
University of New Hampshire
University of New Hampshire Scholars' Repository

Center for Coastal and Ocean Mapping Center for Coastal and Ocean Mapping

9-2011

Multi-touch 3D Exploratory Analysis of Ocean
Flow Models
Thomas J. Butkiewicz
University of New Hampshire, Durham, Thomas.Butkiewicz@unh.edu

Colin Ware
University of New Hampshire, Durham, colin.ware@unh.edu

Follow this and additional works at: https://scholars.unh.edu/ccom

Part of the Oceanography and Atmospheric Sciences and Meteorology Commons

This Conference Proceeding is brought to you for free and open access by the Center for Coastal and Ocean Mapping at University of New Hampshire
Scholars' Repository. It has been accepted for inclusion in Center for Coastal and Ocean Mapping by an authorized administrator of University of New
Hampshire Scholars' Repository. For more information, please contact nicole.hentz@unh.edu.

Recommended Citation
Butkiewicz, T.; Ware, C., "Multi-touch 3D exploratory analysis of ocean flow models," in OCEANS 2011 , pp.1-10, 19-22 Sept. 2011.

https://scholars.unh.edu?utm_source=scholars.unh.edu%2Fccom%2F808&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/ccom?utm_source=scholars.unh.edu%2Fccom%2F808&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/ccom_home?utm_source=scholars.unh.edu%2Fccom%2F808&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/ccom?utm_source=scholars.unh.edu%2Fccom%2F808&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/186?utm_source=scholars.unh.edu%2Fccom%2F808&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:nicole.hentz@unh.edu


Multi-touch 3D Exploratory Analysis  
of Ocean Flow Models 

Thomas Butkiewicz and Colin Ware 
Center for Coastal and Ocean Mapping 

University of New Hampshire 
 
 
 

Abstract—Modern ocean flow simulations are generating 
increasingly complex, multi-layer 3D ocean flow models.  
However, most researchers are still using traditional 2D 
visualizations to visualize these models one slice at a time.  
Properly designed 3D visualization tools can be highly effective 
for revealing the complex, dynamic flow patterns and structures 
present in these models.  However, the transition from visualizing 
ocean flow patterns in 2D to 3D presents many challenges, 
including occlusion and depth ambiguity.  Further complications 
arise from the interaction methods required to navigate, explore, 
and interact with these 3D datasets.  We present a system that 
employs a combination of stereoscopic rendering, to best reveal 
and illustrate 3D structures and patterns, and multi-touch 
interaction, to allow for natural and efficient navigation and 
manipulation within the 3D environment.  Exploratory visual 
analysis is facilitated through the use of a highly-interactive 
toolset which leverages a smart particle system.  Multi-touch 
gestures allow users to quickly position dye emitting tools within 
the 3D model.  Finally, we illustrate the potential applications of 
our system through examples of real world significance. 

Keywords - flow visualization; visual analysis; stereoscopic; 
multi-touch; particle system  

I.  INTRODUCTION 
Ocean currents can change dramatically depending on 

depth, and modern ocean flow simulations can reveal these 
differences by outputting models with flow data at increasing 
numbers of depths.  These models are inherently 3D, but all too 
often they are visualized one slice at time using traditional 2D 
visualizations.  By focusing in and viewing flow patterns one 
depth at a time, the user loses the overall context as to how said 
patterns relate to those present above and below.  By viewing 
the data in 3D, one can simultaneously focus on flow patterns 
at any depth range, while still preserving the overall context of 
how those patterns relate to the rest of the model.  Furthermore, 
viewing in 3D naturally reveals the complexity of flow patterns 
with depth dependent structures. 

Visualizing 3D flow data is inherently more challenging 
when compared to 2D.  For example, depth ambiguity is an 
issue, as it can be hard to tell whether nearby objects are in 
front of, or behind each other.  Our system utilizes stereoscopic 
rendering, in which each eye is presented with a slightly 
different image, generated from offset viewing positions, to 
produce a true 3D image which gives the viewer proper 
disparity-based depth cues.  This ensures that the 3D positions 
of data items are correctly perceived and thus, it is easy to tell 

the relationships between them.  This is especially relevant to 
our particular application, as ocean currents can often loop 
around or cross over at different depths, making it difficult 
(without stereoscopic 3D) to differentiate the paths of particles 
caught in visually overlapping currents. 

Another major challenge when working with 3D datasets is 
selection within, and navigation through the environment.  In 
2D, navigation is as simple as scrolling around an image and 
zooming in and out.  In 3D, the user can reposition their 
viewpoint with six degrees-of-freedom, looking at the model 
from any point, at any angle.  Our system combines a focal-
point based camera with efficient multi-touch gestures to allow 
the user to quickly move from viewpoint to viewpoint and 
examine areas of interest.  This natural form of interaction is 
extended beyond navigation, as special multi-touch gestures 
must also be developed to enable selection of data and 
manipulation of visualization tools.  

We should note that, while our system is optimized to take 
full advantage of a 3D compatible display with a multi-touch 
overlay, the design is general enough to be run on an ordinary 
desktop using a standard mouse and keyboard. 

II. RELATED WORKS 
In order to discuss prior work on flow visualization, it is 

useful to begin with some definitions.  A streamline is line 
drawn into a steady flow (or an instant in time in an unsteady 
flow) that is always tangential to the flow direction.  A pathline 
is the path (advection trajectory) of a particle dropped into an 
unsteady flow.  A streakline is the contour formed by 
connecting particles emitted continuously from a point source, 
like a wisp of smoke from a cigarette.  When a flow pattern 
does not change over time, streamlines, pathlines and 
streaklines are all the same. 

