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ABSTRACT
We present Spin-SILC, a new foreground component separation method that accurately ex-
tracts the cosmic microwave background (CMB) polarization E and B modes from raw mul-
tifrequency Stokes Q and U measurements of the microwave sky. Spin-SILC is an internal
linear combination method that uses spin wavelets to analyse the spin-2 polarization signal
P = Q + iU. The wavelets are additionally directional (non-axisymmetric). This allows differ-
ent morphologies of signals to be separated and therefore the cleaning algorithm is localized
using an additional domain of information. The advantage of spin wavelets over standard
scalar wavelets is to simultaneously and self-consistently probe scales and directions in the
polarization signal P = Q + iU and in the underlying E and B modes, therefore providing
the ability to perform component separation and E–B decomposition concurrently for the first
time. We test Spin-SILC on full-mission Planck simulations and data and show the capac-
ity to correctly recover the underlying cosmological E and B modes. We also demonstrate a
strong consistency of our CMB maps with those derived from existing component separation
methods. Spin-SILC can be combined with the pseudo- and pure E–B spin wavelet estimators
presented in a companion paper to reliably extract the cosmological signal in the presence of
complicated sky cuts and noise. Therefore, it will provide a computationally efficient method
to accurately extract the CMB E and B modes for future polarization experiments.
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1 IN T RO D U C T I O N

The polarization of the cosmic microwave background (CMB) is a
powerful cosmological observable, providing deep insights into the
physics of the early universe. The decomposition of the linear polar-
ization into curl-free (E mode) and divergence-free (B mode) com-
ponents allows the detection of tensor perturbations to the metric.
Specifically, a non-zero BB power spectrum on degree scales would
support the existence of a stochastic background of gravitational
waves predicted by inflationary theory (Kamionkowski, Kosowsky
& Stebbins 1997; Seljak & Zaldarriaga 1997). Accurate measure-
ment of B mode polarization on arcminute scales also gives strong
constraints on the neutrino sector via the weak gravitational lensing
of CMB E modes (Zaldarriaga & Seljak 1998). There are numer-
ous existing and planned ground-based, balloon-borne and satellite
experiments designed to precisely measure CMB polarization (see
e.g. Errard et al. 2015 for a recent forecast on the cosmological
constraining power of current and upcoming missions). However,
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as in measuring the temperature T anisotropies of the CMB, the po-
larized background needs to be separated from instrumental noise
and signals due to astronomical foregrounds (in particular, syn-
chrotron radiation and thermal radiation from Galactic dust). This
foreground component separation is more difficult compared with
the case of CMB temperature, due to the relative strength and mor-
phological complexity of polarized foregrounds, which are poorly
understood.

Foreground component separation has been performed in nu-
merous ways but, on real observational data, always by remov-
ing foreground contamination from scalar signals. For example, in
the polarized setting, foreground contamination is removed from
the Stokes Q and U or from E and B mode maps by treating Q
and U or E and B as independent scalar fields. We presented a
thorough discussion of blind and non-blind component separation
methods in Rogers et al. (2016, see also e.g. Delabrouille et al.
2009; Bobin et al. 2013 for reviews). In this work, we highlight
only the four component separation methods employed in Planck
Collaboration IX (2015b). Commander (Eriksen et al. 2006, 2008)
and SEVEM (Martı́nez-González et al. 2003; Leach et al. 2008;
Fernández-Cobos et al. 2012) operate on the Q and U maps, while
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NILC (Delabrouille et al. 2009) and SMICA (Cardoso et al. 2008)
operate on the E and B mode maps.

Recently, Fernández-Cobos et al. (2016) explored an extension
of the internal linear combination (ILC) method to act fully on
the spin-2 signal formed by the Q and U maps and applied their
method to simulations. In general, the ILC method estimates the
CMB as a weighted sum of maps of the sky at different microwave
frequencies. The weights are constrained to conserve the CMB
signal but minimize foreground and noise residuals by minimizing
the variance of the output map. The weights can be localized in
various domains, but most usefully in wavelet space (e.g. Rogers
et al. 2016), which allows the weights to vary simultaneously with
position on the sky and harmonic scale. Fernández-Cobos et al.
(2016) minimized the covariant quantity 〈|P|2〉, where P = Q + iU,
in map space. Consequently, they do not consider any harmonic
localization.

In this work, we introduce the spin, scale-discretized, direc-
tional wavelet ILC or Spin-SILC. This is an extension of the SILC
method we introduced in Rogers et al. (2016), where to analyse
spin signals such as CMB polarization we now use spin scale-
discretized wavelets, the complete construction of which is pre-
sented in McEwen et al. (2015b, see also McEwen et al. 2014;
Leistedt et al. 2015). Wavelets are functions that are localized in
both real and harmonic space and, in particular, scale-discretized
wavelets satisfy excellent localization properties (McEwen, Duras-
tanti & Wiaux 2015a). In the scalar SILC method, we use di-
rectional scale-discretized wavelets (Wiaux et al. 2008; McEwen,
Vandergheynst & Wiaux 2013; McEwen et al. 2015b). Direc-
tional wavelets are spatially and harmonically localized and ad-
ditionally ‘directionally localized’, i.e. the spatial kernels are non-
axisymmetric and can be rotated to pick out a preferred direction
on the surface of the sphere. Rogers et al. (2016) give an introduc-
tory summary of directional wavelets. The spin wavelets we use are
still spatially, harmonically and directionally localized but are now
constructed in the space of spin spherical harmonics. When spin
wavelets are convolved with spin signals defined on the sphere, the
output wavelet coefficients isolate signal structure of different scale
and orientation, while maintaining the spatial information. The spin
can in general be arbitrary, but since we are interested in analysing
the spin-2 signal P = Q + iU, we adopt spin-2 wavelets. By the
particular construction of the spin wavelets, the complex spin-2
wavelet coefficients can be separated (by their real and imaginary
parts) into scalar wavelet coefficients of the E and B fields, where
the scalar wavelet coefficients correspond to a scalar wavelet that is
a spin-lowered version of the original spin-2 wavelet (McEwen et al.
2015b). Hence, the spin-2 wavelet transform at the heart of Spin-
SILC performs E–B decomposition from input Q and U maps. The
ILC method is then applied to the complex wavelet coefficients,
with complex weights, and jointly minimizes the variance of the
reconstructed E and B fields. Moreover, the weights vary spatially,
harmonically and according to different orientations, fine-tuning the
cleaning algorithm to remove foreground and noise contamination.

It follows that Spin-SILC introduces two main novelties to CMB
polarization component separation. First, the use of spin scale-
discretized wavelets allows the full analysis of the polarization
spin signal P. By their construction, we can then perform com-
ponent separation and E–B decomposition simultaneously and self-
consistently. Secondly, the use of directional wavelets allows the
additional flexibility to localize the foreground removal according
to the morphological structure of the CMB and the foregrounds.

