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Abstract 

 

Within the U.S. military, senior decision-makers and researchers alike have postulated that vast 

improvements could be made to current Unmanned Aircraft Systems (UAS) Concepts of 

Operation through inclusion of autonomous flocking.  Myriad methods of implementation and 

desirable mission sets for this technology have been identified in the literature; however, this 

thesis posits that specific missions and behaviors are best suited for autonomous military flocking 

implementations. Adding to Craig Reynolds’ basic theory that three naturally observed rules can 

be used as building blocks for simulating flocking behavior, new rules are proposed and defined 

in the development of an autonomous flocking UAS model.  Simulation validates that missions of 

military utility can be accomplished in this method through incorporation of dynamic event- and 

time-based rule weights.  Additionally, a methodology is proposed and demonstrated that 

iteratively improves simulated mission effectiveness. Quantitative analysis is presented on data 

from 570 simulation runs, which verifies the hypothesis that iterative changes to rule parameters 

and weights demonstrate significant improvement over baseline performance.  For a 36 square 

mile scenario, results show a 100% increase in finding targets, a 40.2% reduction in time to find a 

target, a 4.5% increase in area coverage, with a 0% attribution rate due to collisions and near 

misses.  
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EFFECTS OF DYNAMICALLY WEIGHTING AUTONOMOUS                                                      

RULES IN A UAS FLOCKING MODEL 

 I.  Introduction 

General Issue 

At the forefront of modern warfare, Unmanned Systems (UMS) are the military 

workhorses for certain missions.  The United States (U.S.) and coalition military commanders 

rely on UMS, which include Unmanned Aircraft Systems (UAS), Unmanned Ground Systems, 

and Unmanned Maritime Systems, to perform dull, dirty, dangerous or difficult (Fuller, 1999) 

operations where a manned mission would be exposed to excessive risk or fatiguing conditions.  

Recent military operations in Iraq, Afghanistan and Pakistan have proven the utility of UMS 

specifically in the areas of Intelligence, Surveillance, and Reconnaissance (ISR) collection as 

well as precision targeting and strike; however, a multitude of other military applications exist.  

With so much capability and growth potential, UMS could become the future backbone of the 

armed services, but currently their utilization comes with a price: 

Problem Statement 

“Today’s unmanned systems require significant human interaction to operate.  As these 

systems continue to demonstrate their military utility and are fielded in greater numbers, 

the manpower burden will continue to grow… [This] is occurring at a time when 

constrained budgets are limiting growth in Service manpower authorizations.” UMS 

Roadmap (Department of Defense, 2011). 

The current Concept of Operations (CONOPS) for UAS specifically has room for 

optimization.  Services utilize UAS as Remotely Piloted Aircraft (RPAs), where a crew of pilots 

and sensor operators directly control each UAS.  Depending on the aircraft (MQ-1/9 versus RQ-

4), each Combat Air Patrol (CAP) consists of three to four UAS and requires approximately 50 

pilots and sensor operators to operate around the clock (Undersecretary of Defense for 

Acquisition, Technology and Logistics, 2012). On 4 Nov 2010, Gen James Cartwright captured 
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senior leadership concerns with this use of manpower during remarks to the U.S. Geospatial 

Intelligence Foundation: “Today an analyst sits there and stares at Death TV for hours on end 

trying to find the single target or see something move or see something do something that makes 

it a valid target.  It is just a waste of manpower.  It is inefficient!” (Department of Defense, 

2011).   

Despite manpower concerns, the military continues to ramp up UAS CAP while defense 

budgets and total force personnel shrink.  In 2009, Lt Gen Deptula briefed the staggering 

increase in U.S. Air Force (USAF) UAS utilization since inception, revealing that CAP 

ballooned from one in 2001 to 34 in 2008 (Deptula, 2009).  In 2011, this number increased to 61 

CAP, and will be expanding to 73 CAP in 2015 (Undersecretary of Defense for Acquisition, 

Technology and Logistics, 2012).  Furthermore, CAP growth is expected to continue despite 

shrinking military budgets and retention problems with UAS pilots.  This begs the question, “Is 

there a more efficient way to operate UAS with fewer people while maintaining or increasing 

CAP numbers?” 

The USAF conducted a year-long study entitled “Technology Horizons” in which it 

tackled this topic, pinpointing increased autonomy as the “single greatest theme” for future 

research and development, test and evaluation (RDT&E) investments.  By incorporating greater 

levels of autonomy into future acquisition systems, the study concluded that it was possible for 

the armed services to “reduce the manpower burden and reliance on full-time high-speed 

communications links while also reducing decision loop cycle time” (Department of Defense, 

2011).   

