadband and terrestrial wireless technologies). The thesis provides an introduction to wireless communication technologies followed by a review of previous research studies on Hybrid Networks (both satellite and terrestrial wireless technologies, particularly Wi-Fi, WiMAX, DVB-RCS, and SCPC). Previous studies have discussed Wi-Fi, WiMAX, DVB-RCS, SCPC and 3G technologies and their standards as well as their properties and characteristics, such as operating frequency, bandwidth, data rate, basic configuration, coverage, power, interference, social issues, security problems, physical and MAC layer design and development issues. Although some previous studies provide valuable contributions to this area of research, they are limited to link layer characteristics, TCP performance, delay, bandwidth, capacity, data rate, and throughput. None of the studies cover all aspects of end-to-end interoperability issues and QoS requirements; such as bandwidth, delay, jitter, latency, packet loss, link performance, TCP and UDP performance, unicast and multicast performance, at end-to-end level, on Hybrid wireless networks. Interoperability issues are discussed in detail and a comparison of the different technologies and protocols was done using appropriate testing tools, assessing various performance measures including: bandwidth, delay, jitter, latency, packet loss, throughput and availability testing. The standards, protocol suite/ models and architectures for Wi-Fi, WiMAX, DVB-RCS, SCPC, alongside with different platforms and applications, are discussed and compared. Using a robust approach, which includes a new testing methodology and a generic test plan, the testing was conducted using various realistic test scenarios on real networks, comprising variable numbers and types of nodes. The data, traces, packets, and files were captured from various live scenarios and sites. The test results were analysed in order to measure and compare the characteristics of wireless technologies, devices, protocols and applications. The motivation of this research is to study all the end-to-end interoperability issues and Quality of Service requirements for rapidly growing Hybrid Networks in a comprehensive and systematic way. The significance of this research is that it is based on a comprehensive and systematic investigation of issues and facts, instead of hypothetical ideas/scenarios or simulations, which informed the design of a test methodology for empirical data gathering by real network testing, suitable for the measurement of hybrid network single-link or end-to-end issues using proven test tools. This systematic investigation of the issues encompasses an extensive series of tests measuring delay, jitter, packet loss, bandwidth, throughput, availability, performance of audio and video session, multicast and unicast performance, and stress testing. This testing covers most common test scenarios in hybrid networks and gives recommendations in achieving good end-to-end interoperability and QoS in hybrid networks. Contributions of study include the identification of gaps in the research, a description of interoperability issues, a comparison of most common test tools, the development of a generic test plan, a new testing process and methodology, analysis and network design recommendations for end-to-end interoperability issues and QoS requirements. This covers the complete cycle of this research. It is found that UDP is more suitable for hybrid wireless network as compared to TCP, particularly for the demanding applications considered, since TCP presents significant problems for multimedia and live traffic which requires strict QoS requirements on delay, jitter, packet loss and bandwidth. The main bottleneck for satellite communication is the delay of approximately 600 to 680 ms due to the long distance factor (and the finite speed of light) when communicating over geostationary satellites. The delay and packet loss can be controlled using various methods, such as traffic classification, traffic prioritization, congestion control, buffer management, using delay compensator, protocol compensator, developing automatic request technique, flow scheduling, and bandwidth allocation.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Video Conference as a tool for Higher Education

    Get PDF
    The book describes the activities of the consortium member institutions in the framework of the TEMPUS IV Joint Project ViCES - Video Conferencing Educational Services (144650-TEMPUS-2008-IT-JPGR). In order to provide the basis for the development of a distance learning environment based on video conferencing systems and develop a blended learning courses methodology, the TEMPUS Project VICES (2009-2012) was launched in 2009. This publication collects the conclusion of the project and it reports the main outcomes together with the approach followed by the different partners towards the achievement of the project's goal. The book includes several contributions focussed on specific topics related to videoconferencing services, namely how to enable such services in educational contexts so that, the installation and deployment of videoconferencing systems could be conceived an integral part of virtual open campuses
    corecore