There is a third novel attribute to Spin-SILC of interest to future
polarization observations. Although in this work, we have tested

Spin-SILC on the full-sky multifrequency maps provided by the
Planck Collaboration, these frequency maps are dominated by in-
strumental noise and hence so are also our estimates of the CMB po-
larization. Future polarization measurements will have high signal-
to-noise (S/N), but will usually cover only a fraction of the sky.
However, E–B decomposition (from the measured Q and U modes)
on the cut sky is not uniquely defined unlike the full-sky case. This
leads to leaking or mixing between the E and B modes. This is of
particular concern in extracting the B field since the E field is orders
of magnitude larger. As presented in a companion paper (Leistedt
et al. 2016), the spin scale-discretized wavelets we use can be em-
ployed to construct pure estimators of the masked E and B modes
[pure E (B) modes are orthogonal to all B (E) modes on the par-
tial sky, respectively]. This builds on the work of Lewis, Challinor
& Turok (2002), Bunn et al. (2003), Smith & Zaldarriaga (2007),
Grain, Tristram & Stompor (2012) and (Ferté et al. 2013, see in par-
ticular Bunn et al. 2003 for a discussion of pure modes at the map
level). This only requires calculating additional wavelet transforms
of the input data subject to a suitably apodized mask. One of the
main advantages of this approach is the possibility of optimizing the
mask as a function of scale and direction, therefore yielding a more
efficient cancellation of the systematic E–B mixing due to mask-
ing (Leistedt et al. 2016). Hence, Spin-SILC can produce accurate
estimates of the cosmological E and B fields, even on the cut sky,
in conjunction with the E–B estimators presented in Leistedt et al.
(2016). More details of how Spin-SILC can operate on partial-sky
observations are given in Section 3.8.

We provide an introduction to spin scale-discretized wavelets in
Section 2. In Section 3, the Spin-SILC algorithm is explained in
detail. We test the method on Planck simulations in Section 4 and
Planck data in Section 5. In Section 6, we compare our method to
previous component separation methods. We discuss the results in
Section 7 and conclude in Section 8.

2 SPI N WAV ELETS

Spin, directional, scale-discretized wavelets on the sphere that sup-
port exact reconstruction have been constructed in McEwen et al.
(2015b, and discussed briefly in McEwen et al. 2014; Leistedt et al.
2015). These are an extension of the scalar, directional wavelets
developed in Wiaux et al. (2008) and McEwen et al. (2013), which
are used in the scalar version of the SILC method for the analysis of
CMB temperature anisotropies (Rogers et al. 2016). They maintain
the properties of spatial, harmonic and directional localization, but
can now additionally analyse spin fields by being constructed on
the basis of spin spherical harmonics. In particular, spin-2 wavelets
can be convolved with the spin-2 field P = Q + iU, where Q and U
are the Stokes parameters of the CMB’s linear polarization. Fig. 1
shows an example of the spatial localization of spin wavelets. Unlike
scalar wavelets which are real-valued, spin wavelets are complex-
valued. Fig. 2 shows an example of the harmonic localization of spin
wavelets (for the wavelets used in this work). Fig. 3 shows an exam-
ple of spin-2 wavelet decomposition as applied to a simulated CMB
polarization field P. By the construction of the spin-2 wavelets, the
real and imaginary parts of the complex wavelet coefficient maps of
P are respectively scalar wavelet transforms of E and B fields (with
a different scalar wavelet). It can be seen that the spin-2 wavelet
transform in the Spin-SILC method carries out the decomposition
of the CMB polarization into E and B modes. Details about the use
of Spin-SILC on partial-sky observations are given in Section 3.8.
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Figure 1. The spatial localization on the sphere of spin, directional, scale-
discretized wavelets. The top row shows larger scale wavelets than the
bottom row. The left column shows the real part of the wavelet, the middle
column shows the imaginary part of the wavelet and the right column shows
the absolute value of the wavelet. The number of directions per wavelet
scale N = 5. Therefore, for complete reconstruction at each scale, the above
wavelets would be complemented by four more wavelets of the same size
but of a different orientation on the sphere. The spin number s = 2, which
is what is required for the analysis of Stokes Q and U modes. This figure is
adapted from McEwen et al. (2015b).

Figure 2. The harmonic localization of the spin wavelets used in this work
[κj

� as defined in equation (11)], where j specifies the wavelet scale. Increas-
ing j corresponds to a smaller wavelet kernel and so a multipole range on
smaller scales (i.e. larger multipoles �). The largest wavelet scale (Scal.)
is the scaling function (Section 3.4). This choice of wavelets deliberately
ensures exact reconstruction only for � ≤ 2048. The tapering of the smallest
wavelet for 2048 < � ≤ 2253 suppresses the smallest scale power within the
algorithm. The band limits of the above wavelets are given in Table 1.

3 M E T H O D

We start by outlining the Spin-SILC algorithm. The steps are ex-
plained in more detail in the subsequent subsections (Section 3.1–
3.7). The use of Spin-SILC on partial-sky observations is dis-
cussed in Section 3.8. We discuss our numerical implementation in
Section 3.9.

(1) The raw input data are full-sky frequency maps of the
anisotropies in the linear polarization of the CMB, i.e. Stokes Q
and U fields. These maps use the HEALPIX format (Górski et al.
2005). (See Section 3.1.) The model we employ for the raw data is
explained in Section 3.2.

(2) The maps are ‘pre-processed’ by inpainting in a small point
source mask and each convolved to have the same effective beam
(see Section 3.3).

(3) At each frequency band, the complex spin-2 polarization field
P = Q + iU is formed. Each P map is converted into a set of
complex-valued spin-2 wavelet coefficient maps. This separates
both the scale and orientation of structure within each map. These
wavelet coefficient maps are sampled according to the sampling
theorem of McEwen et al. (2015c). (See Section 3.4.)

(4) A spin-2 ILC method is then applied separately to each
wavelet scale and orientation. For each scale and orientation, the
multifrequency wavelet coefficient maps are weighted and added to
form a single (complex-valued) wavelet coefficient map that con-
tains mainly CMB signal, as well as some residual foreground and
noise. These weights are allowed to vary at each wavelet coefficient.
The calculation of these weights is explained in Section 3.5.

(5) By the construction of the spin-2 wavelets we use, the real
and imaginary parts of the final ILC wavelet coefficient maps are
respectively ILC estimates of the scalar wavelet transforms of the
CMB E and B maps (with a different scalar wavelet). Therefore,
the real and imaginary parts are separately synthesized with scalar
wavelets to form the final products: full-sky maps of the CMB E
and B anisotropies (with some residual foreground and noise). (See
Section 3.7.) Q and U maps are also formed by a standard spin-2
inverse wavelet transform of the ILC results (see Section 3.6). All
final maps use the HEALPIX format.

3.1 Input data

Our CMB polarization map products use full-mission 2015 release
Planck Q and U polarization maps as their input1 (Planck Col-
laboration VI 2015c; Planck Collaboration VIII 2015d). All seven
polarization frequency channels are used. At 70 GHz, we use the
higher resolution version at Nside = 2048. As noted in Planck Col-
laboration I (2015a), the 100, 143 and 217 GHz polarization maps
have been high-pass filtered due to insufficient characterization of
residual systematic effects on large scales, in particular leakage
between temperature and polarization measurements. We therefore
follow Planck Collaboration IX (2015b) in also high-pass filtering
the spherical harmonic coefficients of our output data products with
a harmonic cosine filter:

w� =

⎧⎪⎨
⎪⎩

0, if � < 20,

1
2

[
1 − cos

(
π
20 (� − 20)

)]
, if 20 ≤ � ≤ 40,

1, otherwise.