Early systems created virtual equivalents of the smoke 
streams that are used in actual wind tunnels, or the dye that is 
streamed into flow tanks.[1]  Other interactive methods for 
exploring modeled 3D flow fields include magic lenses, to 
increase the density of pathlines in an area of interest [2], and a 
“stream runner”, that uses a slider to manipulate a time 
window, interactively revealing different subsections within a 
set of 3D streamlines.[3] 

The techniques we present here have much in common with 
those described by Sobel et al. [4]  They created a system using 
a CAVE immersive environment to visualize simulated blood 

0-933957-39-8 ©2011 MTS



flow through a fork in an artery.  First, they pre-computed a 
large number of advection pathlines through the computational 
model space.  Their interface included various interactive 
devices, including “sponges”, devices that emit or absorb 
particle streams along the pathlines, and pathlets, short sections 
of trajectories that were animated along pathlines.  These could 
be set to appear only near the walls of the blood vessels, or they 
could be randomly distributed in space and time.  

Our system has also befitted from the concepts developed 
in the Center for Coastal and Ocean Mapping’s (CCOM) 
GeoZui4D [5] software.  This is a system designed to visualize 
heterogeneous geospatial data relating to oceanography.  It 
supports visualization of flow model data, either using a 
technique similar to the stream-runner concept, or a grid of 
short, anchored pathlines to show tidal patterns in estuary or 
ocean flow models.  One of the applications explored was the 
creation of mission plans for autonomous undersea vehicles.  
These vehicles have limited energy budgets, and taking current 
patterns into account is important.[6]  The dye pot and dye pole 
devices in our system are based on these early prototypes 
developed at CCOM and applied in the visualization of ocean 
currents shown on the “Science on a Sphere” exhibit at the 
Smithsonian Museum of Natural History. 

While systems similar to our have been developed, none 
utilize a combination of multi-touch and stereoscopic 3D in 
their interfaces.  Schaeffer [7], for example, provides similar 
flow visualization tools for releasing dye particles as well as 
pathlet fields for general flow illustration, however his 
system’s interface is entirely through a specialized haptic 
controller (a force feedback enabled pen-like device with 
buttons and a scrollwheel), and this haptic interface is the main 
focus of his work. 

Our two-handed precision positioning gesture is similar to 
the “depth ray” and “lock ray” techniques proposed by 
Grossman and Balakrishnan [8] for selection in a 3D 
volumetric display.  In the depth ray case, the user projected a 
ray into the volumetric display using a hand-held pointing 
device.  A depth marker (cursor) was attached to the ray, and 
its position along the ray was determined by the distance from 
the display’s outer surface to the users hand/pointing device 
using absolute mapping.  This is similar to how we map the 
user’s finger position along a vertical labeled scale in a depth 
panel to our cursor’s position along a vertical pole through the 
model.  Their lock ray technique expands upon the depth ray 
technique by having the user position the depth ray, press a 
button to lock it in place, and then move the device back and 
forth to move the depth marker along the locked ray.  This is 
similar to the case in which the user performs our precision 
positioning gesture using only one finger at a time, which locks 
the vertical lat/long pole in place while selecting a depth along 
it. 

This technique is also similar to the “Z-Technique” 
described by Martinet et al.[9] Their technique has the first 
finger position a ray, orthogonal to the screen plane, which 
selects the first object it intersects.  This finger can then 
reposition the selected object parallel to the screen plane.  
Another finger then can be moved up or down on the screen to 
move the object further from, or closer to the user’s viewpoint.  

Unlike the direct mapping in our labeled depth scale, they use 
indirect mapping based on the displacement of the second 
finger’s movement, and no visual scale is provided. 

Our one-handed pantograph selection technique is 
somewhat similar to the “dual finger midpoint” technique 
described by Benko et al. [10], in which a mouse cursor is 
positioned at the midpoint between two finger touch points.  
However, our technique differs in that we assume a pinching 
gesture with thumb and forefinger, and to avoid occlusion 
issues, we move the cursor outward from the midpoint in an 
orthogonal direction away from the hand generating the two 
touches.  More significantly, our technique considers the 
distance between the two touches, and maps this distance to 
determine the desired depth of the cursor in 3D space. 

Hancock et al. [11] seem to consider this inter-finger 
distance in their 3D “sticky fingers” translation gestures, where 
the user’s two fingers “stick” to points on a 3D model.  Moving 
the two fingers apart causes the model to move closer to the 
user’s viewpoint, maintaining the illusion of the fingers being 
stuck to the same points on the model.  Likewise, pinching the 
fingers together causes the model to move away from the 
user’s viewpoint.  This differs from our technique in that we do 
not necessarily have any object being manipulated; we are 
merely moving a cursor through potentially empty 3D space, 
which nothing to “stick” finger touch points to. 

III. SYSTEM DETAILS 
Our system employs a unique combination of off-the-shelf 

technologies to create an interface providing a powerful 
integration of high quality stereoscopic 3D graphics and natural 
touch-based interaction.  While similar environments have 
been constructed, ours is remarkable due to its low cost, lack of 
wired devices encumbering the user, and low space 
requirements, which allow it to be deployed aboard research 
vessels or in standard office settings.  An example of the 
system in use is shown in Figure 1.  

 
Figure 1.  Our system in use in a typical office environment. 

A. Stereo Multi-touch Display 
The main component of our system’s hardware setup is a 

custom multi-touch stereoscopic display.  While many 3D 
capable monitors and multi-touch monitors are readily 
available, there are currently no suitable monitors successfully 



offering both technologies in an integrated fashion.  Such a 
device is likely to be offered in the near future, but for now, we 
constructed our own.  We begun by disassembling an Acer 24” 
120Hz LCD 3D monitor, and extracting the LCD panel and 
control circuit boards.  We mounted a PQ Labs 24” G3 Plus 
multi-touch screen directly to the LCD panel (to minimize 
parallax between the touch surface and the display surface).  
Finally, the setup is completed with NVIDIA’s 3D Vision Kit, 
which consists of active LCD shutter glasses and an IR emitter 
to sync them to the monitor’s refresh rate.  These components 
are all readily available and cost roughly $1,000 USD, making 
this setup relatively affordable.  

