15,741 research outputs found

    An Introduction to 3D User Interface Design

    Get PDF
    3D user interface design is a critical component of any virtual environment (VE) application. In this paper, we present a broad overview of three-dimensional (3D) interaction and user interfaces. We discuss the effect of common VE hardware devices on user interaction, as well as interaction techniques for generic 3D tasks and the use of traditional two-dimensional interaction styles in 3D environments. We divide most user interaction tasks into three categories: navigation, selection/manipulation, and system control. Throughout the paper, our focus is on presenting not only the available techniques, but also practical guidelines for 3D interaction design and widely held myths. Finally, we briefly discuss two approaches to 3D interaction design, and some example applications with complex 3D interaction requirements. We also present an annotated online bibliography as a reference companion to this article

    Current Practices for Product Usability Testing in Web and Mobile Applications

    Get PDF
    Software usability testing is a key methodology that ensures applications are intuitive and easy to use for the target audience. Usability testing has direct benefits for companies as usability improvements often are fundamental to the success of a product. A standard usability test study includes the following five steps: obtain suitable participants, design test scripts, conduct usability sessions, interpret test outcomes, and produce recommendations. Due to the increasing importance for more usable applications, effective techniques to develop usable products, as well as technologies to improve usability testing, have been widely utilized. However, as companies are developing more cross-platform web and mobile apps, traditional single-platform usability testing has shortcomings with respect to ensuring a uniform user experience. In this report, a new strategy is proposed to promote a consistent user experience across all application versions and platforms. This method integrates the testing of different application versions, e.g., the website, mobile app, mobile website. Participants are recruited with a better-defined criterion according to their preferred devices. The usability session is conducted iteratively on several different devices, and the test results of individual application versions are compared on a per-device basis to improve the test outcomes. This strategy is expected to extend on current practices for usability testing by incorporating cross-platform consistency of software versions on most devices

    From Personalization to Adaptivity: Creating Immersive Visits through Interactive Digital Storytelling at the Acropolis Museum

    Get PDF
    Storytelling has recently become a popular way to guide museum visitors, replacing traditional exhibit-centric descriptions by story-centric cohesive narrations with references to the exhibits and multimedia content. This work presents the fundamental elements of the CHESS project approach, the goal of which is to provide adaptive, personalized, interactive storytelling for museum visits. We shortly present the CHESS project and its background, we detail the proposed storytelling and user models, we describe the provided functionality and we outline the main tools and mechanisms employed. Finally, we present the preliminary results of a recent evaluation study that are informing several directions for future work

    The R Commander: A Basic-Statistics Graphical User Interface to R

    Get PDF
    Unlike S-PLUS, R does not incorporate a statistical graphical user interface (GUI), but it does include tools for building GUIs. Based on the tcltk package (which furnishes an interface to the Tcl/Tk GUI toolkit), the Rcmdr package provides a basic-statistics graphical user interface to R called the "R Commander." The design objectives of the R Commander were as follows: to support, through an easy-to-use, extensible, cross-platform GUI, the statistical functionality required for a basic-statistics course (though its current functionality has grown to include support for linear and generalized-linear models, and other more advanced features); to make it relatively difficult to do unreasonable things; and to render visible the relationship between choices made in the GUI and the R commands that they generate. The R Commander uses a simple and familiar menu/dialog-box interface. Top-level menus include File, Edit, Data, Statistics, Graphs, Models, Distributions, Tools, and Help, with the complete menu tree given in the paper. Each dialog box includes a Help button, which leads to a relevant help page. Menu and dialog-box selections generate R commands, which are recorded in a script window and are echoed, along with output, to an output window. The script window also provides the ability to edit, enter, and re-execute commands. Error messages, warnings, and some other information appear in a separate messages window. Data sets in the R Commander are simply R data frames, and can be read from attached packages or imported from files. Although several data frames may reside in memory, only one is "active" at any given time. There may also be an active statistical model (e.g., an R lm or glm ob ject). The purpose of this paper is to introduce and describe the use of the R Commander GUI; to describe the design and development of the R Commander; and to explain how the R Commander GUI can be extended. The second part of the paper (following a brief introduction) can serve as an introductory guide for students who will use the R Commander.

    Multi-touch 3D Exploratory Analysis of Ocean Flow Models

    Get PDF
    Modern ocean flow simulations are generating increasingly complex, multi-layer 3D ocean flow models. However, most researchers are still using traditional 2D visualizations to visualize these models one slice at a time. Properly designed 3D visualization tools can be highly effective for revealing the complex, dynamic flow patterns and structures present in these models. However, the transition from visualizing ocean flow patterns in 2D to 3D presents many challenges, including occlusion and depth ambiguity. Further complications arise from the interaction methods required to navigate, explore, and interact with these 3D datasets. We present a system that employs a combination of stereoscopic rendering, to best reveal and illustrate 3D structures and patterns, and multi-touch interaction, to allow for natural and efficient navigation and manipulation within the 3D environment. Exploratory visual analysis is facilitated through the use of a highly-interactive toolset which leverages a smart particle system. Multi-touch gestures allow users to quickly position dye emitting tools within the 3D model. Finally, we illustrate the potential applications of our system through examples of real world significance
    corecore