(1)

We use the full-mission Full Focal Plane 8 (FFP8) simulations
(Planck Collaboration XII 2015e) with lensed scalar perturbations
and without bandpass mismatch. These consist of a superposition
of a CMB realization, a noise realization and full simulations of
diffuse and point source astrophysical foregrounds.

While we do not expect an algorithm developed for next-
generation precision CMB polarization observations to demonstrate
its full capabilities with the Planck data set, this setting comprises
the best publicly available simulations and data, and benefits from
the availability of comparison data products from well-studied and
highly tested component separation algorithms used by the Planck
Collaboration. Thus, we use the Planck setting to benchmark our
algorithm.

1 http://pla.esac.esa.int/pla
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Figure 3. An illustration of the spin, directional wavelet decomposition of the CMB Stokes Q and U maps and the E–B separation that automatically occurs
as a consequence. The top row shows example input Q and U maps, simulated with lensed scalar perturbations, with zoomed regions to show structure in
the fields. The middle row shows the real and imaginary parts of the spin, directional wavelet coefficient maps, formed by the spin-2 wavelet transform of
P = Q + iU. The ILC algorithm acts on such wavelet coefficients (calculated for multiple polarization channels) and produces clean wavelet coefficients of the
CMB polarization. By the construction of the wavelets, the real and imaginary parts are respectively equal to scalar wavelet transforms of the E and B fields
(with a different scalar wavelet). The bottom row shows the output E and B maps, also with zoomed regions, formed respectively by inverse scalar wavelet
transforms of the real and imaginary parts of the wavelet coefficient maps. In our Spin-SILC analysis, we include wavelets on smaller scales than those used
in the simple demonstration shown above.

3.2 Data model

Each of the full-sky Stokes Q and U polarization maps (X =
Q, U) can be independently2 physically modelled (e.g. Basak &

2 The independent modelling is based on the accurate assumption that any
mixing of Q and U modes in their measurement has been previously cor-
rected in any given experiment.

Delabrouille 2013) as

XOBS,c(n̂) =
∫

n̂′
dn̂′Bc(n̂, n̂′)XSIG,c(n̂′) + XN,c(n̂), (2)

where the signal component can further be decomposed as

XSIG,c(n̂) = acXCMB(n̂) + XFG,c(n̂). (3)

XCMB(n̂) is the CMB component at a point on the sky n̂. XFG,c(n̂)
and XN,c(n̂) are respectively the foreground and detector noise

MNRAS 463, 2310–2322 (2016)
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components for frequency channel c. ac is the calibration coeffi-
cient for the CMB for each channel. The overall signal component
is smoothed by a beam function Bc(n̂, n̂′) due to the finite resolution
of the observations. However, the noise component is not smoothed
by the beam. Here we assume the beam to be circularly symmetric.
Therefore, the beam can be represented as a sum over Legendre
polynomials,

Bc(n̂, n̂′) =
∞∑

�=0

2� + 1

4π
Bc

�P�(n̂.n̂′). (4)

We can recast equation (2) in the scalar spherical harmonic repre-
sentation as

0a
OBS,c
�m = acBc

� 0a
CMB
�m + Bc

� 0a
FG,c
�m + 0a

N,c
�m , (5)

where 0a�m are the coefficients of scalar spherical harmonics
0Y�m(n̂).

The above is a useful representation for the data pre-processing
in Section 3.3. However, the novelty of Spin-SILC is to develop
a component separation algorithm that directly makes use of the
spin properties of the CMB polarization field. The Stokes Q and
U parameters are defined with respect to a fixed coordinate system
on the sky. They can be identified by their respective ‘+’ and ‘×’
patterns, as seen in the top row of Fig. 3. However, there is no
rotationally invariant measure of the power as a function of scale.
In order to address this, we can first form the complex-valued, spin
±2 polarization field

±2P (n̂) = Q(n̂) ± iU (n̂)

=
∑
�m

±2a�m ±2Y �m(n̂). (6)

The spin ±2 property implies that ±2P (n̂) transforms under local
rotations of angle ψ via ±2P → e−isψ ±2P , where spin number
s = ±2. The second equality therefore follows by expanding the
spin field ±2P (n̂) on the basis of spin spherical harmonics ±2Y�m(n̂)
with spin spherical harmonic coefficients ±2a�m.

We can then define the scalar E and pseudo-scalar B fields in
harmonic space as

0E�m = −1

2
(2a�m + −2a�m)

0B�m = i

2
(2a�m − −2a�m). (7)

By construction, the E and B fields are real-valued and allow the
calculation of rotationally invariant angular power spectra. E modes
are identified by the polarization strength increasing in a direction
parallel or perpendicular to the sense of the polarization; it is the
curl-free component of the spin-2 signal. B modes are identified
by the polarization strength increasing in a direction unaligned to
the sense of the polarization; it is the divergence-free component of
the spin-2 signal. E and B modes therefore respectively separate the
underlying field into parity-even and parity-odd components.

3.3 Data pre-processing

The input frequency Q and U maps are diffusively inpainted in a
small point source mask following the method employed by Planck
Collaboration XVII (2015f). This recognizes that the ILC fails when
the CMB is obscured by bright extragalactic polarized sources. The
inpainting removes these sources and replaces them with an ex-
trapolation of the surrounding signal. The mask is the union of
the Planck Low Frequency Instrument (LFI) and High frequency

Instrument point source masks, which are constructed from the
Second Planck Catalogue of Compact Sources (Planck Collabora-
tion XXVI 2015g).3 It masks about 0.6 per cent of the whole sky,
predominantly along the Galactic equator.

After the inpainting, we convert all the input frequency maps
to the same resolution by performing a deconvolution/convolution
procedure that gives scalar spherical harmonic coefficients

0a
c
�m = BEFF

�

Bc
�

0a
OBS,c
�m , (8)

where BEFF
� is the beam transfer function giving the resolution at

which we perform the ILC. For Planck data, we use a Gaussian
beam with a full width at half-maximum (FWHM) of 5 arcmin
as our input beam. Our final map products are re-convolved to a
10 arcmin beam in order to suppress residual noise. The beams
we deconvolve Bc

� are taken from the Reduced Instrument Model
(RIMO).4 For the LFI beams, we use Gaussian approximations
with FWHM 32.33, 27.01 and 13.25 arcmin for 30, 44 and 70 GHz,
respectively. Following Planck Collaboration XII (2014) and Rogers
et al. (2016), the deconvolved beams are thresholded such that the
Bc

� is set to the value given in the RIMO or 0.001, whichever is
larger. This suppresses noise within the ILC method.

