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Abstract

This dissertation focuses on specific aspects of the technical design and operation of a

‘smart’ distribution system incorporating new technology in the design process. The

main purpose of this dissertation is to propose new algorithms in order to achieve a

more reliable and economic distribution system.

First, a general approach based on Mixed Integer Programming (MIP) is proposed

to formulate the reconfiguration problem for a radial/weakly meshed distribution

network or restoration following a fault. Two objectives considered in this study are

to minimize the active power loss, and to minimize the number of switching operations

with respect to operational constraints, such as power balance, line flow limits, voltage

limit, and radiality of the network. The latter is the most challenging issue in

solving the problem by MIP. A novel approach based on Depth-First Search (DFS)

algorithm is implemented to avoid cycles and loops in the system. Due to insufficient

measurements and high penetration of controllable loads and renewable resources,

reconfiguration with deterministic optimization may not lead to an optimal/feasible

result. Therefore, two different methods are proposed to solve the reconfiguration

problem in presence of load uncertainty.

Second, a new pricing algorithm for residential load participation in demand re-

sponse program is proposed. The objective is to reduce the cost to the utility company

while mitigating the impact on customer satisfaction. This is an iterative approach

in which residents and energy supplier exchange information on consumption and

price. The prices as well as appliance schedule for the residential customers will be
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achieved at the point of convergence. As an important contribution of this work,

distribution network constraints such as voltage limits, equipment capacity limits,

and phase balance constraints are considered in the pricing algorithm. Similar to

the locational marginal price (LMP) at the transmission level, different prices for

distribution nodes will be obtained. Primary consideration in the proposed approach,

and frequently ignored in the literature, is to avoid overly sophisticated decision-

making at the customer level. Most customers will have limited capacity or need for

elaborate scheduling where actual energy cost savings will be modest.
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Chapter 1

Introduction

1.1 Overview

The U.S. electric grid is an enormous and extremely complex system consisting of

centralized power plants, transmission lines, and distribution networks. It is capable

of carrying over 850 GW of power and continuously balancing supply with fluctuating

demand. It does so with remarkable reliability, providing 99.97 percent uptime (when

the grid is operational), or about 160 minutes of downtime a year [1, 2]. However,

the traditional electric power grid was designed neither with the latest technology nor

with the goal of supporting a high-tech economy and enabling low-carbon technologies

and energy efficiency and conservation. Several issues regarding the current power

systems are addressed in the following:

• Power outages and power quality disruptions cost more than $150 billion

annually [3].

• The grid is inefficient at managing peak load.

• The grid does not support robust information flow.

• Very high levels of renewable energy pose challenges for the grid [3].

• The grid has limited support for distributed generation.
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• The grid would be strained by high Plug-in Hybrid Electric Vehicles (PHEV)

deployments.

Compared to the existing grid, the smart grid promises improvements in reliability,

power quality, efficiency, information flow, and improved support for renewable

through application of digital technology. Title XIII of the recently signed Energy

Independence and Security Act of 2007 [4] includes the following characteristics of a

Smart Grid:

• Increase in use of digital control and information technology with real time

availability

• Dynamic optimization relating to grid operability

• Inclusion of demand side response (DR)

• Demand side management (DSM) technologies

• Integration of distributed resources including renewables and energy storage

• Deployment of smart metering

• Distribution automation

• Smart appliances and customer devices at the point of end use.

Figure 1.1 illustrates the scope of the Department of Energy (DoE) Grid 2030 vision.

A smart grid provides the utility company with actionable information. Utility

companies will receive a constant flow of information about their network, their

customers, and their options for managing their operations. Therefore, estimating

network activity or having to send out physical readers to many locations will not

be necessary in future smart gird. Moreover, a smart grid provides support for

new applications and components, such as smart appliances, PHEVs, distributed

generation, and renewable energy by allowing for better management of their
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interaction with the grid. In addition to the utility companies, the customers will

benefit from the facilities provided by smart grid. For example, customers can be

provided with information about their electricity usage patterns and costs. They can

use this information to reduce their energy costs and their environmental impact.

The above features cannot be achieved without utilizing integrated communications,

sensing and measurement, improved interfaces and decision support, advanced

control methods, and advanced components such as GPS systems, current limiting

conductors, and advanced energy storage.

Figure 1.1: Feature of the future smart grid

The ‘Smart Distribution Grid’ initiative is visualized as a coordinated transition

from contemporary legacy distribution systems to an automated, self-healing, and

more reliable system. This transition requires a paradigm shift in both design and

operations due to the increased use of Demand Side Management (DSM) and Demand
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Side Response (DR) programs; and increased penetration of renewable energy

resources. Figure 1.2 exhibits the transition from the contemporary distribution

system to a future smart distribution grid. Massive deployment of renewable energy

systems is expected to occur in electric distribution systems in the near future [4, 5].

New philosophies of redesigning the existing distribution system topology and rapid

restoration following system disturbances are imperative to maximize the use of

these resources. The distribution system of the future must be designed so that

rapid restoration is possible. Rapid distribution restoration can accomplish multiple

objectives, including reduction of the classical system average interruption duration

and frequency indices, and/or the minimization of unserved energy to loads.

Figure 1.2: Transition to the future smart distribution system

This Ph.D. dissertation concentrates on the application of optimization algorithms

to two important features of the future smart distribution systems. The purpose of
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these approaches is to obtain a more economic and reliable distribution system which

benefits both utility companies and customers. First, we address the automated

restoration and reconfiguration which is a very important factor in achieving an

economic, and reliable distribution system. Then, new approaches for residential

demand response management programs are proposed to improve reliability and

reduce cost to the utility companies and residential customers.

For distribution system restoration and reconfiguration, a general, fast, and

scalable reconfiguration and restoration algorithm is proposed. The purpose of

the reconfiguration is to find the optimal configuration of the system to maximize

its performance and respond to disturbances quickly. Reconfiguration consists of

changing the network configuration by opening/closing feeders and tie switches while

the networks remain radial/weakly meshed in operation. Smart gird provides facilities

that allow monitoring and control of equipment in distribution substations and out

on the feeders. This provides the means to restore service to the customers in a

very short period of time. The switch control can be carried out from a control

center or by using distributed intelligence or a combination of both. Due to the

discrete, non-linear nature of distribution system reconfiguration (DSR) which leads

to a large search space, it is challenging to implement DSR for online applications

[6]. Another challenge is the uncertainty of the node injections due to lack of

sufficient measurements and an increasingly high penetration of controllable loads and

renewable resources in distribution systems. These uncertainties should be considered

in the reconfiguration problem as the solution from deterministic optimization with

nominal values of the node injections may not be optimal/feasible.

Second, as another important feature of the future smart grid, this dissertation

addresses the residential demand response management problem. We propose a

decentralized optimization to improve the operation of the distribution system in

terms of economy and reliability. The objective of the optimization is to reduce peak

load as well as costs to the utility companies and customers while taking customer

satisfaction into account. Given the facilities such as two ways communication,

5



measurement units, and smart appliances provided by smart grid, it is possible to

develop decentralized residential response management programs which benefit both

the grid and customers. As an important contribution of the proposed method,

system operational constraints such as equipment capacity limits and voltage limit

constraints are considered in the demand response program.

1.2 Distribution System Reconfiguration

Electrical distribution systems must be adequately planned to permit efficient and

reliable operation. Although distribution systems may be found as weakly-meshed

networked systems in urban areas, the majority of distribution systems operate

with a radial topology for technical reasons, such as, facilitating the coordination

and protection, and reducing the short-circuit current. Thus, the radiality/weakly

meshed constraint is present in almost all of the distribution expansion and operation

planning problems. Reconfiguration and restoration after faults are critical features

of a reliable distribution grid. Network reconfiguration is the process of altering

the topological structures of distribution feeders so that the distribution network

operates in a more reliable and economic mode. The distribution automation function

of feeder reconfiguration has been addressed for many different objectives such

as increasing reliability, maximizing loadability, minimizing losses, minimizing the

switching operations, and achieving load balance. Figure 1.3 shows how the switching

operations on the tie-line switches can transfer loads between two feeders. Despite its

benefits to distribution planning and operation, reconfiguration has not been widely

used in industry due to lack of measurement equipment, automatic switchgears,

and communication infrastructures. However, technologies such as robust two-way

communications, advanced sensors, and state of art controllers, will enable features

such automatic distribution reconfiguration and demand response programs.

6



(a)

(b)

Figure 1.3: Load transfer between nodes. (a) before switching, (b) after switching
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This process should be fast enough to improve reliability indices such as a System

Average Interruption Duration Index (SAIDI) and System Average Interruption

Frequency Index (SAIFI). Figure 1.4 shows that when a permanent fault occurs,

customers on “healthy” sections of the feeder may experience a lengthy outage.

However, smart gird provides facilities that allow monitoring and control of equipment

in distribution substations and out on the feeders. This provides the means to restore

service to the customers in a very short period of time. The switch control can be

carried out from a control center or by using distributed intelligence or a combination

of both.

Figure 1.4: Fault location isolation and service restoration

Due to the discrete, non-linear nature of DSR which leads to a huge search

space, it is difficult to implement DSR for real-time applications [6]. Moreover,

as mentioned before, distribution networks are normally meshed in design but in

order to provide proper relay coordination, the operation is nearly always configured

radially or weakly-meshed. This makes a MIP-based formulation of DSR even more

challenging since the radiality constraint does not lend itself to general analytical

expressions. In addition, the number of possible configurations is combinatoric. It is

8



necessary to find a general approach which is fast and accurate enough for real-time

applications.

As mentioned before, uncertainty of the nodal injections (loads and renewable

resources) is an important factor that should be considered in the reconfiguration

process. Performing reconfiguration or restoration without considering these uncer-

tainties may not be feasible and/or optimal for actual node injections. This issue is

addressed in this dissertation and efficient algorithms are proposed to obtain robust

and optimal reconfiguration.

1.3 Demand Side Management

Demand Response (DR) is an important element in the concept of energy manage-

ment, and long used as the justification for utility investments. The goal of DR is to

reduce demand during periods of peak usage. Utilities have planned to do this in a

centralized manner, by sending commands to loads, such as to raise the thermostat

set point or disable the air conditioner compressor. A better alternative is to perform

DR in a distributed manner, where the endpoints of electricity consumption monitor

the status of the grid, and respond appropriately. The utility industry’s model for

DR is based on extending the Smart Grid to end devices on customer premises to

control them directly (centralized control), whereas the information technology (IT)

industry model for DR is based on allowing consumers to adjust their consumption

of electricity autonomously by continuously tracking conditions (distributed control).

Effective energy management requires consumers to participate in the process of

controlling energy usage. Consumers need incentives to participate willingly in a

solution for energy management. If consumers are not given the tools that empower

them to easily manage energy consumption, confusion and backlash could ensue. This

is already being seen in various smart meter deployments where bills have increased,

and consumers have initiated class action lawsuits claiming that the smart grid was

forced upon them. Simple, easy-to-use products and services that give the consumer
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choice and control are a must. At the same time, these products and services must

interoperate. Market-driven standards provide the best solutions for the consumers;

therefore, regulators need to allow innovation through competition among standards

and technologies in the house.

Although wholesale market prices vary on hourly-basis and fluctuate between

low values at off-peak times and high values at on-peak times, most of the utilities

set fixed prices for retail customers. Therefore, the customers’ utility bills do not

clearly reflect grid issues. While direct load control of end-user loads has existed

for decades, price driven response programs are only beginning to be explored at the

distribution level. Several pricing models have been proposed, including: Time-of-Use

rates (ToU), Critical-Peak Pricing (CPP), Day-Ahead Pricing (DAP), and Real-Time

Pricing (RTP). Through reflecting the wholesale market price fluctuation in the end

users’ bills, the mentioned pricing mechanisms encourage the households to shift their

high-load appliances to off-peak hours.

One of the challenges in the future distribution grid will be high utilization of

PHEVs. Because of this, there will be a considerable potential for congestion in

distribution systems. Congestion can happen in distribution lines and cables or in the

form of overload in transformers. In order to avoid secondary transformer overload

in distribution laterals, the utility company can encourage the customers to shift

and/or reduce their loads. This concept is shown in Figure 1.5 where customers shift

their loads to avoid congestion in a distribution network. Current advancements in

computing and communication areas make it possible to design transactive demand

response programs at the residential level. Implementing RTP in transactive markets

requires distributed controllers and a centralized auction to create an interactive

system which can limit demand at key times on a distribution system and decrease

congestion [7].
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Figure 1.5: Potential distribution congestion

As shown in Figure 1.6, demand side management programs can be done for

three different categories of loads: industrial loads, commercial loads, and residential

lodes. In all the mentioned categories, customers respond to the time-varying prices.

Compared to industrial and commercial loads, it is very hard to accurately forecast

hourly energy consumption in the houses. As exhibited in Figure 1.7, currently

the ISO/RTO operator has visibility into transmission substations, and may have

visibility into large subtransmission substations where large commercial and industrial

customer demand response (DR) programs are located, but generally does not have

visibility into the distribution network where most of the small commercial and

the main residential DR takes place. Other entities, such as utility distribution

companies (UDCs), load-serving entities (LSEs), electricity service providers (ESPs),

and curtailment service providers (CSPs) interact directly with consumers on the one

hand and the ISO/RTO operator on the other hand. They play an important role in
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bundling the DR from their subscribed customers into products used in the ISO/RTO

markets [8].

Figure 1.6: Different types of distribution system loads

Why DR is important at resident level? According to [9], around74% of the

nation’s electricity consumption occurs in buildings. Reducing demand requires

the awareness of energy consumers on careful consumption patterns as well as

constructing more energy efficient buildings. Considering the large portion of the

residential load, it is of prime importance to provide incentives for the residential

customers to participate in DSM and DR programs. Smart grid will provide facilities

12



Figure 1.7: ISO and demand response in distribution level

such as Advanced Metering Infrastructures (AMI) and Home Area Networks (HAN)

to enable decentralized demand response programs for the residential loads.

AMI: While in the past smart metering was a high point in technology, it has now

moved under the umbrella of smart grid technologies. It serves to provide data to the

operator on consumption patterns and helps in a two-way information flow between

the utility and customers. While the utility can see the consumption pattern, the

customer can know the energy pricing data and its effects on energy bills [9].

HAN: Home area networks are a part of the next generation solutions that

smart grid technologies will offer. It includes remotely monitored and controlled

thermostatic control, energy storage schemes, Plug-in Hybrid Electric Vehicles

(PHEV) and roof top solar panels. These elements together become a whole system

on their own that need to be controlled and operated from within a home. With

13



integration of these devices in a large scale, it provides the local system operator with

an effective energy storage system [9].

A schematic of HAN system which controls the energy consumption of different

devices is shown in Figure 1.8. Figure 1.9 demonstrates the interaction between HANs

and utility company through AMI.

Figure 1.8: HAN schedules the residential appliances
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Figure 1.9: Communication between HANs and Utility company through AMI

1.4 Summary of Contributions

The contribution of this work is summarized as follows:

1.4.1 Distribution restoration/reconfiguration

• A general approach based on MIP.

