311 research outputs found

    Taming Numbers and Durations in the Model Checking Integrated Planning System

    Full text link
    The Model Checking Integrated Planning System (MIPS) is a temporal least commitment heuristic search planner based on a flexible object-oriented workbench architecture. Its design clearly separates explicit and symbolic directed exploration algorithms from the set of on-line and off-line computed estimates and associated data structures. MIPS has shown distinguished performance in the last two international planning competitions. In the last event the description language was extended from pure propositional planning to include numerical state variables, action durations, and plan quality objective functions. Plans were no longer sequences of actions but time-stamped schedules. As a participant of the fully automated track of the competition, MIPS has proven to be a general system; in each track and every benchmark domain it efficiently computed plans of remarkable quality. This article introduces and analyzes the most important algorithmic novelties that were necessary to tackle the new layers of expressiveness in the benchmark problems and to achieve a high level of performance. The extensions include critical path analysis of sequentially generated plans to generate corresponding optimal parallel plans. The linear time algorithm to compute the parallel plan bypasses known NP hardness results for partial ordering by scheduling plans with respect to the set of actions and the imposed precedence relations. The efficiency of this algorithm also allows us to improve the exploration guidance: for each encountered planning state the corresponding approximate sequential plan is scheduled. One major strength of MIPS is its static analysis phase that grounds and simplifies parameterized predicates, functions and operators, that infers knowledge to minimize the state description length, and that detects domain object symmetries. The latter aspect is analyzed in detail. MIPS has been developed to serve as a complete and optimal state space planner, with admissible estimates, exploration engines and branching cuts. In the competition version, however, certain performance compromises had to be made, including floating point arithmetic, weighted heuristic search exploration according to an inadmissible estimate and parameterized optimization

    Models and Solutions of Resource Allocation Problems based on Integer Linear and Nonlinear Programming

    Get PDF
    In this thesis we deal with two problems of resource allocation solved through a Mixed-Integer Linear Programming approach and a Mixed-Integer Nonlinear Chance Constraint Programming approach. In the first part we propose a framework to model general guillotine restrictions in two dimensional cutting problems formulated as Mixed-Integer Linear Programs (MILP). The modeling framework requires a pseudo-polynomial number of variables and constraints, which can be effectively enumerated for medium-size instances. Our modeling of general guillotine cuts is the first one that, once it is implemented within a state of-the-art MIP solver, can tackle instances of challenging size. Our objective is to propose a way of modeling general guillotine cuts via Mixed Integer Linear Programs (MILP), i.e., we do not limit the number of stages (restriction (ii)), nor impose the cuts to be restricted (restriction (iii)). We only ask the cuts to be guillotine ones (restriction (i)). We mainly concentrate our analysis on the Guillotine Two Dimensional Knapsack Problem (G2KP), for which a model, and an exact procedure able to significantly improve the computational performance, are given. In the second part we present a Branch-and-Cut algorithm for a class of Nonlinear Chance Constrained Mathematical Optimization Problems with a finite number of scenarios. This class corresponds to the problems that can be reformulated as Deterministic Convex Mixed-Integer Nonlinear Programming problems, but the size of the reformulation is large and quickly becomes impractical as the number of scenarios grows. We apply the Branch-and-Cut algorithm to the Mid-Term Hydro Scheduling Problem, for which we propose a chance-constrained formulation. A computational study using data from ten hydro plants in Greece shows that the proposed methodology solves instances orders of magnitude faster than applying a general-purpose solver for Convex Mixed-Integer Nonlinear Problems to the deterministic reformulation, and scales much better with the number of scenarios

    Optimal Distribution Reconfiguration and Demand Management within Practical Operational Constraints