3.4 Spin wavelet analysis

The spin wavelet ILC method requires the decomposition of each
band-limited, complex-valued polarization map 2P

c(n̂) [as formed

by equation (6)] into a set of spin wavelet coefficient maps W 2�j

P . We
use the spin, directional, scale-discretized wavelets of McEwen et al.
(2014, 2015b) and Leistedt et al. (2015). Following an introductory
summary in Section 2, we now discuss some of the technical details
of our wavelet implementation. We drop the c superscript on 2P (n̂)
for the rest of this subsection since each frequency map is analysed
using the same wavelets. We concentrate on the spin-2 wavelet
transforms we use in Spin-SILC, but the wavelets we use can be
generalized to arbitrary spin.

The spin wavelet coefficients are defined as the directional con-
volution of 2P with spin wavelets 2�

j defined on the sphere S2

(specifically those shown in Fig. 2), where index j denotes the
wavelet scale. Like the scalar case (Wiaux et al. 2008; McEwen

et al. 2013), spin, directional wavelets yield coefficients W 2�j

P (ρ̂)
that live on the space of three-dimensional rotations, i.e. the rotation
group SO(3):

W 2�j

P (ρ̂) ≡ 〈2P |Rρ̂ 2�
j 〉 =

∫
S2

dn̂ 2P (n̂)(Rρ̂ 2�
j )∗(n̂), (9)

where dn̂ is the usual invariant measure on the sphere and ·∗ denotes
complex conjugation. The rotation operator is defined by

(Rρ̂ 2�
j )(n̂) ≡ 2�

j (R−1
ρ̂ n̂), (10)

where Rρ̂ is the three-dimensional rotation matrix corresponding
to Rρ̂ . In equations (9) and (10), ρ̂ = (θ, φ, χ ) ∈ SO(3) denotes
the Euler angles (in the zyz convention) with colatitude θ ∈ [0, π],
longitude φ ∈ [0, 2π) and direction χ ∈ [0, 2π). In other words,
the wavelet coefficients probe directional structure in 2P with χ

corresponding to the orientation about each point (θ , φ) on the
sphere.

3 The details of their construction are given within the FITS files. They can
be downloaded from http://pla.esac.esa.int/pla
4 Planck 2015 Release Explanatory Supplement: The 2015 instrument model
(http://wiki.cosmos.esa.int/planckpla2015/index.php/The_RIMO).
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Table 1. The harmonic band limits [�j
min, �

j
max] of the spin wavelets used

in this work. �
j
peak is the multipole at which each wavelet has its maximum

response. The final column shows the number of equiangular samples per
wavelet coefficient map N

j
samp.

Wavelet scale j �
j
min �

j
peak �

j
max N

j
samp

Scal. 0 64 64 8385
0 32 64 128 33 153
1 64 128 256 131 841
2 128 256 512 525 825
3 256 512 706 998 991
4 542 705 918 1688 203
5 705 917 1193 2850 078
6 917 1192 1551 4815 856
7 1192 1550 2015 8126 496
8 1550 2015 2253 10 158 778

Spin, directional wavelets are defined by their spin spherical
harmonic coefficients in factorized form:

2�
j
�n ≡

√
2� + 1

8π2
κ

j
� 2ζ �n, (11)

where κ
j
� sets the harmonic localization (Fig. 2) and 2ζ �n sets the

directional localization. Their spin properties are maintained by
being built on the basis of spin spherical harmonics. Full details
of their construction are given in McEwen et al. (2015b). As in
Rogers et al. (2016), we flexibly control the harmonic localization
by using different values of the wavelet dilation parameter λ in
different multipole regions. For the wavelets we use in Fig. 2, we
use λ = 2, 1.3, 1.1 with transitions at multipoles � = 512, 2015.
The harmonic bounds of each wavelet for scale j are given by
(�j

min, �
j
max) = (λj ′−1, λj ′+1), taking account of the different values

of λ we use and the stitching together of wavelets at λ transitions.
The index j′ refers to the original index of the wavelet scale as if
only that single value of λ was used. Their peak response is at λj ′

.
The details of our harmonic tiling are given in Table 1. A single
parameter N (at all scales) defines the number of directions into
which each wavelet scale is localized.

We also use an axisymmetric scaling function 2
 to form scaling
coefficients W 2


P which characterize the largest scale information
(in this work for � < 64) and live on the sphere. This is motivated
by testing in Rogers et al. (2016) that showed that the use of di-
rectionality on large scales in the ILC is not effective for CMB
reconstruction. These wavelets (and the scaling function) satisfy
the standard admissibility criterion for exact reconstruction, i.e. no
information is lost in the wavelet and inverse wavelet transforms
of a band-limited spin signal. For the chosen band limit, the small-
est wavelet is harmonically truncated. We choose not to use this
wavelet, which means that exact reconstruction is only satisfied for
� ≤ 2048. This allows the tapering of the smallest remaining wavelet
(for 2048 < � ≤ 2253) to suppress the smallest scale power in the
algorithm.

In order to apply the ILC algorithm, the above continuous wavelet
coefficients must be discretized. Since they live on the rotation group
SO(3), we represent them using the sampling scheme of McEwen
et al. (2015c), which is itself a generalization of the sampling scheme
of McEwen & Wiaux (2011). Since the wavelets are band-limited,
we use a multi-resolution scheme where each wavelet scale j is
pixellated with a minimal number of samples. This means that

each wavelet coefficient map W 2�j

P (band-limited at �j
max) is only

evaluated at samples (θj
t , φj

p, χn), where t ∈ {0, 1, . . . , �j
max}, p ∈

{0, 1, . . . , 2�j
max} and n ∈ {0, 1, . . . , N − 1}. In this way, each spin

wavelet coefficient map can be separated into N spin, directional
wavelet coefficient maps W 2P

jnk according to the value of n, where k

indexes pixel number according to samples (θj
t , φj

p) on the sphere.
It follows that each input frequency P map has been decomposed
into wavelet coefficient maps, each localized according to harmonic
scale j and orientation of structure n, while maintaining spatial
localization (pixel number k). (See Fig. 3 for a demonstration of
this decomposition.)

3.5 ILC method

Following the spin, directional wavelet analysis of the input P maps
(see Section 3.4), there is a spin, directional wavelet coefficient map
W 2P ,c

jnk for each channel c, scale j and orientation n with a pixel index
k. With this compact notation, we conflate the scaling coefficient
maps with the wavelet coefficient maps as the ILC method applies
in exactly the same way. We develop the spin wavelet ILC method
by an extension of the scalar wavelet ILC method we developed
in Rogers et al. (2016) to operate on the complex-valued wavelet
coefficient maps we now have. Similar to Fernández-Cobos et al.
(2016), we consider the complex spin signal ±2P rather than con-
sidering scalar fields independently (e.g. Q and U independently or
E and B independently). However, unlike Fernández-Cobos et al.
(2016), who work jointly on Q and U maps in real space, we work
in wavelet space, where spatial, scale and directional localization is
possible. The most general extension of the scalar ILC is to estimate
the CMB at each wavelet scale and orientation as a sum of wavelet
coefficient maps for each frequency with complex-valued weights
ωc

jnk:

W 2P ,ILC
jnk ≡

Nc∑
c=1

ωc
jnkW

2P ,c
jnk , (12)

where Nc is the number of input channels.
In order to recover an unbiased estimate of the CMB, we impose

a constraint on the weights such that

Nc∑
c=1

acωc
jnk = 1 + 0i, (13)

where we remind the reader that ac is the real-valued set of calibra-
tion coefficients for the CMB Q and U maps introduced in equation
(3). In order to calculate the weights at each pixel k, we choose

to minimize the covariant quantity 〈|W 2P ,ILC
jnk |2〉 with respect to the

complex-valued weights ωc
jnk themselves, under the constraint in

equation (13). This minimization can be carried out with complex
Lagrange multipliers (similarly to the scalar case) giving complex-
valued weights

ωc
jnk =

∑Nc

c′=1(R−1
jnk)cc

′
ac′

∑Nc

c=1

∑Nc

c′=1 ac(R−1
jnk)cc′

ac′ , (14)

where the true covariance matrices at scale j, orientation n and
pixel k, (Rjnk)cc

′ = 〈W 2P ,c
jnk

∗
W 2P ,c′

jnk 〉 (where the angled brackets in-
dicate an ensemble average, although in practice we empirically
estimate these covariances as explained below). In this work, we
assume ac = 1, ∀ c, i.e. that the CMB is perfectly calibrated in the
data we use.

There are two main consequences from minimizing the quantity
we choose. First, as in scalar SILC, we assume that the CMB and
foregrounds and the CMB and noise are respectively uncorrelated.
It follows that the ensemble cross-term between CMB and residual
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contamination is zero and, since the CMB is conserved by the con-
straint in equation (13), we are minimizing only the variance of the
error in CMB reconstruction. Secondly, by minimizing the variance
of the full complex-valued spin-2 wavelet coefficients using com-
plex weights, we are in turn jointly minimizing the variance of the E
and B modes. This is thanks to the construction of the spin wavelets
we use, as discussed in Section 3.6. Unlike a foreground cleaning
algorithm acting on the Q and U or E and B maps separately, this
approach ensures that all the information (i.e. from the multiple po-
larization channels and the Q and U cross-terms) is used to jointly
construct clean CMB polarization P and its E and B modes.

As in scalar SILC, we estimate the covariance matrices (Rjnk)cc
′

empirically on the data. We achieve this by replacing the appropri-
ate ensemble average with a weighted average of the surrounding
pixels. Specifically, we smooth the maps of covariance matrix ele-
ments with a Gaussian kernel in harmonic space. The size of this
kernel is proportional to the size of the wavelet used at each scale.5

Full details of this empirical estimation of covariances and possible
optimizations to the method are given in Rogers et al. (2016).

3.6 Spin wavelet synthesis to Stokes Q and U modes

Although a novelty of Spin-SILC is to simultaneously perform E–B
decomposition and component separation (i.e. to synthesize the ILC
results directly to E and B maps as explained in Section 3.7), one
can also form Q and U maps. This is carried out by a single spin-2
inverse wavelet transform. After the ILC method (see Section 3.5)
has been applied to the frequency wavelet coefficient maps, there is
one ILC estimate of the CMB P field (with some residual foreground
and noise) at each wavelet scale and orientation W 2P ,ILC

jnk . Multiple
orientations χ0, χ1, . . . , χN − 1 are combined at each scale to form

wavelet coefficient maps W 2�j ,ILC
P (ρ̂) that live on SO(3). We also

have the scaling coefficient map W 2
,ILC
P (n̂) that lives on the sphere

(and characterizes the largest scales). In order to calculate our real
space estimate of the CMB polarization spin field 2P

ILC(n̂) [and
hence the Stokes parameters QILC(n̂) and U ILC(n̂)], we perform the
following spin-2 inverse wavelet transform:

2P
ILC(n̂) = QILC(n̂) + iU ILC(n̂)

=
∫

S2
dn̂′W 2
,ILC

P (n̂′)(Rn̂′ 2
)(n̂)

+
∑

j

∫
SO(3)

dρ̂W 2�j ,ILC
P (ρ̂)(Rρ̂ 2�

j )(n̂), (15)

where dρ̂ is the usual invariant measure on the rotation group.
We have used the same spin wavelets as in the wavelet analysis
in Section 3.4. The final ILC Q and U maps are pixellated in the
HEALPIX format.

3.7 Scalar wavelet synthesis to E and B modes

A considerable advantage of the Spin-SILC method is that it si-
multaneously removes foreground and noise contamination from
the cosmological signal and carries out the E–B decomposition dis-
cussed in Section 3.2. It achieves the latter by using a property of

the spin scale-discretized wavelets that relates W 2�j

P (ρ̂), the spin-2

5 FWHMj = 50
√

1200
N

j
samp

. This value is the same as used in the NILC imple-

mentation on Planck data.

wavelet transform of P, to W 0�j

Ẽ
(ρ̂) and W 0�j

B̃
(ρ̂), the scalar wavelet

transforms of Ẽ and B̃:

W 0�j

Ẽ
(ρ̂) = −Re[W 2�j

P (ρ̂)]

W 0�j

B̃
(ρ̂) = −Im[W 2�j

P (ρ̂)]. (16)

The intermediate fields Ẽ and B̃ are respectively related to E and
B by a harmonic normalization of their scalar spherical harmonic
coefficients:

0E�m = 1

N�,2
0Ẽ�m

0B�m = 1

N�,2
0B̃�m, (17)

where N�,s =
√

(�+s)!
(�−s)! .

The straightforward E–B decomposition is achieved by the con-
struction of the wavelets and is discussed in detail in McEwen
et al. (2015b) and Leistedt et al. (2016). In equation (16), the scalar
wavelets 0�

j are spin-lowered versions of the spin-2 wavelets 2�
j :

0�
j (n̂) = ð

2
2�

j (n̂). (18)

(An equivalent equation links the scalar and spin scaling functions.)
ð is a first-order differential operator known as the spin-lowering
operator since it lowers the spin of spherical harmonic functions:
ðsY�m(n̂) = 1

N�,s
s−1Y�m(n̂).

By applying equation (16), we can separate the spin wavelet coef-

ficient maps W 2�j ,ILC
P (ρ̂) (defined in Section 3.6) into scalar wavelet

coefficient maps of the intermediate Ẽ and B̃ modes W 0�j ,ILC
Y (ρ̂),

where Y = Ẽ, B̃. An equivalent separation forms the scaling coeffi-
cient maps W 0
,ILC

Y (n̂). In order to calculate our real space estimates
of the CMB Ẽ and B̃ modes 0Y

ILC(n̂), we perform inverse scalar
wavelet transforms with the (spin-lowered) scalar scaling function
0
 and scalar wavelets 0�

j [as defined in equation (18)]:

0Y
ILC(n̂) =

∫
S2

dn̂′W 0
,ILC
Y (n̂′)(Rn̂′ 0
)(n̂)

+
∑

j

∫
SO(3)

dρ̂W 0�j ,ILC
Y (ρ̂)(Rρ̂0�

j )(n̂). (19)

The output scalar spherical harmonic coefficients can be renormal-
ized to the usual E and B fields by applying equation (17). The final
ILC E and B maps are pixellated in the HEALPIX format.