The display can either be mounted vertically, to preserve its 
functionality as an ordinary office monitor, or at an angle (~30 
degrees), which has been shown to increase ease-of-use and 
decrease fatigue during prolonged touch-interaction. [12] [13] 

B. Depth Camera Integration 
A depth camera is an optional component that has the 

potential to enhance the usability of our setup.  We have 
developed algorithms to utilize a low-cost ($150) Microsoft 
Kinect device, placed on the ceiling above a workstation, to 
perform a number of tracking duties, which were previously 
expensive or difficult to accomplish.  This includes tracking the 
user’s head so that the stereoscopic rendering can be updated to 
match the viewing direction, providing more realistic and less 
distorted 3D.  Furthermore, by capturing the user’s arms in 
front of the touch screen, it can also differentiate between 
whether the right or left hand was the source of touch points on 
the screen.  This allows one to map different behaviors to each 
hand; e.g. the left hand is used for navigation of the virtual 
environment, while the right hand is used for 
selection/manipulation of objects in the environment. 

C. Model data 
Our system allows the user to import models generated by 

ocean flow simulations in the commonly used NetCDF format.  
Beyond just vectors for flow direction/speed, this format allows 
for the inclusion of many other variables, such as temperature 
and salinity.  The methods used are general enough, however, 
that the system could be modified to import models in other 
grid-based formats, and even models based on irregular 
triangulated networks (through interpolation). 

Upon loading a flow model, the system automatically 
generates geo-referenced terrain models of the land and seabed.  
This is done by examining what regions of the model do not 
have any water (zero depth), and the maximum depths 
encountered in all other areas.  Automatically generating the 
terrain/bathometry allows the user to open flow models of any 
region, in any shape, and at any aspect ratio, without the need 
to provide the corresponding terrain files.  The terrain model is 
colored to indicate the portions above (green) and below (dark 
blue) the water level, and has a subtle speckled texture applied 
to it.  This texture helps provide better stereoscopic depth cues 
by giving more small details for the brain to match up, and 
allows for better perception of the shape and orientation of the 
terrain. 

In addition to the flow model itself, the system can import 
vector data, in ESRI shapefile format.  This data (lines, 

polygons, points) can then be integrated within the 
visualization for additional context and to aid navigation and 
selection.  This can be seen later in Figure 12, where a 
polygonal coastal outline and the point locations of coastal 
nuclear power plants have been added for reference. 

D. Stereoscopic Rendering 
Stereoscopic rendering, providing each eye with an image 

rendered from a slightly offset position, is an important 
component of this system.  Because we are rendering many 
small objects (pathlets, dye particles, etc) spread throughout a 
volume, it is critical that the user be able to perceive the 
relative distances between these objects.  Without stereoscopic 
depth cues to resolve depth ambiguity issues, it would be very 
difficult to assess, for example, which particles are in front of 
other particles, or how deep a certain particle is relative to 
another. 

Our system uses a focal point based camera system, 
meaning that the camera’s location and movement is based 
around a focal point on the model.  The user can navigate 
around the map by dragging/translating the focal point, can tilt 
the camera, changing the angle at which it views the focal 
point, and can zoom in and out, moving the camera away from, 
or closer to the focal point.   

At all times, a focal point on the model is kept at the center 
of focus, both being physically located in the center of the 
screen, and at zero parallax (at the visual depth of the screen 
itself).  Keeping the focal point at the zero parallax ensures it 
will be crisp, without any ghosting artifacts (as pixels here will 
display the same intensity to both eyes).   Similarly, all 
interface elements (buttons, sliders, panels, etc.) are also kept at 
zero parallax.  This is especially important since these will be 
directly interacted with by the user’s fingers; if not at the depth 
of the physical screen, there would be conflicting depth cues. 

Because of the sensitivity of human stereoscopic 
perception, we can achieve strong depth cues while only 
allowing objects to occupy a shallow depth range slightly in 
front of, and behind the screen.  Indeed, this range has been 
shown to be fairly narrow, roughly 25% of the viewing 
distance in front of the screen and 60% behind it.[14]  A 
diagram of our configuration is shown in Figure 2.   

 
Figure 2.  Diagram of how virtual models are positioned in terms of parallax. 

Limiting the maximum parallax, especially the negative 
parallax (how far the virtual objects appear to come out of the 
screen), is crucial in avoiding diplopia (double vision) and 
visual fatigue.  As such, when rendering each frame, the virtual 
eye separation and focal distance values used to calculate the 
viewing frustums for each eye are derived from the distance 



from the camera location to the current focal point on the 
terrain.  This technique ensures that even as the user zooms in 
and out, the terrain model maintains a shallow depth range that 
will not produce too much parallax, while providing useful 
depth cues.   

IV. FLOW VISUALIZATION 
Our system illustrates flow patterns through the use of a 

particle system and established visualization techniques that 
convert particle positions and movements into visual indicators 
of speed and direction.  Tools are provided to allow the user to 
introduce dye particles in various ways to explore the flow 
patterns present. 

A. Particle system details 
The particle system used in our system is fairly basic, but 

provides the necessary functionality to illustrate flow patterns 
across a model.  The particle system has three basic duties: 
introduce new particles, update existing particles, and remove 
unneeded particles.   

Particles are added either randomly around the model as 
needed to maintain a user-specified number of particles for 
illustrating the general flow patterns throughout the model, or 
they are inserted in specific locations, tied to particle-emitting 
tools (detailed in Section V), at a rate specified by the emitter.  
If the total number of particles reaches the maximum allowed 
number (100,000+ depending on available processing power), 
new particles can either replace existing, older particles, or 
simply not be added.  (We allow custom dye particles to 
overwrite “generic illustrative” particles, but not vice versa.) 

