3,174 research outputs found

    Multiple source direction of arrival estimation using subspace pseudointensity vectors

    Full text link
    The recently proposed subspace pseudointensity method for direction of arrival estimation is applied in the context of Tasks 1 and 2 of the LOCATA Challenge using the Eigenmike recordings. Specific implementation details are described and results reported for the development dataset, for which the ground truth source directions are available. For both single and multiple source scenarios, the average absolute error angle is about 9 degrees.Comment: In Proceedings of the LOCATA Challenge Workshop - a satellite event of IWAENC 2018 (arXiv:1811.08482

    SILC: a new Planck Internal Linear Combination CMB temperature map using directional wavelets

    Get PDF
    We present new clean maps of the CMB temperature anisotropies (as measured by Planck) constructed with a novel internal linear combination (ILC) algorithm using directional, scale-discretised wavelets --- Scale-discretised, directional wavelet ILC or SILC. Directional wavelets, when convolved with signals on the sphere, can separate the anisotropic filamentary structures which are characteristic of both the CMB and foregrounds. Extending previous component separation methods, which use the frequency, spatial and harmonic signatures of foregrounds to separate them from the cosmological background signal, SILC can additionally use morphological information in the foregrounds and CMB to better localise the cleaning algorithm. We test the method on Planck data and simulations, demonstrating consistency with existing component separation algorithms, and discuss how to optimise the use of morphological information by varying the number of directional wavelets as a function of spatial scale. We find that combining the use of directional and axisymmetric wavelets depending on scale could yield higher quality CMB temperature maps. Our results set the stage for the application of SILC to polarisation anisotropies through an extension to spin wavelets.Comment: 15 pages, 13 figures. Minor changes to match version published in MNRAS. Map products available at http://www.silc-cmb.or

    Spherical microphone array acoustic rake receivers

    Get PDF
    Several signal independent acoustic rake receivers are proposed for speech dereverberation using spherical microphone arrays. The proposed rake designs take advantage of multipaths, by separately capturing and combining early reflections with the direct path. We investigate several approaches in combining reflections with the direct path source signal, including the development of beam patterns that point nulls at all preceding reflections. The proposed designs are tested in experimental simulations and their dereverberation performances evaluated using objective measures. For the tested configuration, the proposed designs achieve higher levels of dereverberation compared to conventional signal independent beamforming systems; achieving up to 3.6 dB improvement in the direct-to-reverberant ratio over the plane-wave decomposition beamformer

    Spin-SILC: CMB polarisation component separation with spin wavelets

    Get PDF
    We present Spin-SILC, a new foreground component separation method that accurately extracts the cosmic microwave background (CMB) polarisation EE and BB modes from raw multifrequency Stokes QQ and UU measurements of the microwave sky. Spin-SILC is an internal linear combination method that uses spin wavelets to analyse the spin-2 polarisation signal P=Q+iUP = Q + iU. The wavelets are additionally directional (non-axisymmetric). This allows different morphologies of signals to be separated and therefore the cleaning algorithm is localised using an additional domain of information. The advantage of spin wavelets over standard scalar wavelets is to simultaneously and self-consistently probe scales and directions in the polarisation signal P=Q+iUP = Q + iU and in the underlying EE and BB modes, therefore providing the ability to perform component separation and EE-BB decomposition concurrently for the first time. We test Spin-SILC on full-mission Planck simulations and data and show the capacity to correctly recover the underlying cosmological EE and BB modes. We also demonstrate a strong consistency of our CMB maps with those derived from existing component separation methods. Spin-SILC can be combined with the pseudo- and pure EE-BB spin wavelet estimators presented in a companion paper to reliably extract the cosmological signal in the presence of complicated sky cuts and noise. Therefore, it will provide a computationally-efficient method to accurately extract the CMB EE and BB modes for future polarisation experiments.Comment: 13 pages, 9 figures. Minor changes to match version published in MNRAS. Map products available at http://www.silc-cmb.org. Companion paper: arXiv:1605.01414 "Wavelet reconstruction of pure E and B modes for CMB polarisation and cosmic shear analyses" (B. Leistedt et al.