3.8 Spin-SILC on partial-sky observations

We have outlined above the Spin-SILC method specifically as it
applies on the full sky. However, Spin-SILC is being primarily
developed for application to future CMB polarization experiments,
which will have greater S/N and/or resolution, but will typically
observe only part of the sky. The decomposition of Stokes Q and
U measurements into E and B modes is essential for cosmological
analyses, in particular for a measurement of the BB angular power
spectrum. This is strictly well defined only on the whole sky, as in
equation (7).

This decomposition is not well defined if the input measurements
only cover a part of the sky. However, following Bunn et al. (2003), a
polarization field on the cut sky can be decomposed into a complete
orthonormal basis defined by ‘pure E’, ‘pure B’ and ‘ambiguous’
modes. Pure E modes have vanishing curl and are orthogonal to all
B modes on the partial sky. Pure B modes have vanishing divergence
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and are orthogonal to all E modes on the partial sky. Ambiguous
modes are all other modes, which will have both vanishing diver-
gence and curl. It is the inability to distinguish ambiguous modes
which leads to the problem of E–B leakage where ambiguous modes
are erroneously counted as E or B. However, following, e.g., Bunn
et al. (2003) and Smith & Zaldarriaga (2007), if the pure B modes
can be isolated, they will form an estimate of the cosmological B
power, unbiased by E–B leaking.

Leistedt et al. (2016) have shown how the spin wavelets we use
can be employed to construct estimates of the pure modes defined
above on a masked sky. This builds on the work of, e.g., Lewis
et al. (2002), Smith & Zaldarriaga (2007) and Grain et al. (2012). In
particular, the spin wavelet pure-mode estimation of Leistedt et al.
(2016) requires only two additional wavelet transforms of the input
Q and U data and a suitably apodized mask. The Spin-SILC method
can be applied on partial-sky observations by coherently combining
the full-sky method with the pure-mode estimation. The application
of Spin-SILC to partial-sky observations will be investigated in
future work, providing the first integrated pipeline to simultaneously
carry out E–B decomposition and foreground component separation
for future CMB polarization experiments.

3.9 Numerical implementation

Spin-SILC is implemented in PYTHON and is parallelized. At full
Planck resolution (Nside = 2048, �max = 2253), when run on a
60-core symmetric multiprocessor (SMP) with 1.5 TB RAM and
a 24-core cluster node with 256 GB RAM,6 the pipeline takes
approximately 1.5 h per direction. The wavelet transforms in Spin-
SILC are carried out using the latest version of the S2LET7 code
(Leistedt et al. 2013; McEwen et al. 2015c), written in C with
PYTHON wrappers. This employs SSHT8 (McEwen & Wiaux 2011)
and SO39 (McEwen et al. 2015c) to compute spin spherical har-
monics and Wigner transforms exactly and efficiently. Spin-SILC
is developed from the scalar SILC10 code (Rogers et al. 2016, which
performs component separation on the temperature anisotropies of
the CMB).

4 A PPLICATION TO PLANCK SIMULATIONS

We tested Spin-SILC on the fiducial full-mission Planck FFP8 sim-
ulated Stokes Q and U sky maps. We use simulations with lensed
scalar perturbations. Fig. 4 shows the differences between the re-
constructed CMB (using N = 1) and the input simulated CMB.
The two panels show the differences in Q and U maps, as this
most directly compares to the input data. The most striking fea-
tures are the reductions in residuals in the top-left and bottom-right
corners, aligning with the ecliptic poles. This reflects reduced noise
residuals because there is less noise in the input data due to the scan-
ning strategy of the Planck satellite, which integrated for longer in

6 The exact specification for our infrastructure is an Intel Xeon E7-4890
2.8 GHz SMP with 4 × 15-core CPUs with 25.6 GB RAM per core, and an
Intel Xeon E5-2697 2.7 GHz node with 2 × 12-core CPUs with 10.7 GB
RAM per core.
7 http://www.s2let.org
8 http://www.spinsht.org
9 http://www.sothree.org
10 http://www.silc-cmb.org

Figure 4. Planck simulations. Differences between output ILC and in-
put CMB maps from FFP8 simulations with lensed scalar perturbations.
The maps have been smoothed to FWHM = 80 arcmin and downgraded to
Nside = 128. The grey pixels are the UPB77 confidence mask from Planck
Collaboration IX (2015b), which masks the Galactic region in FFP8 simula-
tions where foreground emission is strongest. From top to bottom, we show
differences in (a) Stokes Q and (b) Stokes U maps.

those directions. In general, the difference maps are consistent with
noise residuals. This is a consistent attribute of the Planck polariza-
tion data sets. Fig. 5 compares the full-sky angular power spectra
(D� = �(� + 1)C�/2π) of the same reconstructed CMB and the in-
put signal. The three panels respectively compare the EE, BB and
EB spectra, as these are the cosmologically interesting observables.
The EE and BB spectra are consistent with significant residual noise
power due to the noisiness of the input maps, although the first four
acoustic peaks of the EE spectrum are discernible nonetheless. The
reconstructed EB spectrum is consistent with the zero input value.

We tested the impact of using directional spin wavelets in the
Spin-SILC method with the simulated data set. Fig. 6 compares
the differences in full-sky power spectra between the directional
case (for N = 5, 10) and the axisymmetric limit (N = 1). The two
panels compare EE and BB spectra. It can be seen that using more
directional wavelets per wavelet scale reduces power spectrum re-
construction residuals with respect to the axisymmetric limit, very
modestly on large scales and more so on small scales. However, the
magnitude of these reductions is very small compared to the total
power in the output ILC maps, which are dominated by residual
instrumental noise; in the BB spectrum, the reduction is compara-
ble to the magnitude of the input lensing signal. These results are
fully expected following Rogers et al. (2016), where it was found
that the gains in component separation efficacy from employing
directionality were marginal in the low-S/N regime.
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Figure 5. Planck simulations. From top to bottom, (a) EE, (b) BB and
(c) EB angular power spectra comparing output ILC in the axisymmetric
limit (N = 1) to input CMB from FFP8 simulations with lensed scalar
perturbations. In the top panel (a), the thin red line shows residuals after
subtracting the input CMB spectrum.

Figure 6. Planck simulations. Differences between angular power spectra
of different values of N minus the axisymmetric limit (N = 1). The input
data are FFP8 simulations with lensed scalar perturbations. From top to
bottom, we show differences in (a) EE and (b) BB spectra. We note the small
amplitude of the reductions in reconstruction residuals from increasing N.

Figure 7. Planck data. From left to right, (a) the CMB polarization E map
and (b) the CMB polarization B map reconstructed using Spin-SILC in the
axisymmetric limit (N = 1, FWHM = 10 arcmin, Nside = 1024).

5 A PPLI CATI ON TO PLANCK DATA

After testing Spin-SILC on the simulated data set, we apply as input
data the real full-mission Planck Stokes Q and U maps. Fig. 7 shows
our main output data products: full-sky ILC estimates of the CMB
polarization E and B modes using Spin-SILC in the axisymmetric
limit (N = 1). We show E and B maps in order to highlight the E–B
decomposition from input Q and U maps that Spin-SILC automati-
cally carries out thanks to the construction of the spin wavelets that
we use (see Section 3.4). We reiterate that these maps have been
high-pass filtered (for � < 40) in order to mitigate for residual sys-
tematics in the Planck polarization data (see Section 3.1). The maps
are consistent with large levels of residual instrumental noise, with
the scanning pattern of the Planck satellite clearly visible. We also
note the poor reconstruction in the Galactic plane, particularly to-
wards the Galactic Centre, where foreground emission is strongest
and most complex.