A MIP-based reconfiguration/restoration is proposed. The MIP formulation is fast

and scalable and can be easily implemented for practical sized distribution systems.

Many of the proposed approaches in the literature rely on heuristic search or

population based approaches to solve the reconfiguration problem. Nevertheless,

solutions based on heuristic methods suffer from a number of shortcomings. Two

objective functions considered in this work are minimizing the active power loss and
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minimizing the switching operations to restore the system after a fault. A comparison

on the performance of Mixed Integer Linear Programming (MILP) and Mixed Integer

Quadratic Programming (MIQP) in solving the problem is provided.

• A radiality constraint formulation suitable for MIP.

As mentioned before, the most challenging part in MIP-based formulation of DSR

is to come up with a mathematical expression of the radiality constraint. In this

work, possible radial configurations are identified based on Depth First Search (DFS)

method that allows radial and weakly-meshed constraints to be easily expressed. The

cycle detection approach is performed in off-line and before optimization. This makes

the MIP-based DSR very fast and suitable for real-time applications. In addition, the

proposed formulation can easily handle weakly-meshed networks.

• The effect of Community Energy Storage (CES) systems on reconfig-

uration.

It is shown that CES charging/discharging impacts the optimal configuration through

changing line flows and voltage levels. Discharging of the storage units can mitigate

the congestion on the lines and consequently the reconfiguration.

• DSR with load uncertainty

Due to insufficient measurements and high utilization of controllable loads in

distribution systems, deterministic reconfiguration may not be optimal/feasible.

We propose two different approaches to manage uncertainties associated with load

measurements/forecast. The first method is based on fuzzy MIP (FMIP) that

considers load uncertainties as intervals and models membership functions for

objective function and constraints. The second approach, on the other hand, is based

on stochastic MIP (SMIP) which assumes Gaussian probability distribution function

(PDF) for an estimated load. It is shown that the proposed methods lead to robust

results which are feasible for different loading conditions.
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1.4.2 Residential demand response management

• A decentralized residential response management approach.

This problem minimizes the cost to the utility company as well as customer dissatis-

faction. A decentralized optimization is developed based on dual decomposition and

subgradient method. This is an iterative approach in which the utility company and

residential customers exchange a small amount of information on price and hourly

energy consumption. Prices as well as appliance scheduling for every house is obtained

within a small number of iterations.

• Simplified decision-making at the customer level.

The proposed residential response management program avoids burdening customers

with sophisticated calculations on energy consumption. The energy management in

a house will be performed by the HAN. The HAN communicates with the utility

company through AMI to receive the price and schedules based on this information

exchange.

• Detailed models of the residential loads.

Detailed models of residential appliances, such as, PHEV, air conditioner, washer/dryer,

and water heater, are developed and employed in the optimization. Various utility

functions based on the device models are considered.

• Complete distribution system constraints.

As one of the most important contributions of the work, network constraints, such as

line flow limits, phase balance, transformer capacity, and voltage limits are considered

in the pricing algorithm. It is shown how these constraints affect the price and

residential load scheduling. For example, customers on a lateral with overloaded

secondary distribution transformer are charged higher prices because of their high

energy usage. This encourages the customers to reduce their load and system stress.

This reduction is based on the utility functions considered for different appliances.
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• Demand response with uncertainty in residential load.

One of the important challenges in residential demand response is due to the highly

random behavior of the residential customers. Similar to the energy market in

transmission level, a two stage pricing is proposed. In the day-ahead pricing, the nodal

prices and appliance schedules are obtained through the decentralized optimization.

An algorithm based on chance constraint optimization is developed to consider the

uncertainty of the residential demand in day-ahead. In real-time, on the other hand,

prices are calculated based on the actual loads.
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Chapter 2

Background

This chapter includes two sections. In the first section, an overview on the previous

works on distribution system restoration/reconfiguration and residential demand

response management is provided. Then, different optimization techniques will be

briefly discussed in the second section.

2.1 Literature Review

2.1.1 Distribution System Reconfiguration

If exact optimization techniques are employed, the radiality constraints must be

explicitly represented in the mathematical modeling. This is not the case, however,

when heuristic or meta-heuristic techniques are used, where the radiality constraints

are controlled implicitly.

The distribution automation function of feeder reconfiguration has been addressed

for many different objectives, including: minimizing the number of switching

operations [10], minimizing losses: [11–26], increasing reliability [27,28], and achieving

load balance [29].

A Mixed Integer Linear Programming (MILP)-based approach for minimizing loss

and number of switching operations is addressed in [10].

19



In [13], the reconfiguration problem is formulated as a minimum cost network flow

problem and solved using a modified linear programming. The modifications in the

Simplex algorithm are introduced mainly to maintain a radial network configuration

while enforcing the line flow capacity limits. Although this approach is useful for loss

reduction, it is not able to deal with other objectives, such as, minimizing the number

of switching operations. Moreover, it only gives sub-optimal solution. In [14], the

same approach has been extended to the case of distribution networks with embedded

generation.

In [15], the authors present a methodology to integrate Mixed Integer Program-

ming (MIP)-based reconfiguration with optimal power flow (OPF) using a Benders

decomposition approach. However, the radiality constraint doesn’t hold except for a

few specific initial configurations and cannot guarantee radiality.

In [16], a network topology-based approach is used to formulate the reconfiguration

problem for loss reduction. A strategy based on the loop incidence matrix, A, is

used to avoid loops during the reconfiguration procedure. If the determinant of A

is equal to 1 or -1, then the system is radial. Otherwise, if the determinant of A is

equal to zero, this means that either the system is not radial or a group of loads is

disconnected from service. In [17], a genetic algorithm approach is compared with a

MILP model in which all bus voltage magnitudes are assumed to be 1 p.u. in the

evaluation of the losses and the radiality constraint is enforced by using a heuristic

based on the comparison between the node-to-substation path resistance and the

resistance of the shortest path to the substation for that node. Such a heuristic

needs to be revised in the presence of embedded generators. The authors of [18]

used an evolutionary algorithm; References [19] and [20] used two specialized genetic

algorithms. All proposals implicitly consider the radial operation constraint. In [18],

the radial operation constraint is assured using graph theory, while that in [19] and [20]

is controlled inside genetic operators.

The problem of finding the state of switching devices (open or closed) in primary

distribution networks to minimize the total loss is addressed in [21]. A best-first
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search procedure is devised to guide the switch opening procedure. Initially, all

switches are set to the “closed” state so that the network operates in meshed mode.

Then, a candidate switch is selected for opening. The criterion for selecting a

switch is precisely the least increase in total loss that the switch opening would

cause. [21] suggests that it “would be highly desirable if the radiality constraint could

be expressed in analytical form.” If this is possible, the radiality constraints could

be incorporated in a mathematical model and solved by using a precise optimization

technique.

Heuristic based reconfiguration of electric distribution networks for resistive line

loss reduction is discussed in [22]. Here also, the solution procedure starts by closing

all of the network switches, which are opened one after another so as to establish the

optimum flow pattern in the networks using many approximations. The objective of

reconfiguration in [23] is to reduce loss and balance the loads. A branch exchange

strategy is used to guarantee the radiality of the system. The difference between each

heuristic algorithm is the sensitivity analysis used to decide which branch should be

removed/opened at each step. Thus, the radial operation constraint of the system is

imposed implicitly by the heuristic algorithms and not explicitly in the model.

An alternative mathematical model that allows the solution of the reconfiguration

problem using commercial software is presented in [17]. In this model, the radiality

of the system is represented by algebraic relations using so-called path-based

connectivity modeling. The authors of this study explicitly recognize that it is very

difficult to find a mathematical model for the reconfiguration problem and solve it

with a conventional technique like the branch-to-node algorithm.

The traditional distribution analysis requires exact information of component

parameters. However, due to the uncertainties associated with insufficient measure-

ments and high penetration of controllable loads and renewable resources distribution

reconfiguration with deterministic optimization may not lead to an optimal/feasible

result. Reference [24] proposes a reliability-oriented reconfiguration (ROR) method

that deals with uncertainties. The ROR method uses interval analysis to quantify the
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impact of uncertain data and to maximize the possibility of reliability improvement

and/or loss reduction. Fuzzy programming and stochastic programming are two

popular methods to deal with uncertainties in distribution system optimization

problems.

The fuzzy approach has been proven to be very suitable for the modeling of

uncertainty in load estimation and restoration problems [25]. In this approach, the

uncertainty of a load value is modeled through a range of possible load values and the

corresponding possibilities of appearing of these values. In this way, it is necessary

to analyze all possible supply restoration scenarios and to economically quantify all

possible outcomes in order to obtain the best restoration scenario. A procedure

for supply restoration in distribution networks based on fuzzy risk management is

proposed in [25]. The method models uncertainty in recognizing consumer loads by

describing them with fuzzy numbers.

Reference [26] proposes a stochastic capacitor placement for distribution systems

using probabilistic models of loads and wind generation. In this work, using

probabilistic models of load and wind generation, a stochastic capacitor planning

formulation is proposed. The proposed formulation minimizes the total cost of newly

located and sized capacitors and the annual energy loss in a DS while considering

limits on load bus voltages.

2.1.2 Residential Demand Response Management

Available DR technologies are mainly categorized into the following: Direct Load

Control (DLC) strategies [27, 28] where a controller centrally interrupts the jobs of

participating appliances mostly in case of emergencies and to curtail high peak load;

Dynamic Pricing programs [29], which includes several rates and tariffs to manage the

demand for electricity in a decentralized manner, e.g., Time of Use (TOU), Critical

Peak Pricing (CPP), Real Time Pricing (RTP) and Day Ahead Pricing (DAP) rates;

Demand bidding programs [30], where a market participant directly makes an offer
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to the wholesale market (or the retailer) for reducing electricity during peak times on

the next day.

Reference [31] distinguishes between the following:

a) Incentive-Based DR:

• Direct load control (DLC): utility or grid operator gets free access to customer

processes.

• Interruptible/curtailable rates: customers get special contract with limited

sheds.

• Emergency demand response programs: voluntary response to emergency

signals.

• Capacity market programs: customers guarantee to pitch in when the grid is in

need.

• Demand bidding programs: customers can bid for curtailing at attractive prices

b) Time-Based Rates DR:

• Time-of-use rates: a static price schedule is applied.

• Critical peak pricing: a less predetermined variant of TOU.

• Real-time pricing (RTP): wholesale market prices are forwarded to end cus-

tomers.

RTP may be the most efficient way of managing electricity demand in the future but

it faces the challenging problem of what these price signals should be to avoid causing

physical and market instabilities while reflecting the true conditions of the market at

the same time. In fact, it has been shown that RTP are likely to cause more volatility

or even instabilities when customers respond to this new information and form a new

feedback loop in the power system control model [32–34].
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As observed in [35], since all the residences are given the same dynamic price,

current HAN that individually operated by each residence will simultaneously

schedule the load to the low-price period, and, consequently, a new “rebound” peak

is created to the grid.

There exists extensive literature on demand response [36–43]. In [36], the

formulation of an appliance commitment problem for a residential customer is

described using an electrical water heater load as an example. The thermal dynamics

of heating and coasting of the water heater load is modeled by physical models;

random hot water consumption is modeled with statistical methods.

In [37] and [38] residential response management is performed only on selected

types of appliances. In [38], the authors extend the study to electricity usage of

different appliances in a typical household and propose a method for customers to

schedule their available distributed energy resources to maximize net benefits in a

day-ahead market. Still, the paper fails to reflect the energy provider’s interests. As

mentioned before, if every household tends to shift its load to off-peak times, the

energy provider will face a new on-peak period. In other words, it shifts in time

rather than limits the peak.

In [39–41], researchers include both energy provider and customer benefits. The

authors in [39] consider a power network where end customers choose their daily

schedules of household appliances/loads by playing games among themselves and the

utility company tries to adopt adequate pricing tariffs that differentiate the energy

usage in time and level to make the Nash equilibrium minimize the energy costs.

Customer satisfaction is not explicitly represented in the problem formulation. In [40]

and [41] a decentralized optimization based on dual decomposition and subgradient

multipliers is used to maximize social welfare. Although customer satisfaction

is considered, these efforts fail to model different loads in the customer utility

functions. In [43], a message-passing approach is suggested to develop a decentralized

optimization of the residential energy management. The decentralized optimization

is developed based on alternating direction method of multipliers.
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One of the most important issues in residential response management is due

to uncertainty of customer’s energy consumption behavior and hourly electricity

price. For example, utilities usually provide some estimated day-ahead prices as

a guideline for the consumers. However, many random factors such as different

consumers’ reactions to real-time prices and the intermittency of renewable energy

sources generally lead to prediction noise that should not be ignored. References

[44–48] propose methods to predict prices. The households schedule their appliances

considering the uncertainties in prices.

In [47], price uncertainty is modeled through robust optimization techniques. The

model materializes into a simple linear programming algorithm to adjust the hourly

load level of a given consumer in response to hourly electricity prices. The objective

of the model is to maximize the utility of the consumer subject to a minimum daily

energy-consumption level, maximum and minimum hourly load levels, and ramping

limits on such load levels.

Reference [48] argues that any residential load control strategy in real-time

electricity pricing environments requires price prediction capabilities. By applying

a simple weighted average price prediction filter to the actual hourly-based price

values used by the Illinois Power Company from January 2007 to December 2009, the

authors obtain the optimal choices of the coefficients for each day of the week to be

used by the price predictor filter.

In [49] an input-output hidden Markov model is proposed for analyzing and

forecasting electricity spot prices. In [50] a Markov Decision Process (MDP) is

proposed to find decision thresholds for both non-interruptible and interruptible

loads under a deadline constraint. Numerical results suggest that incorporating the

statistical knowledge into the scheduling policies can result in significant savings,

especially for short tasks. It is demonstrated with real price data from Commonwealth

Edison that scheduling with mismatched modeling and online parameter estimation

can still provide significant economic advantages to consumers.
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In [51] the electricity price is modeled as a Markov chain with unknown transition

probabilities. This model features implicit estimation of the impact of future

electricity prices and current control operation on long-term profits. The Q-learning

algorithm is then used to adapt the control operation to the hourly available price in

order to maximize the profit for the electric vehicle owner during the whole parking

time.

Reference [52] discusses the modeling of uncertainties in aggregated thermostat-

ically controlled loads using a state queuing (SQ) model. The cycling times of

thermostatically controlled appliances (TCAs) vary with the TCA types and sizes, as

well as the ambient temperatures.

Reference [53] develops an online learning application that implicitly estimates

the impact of future energy prices and of consumer decisions on long term costs and

schedules residential device usage. The algorithm models both energy prices and

residential device usage as Markov, but does not assume knowledge of the structure

or transition probabilities of these Markov chains. The paper focuses on energy

consumption at one house and doesn’t consider the utility company and grid issues.