Before each frame is drawn to screen, the particle system 
updates all existing particles.  For each active particle, the flow 
vectors at its location (or interpolated from surrounding data 
points) are used (along with the time elapsed since the last 
frame was drawn) to translate the particle to its new location.  
If so desired, a particle can have additional vertical movement 
calculated based on comparing its current density value to that 
of the surrounding water.  This can be done with a simple 
buoyancy value, providing constant vertical velocity, or it 
could be more rigorously calculated by providing 
salinity/temperature values which adjust to surrounding values 
over time.   Once a particle is updated, its new location is 
stored, along with a timestamp, in a circular queue data 
structure.  This forms a record of its previous locations and 
velocities, from which we derive its visual rendering. 

After the update process, the particle system performs a 
cleanup operation by checking if any particles need to be 
deleted.  This can be due either to a particle exceeding its user-
specified lifetime, a particle flowing outside the confines of the 
current model, or a particle flowing inside a non-water area (or 
otherwise becoming stuck.) 

B. Illustrating flow with pathlets 
Each particle’s advection trajectory, its pathline once 

inserted into the flow model, is traced out by a pathlet.  A 
pathlet is a visual indicator of a particle’s speed and direction 
over time.  An example of how pathlets appear is shown in 
Figure 3.  

 
Figure 3.  Pathlets illustrating a eastward flow. 

Our pathlets are drawn as a series of line segments, starting 
at the current location of the particle, connecting each previous 
location in order until reaching a location past the elapsed time 
threshold.  The user can specify the elapsed-time to draw, 
which changes the overall length of the pathlet, both giving it 
more or less visual weight, and also showing more or less 
historical trajectory data.   

The opacity of the line segments at each positional vertex is 
modulated by the ratio of the time elapsed from the current 
frame over the maximum elapsed time of the pathlet.  Thus, the 
most current position, at the front of the pathlet, is fully 
opaque; while the oldest position, at the end of the pathlet, is 
fully transparent.  This gradual blending of the pathlet into the 
background as it “ages” has been shown to be a powerful 
perceptual cue as to the direction of the pathlet.[15]  Indeed, 
even in static screenshots of our system, without the animation 
motion cues, it is easy to understand the direction and relative 
speed of different currents. 

In addition to showing the current direction and historical 
path of a particle, pathlets also indicate the relative speeds 
within a field of particles.  As a particle moves faster, its 
pathlet traces out a longer path, covering more pixels in total, 
and more importantly, more pixels with high-contrast, opaque 
coloring.  This causes the faster major currents to have 
significantly higher visual weight than surrounding, slower 
moving waters.  Even though they have the same density of 
particles per area, pathlets in faster currents form dense highly 
striated ribbons, while still waters manifest as sparse, 
shimmering regions of small, slowly drifting pathlets. 

To provide the user with an overview of the flow patterns in 
all areas of the model, by default we automatically insert 
“illustrative particles” throughout the model.  The pathlets 
tracing these particles’ paths show the major currents, still 
waters, loop currents, etc.  This provides a good reference to 
give the user context and aid in navigation of the model.  At 
anytime the user can adjust the total number of particles as 
needed to either add emphasis or remove visual clutter.  An 
example of the effectiveness of these illustrative particles is 
shown in Figure 4.   While colored a non-distracting light blue 
(to blend with the dark blue background) by default, these 
illustrative particles can also be colored to indicate the values 
of particular variables across the model.  For example, Figure 5 
shows these particles colored to indicate different surface water 
temperatures, showing the Gulf Stream bringing warm water 
into the colder northern Atlantic Ocean.  To provide an 
additional visual cue as to the depth of pathlets, their colors are 
modulated by depth, such that those in deeper areas appear 
darker and more saturated than those near the surface. 



 
Figure 4.  Randomly inserted illustrative particles in the Gulf of Mexico, 
showing the Gulf Loop Current (with ring) and the prominent Florida Current. 

 

V. DYE RELEASE TOOLS 
For more focused analysis, we provide interactive tools that 

enable the user to insert dye particles into the model to explore 
the flow patterns in any particular regions of interest. 

A. Direct insertion 
For temporary exploration and experimentation, clusters of 

dye particles can inserted directly into the model at any point 
using the pantograph selection gesture described in the next 
section.  Once inserted, they will move about in the 
surrounding flow and eventually fade away.   

Once an area of interest is found, the user can affix dye 
emitters in place to continuously release dye particles as 
desired.  We provide two types of emitters: dye pots and dye 
poles. 

B. Dye pots 
A dye pot is the most basic particle emitter.  It is a single 

point location, from which particles are emitted continuously 
into the model, visually resulting in a constant stream of  
 

pathlets.  When viewed from afar, the masses of pathlets blend 
together and resemble a streakline showing the general flow 
patterns away from the dye pot; upon closer inspection, the 
individual pathlets reveal details within the patterns and eddies.  

Dye pots can be added anywhere in the model using either 
of the two positioning gestures detailed in the next section.  
Once placed, a control panel is spawned that allows the user to 
configure the emitter, both in terms of how it emits particles, 
and the properties of the particles emitted.  In our system, a dye 
pot is actually treated as a dye pole with a single, point-sized 
emitter.  This gives the user the flexibility, if desired, to expand 
a dye pot into a larger emitter or series of emitters. 

C. Dye poles 
In its simplest form, a dye pole is a vertical pole, extending 

from the seabed to the surface, along which any number of 
different dye particle emitters can be attached.  An example of 
a dye pole with multiple emitters is shown in Figure 6.  Dye 
poles can be added to the model at anytime by selecting the 
“add dye pole” menu option, and then specifying a lat/long 
location for the pole with a finger tap.  Once a pole is added, a 
dye pole control panel is automatically spawned.  This panel, 
shown in Figure 7, allows the user to add, remove, resize, and 
delete particle emitters along the pole’s axis, control when and 
where the emitters release particles, and adjust the properties of 
the particles being emitted. 