6 C O M PA R I S O N TO PR E V I O U S WO R K

Having presented the main results of applying Spin-SILC to Planck
data, we can perform a validation check by comparing to other
component separation reconstructions of the CMB from the same
data set. For this purpose, we concentrate on the methods NILC
(Delabrouille et al. 2009) and SMICA (Cardoso et al. 2008), which
are two of the four methods used internally by the Planck Col-
laboration (Planck Collaboration IX 2015b): the former because
it is the most similar method to Spin-SILC and the latter because
it is the baseline method adopted by the Planck Collaboration for
high-resolution analyses. Like Spin-SILC, NILC is an internal lin-
ear combination (ILC) method performed in wavelet space. Unlike
Spin-SILC, NILC uses scalar axisymmetric wavelets, specifically
scalar needlets (Narcowich, Petrushev & Ward 2006; Marinucci
et al. 2008; Baldi et al. 2009), rather than the spin directional
wavelets we use (McEwen et al. 2014, 2015b; Leistedt et al. 2015)
[although spin needlets (Geller et al. 2008) and mixed needlets
(Geller & Marinucci 2011) have also been developed]. This means
that in its extension to polarization (Basak & Delabrouille 2013;
Planck Collaboration IX 2015b), NILC acts independently on input
E and B maps, having been previously decomposed from the origi-
nal Stokes Q and U data. Similarly to ILC methods, SMICA forms
a linear combination of multifrequency data, but in harmonic space.
Unlike blind ILC methods which require no physical modelling of
the sky components, SMICA is only semi-blind in that on large
scales, rather than empirically estimating covariances on the data
(as on small scales), a fit is performed to a model of the component
covariances, with the option to constrain these covariances. This
is extended to polarization by performing a joint processing of the
E and B modes in harmonic space. A further difference between
ILC methods and SMICA is that SMICA has no spatial localization
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Figure 8. Planck data. Differences between the axisymmetric limit (N = 1) of Spin-SILC, NILC and SMICA. The maps have been smoothed to
FWHM = 80 arcmin and downgraded to Nside = 128. The grey pixels are the UPB77 confidence mask from Planck Collaboration IX (2015b), which masks
the regions of the NILC and SMICA maps not recommended for cosmological analysis. The differences are (from top to bottom) (a) SILC (N = 1) − NILC,
(b) SILC (N = 1) − SMICA and (c) NILC − SMICA; and in (from left to right) (i) Stokes Q and (ii) Stokes U maps.

in its component separation, although a wavelet implementation
of SMICA does exist (Moudden et al. 2005). Indeed, Spin-SILC
localizes with regard to the greatest number of domains of infor-
mation, allowing spatial, harmonic and morphological localization
through the use of directional wavelets (see Rogers et al. 2016 for
a discussion of the morphological localization properties of direc-
tional wavelets in the SILC method). A significant advantage of
Spin-SILC over existing component separation methods (includ-
ing NILC and SMICA) is the use of spin wavelets, which allows
simultaneous component separation and E–B decomposition.

We can empirically compare the three methods with an analysis
of the CMB maps reconstructed from the (full-mission 2015 re-
lease) Planck data and full-sky power spectra measured from those
maps. Fig. 8 shows the differences between the CMB reconstructed

by Spin-SILC (in the axisymmetric limit N = 1), NILC and SMICA.
We show differences in Q and U maps as this most directly com-
pares to the map products provided by the Planck Collaboration.
The differences between the three methods are small in magni-
tude in both Q and U and mostly concentrated at the edges of the
Galactic mask towards the Galactic Centre, where foreground emis-
sion is most intense and complex. Quantitatively, we can compare
the mean values and standard deviations of the full-sky difference
maps. The mean values of the Q difference maps in Figs 8 (i) (a), (b)
and (c) (from top to bottom on the left-hand side) are respectively
5.2 × 10−5, 4.3 × 10−5 and −9.3 × 10−6 μK, while the standard
deviations are 0.34, 0.37 and 0.34 μK2. The mean values of the U
difference maps in Figs 8 (ii) (a), (b) and (c) ( from top to bottom on
the right-hand side) are respectively 6.4 × 10−5, −6.9 × 10−5 and
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Figure 9. Planck data. From top to bottom, (a) EE, (b) BB and (c) EB
angular power spectra comparing the axisymmetric limit (N = 1) of Spin-
SILC to NILC and SMICA. In the top panel (a), the thin lines show residuals
after subtracting the best-fitting � cold dark matter model from the Planck
2015 likelihood.

−1.3 × 10−4 μK, while the standard deviations are 0.33, 0.37 and
0.31 μK2. These values are small and similar, suggesting a strong
consistency between the three methods. As discussed in Section 3.1,
some of the input Planck data are high-pass filtered and so are also
the output results of all three methods (for � < 40). This means that
any comparison can only be carried out for � ≥ 40.

Fig. 9 compares full-sky power spectra measured from compo-
nent separation maps with CMB spectra derived from the Planck
2015 TT and low TEB likelihood.11 The three panels respectively
compare EE, BB and EB spectra. As with the simulated results in
Section 4, the EE and BB spectra from all three methods are con-
sistent with significant residual noise power due to the noisiness of
the input maps. The only discernible difference is marginally less
power in the SMICA maps at multipoles around � = 250. This could
be attributed to the semi-blindness of SMICA better characterizing
the noise properties of the Planck data. The two blind methods,
Spin-SILC and NILC, have near-identical spectra at all multipoles.
The EB spectra of all three methods are consistent with zero.

The comparison of Spin-SILC to existing methods NILC and
SMICA has strongly validated the results we showed in Section 5.

11 The parameters come from the base_plikHM_TT_lowTEB
likelihood. The values are available in the Planck 2015 Release
Explanatory Supplement: 2015 Cosmological parameters and MC
chains (http://wiki.cosmos.esa.int/planckpla2015/images/f/f7/Baseline_
params_table_2015_limit68.pdf).

An analysis of maps and power spectra shows an internal consis-
tency between the three algorithms. It also shows that the power of
Spin-SILC and other component separation methods is limited by
the low S/N of the Planck polarization data, with large amounts of
residual noise in the reconstructed CMB. The full potential of the
Spin-SILC method thus awaits the input of higher S/N polarization
data available from upcoming CMB observations.