Reference [54] suggests a coordinated home energy management system (HEMS)

architecture where the distributed residential units cooperate with each other to

achieve real-time power balancing. The economic benefits for the retailer and

incentives for the customers to participate in the proposed coordinated HEMS

program are given. The coordinated HEMS design problem is formulated as a

dynamic programming (DP) and use approximate DP approaches to efficiently handle

the design problem. A distributed implementation algorithm based on convex

optimization based dual decomposition technique is also presented. The focus is

on the deferrable appliances, such as Plug-in (Hybrid) Electric Vehicles (PHEV), in

view of their higher impact on the grid stability. Certainty equivalent Control Theory

is used to deal with the uncertainty in customer energy consumption.

Reference [55] extends the work in [40] to include the effect from load uncertainty.

The optimal prices are derived under load uncertainty and show how it influences
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power consumption and generating capacity. Different models are used to formulate

demand uncertainty.

Authors in [56] develop a model that integrates two period electricity markets,

uncertainty in renewable generation, and real-time dynamic demand response. A

load-serving entity decides its day-ahead procurement to optimize expected social

welfare a day before energy delivery. At delivery time when renewable generation

is realized, it sets prices to manage demand and purchase additional power on the

real-time market, if necessary, to balance supply and demand.

In [57], a game theoretic algorithm is suggested to coordinate the operation of

demand-side resources via pricing in order to tackle the intermittency and fluctuations

in wind power generation.

Reference [58] proposes distributed algorithms for control and coordination of

loads and distributed energy resources (DERs) in distribution networks. These

algorithms are relevant for load curtailment control in demand response programs, and

also for coordination of DERs for provision of ancillary services. Both the distributed

load-curtailment and DER coordination problems can be cast as distributed resource

allocation problems with constraints on resource capacity.

2.2 Constrained Optimization

Constrained optimization problems are problems for which a function f(x) is to be

minimized or maximized subject to constraints Φ(x). Here f : Rn → R is called

the objective function and Φ(x) is a Boolean-valued formula. In Mathematics the

constraints Φ(x) can be an arbitrary Boolean combination of equations g(x) = 0,

weak inequalities g(x) ≥ 0, strict inequalities g(x) > 0, and xεZ statements. The

following notation will be used.
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max f(x)

s.t. (2.1)

Φ(x)

Global Optimization: A point uεRn is said to be a global minimum of f subject

to constraints Φ if u satisfies the constraints and for any point v that satisfies the

constraints, f(u) ≤ f(v).

Local Optimization: A point uεRn is said to be a global minimum of f subject to

constraints Φ if u satisfies the constraints and for some r > 0, if v satisfies |v − u| <

rΛΦ(v), then f(u) ≤ f(v).

2.2.1 Classic Optimization Methods

The methods used to solve local and global optimization problems depend on specific

problem types. Optimization problems can be categorized according to several

criteria. Depending on the type of functions involved there are linear and nonlinear

(polynomial, algebraic, transcendental, ...) optimization problems. If the constraints

involve xεZ, we have integer and mixed integer-real optimization problems.

Linear Programming

Lnear programming is a technique to minimize/maximize a linear objective function,

subject to linear equality and linear inequality constraints. Its feasible region is a

convex polyhedron, which is a set defined as the intersection of finitely many half

spaces, each of which is defined by a linear inequality. A closed convex polytope

may be regarded as the set of solutions to the system of linear inequalities known as

constraints. A linear programming algorithm finds a point in the polyhedron where
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this function has the smallest (or largest) value if such point exists. Linear programs

can be expressed in canonical form:

max cTx

s.t (2.2)

Ax ≤ b

x ≥ 0

where x represents the vector of variables (to be determined), c and b are vectors of

(known) coefficients, and A is a (known) matrix of coefficients. x is an n× 1 vector;

b is an m × 1 vector; and A is an m × n matirx. Interior Point and Simplex, and

Revised Simplex are the most common methods used to solve a linear programming

problem.

The simplex and revised simplex algorithms solve a linear programming problem

by moving along the edges of the polytope defined by the constraints, from vertices to

vertices with successively smaller values of the objective function, until the minimum

is reached. Interior point algorithms for linear programming, loosely speaking, iterates

from the interior of the polytope defined by the constraints. They get closer to the

solution very quickly, but unlike the simplex/revised simplex algorithms, do not find

the solution exactly.

Quadratic programming

A linearly constrained optimization problem with a quadratic objective function is

called a quadratic program (QP). The general quadratic program can be written as:
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min cTx+
1

2
xTQx

s.t. (2.3)

Ax ≤ b

x ≥ 0

When the objective function f(x) is strictly convex for all feasible points the

problem has a unique local minimum which is also the global minimum. A sufficient

condition to guarantee strictly convexity is for Q to be positive definite.

Mixed Integer Programming

A mixed-integer program is the minimization or maximization of a linear function

subject to linear constraints. More explicitly, a mixed-integer program with n

variables and m constraints has the form:

max cTx

s.t. (2.4)

Ax ≤ b

l ≤ x ≤ u

xj integer for all j in D which is a subset of {1...n}

If all the variables can be rational (the set D is empty), this is a linear

programming problem, which can be solved in polynomial time. However, when some

or all of the variables must be integer, corresponding to pure integer and mixed integer

programming respectively, the problem becomes NP-complete (formally intractable).
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There are three major algorithms to solve integer programming problems: Branch

and Bound, Branch and Cut, Branch and Price.

Branch and Bound: The most widely used method for solving integer programs

is branch and bound. Subproblems are created by restricting the range of the integer

variables. For binary variables, there are only two possible restrictions: setting the

variable to 0, or setting the variable to 1. More generally, a variable with lower

bound l and upper bound u will be divided into two problems with ranges l to q

and q + 1 to u respectively. Lower bounds are provided by the linear-programming

relaxation to the problem: keep the objective function and all constraints, but relax

the restrictions to derive a linear program. If the optimal solution to a relaxed problem

is (coincidentally) integral, it is an optimal solution to the subproblem, and the value

can be used to terminate searches of subproblems whose lower bound is higher [59].

Branch and Cut: For branch and cut, the lower bound is again provided by the

linear-programming (LP) relaxation of the integer program. The optimal solution

to this linear program is at a corner of the polytope which represents the feasible

region (the set of all variable settings which satisfy the constraints). If the optimal

solution to the LP is not integral, this algorithm searches for a constraint which is

violated by this solution, but is not violated by any optimal integer solutions. This

constraint is called a cutting plane. When this constraint is added to the LP, the

old optimal solution is no longer valid, and so the new optimal will be different,

potentially providing a better lower bound. Cutting planes are iteratively until either

an integral solution is found or it becomes impossible or too expensive to find another

cutting plane. In the latter case, a tradional branch operation is performed and the

search for cutting planes continues on the subproblems [59].

Branch and Price: This is essentially branch and bound combined with column

generation. This method is used to solve integer programs where there are too many
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variables to represent the problem explicitly. Thus only the active set of variables

are maintained and columns are generated as needed during the solution of the linear

program. Column generation techniques are problem specific and can interact with

branching decisions [59].

Decentralized Optimization

The decentralized optimization is developed based on dual decomposition method.

Dual decomposition method is used for dynamic optimization on large-scale network

in which distributed agents pass relatively small messages [60].

Dual Decomposition: Consider the following convex equality constrained opti-

mization problem:

min f(x)

s.t. (2.5)

Ax = b

The Lagrangian L is defined as:

L (x, y) = f(x) + yT (Ax− b) (2.6)

The corresponding Lagrange dual function g(y) is the infimum with respect to the

primal variable x:

g(y) = inf
x
L(x, y) (2.7)

The Lagrange dual problem is the maximization of the Lagrange dual function

(max g(y)) and the optimal x can be obtained through the following equation:
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x∗ = min
x

L(x, y∗) (2.8)

We solve the Lagrange dual problem (2.8) with the subgradient method. The

subgradient method is a generalization of the gradient descent method to non-

differentiable functions, using the iterations:

yk+1 = yk + αk∇g(yk) (2.9)

where k is the iteration index, α is the step size, and ∇g(yk) is a subgradient to g.

According to (2.5):

∇g(yk) = Ax̃− b (2.10)

where x̃ = minx L(x, yk).

x and y are updated in each iteration according to dual ascent method:

xk+1 := min
x

L(x, yk) (2.11)

yk+1 := yk + αk(Axk+1 − b) (2.12)

Now, suppose f is separable

f(x) = f1(x1) + + fN(xN), x = (x1, ..., xN) (2.13)

Then L is seperable in x : L(x, y) = L1(x1, y) + · · ·+ LN(xN , y)− yT b,

Li(xi, y) = fi(xi) + yTAixi (2.14)

Therefore, x-minimization in the dual ascent splits into N separate minimizations:
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xk+1
i := min

xi
Li(xi, y

k) (2.15)

which can be carried out in parallel. Using the dual decomposition theory, the

problem is solved in a distributed manner. Then, x and y are updated in each iteration

k as follows:

• scatter dual variable,yk, to the agents.

• update xi in parallel according to (2.15)

• update yk:

yk+1 := yk + αk(
∑
Axk+1 − b) (2.16)

This process converges when
∑
Axk+1 gets close to b. This means that the dual

variable, y, doesn’t get updated anymore.

2.2.2 Heuristic Methods

Heuristic optimization methods are essentially computational and therefore they have

been naturally introduced following the development of electronic computing devices.

First contributions go back to authors in [61] and [62] who developed procedures

to solve the traveling salesman problem, but the most significant advances in the

domain have been made in the late 1980s and 1990s when the main techniques have

been introduced.

Optimization heuristics, which are sometimes also labeled approximation meth-

ods, are generally divided into two broad classes, constructive methods also called

greedy algorithms and local search methods. Local search uses only information

about the solutions in the neighborhood of a current solution and is thus very similar

to hill climbing where the choice of a neighbor solution locally maximizes a criterion.

The classical local search method for minimizing a given objective function f(x) can

be formalized as presented in Algorithm 1.
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Algorithm 1: Pseudo-code for the classical local search procedure.

1. Generate initial solution

2. While stopping criteria not met

3. Select xnεN(xc) (neighbor to current solution)

4. If f(xn) < f(xc) then xc = xn

5. End

Hill-climbing uses information about the gradient for the selection of a neighbor

xn in statement 3 whereas local search algorithms choose the neighbors according to

some random mechanism. This mechanism as well as the criteria for acceptance in

statement 4, which are specific for a particular heuristic, define the way the algorithm

walks through the solution space. The stopping criteria often consists in a given

number of iterations.

Local search methods are generally divided into trajectory methods which work

on a single solution and population based methods (some of them are also called

evolutionary algorithms by some authors), where a whole set of solutions is updated

simultaneously. In the first class, we find threshold methods and tabu search whereas

the second class consists of genetic algorithms, differential evolution methods and ant

colonies. All these local search methods have particular rules for either or both, the

choice of a neighbor and the rules for acceptance of a solution. All the methods,

except for tabu search, allow uphill moves, i.e. accept solutions which are worse than

the previous one, in order to escape local minima.

2.2.3 Optimization Under Uncertainty

A large number of problems in power systems require that decisions be made in the

presence of uncertainty. Examples of uncertainty are uncertainty in demand, gener-

ation from renewable resources, and uncertainties associated from measurements. A

key difficulty in optimization under uncertainty is in dealing with an uncertainty space
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that is huge and frequently leads to very large-scale optimization models. Decision-

making under uncertainty is often further complicated by the presence of integer

decision variables to model logical and other discrete decisions in a multi-period or

multi-stage setting. In this section, we briefly review theory and methodology that

have been developed to cope with the complexity of optimization problems under

uncertainty.

Stochastic Programing

Under the standard two-stage stochastic programming paradigm, the decision

variables of an optimization problem under uncertainty are partitioned into two

sets [63]. The first stage variables are those that have to be decided before the

actual realization of the uncertain parameters. Subsequently, once the random events

have presented themselves, further design or operational policy improvements can be

made by selecting, at a certain cost, the values of the second-stage, or recourse,

variables. Traditionally, the second-stage variables are interpreted as corrective

measures or recourse against any infeasibilities arising due to a particular realization

of uncertainty. However, the second-stage problem may also be an operational-level

decision problem following a first-stage plan and the uncertainty realization. Due to

uncertainty, the second-stage cost is a random variable. The objective is to choose

the first-stage variables in a way that the sum of the first-stage costs and the expected

value of the random second-stage costs is minimized. The concept of recourse has

been applied to linear, integer, and non-linear programming [63].

A standard formulation of the two-stage stochastic linear program is:

min ctx+ EωεΩ[Q(x, ω)]

s.t. (2.17)

xεX
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with

Q(x, ω) = min f(ω)ty

s.t. (2.18)

D(ω)y ≥ h(ω) + T (ω)x, yεY

where X ⊆ <n1 and Y ⊆ <n2 are polyhedral sets. Here, cε<n1, ω is a random

variable from a probability space (Ω,F , P ) with Ω ⊆ <k, f : Ω→ <n2 , h : Ω→ <m2 ,

D : Ω → <m2×n2 , D : Ω → <m2×n1 . Problem (2.17) with variables x constitute

the first stage which needs to be decided prior to the realization of the uncertain

parameters ωεΩ. Problem (2.18) with variables y constitute the second stage. Under

the assumption of discrete distributions of the uncertain parameters, the problem can

be equivalently formulated as a large-scale linear program which can be solved using

standard linear programming technology.

Probabilistic programming

The recourse-based approach to stochastic programming requires the decision-maker

to assign a cost to recourse activities that are taken to ensure feasibility of the second-

stage problem. In essence, the philosophy of this approach is that infeasibilities in

the second stage are allowed at a certain penalty. The approach thus focuses on

the minimization of expected recourse costs. In the probabilistic or chance-constraint

approach, the focus is on the reliability of the system, i.e., the system’s ability to meet

feasibility in an uncertain environment. This reliability is expressed as a minimum

requirement on the probability of satisfying constraints [64]. Consider the classical

linear programming model:
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max ctx

s.t. (2.19)

Ax ≥ b, x ≥ 0

where c and x are n-vectors, b is an m-vector, and A is an m × n matrix. Assume

that there is uncertainty regarding the constraint matrix A and the right-hand side

vector b, and that the system is required to satisfy the corresponding constraint with

a probability pε(0, 1). Then, the probabilistic linear program corresponding to the

classical (deterministic) linear program can be stated as follows:

max ctx

s.t. (2.20)

P (atx ≥ b) ≥ p, x ≥ 0

Consider the case when m = 1, i.e., the case of a single constraint P (atx ≥ b) ≥ p.

Further, assume that the vector a is deterministic while the right-hand side b is a

random variable with cumulative distribution F . Let β be such that F (β) = p.

Then, the constraint P (atx ≥ b) ≥ p can be written as F (atx) ≥ p or atx ≥ β. In this

simple case, the probabilistic program is equivalent to a standard linear program.