The left half of the panel shows an interactive diagram of 
the dye pole (with non-linear depth scaling) and any emitters 
currently attached to it.  Emitters are drawn as color-coded 
cylinders, with relative radiuses representative of their actual 
sizes.  The user can resize emitters by either touching directly 
their top or bottom and dragging, or doing the same to the 
arrow buttons at their side.  (We found adding explicit buttons 
made it more clear how to resize emitters.)  Wherever there is 
empty space available on the pole, buttons appear with a ‘+’ 
symbol.  When pressed, these add a new emitter, which is 
automatically sized to fill the empty gap in the pole.  Touching 
an emitter selects it as the active emitter for editing. 

 

Figure 5.  Illustrative pathlets colored to indicate water temperatures reveal the Gulf Stream current  
              bringing warmer (red) water into the colder (blue) waters of the northern Atlanic Ocean.



On the right side of the panel is the emitter editor, where 
the user can control all the different properties of the selected 
emitter.  This includes adjusting the size of the emitter, which 
is done via changing its depth bounds and its radius (the height 
and thickness of the cylinder), as well as setting the rate at 
which the emitter releases new particles.   This editor also 
allows the user to set the properties of the particles to be 
emitted, including their color, the length of the pathlet trail 
drawn, the lifetime of the particle, and the relative 
buoyancy/density of the particle.  For immediate feedback, the 
results of any adjustments are shown in real time in the main 
3D view.  In addition to these adjustments, commands are 
available to delete the emitter, and also to split the emitter into 
two separate emitters.  When the user is done with the panel, it 
can either be collapsed into a small icon or closed entirely.  It 
can be re-accessed at any time by selecting a dye pole with the 
‘edit dye pole’ command. 

 
Figure 6.  A dye pole (near Nova Scotia) with mutliple dye emitters along its 
axis to illustrate the significantly different flow patterns at various depths.  

VI. MULTI-TOUCH INTERACTION 
Multi-touch displays allow for natural interaction and 

enable advanced direct selection and manipulation capabilities. 
However, in addition to the development of new gestures to 
complete these actions, moving from a traditional 
mouse/keyboard interface to multi-touch also requires redesign 
of some traditional interface elements. 

A. Interacting with onscreen entities 
A fingertip is simply far less precise than a mouse cursor, 

and thus the interactive interface elements in a touch screen 
application must be designed to accommodate this difference.  
In general, this leads to buttons (and other interface widgets) 
being much larger than traditional mouse-based interfaces, with 
more buffer room in between.  Simply enlarging existing arrays 
of buttons to accommodate fingertips can quickly lead to 
running out of screen real-estate, which is better utilized for the 
visualization itself. 

 

Figure 7.  The dye pole editer panel for the dye pole shown in Figure 6.  Here 
the user can add, delete, split, and resize emitters (color coded cylinders to the 
left), edit properties for each emitter, including the number of particles it will 
release and over what area, as well as properties of the particles themselves. 

To replace static toolbars and other arrays of buttons, we 
implemented “on demand” pop-up menus.  These radial menus 
(of which an example is shown in Figure 8) pop up whenever 
the user puts a single finger on the single and allows it to linger 
in the same spot for a short amount of time.  Remarkably, the 
delay needed to differentiate a “linger” gesture without causing 
false-positive recognitions in place of other single-finger 
gestures (such as clicking a button or dragging a map) is quite 
short (~350ms).  This style of menu is also known as a pie 
menu and has been shown to be faster than traditional linear 
menus in many circumstances [16], but its major drawback has 
always been the relatively large size of its menu items.  
However, in touch based interfaces the increased size is 
actually beneficial. 



 
Figure 8.  An example of a radial pop-up menu. 

We attempt to use this pop-up menu technique to replace 
arrays of static buttons in as many places as possible.  
Lingering on different panels brings up specialized menus with 
the unique commands available for each panel, while lingering 
in the 3D environment spawns tools that can be used within 
that particular area.  Reusing gestures throughout an 
application, while modifying their behavior based on the 
context in which they were made, reduces both the number of 
gestures the system must recognize and the user must 
memorize. [17] 

As the user drags their finger over a menu item, it becomes 
highlighted to provide visual feedback.  Menu items can also 
be hierarchical, such that upon finger-over, they expand sub 
menus, which branch off with addition commands.  This 
reduces clutter and expands the total number of separate 
commands accessible at once. 

B. Navigation 
The default gestures enabled for touches not falling on 

interface elements are for navigation of the main 3D view of 
the model.  We provide three simple gestures that allow the 
user to translate, zoom, and rotate the focal point based camera. 
The user can scroll around the model by dragging a single 
finger across the screen, which translates the camera’s focal 
point, and thus the view of the model in the same direction.  To 
zoom in and out, two fingers can be moved up or down 
vertically on the screen, which adjusts the viewing distance 
between the camera and the focal point.  (The ubiquitous two-
handed stretching gesture is also supported for zooming.)  
Finally, to rotate the view about the focal point, three or more 
fingers are placed on the screen and then moved about, the 
vertical and horizontal movements of which are mapped to 
heading and viewing angle values that control the position of 
the camera in a hemisphere above the model (with a radius of 
the current viewing distance.) 

C. Precise selection of 3D locations via 2D gestures 
The most challenging set of interactions in our system arise 

from the need to insert, select, reposition, and manipulate 
objects within a 3D volume using the 2D multi-touch interface.  

