5 research outputs found

    The improvement research on multi-objective optimization algorithm based on non-dominated sorting

    Get PDF
    多目标优化问题(MOP)在许多科学研究和工程设计当中普遍存在,此类问题求解十分复杂但又十分重要。尽管传统多目标优化算法已经有了长足的发展,但遗存的问题依然很多,需要改进。 进化多目标优化算法将传统方法中的加权策略改为以种群为单位的进化策略,取得了更理想的优化的效果,NSGA-II就是其中的佼佼者。在此次研究中本人在NSGA-II的基础上提出了一种基于随机交叉算子、变异算子的算法RCVO-NSGA-II(RandomCrossVariationOperator-nondominatedsortinggeneticalgorithmII)用于解多目标优化问题。RCVO-NSGA-II随机采用模拟...Multiobjective optimization problem is common existing in many scientific researches and engineering design and the solution of this kind of problem is very complicated and important. Although the development of the traditional multi-objective optimization algorithm have made great progress, but a lot of problems are need to be improved. Evolutionary multi-objective optimization algorithm change ...学位:工程硕士院系专业:信息科学与技术学院_工程硕士(计算机技术)学号:X201222101

    Effects of Dynamically Weighting Autonomous Rules in a UAS Flocking Model

    Get PDF
    Within the U.S. military, senior decision-makers and researchers alike have postulated that vast improvements could be made to current Unmanned Aircraft Systems (UAS) Concepts of Operation through inclusion of autonomous flocking. Myriad methods of implementation and desirable mission sets for this technology have been identified in the literature; however, this thesis posits that specific missions and behaviors are best suited for autonomous military flocking implementations. Adding to Craig Reynolds\u27 basic theory that three naturally observed rules can be used as building blocks for simulating flocking behavior, new rules are proposed and defined in the development of an autonomous flocking UAS model. Simulation validates that missions of military utility can be accomplished in this method through incorporation of dynamic event- and time-based rule weights. Additionally, a methodology is proposed and demonstrated that iteratively improves simulated mission effectiveness. Quantitative analysis is presented on data from 570 simulation runs, which verifies the hypothesis that iterative changes to rule parameters and weights demonstrate significant improvement over baseline performance. For a 36 square mile scenario, results show a 100% increase in finding targets, a 40.2% reduction in time to find a target, a 4.5% increase in area coverage, with a 0% attribution rate due to collisions and near misses

    Wind turbine blade geometry design based on multi-objective optimization using metaheuristics

    Get PDF
    Abstract: The application of Evolutionary Algorithms (EAs) to wind turbine blade design can be interesting, by reducing the number of aerodynamic-to-structural design loops in the conventional design process, hence reducing the design time and cost. Recent developments showed satisfactory results with this approach, mostly combining Genetic Algorithms (GAs) with the Blade Element Momentum (BEM) theory. The general objective of the present work is to define and evaluate a design methodology for the rotor blade geometry in order to maximize the energy production of wind turbines and minimize the mass of the blade itself, using for that purpose stochastic multi-objective optimization methods. Therefore, the multi-objective optimization problem and its constraints were formulated, and the vector representation of the optimization parameters was defined. An optimization benchmark problem was proposed, which represents the wind conditions and present wind turbine concepts found in Brazil. This problem was used as a test-bed for the performance comparison of several metaheuristics, and also for the validation of the defined design methodology. A variable speed pitch-controlled 2.5 MW Direct-Drive Synchronous Generator (DDSG) turbine with a rotor diameter of 120 m was chosen as concept. Five different Multi-objective Evolutionary Algorithms (MOEAs) were selected for evaluation in solving this benchmark problem: Non-dominated Sorting Genetic Algorithm version II (NSGA-II), Quantum-inspired Multi-objective Evolutionary Algorithm (QMEA), two approaches of the Multi-objective Evolutionary Algorithm Based on Decomposition (MOEA/D), and Multi-objective Optimization Differential Evolution Algorithm (MODE). The results have shown that the two best performing techniques in this type of problem are NSGA-II and MOEA/D, one having more spread and evenly spaced solutions, and the other having a better convergence in the region of interest. QMEA was the worst MOEA in convergence and MODE the worst one in solutions distribution. But the differences in overall performance were slight, because the algorithms have alternated their positions in the evaluation rank of each metric. This was also evident by the fact that the known Pareto Front (PF) consisted of solutions from several techniques, with each dominating a different region of the objective space. Detailed analysis of the best blade design showed that the output of the design methodology is feasible in practice, given that flow conditions and operational features of the rotor were as desired, and also that the blade geometry is very smooth and easy to manufacture. Moreover, this geometry is easily exported to a Computer-Aided Design (CAD) or Computer-Aided Engineering (CAE) software. In this way, the design methodology defined by the present work was validated

    Multiple objective optimisation applied to route planning

    No full text
    corecore