Fuzzy mathematical programming

Similar to stochastic programming, fuzzy programming also addresses optimization

problems under uncertainty. A principal difference between the stochastic and fuzzy

optimization approaches is in the way uncertainty is modeled. In the stochastic

programming case, uncertainty is modeled through discrete or continuous probability

functions. On the other hand, fuzzy programming considers random parameters as
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fuzzy numbers and constraints are treated as fuzzy sets. Some constraint violation

is allowed and the degree of satisfaction of a constraint is defined as the membership

function of the constraint [65]. Consider the following fuzzy optimization:

max c̃tx

s.t. (2.21)

Ãx ≤ b̃, x ≥ 0

where c̃, Ã, and b̃ represent fuzzy intervals for parameters c, A, and b, respectively.

Let aij and ∆aij, respectively, represent the center and spread of the fuzzy number

ãij. Similarly, let cj and ∆cjdenote the center and spread of the fuzzy number c̃ij.

Now, consider the following membership functions:

ui(x) =


1, if Aix ≤ bi

1− Aix−bi
∆Aix+∆bi

, if bi < Aix < bi + ∆Aix+ ∆bi

0, otherwise

(2.22)

and

u0(x) =


1, if b0 ≤ ctx

1− b0−ctx
∆b0+∆ctx

, if b0 −∆b0 −∆ctx < cx < b0

0, otherwise

(2.23)

where [b0 − ∆b0, b0] denotes the aspiration range for the objective. Then, the

Bellman–Zadeh decision-making criterion leads to the following equivalent of the

possibilistic program after the introduction of a new variable λ:
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maxλ

s.t. (2.24)

ctx+ ∆ctx(1− λ) ≥ b0 −∆b0(1− λ)

Ax−∆Ax(1− λ) ≤ b+ ∆b(1− λ)

x ≥ 0, 0 ≤ λ ≤ 1
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Chapter 3

Distribution System

Restoration/Reconfiguration

In this chapter, the motivation, contribution and detailed formulation of distribution

system reconfiguration is provided.

3.1 Motivation and Contribution

From the literature review in the last chapter, it seems clear that the explicit

representation of the radiality constraints is an issue that has not yet been

appropriately solved. Therefore, many of the proposed approaches have used heuristic

search or population based approaches to solve the problem. Nevertheless, solutions

based on heuristic methods suffer from a number of shortcomings. If formulating the

radiality/weakly-meshed constraint is possible, then the restoration/reconfiguration

and distribution system expansion problems can be solved using integer programming

techniques. In this dissertation, a general approach taking advantage of practical

operating constraints is introduced. The main contribution is to offer a general

approach based on MIP to formulate reconfiguration for radial or weakly meshed

distribution systems. Employing the proposed method, many different objectives can
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be formulated easily. The study also investigates the effect of Community Energy

Storage Systems (CES) [66] discharge on reconfiguration solution. Performance of

MIP on two objectives is investigated: 1- minimizing the loss; and 2- minimizing the

number of switching operations, which is important for fault location and isolation,

fault repair and system restoration. Two different formulations are proposed for each

objective function. The first formulation is a linear formulation of reconfiguration

problem while the second one includes quadratic objective function and constraint

set. A Depth-first strategy is used to formulate the radiality constraint for the

MIP. This is a very general approach that can be applied to any given system and

objective function. None of the researches in the literature have heretofore reported

formulating the radiality constraint for MIP. As an important feature, the proposed

approach offers very fast reconfiguration and restoration of distribution systems.

Another challenge in DSR is uncertainties associated with loads and renewable

resources. This problem is caused by insufficient measurements and high penetration

of controllable loads and renewable resources. Therefore, DSR with deterministic

optimization may not lead to an optimal/feasible result. We need to come up with a

method which gives us an optimal solution for different loading conditions. In other

words, we need to make a compromise between optimality and feasibility. In this

dissertation, two different methods based on fuzzy MIP (FMIP) and stochastic MIP

(SMIP) are proposed to solve reconfiguration problem in presence of load uncertainty.

Performances of the proposed approaches are compared by implementing them on

two test systems. It is shown that the solutions obtained by FMIP, SMIP are

robust enough to deal with different loading conditions. If we are certain about the

probability distribution function of the load forecast/measurement error, SMIP may

lead to a more optimal solution. However, problem with SMIP is the computational

intensity which makes it inappropriate for real-time applications. Specially, if we

want to achieve more accurate results, we need to increase the number of scenarios

in our stochastic approach which makes it more computational intense and slow. On

the other hand, it will be shown that FMIP is very fast and appropriate for real-time
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applications. Membership functions for fuzzy optimization are modeled based on the

radial structure of the distribution system to give feasible and optimal results. In

general, if we want to perform reconfiguration in real-time, it will be more practical

to use FMIP. In the following, first the deterministic MIP-based DSR is presented

and then robust DSR based on FMIP and SMIP will be discussed.

3.2 Deterministic MIP-Based DSR

In this case, nominal values of the loads are considered as the deterministic values and

uncertainty is neglected. Two methods based on Mixed Integer Linear Programming

(MILP) and Mix Integer Quadratic Programming (MIQP) are introduced. It is shown

that compared to MIQP, the MILP-based DSR leads to a faster but sub-optimal

solution.

3.2.1 MILP-Based DSR

The status of a switch is a binary variable and the other variables, such as CES

units power output, and line flows are modeled as continuous real numbers. The

DSR optimization problems considered in this study are given as the minimization

of active power loss and minimization of the total number of switching operations

subject to a set of constraints including power balance, thermal limits of the lines,

CES units’ constraints, and radiality of the system. It will be shown that CES output

power can change the configuration of the network by changing line flows. Specifically:

• Objective: Loss minimization

min

ni∑
i=1

ri (ui + vi) (3.1)

• Objective: Minimizing switching actions

min
∑
iεNO

xi −
∑
iεNC

xi +

ni∑
i=1

ri (ui + vi) (3.2)

Subject to:
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• Power balance and line flow limit constraints

AT (u− v) = P − Pb (3.3)

ui + vi ≤ xi.P
f,max
i (3.4)

xiε {0, 1}

ui, vi ≥ 0

• Radiality constraint

Nj∑
i=1

xi ≤ Nj − 1 (3.5)

• CES Constraint

−(1− SCb
i )C

b
i ≤ P b

i t ≤ Cb
iSC

b
i − dbi (3.6)

P b
ch,max ≤ P b

i ≤ P b
dc,max (3.7)

where ni is number of the lines, ui − vi = P f
i , ui + vi =

∣∣∣P f
i

∣∣∣, and P f
i is active

power flow on the ith line. uiand vi are non-negative variables which cannot both

be non-zero simultaneously. ri is the resistance of the corresponding branch. A is

the reduced node incidence matrix of the system. xi is the swith status, xi = 0 and

xi = 1 represent an open switch and closed switch, respectively. P is the vector

of node injection active power. P f,max
i is the maximum active power flow limit on

the i th line. NO and NC are normally open (tie-line) and normally close switches,

respectively. Nj is the number of switches in loop j (described in more detail in the

next sections). Pb is the active power output of the CES units. SCb
i and Cb

i are

state of charge (SoC) and capacity (kWh) of the battery storage unit i, respectively.

dbi is the depth of discharge of unit i. P b
ch,max and P b

dc,max are maximum charge and

discharge rates of the battery storage units, respectively.
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The first objective function penalizes high flows through branches with higher

resistance while the second objective, in case of faults, searches for minimum number

of switching actions to isolate the fault and remove overload condition in such a way

that the minimum-loss topology is obtained. As results show, the optimization utilizes

CES units to locally supply loads to reduce power flow on the lines and consequently

to reduce loss. Implementing CES unit may also lead to change in the result of

reconfiguration through changing the line flows and voltages on the nodes.

Power balance and line flow limit constraints are expressed in (3.3) and (3.4),

respectively. Note that line losses are not considered in power balance equations as

they are usually negligible compared to loads. Radiality of the system is guaranteed

by enforcing (3.5). (3.6) states that the output energy of a CES unit should be

smaller than the current available energy in the battery. Constraint (3.7) assures

shallow discharge of units to prolong battery life.

3.2.2 MIQP-Based DSR

In addition to the active power, reactive power is also taken into account in this

formulation. The optimization problem is formulated as follows:

• Objective: Loss minimization

min

ni∑
i=1

ri

((
P f
i

)2

+
(
Qf
i

)2
)

+

nb∑
i=1

P 2
b (3.8)

• Objective: Minimizing switching actions

min
∑
iεNO

xi −
∑
iεNC

xi +

ni∑
i=1

ri

((
P f
i

)2

+
(
Qf
i

)2
)

+

nb∑
i=1

P 2
b (3.9)

Subject to:

- Power flow constraints
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ATPf = P − Pb (3.10)

ATQf = Q−Qb (3.11)

- Line thermal limit constraint

|Ii| ≤ xiI
max
i (3.12)

xiε {0, 1}

- Voltage constraint

Vi,min ≤ |Vi| ≤ Vi,max (3.13)

- Radiality constraint

Nj∑
i=1

xi ≤ Nj − 1 (3.14)

- Battery constraint

−(1− SCb
i )C

b
i ≤ P b

i t ≤ Cb
iSC

b
i − dbi (3.15)

−P b
ch,max ≤ P b

i ≤ P b
dc,max (3.16)

PF > PFmin (3.17)

P f
i and Qf

i are active and reactive power flow on the ith line and P and Q are active

and reactive power load vectors. A is the reduced node incidence matrix of the system.
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Pb and Qb are active and reactive power output of a battery unit. Imaxi is the thermal

limit of line i. Vi is the voltage magnitude on node i. PF and PFmin are the power

factor and minimum acceptable power factor of the battery storage unit.

The first term in the objective function (3.8) penalizes high flows through branches

with higher resistance while the second term captures the damaging effect of fast

charging and discharging of the battery units. Constraints (3.10)-(3.11) are the power

balance equations. The thermal limit constraint of distribution lines and cables is

guaranteed by (3.12). Radiality of the reconfigured system is preserved by utilizing

(3.14).

Voltage limit constraint is considered by (3.13). A linear formulation of the voltage

constraint based on the deviation of the voltage on a node from substation voltage is

used in this study. The voltage difference between two nodes in a distribution system

can be approximated by [17]:

V 2
i − V 2

j ' 2(rjpj + xjqj) (3.18)

where rj and xj are resistance and reactance of line j, respectively. pj and qj are active

and reactive power flows on line j. Therefore, the quadratic voltage drop through a

path αik reaching bus i from substation s is approximated by:

V 2
s − V 2

i ' 2
∑
jεαik

(rjpj + xjqj) (3.19)

The voltage deviation on a node with respect to the substation should not violate

a certain limit, ∆Vmax:

Vs − Vi ≤ ∆Vmax (3.20)
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Combining (3.19) and (3.20), the quadratic voltgae drop is formulated as follows:

V 2
s − V 2

i ≤ δmax (3.21)

where δmax =∆Vmax(2Vs−∆Vmax). Therefore the bus voltage drop limitation for each

candidate path, αik, leading to bus i can be incorporated to the problem as follows:

2
∑
jεαik

(rjpj + xjqj) ≤ δ
′

max (3.22)

where δ
′
max = δmax +M(Nα −

∑
Xj

jεαik

). The term M(Nα −
∑
Xj

jεαik

) is added to prevent

(3.22) from being binding for any inactive path corresponding to bus i. M is a large

positive number and Nα is the number of switches in path αik.

3.2.3 Radiality Constraints

In order to maintain the radiality of the system, the number of closed lines in each

loop needs to be less than the total number of lines making the loop as proscribed

by (3.5). In other words, there should be at least one open branch in each potential

loop. A DFS-based approach is employed here to detect all the cycles assuming that

all switches are closed. Note if there are some acceptable loops in a weakly meshed

system, they can simply be removed from (3.5).

DFS is a general technique for traversing a graph. DFS always expands one of

the nodes at the deepest level of the tree. Only when the search hits a dead end

(a non-goal node with no expansion) does the search backtrack and expand nodes

at shallower levels [67]. In this study, DFS is specialized to find all possible loops

(cycles) in a given graph. Let’s define a path in a given graph as a sequence of vertices

such that from each of its vertices there is an edge to the next vertex in the sequence.
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Therefore, a cycle is a closed path with no repeated vertices other than the starting

and ending vertices. To illustrate, consider vertex A in Figure 3.1(a). All vertices are

labeled initially as unexplored vertices or nodes. There are three options to continue:

A → B, A → D, and A → E. For choosing the next vertex, the right vertex has

priority. Hence, DFS picks A → B and vertex B is labeled as visited node (Figure

3.1(b)). B → C is the only edge that the DFS can take from B and the vertex C is

labeled as a visited vertex. Therefore, there are two visited nodes and two discovery

edges so far. When DFS gets to C, it can choose either C → D or C → E. DFS

chooses the right edge, C → D, and visits vertex D (Figure 3.1(d)). For vertex D,

there is only one option D → A. Since the vertex A is the starting vertex, a cycle is

detected (Figure 3.1(e)). Search then returns to the last visited vertex, which is D.

As there is no option to traverse, it labels the vertex D as an unexplored vertex and

moves to C. For vertex C, the edge C → D has already been explored and therefore

the next left edge, C→E, is taken and the vertex E is labeled as visited (Figure 3.1(f)).

Then only one option E → A should be chosen and another cycle is detected (Figure

3.1(g)). Search now returns to E and the vertex E is labeled as unexplored vertex

and DFS gets back to the last visited vertex, which is C again. For the last visited

vertices C and B, there is also no more unexplored edge remaining and therefore

they are labeled as unexplored vertices. The DFS returns to the starting vertex A.

Two unexplored edges A → D and A → E are left. The next right edge A → D

is chosen (Figure 3.1(h)) and the above process should be repeated to detect other

cycles starting from vertex A. After detecting all the cycles starting from vertex

A, the vertex and its connected edges are removed from the graph and the above

process should be repeated for the next arbitrary vertex. The above process should

be stopped when the number of vertices of the graph is less than three. After finding

all the cycles, if there are two identical cycles, one of them should be removed.
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Figure 3.1: DFS-based approach on a simple example
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3.3 Reconfiguration with Load Uncertainty

As mentioned before, due to insufficient measurements and/or high utilization of

demand response programs and renewable resources in the distribution system, the

deterministic optimization may not be optimal/feasible.

In this dissertation, two different approaches are proposed to formulate the

reconfiguration problem with uncertain load data. The first approach is based on

FMIP in which the constraints and the objective function are converted to fuzzy

relations. This means that the constraints are allowed to violate with some degrees

which are determined by their membership functions. In the second approach, the

reconfiguration problem is formulated as a stochastic optimization problem based

on load probability distribution functions (PDF). In this section, the effect of load

uncertainty on loss minimization DSR is studied. These methods can be implemented

for other objectives with some modifications.