To accomplish these tasks we created two gestures that 
translate 2D touch points into 3D point locations within the 
model.  One is designed for precision positioning, when 
accuracy matters.  The other is designed for fast, fluid 
positioning, to lower the cost of exploration. 

1) Two-handed precise positioning 
The two-handed precision positioning gesture is the method 

used when the user wishes to put a cursor in a precise, known 
location and depth.  It is optimized to be completed as a two 
handed command, but can also be performed with a single 
finger, albeit much slower.  (This single finger functionality 
keeps this positioning method accessible for with mouse 
interaction for systems where no touch input devices are 
available).   

Once this gesture mode is activated through the “Insert 
Precise Dye Pot” command, the first finger that is placed on the 
screen repositions a reticle (crosshairs with an open center) 
over the surface of the model with a vertical pole directly 
below it, stretching from the surface down to the seabed.  Upon 
initial finger-down, a depth selection panel is spawned nearby.  
This depth selection panel shows the lat/long location of the 
pole (under the first finger), as well as a scale representing the 
water column along the pole, labeled with the depth of the 
seabed and the current depth of the cursor.  (The scale is 
labeled on both sides to avoid finger occlusion issues.)  
Dragging a second finger along this scale repositions the cursor 
up and down along the pole (water column) under the reticle.  
When both fingers are down at the same time, moving either 
finger will reposition the cursor in either lat/long or vertical 
directions.   

Releasing the finger on the scale while holding down the 
reticle finger will accept the current selection automatically.   If 
the user lifts the reticle finger, the reticle will remain locked in 
place and the user can then interact with a single finger in 
either the depth scale panel (to adjust depth) or the main model 
view (to adjust lat/long position).  Buttons to ‘accept’ or 
‘cancel’ the selection are provided in the panel.  An example of 
the depth selection panel being used to position a dye pot is 
shown in Figure 9.  

 
Figure 9.  User placing a precision dye pot with the two-handed depth scale 
interface.  The right hand finger controls the lat/long location of the vertical 
pole, while the left hand finger selects a depth along the pole from a labeled 
scale in the depth selection panel.  



2) Single-handed fast positioning 
The single-handed “pantograph” positioning gesture is used 

to quickly specify 3D coordinates in the model using only the 
thumb and index finger on a single hand.  It is not as accurate 
as the technique in the previous section, since it does not 
provide a labeled scale, and the granularity of depth 
adjustments is limited by the relative distance between the 
users thumb and index finger versus the entire vertical height of 
the monitor. 

Once this gesture mode has been activated, placing two 
fingers (intended to be the thumb and index finger) on the 
screen will begin positioning.  Two circles will be drawn 
around the fingertips for visual feedback.  A target point is 
determined by finding the vector between the two fingertips, 
then translating the midpoint orthogonally a short distance 
outward, away from the hand.  (The user can specify right or 
left handedness, or this can be determined automatically via the 
Kinect integration).  This target point, in screen coordinates, is 
projected onto the model, giving lat/long model coordinates for 
a vertical pole. 

The distance between the two fingers is calculated, and 
used to determine the depth of the cursor along the vertical 
pole.  A minimum separation distance (we use 2 cm) is 
specified based on fingertip sizes and the ability of the specific 
touch screen technology to resolve touches in close proximity.  
A maximum separation distance (we use 10 cm) is specified 
based on the comfortable maximum distance between thumb 
and index finger.  (Automatic calibration could be done for 
each user by having them spread apart a calibration widget to 
measure their personal maximum inter-finger separation 
distance.)  The system takes the distance between the two 
fingers, minus the minimum distance, and divides it by the 
maximum distance.  This value is then multiplied by the total 
length of the vertical pole to get the depth value along it, where 
the cursor should be located.   

As seen in Figure 10, a line connects the fingertips together, 
and two additional lines connect the fingertips to the cursor to 
provide direct visual feedback as to the effects of separating the 
fingers.  If the users fingertips come too close together (below 
minimum distance), the line connecting them turns red to 
indicate this.  Similarly, if they spread too far apart, the portion 
of the connecting line beyond the maximum separation 
distance turns red and the lines connecting to the cursor do not 
move past this point, indicating this is the maximum depth 
value.  

A circular button follows the index finger, always a few cm 
to its upper right.  This button allows the user to indicate they 
want to accept their selection, or otherwise initiate an action.  
This can be pressed either with the middle finger, or the index 
finger can be lifted (which locks the current cursor location) 
and used to press it.  This can either end the gesture mode, as in 
the case of selecting an item or inserting a dye pot, or it can 
merely issue a command and allow positioning to continue, as 
in the case of placing dye particles directly.  This latter case, 
for example, can be used to insert dye particles directly into the 
model whenever the button is held down, allowing the user to 
release particles continuously as they drag the cursor through 
the model. 

 
Figure 10.  Placing a precision dye pot using the one-handed pantograph 
selection interface.  The vertical pole is repositioned to correspond to a 
slightly offset midpoint of the two fingers, while the inter-finger distance 
adjusts the depth of the cursor (yellow dot) along the pole.  Moving the fingers 
further apart drops the cursor toward the seabed, while bringing them closer 
together raises the cursor to the surface.  The yellow circle accepts the current 
selection.  Removing both fingers cancels the selection. 

VII. APPLICATIONS 
Our system has the ability to provide a usable 3D 

visualization of the entire contents of a multi-depth ocean flow 
model.  This provides a distinct advantage over traditional 2D 
methods for both those who are developing simulations, and 
the researchers consuming the final results of the simulations.  
Simulation developers can use our system to view intermediate 
results and gain an understanding of what parameters might 
need to be tweaked to produce their desired results.  The end 
users of the generated flow models benefit from enhanced 
visualization capabilities, allowing them to quickly find and 
view the flow patterns they expect, while also revealing 
unexpected patterns through the use of exploratory analysis 
tools.   The relatively easy to use interface also makes these 
flow models accessible to less technically trained researchers. 