7 D I SCUSSI ON

The testing of Spin-SILC on Planck simulations in Section 4 and
data in Section 5 shows that the use of spin wavelets in CMB
polarization component separation can successfully reconstruct the
cosmological background. This is particularly true of the EE power
spectrum with the clear detection of the first four acoustic peaks
in both simulations and real data. The residual maps to the input
simulated CMB (Fig. 4) and power spectra estimated from the SILC
maps (Fig. 5) show high levels of residual noise, reflecting the
relatively low S/N of the Planck data we used. In Section 6, we
carried out a comparison of the Spin-SILC method with two of the
most accurate existing component separation algorithms, NILC and
SMICA. We validated our main results by showing a strong internal
consistency in reconstructed CMB maps (Fig. 8) and power spectra
measured from those maps (Fig. 9). However, this comparison also
revealed high levels of residual noise in the CMB estimated by all
three methods, due to the S/N limitations of the Planck polarization
data.

We also tested the use of directional spin wavelets in the Spin-
SILC method on the simulations in Section 4. We found very modest
reductions in reconstructed residual power (Fig. 6) as the amount of
directionality was increased. However, given the low-S/N input data,
the magnitude of these reductions is much smaller than the overall
amount of residual power, though at the accuracy required to recon-
struct the cosmological BB signal, this level of power reduction may
become relevant in the high-S/N regime. As discussed in Rogers
et al. (2016) in the scalar SILC method, instrumental noise has no
particular directional structure and thus in the low-S/N regime the
use of directionality is expected to only have a small effect on the
estimate of the reconstructed CMB. The community is only just
beginning to accurately characterize polarized foregrounds at high
resolution at a range of frequencies. If the foregrounds are complex
in high-S/N observations, the ability to use directional wavelets may
prove useful in localizing component separation according to the
morphology of the CMB and foregrounds.

Spin-SILC introduces a number of novelties into CMB polariza-
tion component separation. Most notably, the use of spin wavelets
allows simultaneous E–B decomposition and the joint minimization
of E and B auto-correlations in residual contamination. Moreover,
the use of directionality allows the fine-tuning of the cleaning algo-
rithm according to the morphology of the local signal. As discussed
in Rogers et al. (2016), there are various sources of error in the ILC
method, which will affect the spin-ILC in an equivalent fashion.
Of particular note is the ILC bias, corresponding to the empiri-
cal cancellation of CMB modes due to chance correlations with
foregrounds and noise (see Delabrouille et al. 2009 for a fuller
discussion of this effect), which will also affect the reconstruction
of the CMB polarization. The amount of cancellation may increase
with the amount of directionality used within the method. In Rogers
et al. (2016), we showed that this can be mitigated either directly
from the data or through suites of simulations.
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8 C O N C L U S I O N S

We have presented Spin-SILC, a foreground component separation
method specifically developed for the analysis of CMB polarization
data. The use of spin wavelets allows the full analysis of the spin-2
polarization signal P = Q + iU, formed by the Stokes Q and U
parameters. By the particular construction of the spin wavelets we
use, Spin-SILC carries out the decomposition of the polarization
signal into E and B modes by separating the real and imaginary
parts of the complex spin-2 wavelet coefficients. This occurs simul-
taneously to the component separation, where the auto-correlations
of E and B modes are jointly minimized in residual contamina-
tion to the reconstructed CMB. Moreover, the wavelets we use
are directional. This allows different directional morphologies of
CMB and polarized foreground to be separated. This extra infor-
mation can then be used to better localize the Spin-SILC cleaning
algorithm.

We have tested Spin-SILC on full-mission Planck simulations
and data. We showed that the method can accurately extract cos-
mological information from input Q and U maps. We also validated
our main results with a comparison to the internal Planck meth-
ods, NILC and SMICA, showing a strong consistency in both CMB
maps and power spectra, with small residuals compared to the two.
However, we note that the analysis in this paper is limited by the low
S/N of the Planck polarization data. Our final E and B maps (as well
as those of NILC and SMICA) are dominated by residual instru-
mental noise. Moreover, the full power of the use of directionality
in Spin-SILC cannot be fully explored due to the high level of noise
in the Planck input data. If polarized foregrounds have complex
morphology in the high-S/N regime, then the use of directionality
may prove a useful extra tool in extracting the CMB. In general, it
will be interesting to test Spin-SILC further with the high-S/N data
of upcoming CMB polarization observations. We make our Q, U, E
and B maps available at http://www.silc-cmb.org.12

Furthermore, Spin-SILC can be combined with the estimators of
Leistedt et al. (2016) to perform component separation on the cut
sky and give accurate estimates of pure E and B modes [pure E(B)
modes are orthogonal to all B(E) modes on the cut sky, respectively].
It achieves this in a straightforward fashion (with only two addi-
tional wavelet transforms of the input data) due to the construction
of the spin wavelets (see Leistedt et al. 2016 for more details about
pure-mode estimation on the cut sky using spin wavelets). This is of
particular importance for the upcoming high-resolution, high-S/N
CMB polarization experiments, which will typically make partial-
sky observations. Spin-SILC will provide a computationally effi-
cient algorithm to perform simultaneous E–B decomposition and ac-
curate foreground component separation for these next-generation
experiments.
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Martı́nez-González E., Diego J. M., Vielva P., Silk J., 2003, MNRAS, 345,

1101
Moudden Y., Cardoso J. F., Starck J. L., Delabrouille J., 2005, EURASIP J.

Appl. Signal Process., 2005, 484606
Narcowich F., Petrushev P., Ward J., 2006, SIAM J. Math. Anal., 38, 574
Planck Collaboration XII, 2014, A&A, 571, A12
Planck Collaboration I, 2015a, A&A, preprint (arXiv:1502.01582)
Planck Collaboration IX, 2015b, A&A, preprint (arXiv:1502.05956)
Planck Collaboration VI, 2015c, A&A, preprint (arXiv:1502.01585)
Planck Collaboration VIII, 2015d, A&A, preprint (arXiv:1502.01587)
Planck Collaboration XII, 2015e, A&A, preprint (arXiv:1509.06348)

MNRAS 463, 2310–2322 (2016)

http://www.silc-cmb.org
http://www.esa.int/planck
http://arxiv.org/abs/0803.1814
http://arxiv.org/abs/1509.06770
http://arxiv.org/abs/1502.03120
http://arxiv.org/abs/1605.01414
http://arxiv.org/abs/1509.06767
http://arxiv.org/abs/1509.06749
http://arxiv.org/abs/1502.01582
http://arxiv.org/abs/1502.05956
http://arxiv.org/abs/1502.01585
http://arxiv.org/abs/1502.01587
http://arxiv.org/abs/1509.06348


2322 K. K. Rogers et al.

Planck Collaboration XVII, 2015f, A&A, preprint (arXiv:1502.01592)
Planck Collaboration XXVI, 2015g, A&A, preprint (arXiv:1507.02058)
Rogers K. K., Peiris H. V., Leistedt B., McEwen J. D., Pontzen A., 2016,

MNRAS, 460, 3014
Seljak U., Zaldarriaga M., 1997, Phys. Rev. Lett., 78, 2054
Smith K. M., Zaldarriaga M., 2007, Phys. Rev. D, 76, 043001

Wiaux Y., McEwen J. D., Vandergheynst P., Blanc O., 2008, MNRAS, 388,
770

Zaldarriaga M., Seljak U., 1998, Phys. Rev. D, 58, 023003

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 463, 2310–2322 (2016)

http://arxiv.org/abs/1502.01592
http://arxiv.org/abs/1507.02058