    Get PDF
    This dissertation focuses on specific aspects of the technical design and operation of a `smart\u27 distribution system incorporating new technology in the design process. The main purpose of this dissertation is to propose new algorithms in order to achieve a more reliable and economic distribution system. First, a general approach based on Mixed Integer Programming (MIP) is proposed to formulate the reconfiguration problem for a radial/weakly meshed distribution network or restoration following a fault. Two objectives considered in this study are to minimize the active power loss, and to minimize the number of switching operations with respect to operational constraints, such as power balance, line ow limits, voltage limit, and radiality of the network. The latter is the most challenging issue in solving the problem by MIP. A novel approach based on Depth-First Search (DFS) algorithm is implemented to avoid cycles and loops in the system. Due to insufficient measurements and high penetration of controllable loads and renewable resources, reconfiguration with deterministic optimization may not lead to an optimal/feasible result. Therefore, two different methods are proposed to solve the reconfiguration problem in presence of load uncertainty. Second, a new pricing algorithm for residential load participation in demand response program is proposed. The objective is to reduce the cost to the utility company while mitigating the impact on customer satisfaction. This is an iterative approach in which residents and energy supplier exchange information on consumption and price. The prices as well as appliance schedule for the residential customers will be achieved at the point of convergence. As an important contribution of this work, distribution network constraints such as voltage limits, equipment capacity limits, and phase balance constraints are considered in the pricing algorithm. Similar to the locational marginal price (LMP) at the transmission level, different prices for distribution nodes will be obtained. Primary consideration in the proposed approach, and frequently ignored in the literature, is to avoid overly sophisticated decision-making at the customer level. Most customers will have limited capacity or need for elaborate scheduling where actual energy cost savings will be modest

    Proceedings of the 17th Nordic Process Control Workshop

    Get PDF

    A comparative analysis of algorithms for satellite operations scheduling

    Get PDF
    Scheduling is employed in everyday life, ranging from meetings to manufacturing and operations among other activities. One instance of scheduling in a complex real-life setting is space mission operations scheduling, i.e. instructing a satellite to perform fitting tasks during predefined time periods with a varied frequency to achieve its mission goals. Mission operations scheduling is pivotal to the success of any space mission, choreographing every task carefully, accounting for technological and environmental limitations and constraints along with mission goals.;It remains standard practice to this day, to generate operations schedules manually ,i.e. to collect requirements from individual stakeholders, collate them into a timeline, compare against feasibility and available satellite resources, and find potential conflicts. Conflict resolution is done by hand, checked by a simulator and uplinked to the satellite weekly. This process is time consuming, bears risks and can be considered sub-optimal.;A pertinent question arises: can we automate the process of satellite mission operations scheduling? And if we can, what method should be used to generate the schedules? In an attempt to address this question, a comparison of algorithms was deemed suitable in order to explore their suitability for this particular application.;The problem of mission operations scheduling was initially studied through literature and numerous interviews with experts. A framework was developed to approximate a generic Low Earth Orbit satellite, its environment and its mission requirements. Optimisation algorithms were chosen from different categories such as single-point stochastic without memory (Simulated Annealing, Random Search), multi-point stochastic with memory (Genetic Algorithm, Ant Colony System, Differential Evolution) and were run both with and without Local Search.;The aforementioned algorithmic set was initially tuned using a single 89-minute Low Earth Orbit of a scientific mission to Mars. It was then applied to scheduling operations during one high altitude Low Earth Orbit (2.4hrs) of an experimental mission.;It was then applied to a realistic test-case inspired by the European Space Agency PROBA-2 mission, comprising a 1 day schedule and subsequently a 7 day schedule - equal to a Short Term Plan as defined by the European Space Agency.;The schedule fitness - corresponding to the Hamming distance between mission requirements and generated schedule - are presented along with the execution time of each run. Algorithmic performance is discussed and put at the disposal of mission operations experts for consideration.Scheduling is employed in everyday life, ranging from meetings to manufacturing and operations among other activities. One instance of scheduling in a complex real-life setting is space mission operations scheduling, i.e. instructing a satellite to perform fitting tasks during predefined time periods with a varied frequency to achieve its mission goals. Mission operations scheduling is pivotal to the success of any space mission, choreographing every task carefully, accounting for technological and environmental limitations and constraints along with mission goals.;It remains standard practice to this day, to generate operations schedules manually ,i.e. to collect requirements from individual stakeholders, collate them into a timeline, compare against feasibility and available satellite resources, and find potential conflicts. Conflict resolution is done by hand, checked by a simulator and uplinked to the satellite weekly. This process is time consuming, bears risks and can be considered sub-optimal.;A pertinent question arises: can we automate the process of satellite mission operations scheduling? And if we can, what method should be used to generate the schedules? In an attempt to address this question, a comparison of algorithms was deemed suitable in order to explore their suitability for this particular application.;The problem of mission operations scheduling was initially studied through literature and numerous interviews with experts. A framework was developed to approximate a generic Low Earth Orbit satellite, its environment and its mission requirements. Optimisation algorithms were chosen from different categories such as single-point stochastic without memory (Simulated Annealing, Random Search), multi-point stochastic with memory (Genetic Algorithm, Ant Colony System, Differential Evolution) and were run both with and without Local Search.;The aforementioned algorithmic set was initially tuned using a single 89-minute Low Earth Orbit of a scientific mission to Mars. It was then applied to scheduling operations during one high altitude Low Earth Orbit (2.4hrs) of an experimental mission.;It was then applied to a realistic test-case inspired by the European Space Agency PROBA-2 mission, comprising a 1 day schedule and subsequently a 7 day schedule - equal to a Short Term Plan as defined by the European Space Agency.;The schedule fitness - corresponding to the Hamming distance between mission requirements and generated schedule - are presented along with the execution time of each run. Algorithmic performance is discussed and put at the disposal of mission operations experts for consideration