Beyond just presenting the contents of an ocean flow 
model, our system also provides limited simulation capabilities.  
As the physics-based particle behaviors increase in complexity, 
and aspects of other domain-specific simulations are 
incorporated, these capabilities will increase in usefulness and 
robustness.  Even with the current system, experimentation 
shows the possibilities for powerful insight into how ocean 
flow patterns impact the marine environment.  One particular 
research area in which there is obvious potential for this system 
is the prediction of impacted areas from pollutant releases. 

Investigation of, and response to oil spills and other 
pollutant releases is an area in which examining flow patterns 



and the movement of particles within them is critical.  The 
tools in our system can be used to reveal possible dispersal 
patterns from events such as the 2010 Deepwater Horizon oil 
spill in the Gulf of Mexico and the more recent release of 
radioactive coolant from Japan’s damaged Fukushima nuclear 
reactors. 

To roughly simulate a possible oil plume resulting from an 
offshore drilling accident, we can place a dye emitter on the 
seabed and configure it to release lower-density particles.  
These particles will rise up until they reach a depth at which the 
surrounding water is of similar density, where they will begin 
level off and spread outward.  An example of a dye emitter 
configured this way can be seen in Figure 11.  

Similarly, we can use the system get an idea of where 
coastal currents might take the radioactive coolant water 
released from the Fukushima reactors.  The Naval Research 
Laboratory releases a daily high-resolution (1km) Navy Coastal 
Ocean Model for the region surrounding the disaster site.  By 
releasing particles into this model from nested dye poles 
centered on the reactor site, we can get a sense of the most 
likely paths the contaminated waters will take any particular 
day.  Figure 12 shows an example of this particular scenario. 

VIII. FUTURE WORK 
Perhaps the most important future work for this project is 

collaboration with actual flow modeling scientists to introduce 
more complex simulation aspects into the visualization.  
Currently, we can do basic buoyancy/gravity simulation based 
on relative density values of particles to surrounding water.  
However, more advanced particle behaviors, such as diffusion 
and weathering (e.g. oil into tarballs,) could be integrated to 
enhance the ability of the system to predict the potential paths 
and impact areas of pollutant releases. 

Collaborating with actual simulation developers will also 
bring the ability to couple the visualization system with the 
simulation itself.  An iterative experimentation cycle is then 
possible, in which visual analysis of the simulation’s results 
leads to issuing changes that tweak the simulation’s 
parameters.  The model is then updated, and the changes are 
seen in the visualization for renewed analysis.  If the 
visualization can show the differences between multiple 
iterations, then scenarios can be directly compared.  For 
example, two particles could be released from the same point in 
two slightly different models, and the difference in the paths 
each follow could be drawn instead of individual pathlets. 

While the system can currently handle time varying flow 
models by loading time steps one after another, we plan to 
incorporate more complex 4D visualization capabilities.  An 
example of this would be pre-computing particle paths both 
forwards and backwards in time, and being able to track 
volumes that change shape over time as the particles defining 
them flow through the model.  

Currently we provide dye pots, which are point-based, and 
dye poles, which can be either line-based or cylindrical-
volume-based.  However, many other useful types of dye 
emitters are possible.  For example, releasing dye from a 2D 
plane, either a polygonal or freehand drawn shape, at a user 
defined orientation.   Besides additional shapes, more advanced  

 

 
Figure 11.  A dye emitter in the Gulf of Mexico releasing particles with 
density lower than that of the surrounding water.  These particles rise quickly 
and then level off as they reach a depth where the water is of similar density. 

 
Figure 12.  Example scenarios in which nested dye poles are releasing dye 
particles near Japan’s Fukushima nuclear reactors to investigate possible 
dispersal patterns of radioactive coolant released from the disaster site.  The 
particles are first carried south by coastal currents, and are then swept out into 
the Pacific Ocean via the Kuroshio current 



volumetric dye emitters are possible, such as a dye emitter that 
conforms to the particle cloud boundaries generated from an 
existing emitter.  Finally, a 4D emitter is possible, where dye 
emission varies over time.  This could be useful for studying 
intermittent or cyclic phenomena such as runoff pollution 
entering estuaries after rainfall events. 

Measurement tools are also an important feature currently 
in development.  Flux measurement in particular should be 
particularly useful within this application.  The user will be 
able to draw or otherwise define a 2D plane in the model, and 
see the rate at which particles pass through it.  Beyond the 
number of particles, it should be quite useful to quantify the 
relative temperature and salinity of the particles passing 
through a region, as the deeper flow patterns in the ocean are 
driven by these differences. 

Tracking the individual particles generated from an emitter, 
and then forming a volumetric cloud encapsulating them could 
provide useful regions of interest for probe-based analysis 
techniques.[18]  This would allow for deeper analysis of, and 
comparisons between different currents.  It might also provide 
useful impact assessments for pollutant release scenarios.  
Because the regions of interest in previous probe-based 
applications are generally static, the dynamic, fluid regions that 
could be generated within flow models would be a very 
interesting extension of that work. 

Finally, we are currently evaluating the effectiveness of our 
multi-touch gestures.  To conduct a classic Fitts’s law study, 
we created a game-like environment, in which participants 
must move objects into specific positions using the various 
multi-touch gestures we created.  By looking at the time to 
complete tasks while varying the object sizes, positions, and 
relative movements required, we can isolate the index of 
performance for each gesture.  This should help us understand 
which gestures are most effective, what makes them effective, 
and how to refine future iterations of these gestures. 