3.3.1 FMIP-Based DSR

It is assumed that the load forecast on a node is an interval number:

Plε[P −4P, P +4P ]

Qlε[Q−4Q,Q+4Q]
(3.23)

where P and Q represent the nominal (forecasted) load on the bus and ∆P and ∆Q

are the maximum variation of active and reactive power load. In order to convert the

deterministic optimization problem (3.8) into a fuzzy optimization, the power balance

constraint (3.10)-(3.11), line flow limits (3.12), and voltage limits (3.22) constraints

can be expressed as fuzzy relations. Different membership functions are considered

for the above constraints which are described in the following.
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Active/reactive power balance constraints

The optimum configuration should be able to tolerate severe loading scenarios.

Because of the radial structure of distribution system if load on every node increases,

the line flows increase and there will be a higher possibility of violation in line flow and

voltage limit constraints. The membership function considered for fuzzy active power

balance constraints is depicted in Figure 3.2. A constant power factor is considered

for loads on every bus. The membership function indicates that it is more desirable if

the power balance equations are satisfied for maximum loading cases. This will give

more conservative solution compared to the deterministic optimization where power

balance equations should be satisfied for nominal loads.

Figure 3.2: Membership function of the active power balance constraint

Line thermal limit constraint

Line flows can also be modeled by a soft constraint. The membership function

considered for the line flow limit constraint is shown in Figure 3.3. The membership
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function µI indicates that configuration of the system becomes less acceptable as the

power flows on the lines increases above the maximum thermal limit of the lines.

Figure 3.3: Membership function of line thermal limit constraint

Voltage limit constraint

Voltage limit constraint (3.22) is also converted to a soft constraint to account for

load uncertainty. The membership function for voltage constraint is similar to the

one assigned for line thermal limit. This means that (3.22) is allowed to violate to

some degree ∆δ
′
max.

Based on the symmetric approach, the objective function, should be essentially

smaller than or equal to some aspiration level, Z0, for each objective.

Z̃≤̃Z0 (3.24)
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The membership function of (3.24) can be modeled by Figure 3.4. The aspiration

level represents the ideal system configuration with minimum loss and optimal battery

discharge. A configuration becomes less acceptable as the system loss increases above

the ideal value as indicated by the reduced membership in Figure 3.4. One good

candidate for Z0 is the result of the optimization problem (3.8) with nominal load

values.

Figure 3.4: Membership function of the objective function

Since the constraints and objective function are represented by membership

functions, min-max method can be used to solve the optimization problem. In

this approach the objective function and constraints are treated symmetrically.

Mathematically,

λ∗ = max min(µZ , µP , µI , µV ) (3.25)
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Consequently, the following equivalent parametric model can be used:

max λ

s.t.

µZ ≥ λ

µP ≥ λ

µV ≥ λ (3.26)

µI ≥ λ

(3.14)− (3.17)

0 ≤ λ ≤ 1, xε{0, 1}

The problem thus becomes maximizing a scaler value λ such that the membership

values of all constraints should be greater than or equal to this λ.

3.3.2 SMIP-Based DSR

In order to find a solution, which takes account of the stochastic characteristic of load,

stochastic optimization is introduced to solve the problem of DSR. It is assumed that

the forecasted load has a Guassian probability distribution function (PDF) with mean

value P̃di and standard deviation σ. At the ith bus of a distribution system, the PDF

is shown in Figure 3.5 and can be defined as follows:

ρdi =
1√

2πσ2
e−

(Pdi−P̃di)
2σ2 (3.27)
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Figure 3.5: Probability density function of the Load

σ is assumed to be the same at all buses (this will significanty reduces the

computational intensity). Taking an interval of P̃di±3.5σ, it is split into nd segments

of equal widths. The dth segment has an area (or probability) πdi and average power

value that equals Pdi. As we have chosen σ to be same at all the buses, πdi at the ith bus

equals πdj at the jth bus and in general equals πd. This allows for a probabilistic load

model that has nd pairs of values with the dth pair having a load and its corresponding

probability that equals (πdi ,π
d).

We also assume a constant power factor (PF) for all the loads:

Q̃di = PF .̃Pdi (3.28)

Specifically, the problem of DSR is formulated as a two-stage SMIP model. The

first stage involves solving a radiality-constrained DSR in the base case without load

uncertainty and the second stage addresses the scenarios where load uncertainties

occur. In the model, decisions made in the first stage are status of switches and

battery discharges. Decisions made in the second stage include active/reactive power
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flow on the lines and voltages on the buses. Decisions on status of switches and battery

discharge are only made in the first stage and does not change across scenarios. The

active/reactive power flow on the lines and voltages on the buses are determined for

each scenario in order to minimize the active power loss.

Mathematically, the two-stage SMIP model is formulated as:

min
Nω∑
ω=1

πω

[
ni∑
i=1

Ri

((
P f
iω

)2

+
(
Qf
iω

)2
)

+

nb∑
i=1

P 2
b

]
(3.29)

Subject to:

- Power flow constraints

ATPfω = Pω − Pb (3.30)

ATQfω = Qω −Qb (3.31)

- Line thermal limit constraint

|Iiω| ≤ xiI
max
i (3.32)

xiε {0, 1}

- Voltage constraint

Vmin ≤ |Viω| ≤ Vmax (3.33)

- Radiality consttraint

57



Nj∑
i=1

xi ≤ Nj − 1 (3.34)

- Battery onstraint

−(1− SCb
i )C

b
i ≤ P b

i t ≤ Cb
iSC

b
i − dbi (3.35)

−P b
ch,max ≤ P b

i ≤ P b
dc,max (3.36)

PF > PFmin (3.37)

where ω is an index of load scenarios and symbols with subscript ω represent

corresponding values under load scenario ω. πω is the probability of scenario ω.

The objective function is the expected penalty of high flows through branches with

higher resistance as well as fast discharging of the battery units. Constraints (3.30)-

(3.31) are the power balance equations of all scenarios. The thermal limit constraint

of distribution lines and cables is guaranteed by (3.32). Voltage limit constraint is

considered by (3.33).

An appropriate scenario set is critical to the SMIP model. Generally with

more scenarios, the uncertainty model of load will be more precise. Nevertheless,

computational requirements for solving scenario-based optimization models depend

on the number of scenarios. For this reason, an effective scenario reduction method

is essential for solving large scale system. The reduction technique is a scenario-

based approximation with a smaller number of scenarios and a reasonably good

approximation of the original system. We determine a subset of scenarios and a

probability measure based on this subset that is the closest to the initial probability

distribution in terms of probability metrics. Efficient algorithms based on backward

and fast forward methods are developed that determine optimal reduced measures

[68].
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3.4 Simulation Results

This section presents and discusses results from the application of the methodology

to two electrical systems. The first system includes one main source, 33 buses, 32 NC

switch branches, and five NO switch lines. The second system, on the other hand,

consists of three sources, 83 buses and 96 branches.

The simulations are performed on a 2.66 GHz, 4 GB RAM PC. The software tools

used to solve the MIP problems are MATLAB 2011b and ILOG CPLEX 12.2 under

the 64 bit operation system. Two different electrical systems are studied to show the

effectiveness of the proposed approaches.

3.4.1 Single-source, 32-bus system

The first electrical system is a 37-branch test system used by Baran and Wu [23].

It is assumed that all the branches have either NC or NO switches. The system

is depicted in Figure 3.6. Five CES units are located on buses 9, 17, 18, 22, and

30. The batteries capacity, maximum discharge rate, and power factor are 75 kW,

25 kW, and 0.9, respectively. Before starting the optimization, the cycle detection

approach is performed on the adjacency matrix of the system graph assuming that

all the switches are closed, which identifies 26 cycles. The branches making different

cycles are then identified and according to (3.14), the number of closed branches in

each loop should be less than the total number of branches creating the loop. Table

3.1 shows the sequence of visited vertices starting from vertex 2 obtained by the DFS-

based strategy as an example. Then, according to (3.5) number of closed branches in

each loop should be less than the total number of branches creating the loop. Note

that the process is performed only once and before the optimization.
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Figure 3.6: 32-bus test system
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Table 3.1: Sequence of visited nodes in each cycle starting from node 2

Loop Vertex
1 2,3,4,5,6,7,8,9,10,11,12,22, 21,20,19,2
2 2,3,4,5,6,7,8,9,15,14,13,12,22, 21,20,19,2
3 2,3,4,5,6,7,8,21,20,19,2
4 2,3,4,5,6,26,27,28,29,30,31,32, 33,18,17,16,15,9,8,21,20,19,2
5 2,3,4,5,6,26,27,28,29,30,31,32, 33,18,17,16,15,9,10,11,12,22, 21,20,19,2
6 2,3,4,5,6,26,27,28,29,30,31,32,33, 18,17,16,15,14,13,12,11,10, 9,8,21,20,19,2
7 2,3,4,5,6,26,27,28,29,30,31,32,33, 18,17,16,15, 14,13,12,22,21,20,19,2
8 2,3,23,24,25,29,28,27,26,6,7, 8,9,10,11,12, 22,21,20, 19,2
9 2,3,23,24,25,29,28,27,26,6,7, 8,9,15,14,13,12, 22,21,20,19,2
10 2,3,23,24,25,29,28,27,26,6,7, 8,21,20,19,2
11 2,3,23,24,25,29,30,31,32,33, 18,17,16,15,9,8, 21,20,19,2
12 2,3,23,24,25,29,30,31,32,33,18,17, 16,15,9,10, 11,12,22,21,20,19,2
13 2,3,23,24,25,29,30,31,32,33, 18,17,16,15,14,13, 12,11,10, 9,8,21,20,19,2
14 2,3,23,24,25,29,30,31,32,33,18, 17,16,15,14,13, 12,22,21,20,19,2

Deterministic Optimization

In this section deterministic MIP-based DR is presented for two objectives. The first

optimization problem minimizes the active power loss while the second optimization

minimizes the total number of switching operations to restore a system after faults.

Loss Minimization

The objective is to find the optimum topology of the system with minimum active

power loss. Table 3.2 compares the results obtaind by MILP and MIQP. Batteries’

discharge estimated by MIP is exhibited in Table 3.3. According to Table 3.2, MIQP

leads to better results. However, the speed of MILP is much higher. Even though

MILP doesn’t give the optimal solution, i.e. the minimum loss, it reduces the loss

significantly. Therefore, it may be beneficial to use MILP when a large system is

being studied. Voltage profile of the system after reconfiguration is demonstrated in

Figure 3.7.
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Table 3.2: Reconfiguration result for loss minimization-first system

Parameter MILP MIQP

Optimal solutionopen switches
8-21,10-11,13-14, 7-8,9-10, 14-15,

16-17, 28-29 25-29, 32-33
kW loss- new configuration, without CES 161.58 139.55

kW loss- new configuration, with CES 149.77 131.42
kW loss- Original system 202.5

Minimum voltage- new configuration, without CES (pu) 0.927 0.938
Minimum voltage- new configuration, with CES (pu) 0.93 0.94

Minimum voltage- original system (pu) 0.913
Processing time (s) 0.028 0.5

Table 3.3: Battery output power estimated by MIP-first system

Bus kW

9 15.63

17 11.53

18 19.28

22 19.66

30 23.89

Minimizing the Switching Operations

In this optimization problem we are interested in restoring the system after a

fault with minimum number of switching operations. We also would like to study

the impact of battery units on the reconfiguration result. Let’s assume that branches

9-10 and 27-28 are out of service because of faults. Three different cases are studied

here: 1- there is no CES unit in the system; and line 12-22 has a high flow limit. 2-

there is no CES unit in the system; and line 12-22 has a small flow limit. 3- there are

CES units in the system; and line 12-22 has a small flow limit. When fault occurs

and lines 9-10 and 27-28 are taken out, two tie-lines should be closed to supply the

demand. The MIP prefers to close tie-lines 10-12 and 25-29 as these are the closest

NO switches to the faulted areas (Case 1). In Case 2, however, because of the low
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Figure 3.7: Voltage profile of the 32-bus system

line flow limit of line 12-22, the next closest tie-line, which is line 9-15 is closed and

this leads to more active power loss (Case 2). In the third case, since storage units

locally supply some parts of loads, the overload condition on line 12-22 is removed.

This allows tie-line 12-22 to close and configuration of the system is the same as Case

1. Table 3.4 exhibit the results obtained by MIP.

Table 3.4: Reconfiguration results obtained by MIQP

Parameter Case 1 Case 2 Case 3

Optimal solution- open switches
8-21, 9-10, 9-15, 8-21, 9-10, 12-22, 8-21, 9-10, 9-15,

18-33,27-28 18-33,27-28 18-33,27-28
kW loss 143.3 161.64 135.36

Minimum voltage (pu) 0.935 0.933 0.94
Processing time (s) 0.03 0.033 0.13
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DSR with load uncertainty

The FMIP and SMIP approaches are now applied to solve the reconfiguration problem

in the presence of load uncertainty. The nominal loads are considered as deterministic.

For FMIP, it is assumed that the load belongs to the range [P − ∆P, P + ∆P ]

where P is the load nominal value and ∆P is assumed to be 21% of the nominal

load as an example for large uncertainty. A constant power factor is considered

for the loads on every node. As mentioned in section II-B, a distribution system

operator may allow line thermal limit and voltage constraints to be violated to some

degrees determined by a membership function (3.3). Two cases for FMIP-based

reconfiguration are considered here. In the first case, which is called FMIP with soft

constraints (SC FMIP), the operational constraints (3.12) and (3.22) are allowed to

violate up to 10% of their maximum limit. The second case, HC FMIP, on the other

hand, considers hard operational constraints which does not allow for any constraint

violations. Obviously, HC FMIP may lead to a higher loss configuration as it allows

for less flexibility in the line flow and voltage limit constraints.

For the SMIP reconfiguration, the forecasted load is modeled as a Gaussian

probability distribution function with nominal load as the mean value and standard

deviation, σ, of 6%. The load can change in the range of P ± 3.5σ. Monte Carlo

simulation is used to generate 5000 load scenarios. Then, the number of the scenarios

is reduced to 200 using the scenario reduction technique.

Table 3.5 and Table 3.6 show the reconfiguration result obtained by FMIP and

SMIP. The system loss for the nominal load is also shown in Table 3.5. As obsereved

in Table 3.5, both FMIP and SMIP lead to configurations with higher losses compared

to the deterministic case. The reason is that the mentioned approaches lead to

conservative solutions which are feasible for different loading conditions. In order

to compare the performance of FMIP and SMIP, the solutions are examined for 5000

scenarios to see what percentage of the load scenarios lead to constraint violation.

The computation time for deterministic, FMIP, and SMIP reconfiguration is also
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shown in Table 3.7. As observed in Table 3.7, HC FMIP and SMIP are very close in

terms of robustness but HC FMIP is much faster (HC FMIP leads to a slightly more

conservative solution with more power extraction from battery units). It is worth

noting that because of the radial structure of the distribution system, higher loads on

the nodes cause higher flows on the lines. Therefore, there will be higher possibility

that the line flow limits and voltage limit constraints are violated. This feature is

considered in membership function shown in Table 3.2 and that is the reason that

FMIP leads to a robust and optimal result.