    Application of Power Electronics Converters in Smart Grids and Renewable Energy Systems

    Get PDF
    This book focuses on the applications of Power Electronics Converters in smart grids and renewable energy systems. The topics covered include methods to CO2 emission control, schemes for electric vehicle charging, reliable renewable energy forecasting methods, and various power electronics converters. The converters include the quasi neutral point clamped inverter, MPPT algorithms, the bidirectional DC-DC converter, and the push–pull converter with a fuzzy logic controller

    Offline Learning for Sequence-based Selection Hyper-heuristics

    Get PDF
    This thesis is concerned with finding solutions to discrete NP-hard problems. Such problems occur in a wide range of real-world applications, such as bin packing, industrial flow shop problems, determining Boolean satisfiability, the traveling salesman and vehicle routing problems, course timetabling, personnel scheduling, and the optimisation of water distribution networks. They are typically represented as optimisation problems where the goal is to find a ``best'' solution from a given space of feasible solutions. As no known polynomial-time algorithmic solution exists for NP-hard problems, they are usually solved by applying heuristic methods. Selection hyper-heuristics are algorithms that organise and combine a number of individual low level heuristics into a higher level framework with the objective of improving optimisation performance. Many selection hyper-heuristics employ learning algorithms in order to enhance optimisation performance by improving the selection of single heuristics, and this learning may be classified as either online or offline. This thesis presents a novel statistical framework for the offline learning of subsequences of low level heuristics in order to improve the optimisation performance of sequenced-based selection hyper-heuristics. A selection hyper-heuristic is used to optimise the HyFlex set of discrete benchmark problems. The resulting sequences of low level heuristic selections and objective function values are used to generate an offline learning database of heuristic selections. The sequences in the database are broken down into subsequences and the mathematical concept of a logarithmic return is used to discriminate between ``effective'' subsequences, that tend to lead to improvements in optimisation performance, and ``disruptive'' subsequences that tend to lead to worsening performance. Effective subsequences are used to improve hyper-heuristics performance directly, by embedding them in a simple hyper-heuristic design, and indirectly as the inputs to an appropriate hyper-heuristic learning algorithm. Furthermore, by comparing effective subsequences across different problem domains it is possible to investigate the potential for cross-domain learning. The results presented here demonstrates that the use of well chosen subsequences of heuristics can lead to small, but statistically significant, improvements in optimisation performance

    Deterministic Artificial Intelligence

    Get PDF
    Kirchhoff’s laws give a mathematical description of electromechanics. Similarly, translational motion mechanics obey Newton’s laws, while rotational motion mechanics comply with Euler’s moment equations, a set of three nonlinear, coupled differential equations. Nonlinearities complicate the mathematical treatment of the seemingly simple action of rotating, and these complications lead to a robust lineage of research culminating here with a text on the ability to make rigid bodies in rotation become self-aware, and even learn. This book is meant for basic scientifically inclined readers commencing with a first chapter on the basics of stochastic artificial intelligence to bridge readers to very advanced topics of deterministic artificial intelligence, espoused in the book with applications to both electromechanics (e.g. the forced van der Pol equation) and also motion mechanics (i.e. Euler’s moment equations). The reader will learn how to bestow self-awareness and express optimal learning methods for the self-aware object (e.g. robot) that require no tuning and no interaction with humans for autonomous operation. The topics learned from reading this text will prepare students and faculty to investigate interesting problems of mechanics. It is the fondest hope of the editor and authors that readers enjoy the book
    • …
    corecore