    PSD Estimation of Multiple Sound Sources in a Reverberant Room Using a Spherical Microphone Array

    Full text link
    We propose an efficient method to estimate source power spectral densities (PSDs) in a multi-source reverberant environment using a spherical microphone array. The proposed method utilizes the spatial correlation between the spherical harmonics (SH) coefficients of a sound field to estimate source PSDs. The use of the spatial cross-correlation of the SH coefficients allows us to employ the method in an environment with a higher number of sources compared to conventional methods. Furthermore, the orthogonality property of the SH basis functions saves the effort of designing specific beampatterns of a conventional beamformer-based method. We evaluate the performance of the algorithm with different number of sources in practical reverberant and non-reverberant rooms. We also demonstrate an application of the method by separating source signals using a conventional beamformer and a Wiener post-filter designed from the estimated PSDs.Comment: Accepted for WASPAA 201

    Real-time Microphone Array Processing for Sound-field Analysis and Perceptually Motivated Reproduction

    Get PDF
    This thesis details real-time implementations of sound-field analysis and perceptually motivated reproduction methods for visualisation and auralisation purposes. For the former, various methods for visualising the relative distribution of sound energy from one point in space are investigated and contrasted; including a novel reformulation of the cross-pattern coherence (CroPaC) algorithm, which integrates a new side-lobe suppression technique. Whereas for auralisation applications, listening tests were conducted to compare ambisonics reproduction with a novel headphone formulation of the directional audio coding (DirAC) method. The results indicate that the side-lobe suppressed CroPaC method offers greater spatial selectivity in reverberant conditions compared with other popular approaches, and that the new DirAC formulation yields higher perceived spatial accuracy when compared to the ambisonics method

    3D Reflector Localisation and Room Geometry Estimation using a Spherical Microphone Array

    Get PDF
    The analysis of room impulse responses to localise reflecting surfaces and estimate room ge- ometry is applicable in numerous aspects of acoustics, including source localisation, acoustic simulation, spatial audio, audio forensics, and room acoustic treatment. Geometry inference is an acoustic analysis problem where information about reflections extracted from impulse responses are used to localise reflective boundaries present in an environment, and thus estimate the geometry of the room. This problem however becomes more complex when considering non-convex rooms, as room shape can not be constrained to a subset of possible convex polygons. This paper presents a geometry inference method for localising reflective boundaries and inferring the room’s geometry for convex and non-convex room shapes. The method is tested using simulated room impulse responses for seven scenarios, and real-world room impulse responses measured in a cuboid-shaped room, using a spherical microphone array containing multiple spatially distributed channels capable of capturing both time- and direction-of-arrival. Results show that the general shape of the rooms is inferred for each case, with a higher degree of accuracy for convex shaped rooms. However, inaccuracies gen- erally arise as a result of the complexity of the room being inferred, or inaccurate estimation of time- and direction-of-arrival of reflections

    Foreground component separation with generalised ILC

    Full text link
    The 'Internal Linear Combination' (ILC) component separation method has been extensively used to extract a single component, the CMB, from the WMAP multifrequency data. We generalise the ILC approach for separating other millimetre astrophysical emissions. We construct in particular a multidimensional ILC filter, which can be used, for instance, to estimate the diffuse emission of a complex component originating from multiple correlated emissions, such as the total emission of the Galactic interstellar medium. The performance of such generalised ILC methods, implemented on a needlet frame, is tested on simulations of Planck mission observations, for which we successfully reconstruct a low noise estimate of emission from astrophysical foregrounds with vanishing CMB and SZ contamination.Comment: 11 pages, 6 figures (2 figures added), 1 reference added, introduction expanded, V2: version accepted by MNRA
    • …
    corecore