Table 3.5: Reconfiguration with load uncertanty-first system

SC FMIP HC FMIP SMIP

Optimal solution- open switches
7-8,11-12,14-15, 7-8,11-12,14-15, 7-8,11-12,14-15,

18-33,25-29 17-18,25-29 17-18,25-29
loss (nominal load) 134.47 138.30 138.94

Table 3.6: Battery discharge with load uncertainty-first system

SC FMIP HC FMIP SMIP

Bus kW kW kW

9 18.71 16.99 15.02

17 12.69 12.18 10.76

18 22.56 19.87 17.54

22 22.96 25 24.84

30 24.87 25 22.90

Table 3.7: Comparison of the approaches-first system

Deterministic SC FMIP HC FMIP SMIP

Infeasible scenarios (%) 54 20.2 4.49 4.52

Computation time (s) 0.5 1.32 49
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Figure 3.8: 86-bus test system

3.4.2 Multiple source, 86-bus System

The distribution system shown in Figure 3.8 contains 86 load buses, three supply

buses, and 96 branches [21]. 68 branches are assumed to be non-switch branches and

only 28 branches are equipped with switches. From those 28 switch branches, 13

lines are NO (tie-line) switch branches and the remaining switch lines are NC switch

branches. The system has 9 battery storage units with 150 kWh capacity and 100 kW

maximuim charge/discharge rate. Since the system has a very good power factor, i.e.

reactive power load is negligible compared to active power load; the reactive power

term can be eliminated from the equations with a very good approximation. First,

similar to the last section, the DFS-based cycle detection approach is employed to

detect possible loops/cycles. Running the loop finder routine, 1949 loops are detected
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in 25.28 seconds. It is worth noting that even though the cycle detection approach

is not fast, it does not cause any problem as it is done in off-line and before the

optimization.

Deterministic Reconfiguration

Loss Minimization

Table 3.8 and Table 3.9 compare the results obtained by MILP and MIQP. Since no

penalty for battery discharge is considered in MILP, all the batteries can discharge

up to 100kW. Similar to the previous section, it can be seen that MIQP gives a

better result compared to MILP. In addition, it is observed that MIQP leads to a fast

reconfiguration as the quadratic constraints are removed from formulation. Voltage

profile of the system after optimization is shown in Figure 3.9.

Table 3.8: Reconfiguration result for loss minimization

Parameter MILP MIQP

Optimal solution-
1-5,12-61,14-17, 12-61,13-76,14-17,15-19,

15-19,18-34,20-24, 18-34,20-24,20-36,

open switches
23-25,23-26,39-43,40-46, 23-25,39-43,48-69,

50-51,52-85,70-86 50-51,52-85,70-86
kW loss- configuration, without CES 1775.1 1691.6

kW loss- new configuration, with CES 1715 1630.9
kW loss- original system 2070.7
Minimum voltage, new

0.9 0.9
configuration, without CES (pu)

Minimum voltage- new
0.9 0.91

configuration, with CES (pu)
Minimum voltage original system (pu) 0.844

Processing time (s) 0.2 0.27
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Table 3.9: Battery active power estimated by mip-second system

MILP MIQP

Bus kW kW

23 100 100

28 100 100

51 100 100

52 100 100

63 100 100

70 100 53.45

76 100 44.83

81 100 13.32

87 100 100
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Figure 3.9: Voltage profile of the 86-bus system
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Minimizing the Switching Operations

Performance of the proposed approach for minimizing switching actions is

investigated for the case in which faults occur on branches 40-46 and 20-24. Three

different cases are considered here: 1- There is no CES unit in the system, and line

48-69 has a high flow limit. 2- There is no CES unit in the system, and line 48-69

has a low flow limit. 3- There are CES units in the system, and line 48-69 has a low

flow limit.

When lines 20-24 and 40-46 are taken out from system due to a fault, switching

actions need to take place in order to avoid customer interruption. MIP prefers

to close tie-lines 33-80 and 48-69 which are close to the faulted area and therefore

lead to minimum loss configuration (Case1). If line 48-69 has a low flow limit, the

optimization searches for the best alternative (Case 2). In Case 3, due to utilization

of storage units, the flow on line 48-69 is reduced. Therefore, the configuration of the

system will be the same as Case 1. Table 3.10 exhibits the results obtained by MIP.

Table 3.10: Reconfiguration results obtained by MILP and MIQP

Parameter Case 1 Case 2 Case 3

Optimal solution- open switches

12-61,13-76,14-17, 12-61,13-76,14-17, 12-61,13-76,14-17,
15-19,18-34, 15-19,18-34, 15-19,18-34,

20-24,20-36,38-64, 20-24,20-36,38-64, 20-24,20-36,38-64,
39-43,40-46, 39-43,40-46, 39-43,40-46,

50-51,52-85,70-86 48-69,52-85,70-86 50-51,52-85,70-86
kW loss 1800 2048 1720

Minimum voltage (pu) 0.89 0.83 0.90
Processing time (s) 0.05 0.05 0.05

DSR with load uncertainty

In this case, the same assumptions for the last example are made. Table 3.11 and

Table 3.12 show the reconfiguration result obtained by FMIP and SMIP. The system
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loss for the nominal load is also shown in Table 3.11. As observed in Table 3.11,

HC FMIP and SMIP give the same configuration with some differences in battery

discharges. The results are tested for 10,000 load scenarios. As observed in Table

3.13, HC FMIP and SMIP have similar level of robustness (HC FMIP gives a slightly

more robust solution with more power extraction from batteries). Given the fact

that HC FMIP is much faster than SMIP, it is recommended to use this approach for

real-time applications.

Table 3.11: Reconfiguration with load uncertanty-second system

Parameter SC FMIP HC FMIP SMIP

Optimal solution-
12-61,13-76,14-17, 12-61,13-76,14-17, 12-61,13-76,14-17,
15-19,20-24,23-25, 15-19,18-34,20-24, 15-19,18-34,20-24,

open switches
23-26,38-64,39-43,40-46, 23-26,23-27,38-64,40-46, 23-26,23-27,38-64,40-46,

50-51,52-85,70-86 50-51,52-85,70-86 50-51,52-85,70-86
loss (nominal load) 1662.6 1811.8 1818.8

Table 3.12: Battery active power estimated by smip-second system

SC FMIP HC FMIP SMIP

Bus kW kW kW

23 77.98 100 100

28 100 100 100

51 94.73 100 100

52 94.92 100 100

63 100 100 100

70 43.68 35.57 32.01

76 44.60 49.62 44.86

81 79.00 100 13.28

87 95.78 100 100
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Table 3.13: Comparison of the approaches-second system

Deterministic SC FMIP HC FMIP SMIP

Infeasible scenarios (%) 35.6 12.7 3.3 3.34

Computation time (s) 1.3 2.64 650

3.5 Review

This chapter proposes MIP-based reconfiguration for radial and weakly-meshed

distribution systems. A general approach based on DFS is proposed to formulate

radiality constraint for MIP. Simulation results show that MILP is much faster than

MIQP. However, it gives a sub-optimal solution as it formulates a linear function

for the loss. MIQP, on the other hand, includes voltage limit constraint and exact

formulation for line thermal limit. This chapter also shows the impact of CES units

on the reconfiguration result. The concept is shown by contribution of CES units in

removing overload conditions from distribution lines.

In addition to the deterministic optimization, DSR with uncertain load data is

formulated based on fuzzy and stochastic programming optimizations. The results

show that both FMIP and SMIP lead to robust optimal solutions which are feasible

for different load scenarios. It is also shown that FMIP is much faster than SMIP

and thus more appropriate for real-time applications.
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Chapter 4

RTP-Based Residential Response

Management

4.1 Motivation and Contribution

In this chapter, a pricing mechanism based on social welfare maximization is proposed

for residential customers. The proposed method is an iterative approach in which

residents and energy supplier (utility distribution company) exchange information on

consumption and price. Local agents in the houses, HAN, interact with the energy

provider’s agent to arrive at a real time price, which reflects the aggregated load on

the substation. Different customers and appliances have different disutility functions

based on the detailed model of the load. Every residence or service point has an

agent that seeks to minimize the utility bill as well as customer dissatisfaction. HANs

consider scheduling of the appliances such as plug-in hybrid electric vehicle (PHEV),

heating, ventilation, and air conditioning (HVAC), water heater, washer, and so on.

As a consideration of the proposed approach, and frequently ignored in the literature,

is to avoid overly sophisticated decision-making at the customer level. Most customers

will have limited capacity or need for elaborate scheduling where actual energy cost

savings will be modest. The distribution company sends a price signal, which reflects
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the aggregated energy consumption and network loading of the consumers to the

agents. The agents plan for energy consumption of the home appliances based on the

received information.

The challenge in this problem is to converge to a solution across the numerous

customers while ensuring the utility distribution system satisfies operational and

reliability constraints. According to the literature review section, much of the

literature in this area fails to account for these network constraints. The effect of

distribution system constraints such as transformer capacity, line flow limits, voltage

limit, and phase balance are shown and discussed. Similar to the transmission system,

nodal price is proposed for the laterals on a feeder. In other words, there is not a

unique price for all the laterals feeding from the same substation. When the decision

converges to a solution, the real-time prices as well as the home appliance energy

consumptions are determined.

4.2 System Model

Consider a set of households/customers that are served by a single utility company.

The utility company participates in wholesale market to purchase electricity from

generation companies and then sells it to the customers in the retail market. Each

residence has a smart meter that communicates with various devices at the residence.

The smart meters communicate with the utility company through AMI. This concept

is exhibited in Figure 4.1.

The utility company can determine a cost function based on the day-ahead

Locational Marginal Price (LMP) and the aggregated load on the substation. In

this work, a quadratic cost function is considered to reflect the cost to the utility
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Figure 4.1: Electricity market relationship to residential customers

company. Note that any convex cost function can be easily considered in the proposed

formulation.

The distribution company sends a price signal, which reflects the aggregated

energy consumption and the distribution network constraints. The resident agents

schedule energy consumption of the home appliances based on the received informa-

tion. In response, they send the aggregated planned energy consumption of every

house to the utility agent. This process repeats until the schedule convergences. The

challenge in this problem is to converge to a solution across the numerous customers

while ensuring the utility distribution system satisfies operational and reliability

constraints. In this section, the detailed models of the cost functions considered

for the utility company and the end users are explained.

4.2.1 Utility

A typical representative section of a residential feeder, including part of the substation

is shown in Figure 4.2 [69]. The utility company tends to minimize its cost while

ensuring that the distribution system operational constraints are satisfied. The cost

function can be expressed as a convex function based on the aggregated residential

load supplied by the utility:

Ct =

Nl∑
i=1

a(P t
i )

2 + bP t
i + c (4.1)
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where Ct is the cost of providing energy at time t; P t
i is the aggregated load on lateral

i at time t; Nl is the number of laterals; and a, b, and c are constants. Figure 4.3

exhibits the cost function used by BC Hydro company and the approximated function

that is used in this work [70].

In order to improve system reliability and reducing customer disturbances, the

utility company needs to make sure that the network operational constraints such as

equipment capacity, line flow limits, and voltage level are not violated. In addition

to the mentioned constraints, current and voltage imbalance are the most severe

power quality problems in low voltage (LV) distribution networks [71]. An increase in

the voltage imbalance can result in overheating and de-rating of all induction motor

types of loads and also the distribution transformers [72, 73]. Voltage imbalance can

also cause network problems such as mal-operation of protection relays and voltage

regulation equipment, and generation of non-characteristic harmonics from power

electronic loads. As shown in Figure 4.2, residential loads are mostly single-phase.

Therefore, the electric utilities usually try to distribute the residential loads equally

among the three phases of distribution feeders [72]. However, phase balancing of

a 3-phase residential feeder will be very challenging due to the random nature of

residential loads. Besides, the magnitude of neutral current of the residential feeders

will be very stochastic and may cause random tripping of feeders due to neutral

current constraint. Therefore, it is very important for the utility company to mitigate

the phase imbalance problem.

In this dissertation, equipment capacity, line flow limits, and phase balance

are considered as the grid operational constraints. The optimization problem
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Figure 4.2: A small section of a residential feeder
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Figure 4.3: Two sample increasing and convex cost function: (a) model used by BC
Hydro (b) and estimated cost function
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(4.2) minimizes the cost to the utility company subject to the distribution system

constraints.

min
T∑
t=1

Ct (4.2)

s.t ∣∣∣∣∣
Na∑
i=1

P t
i,a −

Nb∑
i=1

P t
i,b

∣∣∣∣∣ ≤ γ (4.3)∣∣∣∣∣
Na∑
i=1

P t
i,a −

Nc∑
i=1

P t
i,c

∣∣∣∣∣ ≤ γ (4.4)∣∣∣∣∣
Nb∑
i=1

P t
i,b −

Nc∑
i=1

P t
i,c

∣∣∣∣∣ ≤ γ (4.5)

AP t
l = P t

i , ∀i (4.6)

0 ≤ P t
i ≤ Pmax

i (4.7)

0 ≤ P t
l ≤ Pmax

l (4.8)

where Na, Nb, and Nc are number of An, Bn, and Cn phase laterals, respectively.

P t
i,a, P

t
i,b, and P t

i,c are residential loads on phases a, b, and c, respectively.γ is the

maximum level of acceptable phase imbalance. A is the node-incidence matrix; and

P t
l and P t

i are vectors of line flows and loads on the buses at time t, respectively.

Equations (4.3) and (4.4) state that the phase imbalance should stay in a standard

range set by the utility company (γ). For example, the utility company can set γ based

on over-capacity of unbalanced transformer (OCUT) index used in [71]. It is worth

mentioning that the formulation can easily include 3-phase and 2-phase laterals as

well. (4.6) expresses active power balance on every node (for the sake of simplicity the

active power loss on the line is not considered). Equations (4.7) and (4.8) formulate

the line flow limit and secondary distribution transformer capacity limit, respectively.
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4.2.2 Residential Customers

In every household, HAN schedules the appliances to minimize the utility bill while

mitigating the impact on the user’s comfort. The loads within the residence can be

categorized based on whether they can be scheduled to later times. These will be

labeled schedulable and non-schedulable loads. For instance, lighting and computer

usage are generally non-schedulable loads; while washing machines, heating and air

conditioning systems are considered as schedulable loads. Obviously, the agents can

only manage schedulable loads. Note some loads can be reduced, such as, lighting,

for periods of time at the cost of convenience and would normally be done at times of

extreme shortage. For simplicity, these are not modeled here. In this study, residential

loads are divided into five classes. In the following section, the detailed model of a

smart home is presented.

