68,882 research outputs found

    JaxNet: Scalable Blockchain Network

    Get PDF
    Today's world is organized based on merit and value. A single global currency that's decentralized is needed for a global economy. Bitcoin is a partial solution to this need, however it suffers from scalability problems which prevent it from being mass-adopted. Also, the deflationary nature of bitcoin motivates people to hoard and speculate on them instead of using them for day to day transactions. We propose a scalable, decentralized cryptocurrency that is based on Proof of Work.The solution involves having parallel chains in a closed network using a mechanism which rewards miners proportional to their effort in maintaining the network.The proposed design introduces a novel approach for solving scalability problem in blockchain network based on merged mining.Comment: 55 pages. 10 figure

    Semantic web service architecture for simulation model reuse

    Get PDF
    COTS simulation packages (CSPs) have proved popular in an industrial setting with a number of software vendors. In contrast, options for re-using existing models seem more limited. Re-use of simulation component models by collaborating organizations is restricted by the same semantic issues however that restrict the inter-organization use of web services. The current representations of web components are predominantly syntactic in nature lacking the fundamental semantic underpinning required to support discovery on the emerging semantic web. Semantic models, in the form of ontology, utilized by web service discovery and deployment architecture provide one approach to support simulation model reuse. Semantic interoperation is achieved through the use of simulation component ontology to identify required components at varying levels of granularity (including both abstract and specialized components). Selected simulation components are loaded into a CSP, modified according to the requirements of the new model and executed. The paper presents the development of ontology, connector software and web service discovery architecture in order to understand how such ontology are created, maintained and subsequently used for simulation model reuse. The ontology is extracted from health service simulation - comprising hospitals and the National Blood Service. The ontology engineering framework and discovery architecture provide a novel approach to inter- organization simulation, uncovering domain semantics and adopting a less intrusive interface between participants. Although specific to CSPs the work has wider implications for the simulation community

    AI and OR in management of operations: history and trends

    Get PDF
    The last decade has seen a considerable growth in the use of Artificial Intelligence (AI) for operations management with the aim of finding solutions to problems that are increasing in complexity and scale. This paper begins by setting the context for the survey through a historical perspective of OR and AI. An extensive survey of applications of AI techniques for operations management, covering a total of over 1200 papers published from 1995 to 2004 is then presented. The survey utilizes Elsevier's ScienceDirect database as a source. Hence, the survey may not cover all the relevant journals but includes a sufficiently wide range of publications to make it representative of the research in the field. The papers are categorized into four areas of operations management: (a) design, (b) scheduling, (c) process planning and control and (d) quality, maintenance and fault diagnosis. Each of the four areas is categorized in terms of the AI techniques used: genetic algorithms, case-based reasoning, knowledge-based systems, fuzzy logic and hybrid techniques. The trends over the last decade are identified, discussed with respect to expected trends and directions for future work suggested

    Optimal management of bio-based energy supply chains under parametric uncertainty through a data-driven decision-support framework

    Get PDF
    This paper addresses the optimal management of a multi-objective bio-based energy supply chain network subjected to multiple sources of uncertainty. The complexity to obtain an optimal solution using traditional uncertainty management methods dramatically increases with the number of uncertain factors considered. Such a complexity produces that, if tractable, the problem is solved after a large computational effort. Therefore, in this work a data-driven decision-making framework is proposed to address this issue. Such a framework exploits machine learning techniques to efficiently approximate the optimal management decisions considering a set of uncertain parameters that continuously influence the process behavior as an input. A design of computer experiments technique is used in order to combine these parameters and produce a matrix of representative information. These data are used to optimize the deterministic multi-objective bio-based energy network problem through conventional optimization methods, leading to a detailed (but elementary) map of the optimal management decisions based on the uncertain parameters. Afterwards, the detailed data-driven relations are described/identified using an Ordinary Kriging meta-model. The result exhibits a very high accuracy of the parametric meta-models for predicting the optimal decision variables in comparison with the traditional stochastic approach. Besides, and more importantly, a dramatic reduction of the computational effort required to obtain these optimal values in response to the change of the uncertain parameters is achieved. Thus the use of the proposed data-driven decision tool promotes a time-effective optimal decision making, which represents a step forward to use data-driven strategy in large-scale/complex industrial problems.Peer ReviewedPostprint (published version

    Stochastic make-to-stock inventory deployment problem: an endosymbiotic psychoclonal algorithm based approach

    Get PDF
    Integrated steel manufacturers (ISMs) have no specific product, they just produce finished product from the ore. This enhances the uncertainty prevailing in the ISM regarding the nature of the finished product and significant demand by customers. At present low cost mini-mills are giving firm competition to ISMs in terms of cost, and this has compelled the ISM industry to target customers who want exotic products and faster reliable deliveries. To meet this objective, ISMs are exploring the option of satisfying part of their demand by converting strategically placed products, this helps in increasing the variability of product produced by the ISM in a short lead time. In this paper the authors have proposed a new hybrid evolutionary algorithm named endosymbiotic-psychoclonal (ESPC) to decide what and how much to stock as a semi-product in inventory. In the proposed theory, the ability of previously proposed psychoclonal algorithms to exploit the search space has been increased by making antibodies and antigen more co-operative interacting species. The efficacy of the proposed algorithm has been tested on randomly generated datasets and the results compared with other evolutionary algorithms such as genetic algorithms (GA) and simulated annealing (SA). The comparison of ESPC with GA and SA proves the superiority of the proposed algorithm both in terms of quality of the solution obtained and convergence time required to reach the optimal/near optimal value of the solution

    Hybrid Meta-Heuristics for Robust Scheduling

    Get PDF
    The production and delivery of rapidly perishable goods in distributed supply networks involves a number of tightly coupled decision and optimization problems regarding the just-in-time production scheduling and the routing of the delivery vehicles in order to satisfy strict customer specified time-windows. Besides dealing with the typical combinatorial complexity related to activity assignment and synchronization, effective methods must also provide robust schedules, coping with the stochastic perturbations (typically transportation delays) affecting the distribution process. In this paper, we propose a novel metaheuristic approach for robust scheduling. Our approach integrates mathematical programming, multi-objective evolutionary computation, and problem-specific constructive heuristics. The optimization algorithm returns a set of solutions with different cost and risk tradeoffs, allowing the analyst to adapt the planning depending on the attitude to risk. The effectiveness of the approach is demonstrated by a real-world case concerning the production and distribution of ready-mixed concrete.Meta-Heuristics;Multi-Objective Genetic Optimization;Robust Scheduling;Supply Networks

    Factory Gate Pricing: An Analysis of the Dutch Retail Distribution

    Get PDF
    Factory Gate Pricing (FGP) is a relatively new phenomenon in retail distribution.Under FGP, products are no longer delivered at the retailer distribution center, but collected by the retailer at the factory gates of the suppliers.Owing to both the asymmetry in the distribution networks (the supplier sites greatly outnumber the retailer distribution centers) and the better inventory and transport coordination mechanisms, this is likely to result in high savings.A mathematical model was used to analyze the benefits of FGP for a case study in the Dutch retail sector.Extensive numerical results are presented to show the effect of the orchestration shift from supplier to retailer, the improved coordination mechanisms, and sector-wide cooperation.pricing;retailing;distribution;supply chain management;Netherlands
    • 

    corecore