IX. CONCLUSIONS 
While ocean flow simulations are currently outputting flow 

models with data at increasing numbers of depths, many 
oceanographers are still using traditional 2D interfaces to 
visualize these models.  Viewing flow models one depth slice 
at a time causes the user to lose sense of the overall structure 
and how the patterns at one level relate to those above and 
below.  However, 3D methods can provide this sense of 
context, as well as superior perception of the structures and 
patterns contained within these complex and dynamic models.  
Perhaps this disconnect between the software researchers use 
and the software researchers need is due to a lack of effective 
and easy to use visualization tools, driven by the challenging 
nature of designing easy-to-use interactive 3D visualizations. 

We have attempted to address this need with our system, 
which combines stereoscopic and multi-touch technologies to 
provide an advanced, natural interface capable of presenting 
complex 3D flow visualizations in an understandable and 
accessible fashion.  With only a limited amount of affordable 
hardware, oceanographers can replicate our setup and use our 
system to explore the contents of ocean flow models and even 
conduct limited simulations within them.  We intend to 

continue developing this system, expanding upon its features, 
and refining our multi-touch gestures to build up a toolkit 
which will showcase the potential of the multi-touch 
stereoscopic display combination for effective visual analysis 
of 3D data, both oceanographic, and in general. 

REFERENCES 
[1] K.-L. Ma, P. J. Smith. “Virtual smoke: an interactive 3D flow 

visualization technique”, Proc. of the 3rd conference on Visualization 
'92 (VIS '92), pp. 46-53, 1992. 

[2] A. Fuhrmann, E. Gröller, “Real-time techniques for 3D flow 
visualization”,  Proc. of the conference on visualization '98 (VIS '98), 
pp. 305-312, 1998. 

[3] R. S. Laramee, “Interactive 3D Flow Visualization Using a 
Streamrunner”, Proc. Extended Abstracts ACM CHI ‘02, pp. 804-805, 
2002. 

[4] J. S. Sobel, A. S.  Forsberg, D. H.  Laidlaw, R. C. Zeleznik, D. F. Keefe, 
I. Pivkin, G. E. Karniadakis, P.  Richardson, S. Swartz, “Particle 
flurries”, Computer Graphics and Applications, vol. 24, no. 2, pp. 76- 
85, 2004. 

[5] R. Arsenault, C. Ware, M. Plumlee, S. Martin, L. Whitcomb, D. Wiley, 
T. Gross, A. Bilgili, “A system for visualizing time varying 
oceanographic 3D data”, Oceans '04 Techno-Ocean '04 (OTO'04) 
Conference Proc., pp. 743-747, 2004. 

[6] R. Komerska, C. Ware, “Haptic GeoZui3D: exploring the use of haptics 
in AUV path planning”, 13th Unmanned, Untethered Submersible 
Technology Symposium CD-ROM Proc., 2003. 

[7] S. Schaeffer, “An augmented haptic interface as applied to flow 
visualization”, M.S. dissertation, University of New Hampshire, 2007. 

[8] T. Grossman, R. Balakrishnan, “The design and evaluation of selection 
techniques for 3D volumetric displays”, Proc. of the 19th annual ACM 
symposium on user interface software and technology (UIST '06), pp. 3-
12, 2006. 

[9] A. Martinet, G. Casiez, L. Grisoni, "The design and evaluation of 3D 
positioning techniques for multi-touch displays", Proc. of IEEE 
Symposium on 3D User Interfaces 2010 (3DUI), pp. 115-118, 2010. 

[10] H. Benko, A. D. Wilson, P. Baudisch, “Precise selection techniques for 
multi-touch screens”, Proc. of the SIGCHI conference on Human 
Factors in computing systems (CHI '06), pp. 1263-1272, 2006. 

[11] M. Hancock, T. ten Cate, S. Carpendale, “Sticky tools: full 6DOF force-
based interaction for multi-touch tables”, Proc. of the ACM International 
Conference on Interactive Tabletops and Surfaces (ITS '09), pp. 133-
140, 2009. 

[12] A. Sears, “Improving touchscreen keyboards: design issues and a 
comparison with other devices”, Interacting with Computers, vol. 3, 
issue 3, pp. 253-269, 1991. 

[13] B. Ahlström, S. Lenman, and T. Marmolin, “Overcoming touchscreen 
user fatigue by workplace design”, Posters and short talks SIGCHI ’92, 
pp. 101-102, ACM, 1992. 

[14] S. P. Williams, M. D. Parrish, “New computational control techniques 
and increased understanding for stereo 3-D displays”, Proc. SPIE 
Stereoscopic Display Applications, pp. 73-82, 1990. 

[15] D. Fowler, C. Ware, “Strokes for representing univariate vector field 
maps”, Proc. of Graphics Interface '89, pp. 249-253, London, Ontario, 
1989. 

[16] J. Callahan, D. Hopkins, M. Weiser, B. Shneiderman, “An empirical 
comparison of pie vs. linear menus”, Proc. SIGCHI conference on 
Human factors in computing systems (CHI '88), pp. 95-100, 1998. 

[17] M. Wu, C. Shen, K. Ryall, C. Forlines, R. Balakrishnan, “Gesture 
registration, relaxation, and reuse for multi-point direct-touch surfaces”, 
Proc. of the First IEEE International Workshop on Horizontal 
Interactive Human-Computer Systems, pp. 185-192, 2006. 

[18] T. Butkiewicz, W. Dou, Z. Wartell, W. Ribarsky, R. Chang, "Multi-
focused geospatial analysis using probes" Proc IEEE Transactions on 
Visualization and Computer Graphics (TVCG / InfoVis 2008), vol. 14, 
no 6, pp. 1165-1172, 2008. 

 


	University of New Hampshire
	University of New Hampshire Scholars' Repository
	9-2011

	Multi-touch 3D Exploratory Analysis of Ocean Flow Models
	Thomas J. Butkiewicz
	Colin Ware
	Recommended Citation


	Multi-touch 3D Exploratory Analysis of Ocean Flow Models