Class 1

This class includes non-schedulable appliances such as refrigerator-freezer, electric

stove, lighting, TV, computer, etc. As mentioned before, one of the important features

of the pricing algorithm is to avoid burdening the customers. Since it will be very

inconvenient for the customers to forecast their usage of this class of appliances, it

is assumed that the HANs will estimates the energy consumption of this class based

on statistic data and parameters such as number of people in the house, day of the

week, and season. This information can be estimated based on the customer behavior

during the last couple of days. Note that the information can also be entered by the

customers if they want to. Because of the inaccurate prediction of the energy usage

of class 1 appliances, a normal distribution function is used to model uncertainty of

the forecast. Normal distribution function has been widely used in load forecasting in

power systems [74]. Suppose that Et
1 is the estimated energy consumption of class 1

appliances in a house. Then, the actual energy consumption of non-schedulable loads

is obtained by:
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Ẽt
1 = Et

1 + δ, δ = ℵ(0, σ2
1) (4.9)

where Ẽt
1 is the actual load and δ is the forecast error with zero mean and variance

σ2.

Class 2

This class contains devices which have a prescribed energy requirement, E, that has

to be completed over T time slots, starting from time t1. An example is charging

of a PHEV, where the user may specify the time for charging to start and required

completion time. For example, a PHEV sedan for a 40-mile daily driving range

needs E = 16kWh in the battery [75]. The PHEV utility function considered in this

dissertation is as follows:

U(q) = αEV
(
E − qend

)2
(4.10)

where qend is the total energy given to the battery by the end of charging period, and

αEV is the weighting factor determined based on customer preference. The charge

level at each time slot is given by:

q(τ) = qinit +
τ∑

t=t1

pb(t).t (4.11)

pminb < ptb < pmaxb

where ptb is the charging rate at time t. pminb and pminb are minimum and maximum

charging rates, respectively.

Class 3

This class includes thermal loads such as HVAC, water heater, and cooled water

reservoir, with temperature profile θ , which must be kept within minimum and
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maximum temperature limits, θminand θmax. The temperature of the heat store

evolves according to:

θ(t) = θ(t− 1) + α(θamb(t)− θ(t− 1)) + βEt (4.12)

θmin ≤ θ(t) ≤ θmax

0 ≤ Et ≤ Emax

where θamb(t) is the ambient temperature profile; Et is the energy consumption

of the thermal load at time t; and α and β are parameters that specify the

thermal characteristics of the appliance and the environment where it operates. This

formulation models the fact that the current temperature depends on the current

power draw as well as the temperature in the previous time-slot.

The utility function is developed based on the deviation of the temperature from

customer setting as follows:

U(q) = αAC
(
θ(t)− θset

)2
(4.13)

where αAC is the determined based on how customer cares about the temperature.

This class includes thermal loads such as HVAC, water heater, and cooled water

reservoir, with temperature profile θ , which must be kept within minimum and

maximum temperature limits, θmin and θmax. The temperature of the heat store

evolves according to:

θ(t) = θ(t− 1) + α(θamb(t)− θ(t− 1)) + βEt (4.14)

where θamb(t) is the ambient temperature profile; Et is the energy consumption

of the thermal load at time t; and α and β are parameters that specify the
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thermal characteristics of the appliance and the environment where it operates. This

formulation models the fact that the current temperature depends on the current

power draw as well as the temperature in the previous time-slot [76,77].

The utility function is developed based on the deviation of the temperature from

customer setting as follows:

αac
(
θ(t)− θset

)2
(4.15)

θmin ≤ θ(t) ≤ θmax

where αac is the determined based on how customer cares about the temperature.

Class 4

This class of appliances includes deferrable loads. These loads must consume a

minimum amount of power over a given interval of time, which is characterized by the

constraint
∑

tετ pl(t) ≥ E, where E is the minimum total consumption for a certain

period of time. In some cases, such as dishwasher and cloth washer/dryer, the load

can only be turned on or off in each time period. These appliances consume more or

less fixed power while they are on. The primary interest of customers is that the work

is done by a certain time. Therefore, based on the electricity price and the resident’s

comfort, the HAN decides when to turn the device on.

Class 5

This class of appliance inculdes battery storage units which can be used to maximize

the utilization of the renewable energy resources such as rooftop solar panels. The

utility function of a battery is considered as follows:

U(q) = α1(P t
b )

2 + α2P
t
bP

t+1
b (4.16)
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where α1 and α2are positive constants and P t
b is the battery output power at time

t. The first term captures the damaging effect of fast charging and discharging; the

second term penalizes charging/discharging cycles. The charge/discharge constraints

are formulated as follows:

−(1− SCt−1
b )Cb ≤ P t

b .t ≤ (SCt−1
b −Db)Cb (4.17)

−Pch,max ≤ P t
b ≤ P b

dc,max (4.18)

where SCb is the state of the charge of the battery, Db is the minimum acceptable

energy in the battery, and Cb is the capacity of the batter. in order to preserve

battery’s life, (6) guarantees shallow discharge.

4.3 Pricing Mechanism

We are looking for a decentralized demand response management in which HANs

at the residence communicate with the utility company through AMI. HANs receive

the prices for the next 24 hours from the utility company and schedule residential

appliances based on the hourly prices and customers’ utility functions. Then, the

day-ahead prices are updated based on the energy usage of the residents and network

operational constraints. As mentioned earlier, even though uncertainty of the demand

is considered in the day-ahead optimization, due to the highly unpredictable behavior

of the customers day-ahead prices do not exactly reflect the actual residential loads.

Therefore, the prices need to be updated in real-time. This dissertation offers a two-

stage pricing approach to encourage residential customers to participate in the DR

management program. In the first stage, day-ahead prices are calculated based on

social welfare maximization. The second stage determines the real-time prices based

on the actual residential loads.
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4.3.1 Day-ahead pricing

From a social fairness point of view, it is desirable to minimize the cost to the

energy provider while mitigating the impact on the user’s comfort. The social welfare

maximization is mathematically formulated as follows:

min
T∑
t=1

 Nl∑
i=1

C(P t
i ) +

Nl∑
i=1

Ni∑
j=1

Nj∑
k=1

Dt
k,j,i

 (4.19)

s.t

Ni∑
j=1

Nj∑
k=1

Et
k,j ≤ P t

i ,∀i (4.20)

(4.3)− (3.4) (4.21)

class(2)− (4) constraints (4.22)

where P t
i is the aggregated load on node i; and Dt

k,j,i is the disutility (discomfort)

function corresponding to the kth appliance in jth house which is located on node

i. Et
k,j is the energy cosumption of kth appliance in jth house. Constraint (4.20)

guaranties the supply-demand balance on every node. Constraint (4.21) includes the

network operational constraints (4.3)-(3.4). (4.22) includes constraints corresponding

to different classes of residential loads explained in the last session.

When load uncertainty exists due to the stochastic behavior of the residential

customers, the optimization problem (4.19) can turn into minimization of the

expected value of the objective function (stochastic optimization model). In order

to avoid sophisticated algorithms at the residence, we only consider the uncertainty

associated with the class 1 appliances in the day-ahead. The uncertainty of the other

load types will be addressed in real-time price adjustment program. Since no utility

function is considered for class 1 appliances, the uncertaity only affects constraint

(4.20). Different uncertainty models can be considered. In this dissertation, a normal
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distribution function is used to model uncertainty of the demand forecast for class

1 appliances. The energy provider guarantees to supply the residential demand. In

other words, the probability of power shortage should be very small. Mathematically,

Pr

(
Ni∑
j=1

Ẽt
k,j − P

t
i ≥ η

)
≤ ε,∀i (4.23)

where η is a specified threshold indicating the amount of supply shortage and ε is a

small positive value [38]. It is assumed that δ is an independent variable for different

houses. Therefore, the aggregated δ over Ni houses will be calculated as follows:

δagg =

Ni∑
j=1

δj ∼ ℵ

(
0,
∑
j

σ2
j

)
(4.24)

Therefore, (4.23) turns into:

Pr

(
Ni∑
j=1

Et
k,j + δagg − P t

i ≥ η

)
≤ ε,∀i (4.25)

Ni∑
j=1

Et
k,j ≤ P t

i + η −

√∑
j

σ2
j

Q−1(ε) (4.26)

where Q(x) = 1√
2π

∫∞
x
exp(−u2

2
)du. In addition to the forecasted demand, every

HANs needs to report its δ to the utility company. Despite the fact that the

centralized optimization problem (4.19) seems easy to solve, the communication

overhead requirements create concerns. Moreover, customers generally want to

preserve their privacy and may wish to withhold detailed information on energy

consumption to the utility company. Therefore, a decentralized optimization method

seems both preferable and more practical to implement. This can be done through

deployment of Advanced Metering Infrastructures (AMI) and HANs.

A global solution can be efficiently found for a convex optimization problem.

However, when the network is not convex, even finding a feasible solution becomes

difficult. The optimization problem (4.19) is convex, except for class 4 residential
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loads which are on/off devices. We simply relax the integer constraints (on/off)

and convert the integer programming optimization problem into linear programming.

An approximate solution can be obtained by rounding the solutions of the relaxed

problem into the nearest integers.

The convex problem (4.19) has a separable structure. Therefore, it can be solved in

a decentralized way through dual decomposition and sub-gradient method. Keeping

the rest of the constraints implicit, the Lagrangian function for (4.19) is given by:

L
(
{λti}, {Et

k,j}, {Pi}
)

=
T∑
t=1

Nl∑
i=1

C(P t
i ) +

T∑
t=1

∑
i,j,k

Dt
k,j,i +

T∑
t=1

Nl∑
i=1

(
λtiB

t
i

)

min L
(
{λti}, {Et

k,j}, {Pi}
)

(4.27)

where Bt
i =

∑
j,k E

t
j,k (l) − P t

i (l) − η +
(√∑

j σ
2
j

)
Q−1(ε). λti denotes the Lagrange

multiplier corresponding to constraint (4.20). The Lagrangian minimization (4.27),

is easily seen to be decomposed to optimizations at the utility level and residents.

Specifically, the dual decomposition method consists of the following iterations,

indexed by ` = 1, 2, ... and initialized with arbitrary λti ≥ 0 , and βi as the step

size.
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min

(
Nl∑
i=1

C(P t
i )−

Nl∑
i=1

λti(l)P
t
i (l)

)
, ∀i (4.28)

s.t

(4.3)− (3.4) (4.29)

min
(
Dt
k,j(l) + λtiE

t
j,k(l)

)
, ∀i (4.30)

s.t

class(2)− class(4) constraints (4.31)

The Lagrangian multiplier for each node is updated according to:

λti (l + 1) = max
[
λti (l) + βiB

t
i , 0
]
,∀i

The Lagrangian multipliers are considered as the nodal prices. This is a similar

concept to LMP in transmission system. Through setting the nodal prices, the utility

company can involve the customers in mitigating violations in network operational

constraints. For example, when a transformer overload happens, the customers on the

corresponding lateral will be penalized with extra charge due to their exceeding energy

usage. The higher price encourages the customers to reduce their load (according to

(4.30)). This concept will be demonstrated and discussed in the simulation results.

The optimization problem (4.28) is performed by the utility agent over t = 1 :

T . (4.28) maximizes the utility company’s profit with respect to the distribution

gridconstraints. Optimization (4.30), which is performed by HANs at the residence,

minimizes the customers electricity bill as well as disutility function. The Lagrangian

multipliers, corresponding to nodal prices, are updated in each iteration. This process
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repeats until Bt
i is smaller than a specified threshold for every node i (a small positive

number).

Convergence of iterative approach (4.28) can be obtained for the following three

step size rules: constant step size, non-summable but square-summable step size, and

step size given by harmonic series. Convergence of the subgradient method with these

step size rules has been studied in the literature. The related results are summarized

and discussed in [78].

In order to guarantee convergence, primal averaging is necessary if the objective

function is neither strictly convex nor finite. It should also be used when the objective

is not a function of all optimization variables [78]. The objective function (4.19) is

strictly convex and finite. However, it is not a function of all optimization variables,

which is a consequence of considering different device classes (utility functions are not

defined for some appliance classes). Therefore, running average method is applied

for all the variables, e.g. Ēt
j,k = 1

l

∑
Et
j,k. Authors in [78] prove that the algorithm

finds near-optimal schedules even when AMI messages (updated prices and residential

load) are lost, which can happen in the presence of malfunctions or noise in the

communications network. It is worth noting that when the primal objective function

is not strictly convexity and/or finite, alternating direction method of multipliers

(ADMM) can be used to guarantee the convergence [78].

4.3.2 Real-time pricing

As mentioned before, because of the highly random behavior of the residential

customers a price adjustment in real-time is needed to reflect the actual residential

load. Customers participate in the day-ahead market and purchase electricity as

discussed in the last section. In the real-time, the price is calculated based on the

actual residential load. The real-time price can be calculated using (4.2). This is

similar to optimal power flow (OPF) in transmission system.
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For a resident who participates in day-ahead market, in case that real-time price

is higher than the day-ahead price, he will pay the same price as the day-ahead price.

However, if the residence consumes more energy as he promised in the day-ahead, he

has to pay for the extra energy with the real time price. In other words, the customers

participating in the day-ahead market are charged with the minimum price between

day-ahead and real-time price.

In order to encourage customers to accurately/honestly report their estimated

energy consumption in day-ahead, a penalty can be set by the utility company to

penalize large difference between day-ahead and real-time enegy consumption of the

residences which can be expressed by:

‖Edh − Ert‖ ≤ ϕ (4.32)

where Edh is the hourly energy consumption scheduled by a residential customer in

day-ahead and Ert is the hourly demand of the residence in real-time. ϕ is a threshold

set by the utility company.

Through encouraging the customers to participate in the day-ahead market, the

utility company can have a better estimation of the residential load and plan to

cope with potential violation in distribution system operational constraints such as

transformer overload and congestion.

4.4 Simulation Results

The simulations are performed on a 2.66 GHz, 4 GB RAM PC. The software tools

used for the simulations are MATLAB 2011b and ILOG CPLEX 12.2 under Windows

7 operation system. Performance of the proposed algorithm is demonstrated on a

simple system with 30 residential customers. The configuration of the test system is

shown in Figure 4.4 with 6 residential laterals and equal number of houses on each

lateral. It is assumed that the system two An, two Bn, and two Cn phase laterals.
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In our simulation, bt = ct = 0, and at = 0.5 are considered for the utility company

cost function. Different types of customers are considered in the simulations. For

Figure 4.4: Topology of the test system

example, some customers are out of their houses during the working hours while

some other stay in their house the entire day. Each household is also assumed to have

schedulable appliances such as PHEV, air conditioner, washer/dryer, and dishwasher.

Different houses use different weighting factors for utility functions corresponding to

the residential appliances.

The optimization is performed over the 24 hours time horizon. Figure 4.5 shows

the convergence of the approach on the feeder at 6:00 PM. Hourly nodal prices

and residential appliance scheduling over 24 hours will be obtained at the point of

convergence. It is worth noting that different time intervals, e.g. 15 minutes, can also

be considered.
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Figure 4.5: Convergence of the algorithm at the residential feeder

A small constant stepsize (β = 0.15) is chosen for the subgradient updates, coupled

with dual and primal averaging, in order to obtain near-optimal dual and primal

values in a finite number of iterations. As observed in Figure 4.5, the decentralized

optimization is converged after several iterations. Note that the utility company and

HANs exchange small size of information (price and residential energy consumption).

