6 research outputs found

    A comprehensive review on Bidirectional traction converter for Electric vehicles

    Get PDF
    In this fast-changing environmental condition, the effect of fossil fuel in vehicle is a significant concern. Many sustainable sources are being studied to replace the exhausting fossil fuel in most of the countries. This paper surveys the types of electric vehicle’s energy sources and current scenario of the on-road electric vehicle and its technical challenges. It summarizes the number of state-of-the-art research progresses in bidirectional dc-dc converters and its control strategies reported in last two decades. The performance of the various topologies of bidirectional dc-dc converters is also tabulated along with their references. Hence, this work will present a clear view on the development of state-of-the-art topologies in bidirectional dc-dc converters. This review paper will be a guide for the researchers for selecting suitable bidirectional traction dc-dc converters for electric vehicle and it gives the clear picture of this research field

    A comprehensive review on Bidirectional traction converter for Electric vehicles

    Get PDF
    In this fast-changing environmental condition, the effect of fossil fuel in vehicle is a significant concern. Many sustainable sources are being studied to replace the exhausting fossil fuel in most of the countries. This paper surveys the types of electric vehicle’s energy sources and current scenario of the on-road electric vehicle and its technical challenges. It summarizes the number of state-of-the-art research progresses in bidirectional dc-dc converters and its control strategies reported in last two decades. The performance of the various topologies of bidirectional dc-dc converters is also tabulated along with their references. Hence, this work will present a clear view on the development of state-of-the-art topologies in bidirectional dc-dc converters. This review paper will be a guide for the researchers for selecting suitable bidirectional traction dc-dc converters for electric vehicle and it gives the clear picture of this research field

    Multiport DC-DC Converters for Hybrid Energy Systems

    Get PDF
    Renewable energy sources (RESs) like solar and wind have gained attention for their potential to reduce reliance on fossil fuels and mitigate climate change. However, integrating multiple RESs into a power grid is challenging due to their unpredictable nature. Power electronic converters can manage hybrid energy systems by controlling power flow between RESs, storages, and the grid. Conventional single input dc-dc converters have limitations such as low efficiency, bulky designs, and complex control systems. Multiport dc-dc converters (MPCs) have emerged as a solution for hybridizing multiple sources, storages, and load systems by providing a common interface. Existing MPCs have limitations such as high component count, limited operational range, complex control strategies and restrictions on the number of inputs to list a few. Thus, there is a need to develop new MPCs that combine the advantages of existing designs while overcoming their limitations. Isolated MPCs with unipolar or bipolar outputs are needed that can accommodate any number of inputs, offer high voltage gain, use fixed magnetic components for galvanic isolation (regardless of the number of ports), and have a simplified control strategy. Additionally, new non-isolated MPCs with unipolar or bipolar outputs are required, featuring reduced component count, simultaneous power transfer and power flow between input ports, high voltage gain, low control complexity, and modular design allowing for arbitrary increase in the number of input ports. There is also an opportunity to apply MPCs in the integration of RESs and storages to ac grids through multilevel inverters for low component count, high efficiency, low harmonics, and higher power density. Further, advances in bipolar MPCs provide the chance to balance the dc bus without requiring a complex control system.acceptedVersio

    Design of dual-input two phase dc/dc converter with modified pulse width modulation (mpwm)

    Get PDF
    Recently, hybrid energy source/renewable energy has attracted interest as the next-generation energy system capable of solving the problems of global warming and energy exhaustion caused by increasing energy consumption. Energy sources such as wind turbines and photovoltaic (PV) systems are intermittent, unpredictable and unregulated. For such systems, the use of multiple-input converter (MIC) has the advantage of regulating and controlling multiple-input sources. With multiple Pulsating Voltage-Source Cells (PVSC) configurations, the proposed converter can deliver power to the load individually and simultaneously. Also, it has the capability of operating either in buck, boost or buck–boost mode of operation. In addition, by proposing the enhanced Modified PWM (MPWM) switching scheme, it is able to solve the issues of the overlapping unregulated input sources. Furthermore, with the proposed multiphase configuration, the input current stresses in the switching devices are reduced and it has the benefit of a reduction in conduction losses. In addition, Zero-Voltage Switching (ZVS) technique is also employed in the proposed converter to reduce the switching loss. The proposed converter circuit is simulated by using MATLAB/Simulink and PSpice software programs. The duty cycle employed to regulate output voltage is reached from Altera DE2-70 board through dSPACE DS1103 board using by Proportional-Integral (PI) controller. The dual-input converter circuit model specification with output power at 200 W, input voltages that range from 10 to 60 V, and operating with dual switching frequencies of 50 kHz and 100 kHz is simulated to validate the designed parameters. Design guidelines, simulation and experimental results are presented. The results show that the proposed two-phase DC/DC converter with ZVS technique achieves 94% efficiency for all ranges of loads compared with the multiphase hard-switching. The total power losses across the power switches are reduced by approximately 37% in the proposed converter. Thus, the proposed converter circuit model offers advantages on input current stress and switching loss reductions. The proposed circuit configuration can be used in a standalone hybrid energy system under unregulated DC input voltages. However the major disadvantages of resonant circuit are increased peak current and voltage stress and not suitable for variable frequency operation

    Direct Tuning Phase-Shift Angle In Dab Dc-Dc Converter Using Moth Flame Optimization (Mfo) Algorithm

    Get PDF
    The world is currently experiencing a global energy crisis due to the limited natural energy resources that are used to power industrial society, where as demand increases, the available resources are being depleted. The evolution of renewable energy able to overcome this energy crisis. DC-DC converter is one of the vital components used in the renewable energy system as power conversion tools. However, most of the existing DCDC converter has unidirectional power flow which have limitations in term of energy management efficiency due to one way power flow. Besides, the non-isolated bidirectional power flow has restrictions in high voltage conversion gain, safety and power quality. Therefore, a 100 kW isolated bidirectional Dual Active Bridge (DAB) DC-DC converter with single phase shift (SPS) modulation have been developed using MATLAB/Simulink software. Apart from that, the tuning method of phase-shift angle variable in DAB plays the important role to produce the desired output. Since the conventional tuning has a couple of downsides, mainly related to the time-consuming and inconsistence accuracy, the auto-tuning phase shift angle using Moth Flame Optimization (MFO) algorithm in DAB is proposed in this project. The proposed method is tested in terms of accuracy, efficiency and convergence speed for various load system which is 100 kW, 75 kW and 50 kW under various reference voltage. The results from the research depicts that the DAB system with 100 kW, 75kW and 50 kW respectively has the best convergence speed, highest efficiency and highest accuracy with lowest ripple. With aforementioned results, the MFO algorithm have well-functioning in DAB system

    Advances in Bidirectional DC-DC Converters for Future Energy Systems

    Get PDF
    corecore