The power schedule updates occur in parallel across all residential customers and

therefore the computation time per iteration is the maximum time, over the utility

company and all houses, to solve their optimization problem. Therefore, speed of

the process doesn’t depend on the number of the customers. Moreover, since simple

models of residential appliances are considered, the optimization performed by HANs

is very fast. In our test case, it takes 0.2 seconds for the algorithm to converge.

Figure 4.6- Figure 4.9 show the effect of distribution system operational constraints

on nodal prices. Figure 4.6- Figure 4.7 show the change in nodal price (Cent/kWh)

on bus 6 due to distribution transformer capacity constraint. As shown in Figure
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4.6, the aggregated load on node 6 is reduced to avoid transformer overload. When

distribution transformer overload happens, the decentralized optimization approach

automatically increases the nodal price on bus 6 (Figure 4.7). Therefore, some

customers prefer to reduce their energy consumptions to save money. For example, if a

customer has not assigned a high weighting factor for HVAC, the energy consumption

of the HVAC will be reduced by HAN (the temperature deviates from the set point

but still remains in the comfortable range). This is because the HAN minimizes

the customer’s utility bill as well as disutility function according to (4.30). Similar

situation will happen in case of line congestion. For example, when a distribution line

is congested, customers on the downstream nodes will be penalized with extra charge

due to their exceeding energy consumption. The higher prices change the solution of

(4.30) in such a way that the network operational constraint violation is prevented.

Figure 4.8- Figure 4.9 show the effect of phase balance constraints on the

optimization results, i.e. residential load and nodal prices. Figure 4.8 exhibits the

difference of loads on phases a and c (
∣∣∣∑Na

i=1 P
t
i,a −

∑Nc
i=1 P

t
i,c

∣∣∣) when the phase balance

constraints is included. As shown in Figure 4.9, the nodal prices (Cent/kWh) on the

phases change in such a way that (4.3)-(4.5) are satisfied. For example, if phase

c has a higher load than phase a in such a way that
∣∣∣∑Na

i=1 P
t
i,a −

∑Nc
i=1 P

t
i,c

∣∣∣ > γ,

(γ = 1.7kW in the simulations), the nodal prices on the laterals connected to phase c

will increase while the nodal prices on the nodes supplied by phase a decrease. As the

price changes, the result of optimization problem (4.30) for the residences located on

the mentioned phases will change. Similar results will be obtained for phases a − b,

and b− c.
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Figure 4.6: Effect of transformer capacity constraint on residential loads on node 6
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Figure 4.7: Effect of transformer capacity constraint on node 6 prices
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Figure 4.8: Effect of phase balance constraint on residential loads

It is worth noting that the distribution system operational constraints can also

be included as soft constraints. In other words, the objective function of the utility

company can include these soft constraints by assigning different weighting factors.

Therefore, the operational constraints such as phase balance can be violated but the

customers will have to pay more money depending on the weighting factors set by

the utility company.

In the second stage, the day-ahead prices are updated according to the discussion

in the last session. The customers who participate in the day-ahead market have the

advantage to pay less for their promised energy consumption. This is to the benefit

of both the customers and the utility company as it can prepare for the potential

violation of the operational constraints. Moreover, to encourage the customers to

honestly/accurately report their day-ahead demand, a penalty function based on the

difference between hourly day-ahead and real-time demands can be set by the utility

company.
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Figure 4.9: Effect of phase balance constraint on nodal prices

4.5 Alternative Objective Function

In this section, an alternative objective function is used to minimize the cost to

the UDC and customers in distribution system. A UDC purchases electricity from

market and sells it to the residential customers. The UDC tends to minimize its cost

while ensuring that the distribution system operational constraints are satisfied. The

following function is considered to model the UDC cost.

Ct = mt(
∑
iεNb

P t
i +

∑
lεNl

rl
(ptl)

2 + (qtl )
2

V t
l

) (4.33)

where mt is the locational marginal price at the substation (power supply provider).

Nb and Nl are the number of distribution nodes and branches, respectively. P t
i is

the aggregated loads on node i at time t. rl and xl are resistance and reactance

of distribution line l, and ptl and qtl are the active and reactive power flows on the

lines, respectively. V t
l is the voltage on node i at time t. The first terms in the cost

functionCt include the cost of supplying demand on every distribution node and the
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second term includes the cost due to active power loss on the lines. This is very

similar to the Distribution Locational Marginal Price described in [5].

Similar to the last formulation, a social welfare optimization is proposed to

minimize the cost to the UDC while taking customers’ satisfaction into account.

Mathematically, the social welfare maximization problem is formulated as follows:

min Z =
∑T

t=1C
t +
∑

i,j,k u(xi,j,k)

s.t.

A.Pl = Pi

|Il| < Imaxl

Vmin ≤ |Vi| ≤ Vmax

class (2)− class (5) constraints

(4.34)

where x and u(x) are the energy consumption and utility function of appliance k in

house j which is on node i. A is the reduced node incidence matrix of the system.

Il and Vi are the current on the lines and voltage on the nodes, respectively. This

optimization problem considers the thermal limits of the lines and voltage limit of the

nodes. Constant power factors for every node are considered. Voltage limit constraint

can be formulated as a linear function of active and reactive power flows as follows:

2
∑
lεαik

(rlpl + xlql) ≤ δmax (4.35)

δmax = ∆Vmax(Vs −∆Vmax) (4.36)

where αsi is the path reaching bus i from substation s. ∆Vmax is the maximum allowed

deviation of voltage magnitude on node i from voltage at substation (Vs).

In addition to the network operational constraints, the constraints associated

with class (2)-class (5) residential appliances are also considered in the optimization.

The convex problem (4.34) has a separable structure. Therefore, it can be solved
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in a decentralized way through dual decomposition and sub-gradient method. The

Lagrangian function for (4.34) is given by:

L = Z + λti(Pi − A.Pl) (4.37)

where λti is the lagrangian multipliers (scaled nodal prices) associated with active

power balance on the nodes. As observed in (4.37) the optimization problem has two

components. One optimization can be performed by the UDC and the other can be

done by the loads on each node. The residential company sends λti to every node.

All the loads connected to the node receive the price and perform their optimization.

The optimization performed by the UDC is as follows:

min
T∑
t=1

[mt
∑
lεNl

rl
(ptl)

2 + (qtl )
2

V t
l

)− λti.A.Pl] (4.38)

s.t.

|Il| < Imaxl (4.39)

2
∑
lεαik

(rlpl + xlql) ≤ δmax (4.40)

The second term of objective function (4.37) which is performed by residential

HANs is as follows:

min
∑
tεT

[mt
∑
iεNb

P t
i + λti.P

t
i +

∑
i,j,k

u(x)]

s.t.

class (1)− class (5) constraints
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The Lagrangian multipliers for every node are updated according to the following

equation:

λti (l + 1) = max
[
λtp,i (l) + βi(Pi(l)− A.Pl(l)), 0

]
, ∀i (4.41)

We can split P t
i among the residences on node i as follows:

P t
i =

∑
i,j

P t
ij

where Pij is the purchased active power by house j on node i. Therefore the

optimization in every house is formulated as follows:

min
∑
tεT

(mt + λti)P
t
ij +

∑
i,j,k

u(x) (4.42)

s.t.∑
i,j,k

xt + ptconst = P t
ij + P t

b + P t
r

class(2)− class(5) constraints

where ptconst is the energy consumption of non-schedulable appliances in a house at

time t. P t
b and P t

r are the battery output power and power generated by rooftop solar

panel. This model is shown in Figure 4.10. Every household solves the optimization

(4.42) and returns P t
ij to the UDC.

The optimization (4.42) is a deterministic optmization which is performed by the

HANs. Every household has to solve it’s own optimization problem and return P t
ij to

the utility company. P t
ij shows the amount of power that a house wants to purchase

from the utility company. The challenge in this problem is that the forecasted energy

consumed by non-schedulable loads and energy generated by rooftop solar panels can

be inaccurate. The uncertain parameters can be given as intervals:
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ptconstε[p
t
const,min, p

t
const,max]

ptrε[p
t
r,min, p

t
r,max]

One of the ways to cope with these uncertainties is to use stochastic programming

in the household. However, stochastic programming is a computational intense

approach and thus is not suitable for our iterative approach. In addition, we prefer

to avoid sophisticated algorithms at the residence. A model based on certainty

equivalent is developed to avoid complex algorithms. Consider the following stochastic

programming problem:

min Ef0(x, ω)

s.t. (4.43)

Efi(x, ω) ≤ 0

where xεRn is the optimization variable, and ω is a random variable. Based on

Jensen’s inequality we have:

Efi(x, ω) ≥ fi(x,Eω)

Now, consider the problem (4.44) obtained by replacing the random variable in

each function by its expected value. This problem is sometimes called the certainty

equivalent of the original stochastic programming problem (4.43), even though they
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Figure 4.10: Smart home model

are equivalent only in very special cases. By Jensen’s inequality, the constraint set

for the uncertainty equivalent problem is larger than the original stochastic problem

(4.43), and its objective is smaller. It follows that the optimal value of the uncertainty

equivalent problem gives a lower bound on the optimal value of the stochastic problem

(4.43).

min f0(x,Eω)

s.t. (4.44)

fi(x,Eω) ≤ 0

This approach is used in this study. In order to show how this approach works,

it is implemented on a simple 7-bus system shown in 4.11. First, we assume that the

aggregated residential load on each bus is 100 kw. Then, we solve the optimization

problem (4.38) without considering demand response to obtain nodal prices for

different nodes. The nodal prices for buses 1, 2, and 7 are shown as example. Note

that the price on node 1 is the LMP (reference price). This is similar to the energy

price in transmission LMP. The price on each node is LMP+λi where lambda includes

the shadow prices for active power loss, and system operational constraints such as
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secondary transformer limit, line flow limit, and voltage constraints. As observed in

Figure 4.12 the prices on nodes 2 and 7 are different. This is because the loss shadow

price is included in λ2 and λ7.

Figure 4.11: Test system

If we consider the demand response, then we will be able to control the loads by

changing λi. For example, if a violation in system operational constraints such as

secondary transformer capacity constraint happens, λi will increase in such a way

that customers reduce their electricity consumption. Figure 4.13 shows the result of

the decentralized optimization problem on node 7 when customers participate in the

demand response program. Figure 4.14 shows the nodal prices on node 7 (LMP+λ7).

Suppose that the capacity of secondary transformer on node 6 is 180 kW. As Figure

4.13 shows, the transformer is overloaded when transformer capacity constraint is
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Figure 4.12: Nodal prices

not considered in the optimization. However, when this constraint is included in the

optimization, λ7 on node 7 increases in such a way that the customers reduce their

energy consumption according to 4.42.

Note that this approach is performed in day-ahead. Therefore, a real-time

adjustment is discussed in the last section is needed to cope with the uncertainties

associated with residential loads.

4.6 Review

In this chapter, a two-stage pricing mechanism is proposed for residential demand

response management. In the first stage, day-ahead prices and residential load

schedule are obtained through a decentralized optimization. Day-ahead pricing is

important as it helps the utility company to have a good estimation on the load for

the next day. The decentralized optimization is developed using dual decomposition

and sub-gradient method. The objective of the day-ahead optimization is minimizing

the cost to the utility company and residential customers while maintaining he
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customer satisfaction. Two different functions are proposed to formulate the cost

to the UDC. Five different classes of the residential appliances are considered and

detailed models are developed accordingly. Since the energy consumption of non-

schedulable residential loads is challenging to forecast, a normal distribution function

is used to model the uncertainty of the estimation. As an important contribution

of the work, distribution system operational constraints such as equipment capacity,

line flow limits, phase balance, and voltage limit constraints are taken into account

in the pricing mechanism. Effect of the operational constraints on the nodal prices

are demonstrated and discussed.

Due to the highly random energy consumption at the residence, the second stage of

pricing is used to adjust the price in real-time. The real-time price reflects the actual

residential load. The proposed approach encourages the customers to participate in

the day-ahead demand response management program.

Figure 4.13: Load on node 7
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Figure 4.14: Nodal price on node 7
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Chapter 5

Conclusion

In this dissertation, two important featuers of future smart dristribution gird is

addressed and efficient approches are proposed to improve reliability and reduce cost.

5.1 Distribution System Restoration and Recon-

figuration

In order to improve reliability of the system a fast and accurate procedure for

distribution system reconfiguration and restoration in proposed first. This is a MIP-

based approach which can be easily implemented for any given distribution system

with different objective functions. Two particular objectives are minimizing the

number of switching operations to isolate fault and remove overload condition, and

minimizing the active power loss. The set of constraints include power balance, line

flow limits, voltage limit, battery units constraints, and radiality of the system. The

key issue of the DSR is to maintain the radiality of the system during reconfiguration

process. A DFS-based approach is proposed to formulate radiality constraint for

MIP. This approach detects all the possible cycles and loops generated by different

combinations of switches. Then, the optimization can guarantee the radiality of the

distribution system by opening at least one switch in each loop. This leads to a fast
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reconfiguration for large systems as the cycle detection approach is performed in off-

line. This approach can also be applied to weakly-meshed system be removing the

radiality constraint for particular cycles in the system. The study also shows that

the charge/discharge of CES units can affect the result of reconfiguration through

changing the line flows, voltage magnitudes, etc.

Due to the insufficient measurements and demand response programs in distribu-

tion grids load uncertainty will be an important factor for a reliable reconfiguration.

Two different methods based on FMIP and SMIP are proposed to deal with the

uncertainties in recognizing loads. It is shown that FMIP and SMIP lead to robust

and optimal results which are feasible for many different load scenarios. Specially,

since FMIP is much faster, it is recommended to use this approach for real-time

applications.

5.2 Decentralized Residential Response Manage-

ment

In this dissertation, a two-stage pricing mechanism is proposed for residential demand

response management. In the first stage, day-ahead prices and residential load

schedule are obtained through a decentralized optimization. Day-ahead pricing is very

important as it helps the utility company to have a good estimation on the load for the

next day. The decentralized optimization is developed using dual decomposition and

sub-gradient method. The objective of the day-ahead optimization is minimizing the

cost to the utility company and residential customers while maintaining he customer

satisfaction. Five different classes of the residential appliances are considered and

detailed models are developed accordingly. Since the energy consumption of non-

schedulable residential loads is challenging to forecast, a normal distribution function

is used to model the uncertainty of the estimation. As an important contribution

of the dissertation, distribution system operational constraints such as equipment
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capacity, line flow limits, and phase balance are taken into account in the pricing

mechanism. Effect of the operational constraints on the nodal prices are demonstrated

and discussed.

Due to the highly random energy consumption at the residence, the second stage

of pricing is used to adjust the price in real-time. The real-time price reflects the

actual residential load. An extension to this work can be achieved through including

distributed renewable resources owned by the utility company and/or residents. The

demand response management program should help to maximize the utilization of

these stochastic energy resources.

An extension to the current dissertation work can be to integrate distribution

system reconfiguration and demand response program. This helps the system to be

more economic and reliable.
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