Part of the calculus of increasing UAS autonomy involves flocking behavior.  The term 

“flock” is used to describe animal behavior in which an individual has its own motivations and 

decision-making ability, but acts in a coordinated and synergistic fashion with multiple members 

to perform a task.  In the future, UAS could use flocking behaviors to responsibly reduce 

operators while increasing impact to the battlespace.  Flocking, autonomous behaviors and 

associated rules will be examined at length in Chapters II and III. 
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Research Objectives/Questions/Hypotheses 

This thesis seeks to demonstrate that military missions can be performed autonomously by a 

flock of autonomous UAS using composite sets of behaviors and rules.  Furthermore, by 

conducting testing in a simulated environment, the research is intended to prove that changes to 

rule parameters and weights can significantly impact UAS mission performance.  The following 

questions are examined: 

 What are appropriate and optimal mission sets for flocking UAS? 

 What behaviors are required to realize autonomous flocking in UAS military missions? 

 How can these behaviors and missions be built? 

o Hypothesis 1: Behaviors can be built in software simulation through mission-

dependent, time-varying application of Reynolds-derived flocking rules and a rule 

accumulator/adjudicator.  

 Can mission performance be improved through iterative changes to simulation 

parameters while minimizing undesired effects such as crashes? 

o Hypothesis 2: For the selected mission, optimizing and enabling Rule 7 (Stay 

Within Boundary), Rule 11 (Divergence) and Rule 12 (Wander) parameters and 

weights will provide significant improvements to model performance.  Rules will 

be defined and explained in Chapter III.  

 What are appropriate Measures of Effectiveness (MOEs)/Measures of Performance 

(MOPs) to evaluate mission success? 

Research Focus 

Real-world and simulated flocking behaviors, aircraft patterns, and UAS missions were 

researched to provide insight into how flocking behavior could contribute to UAS autonomy. 

First, flocking was investigated to determine behavioral strengths to leverage and weaknesses to 
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avoid as they pertained to military and UAS implementation.  Common aircraft flight patterns 

were surveyed to determine the drawbacks of current CONOPS.  Next, flocking simulation 

methodologies were studied to determine the extent of previous analysis and to glean lessons 

learned.   Lastly, current UAS missions were then examined as candidates for autonomous 

behavior, and additional missions of interest were included.   

Based on the research that was conducted, a UAS mission was down-selected for analysis 

based on criteria advocated by Feddema et al. (2004).  Measures of Effectiveness 

(MOEs)/Measures of Performance (MOPs) were formulated to benchmark mission performance.  

Testing was performed using flock simulation code, and the results were analyzed to evaluate 

improvement from the baseline. 

Methodology 

Autonomous flocking behavior is simulated using a MATLAB®-based simulation 

developed by Dr. John Colombi of the Air Force Institute of Technology.  The simulation uses 

rules pioneered by Reynolds for animation and computer gaming and applies them to a UAS 

environment.  Additional rules are incorporated to bound the UAS operating location and 

(ideally) enhance mission satisfaction.  During simulation changes, aberrant/deviant and 

emergent behavior is noted.  To conduct each simulation, a desired parameter is changed within 

an initialization file to evaluate impact on overall performance, and then the UAS flock is 

“launched” one-by-one into an area with a waypoint, target and an obstacle.  Based on pre-

defined trigger events, the UAS switch behaviors during the simulation, prosecute a mission and 

then return for landing.  Results for each simulation are graphed, tabulated and automatically 

saved for further performance evaluation.   

Assumptions/Limitations 

Multiple assumptions are made to perform the simulations within this study.  The 

baseline MATLAB® code was designed to simulate UAS with small size, weight and power 

requirements.  The aircraft simulated within this study was based on specifications of an RQ-11B 

Raven.  The Raven platform was chosen due to openly available flight performance 

specifications and for realism in simulating a small military UAS. The MATLAB® code only 
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performs in two dimensions, ignoring factors like pitch and roll and the necessary times to 

change altitude after launch or during landing.  A single altitude is used in the simulation based 

on nominal Raven operation. It is assumed that the aircraft has perfect knowledge of its location 

via GPS and is able to communicate instantaneously to other aircraft in the flock within 

communication range.  Real world GPS calculations may have inaccuracies due to factors such 

as on-board processor latencies, UAS antenna orientation, constellation geometry issues, space 

weather effects and jamming.  Communications may also be hampered in a true operational 

environment due to weather and jamming effects.  Additionally, the problem of UAS on-board 

Detection and Tracking is computationally challenging and its emulation is outside the scope of 

this thesis.  Thus it is assumed that when a sensor field of view intersects with a target location, it 

appropriately detects the target 100% of the time, ignoring the considerable potential for false 

positives and false negatives.   

Implications 

The Air Force should be able to demonstrate significant savings by focusing the 

development of future autonomous UAS systems on the mission sets of most value.  This will 

help to avoid the “gold plated requirements” problem that can cause program cost and schedule 

overruns associated with overly complicated systems.   

This research demonstrates that several adaptive behaviors can be simulated and applied 

to a military scenario.  Through simulation, an operational concept is developed for effective use 

of a flock of small UAS given a set of parameters (e.g., altitude, range, etc.), with the potential 

for extension and modifications, as needed.  These software principles could be applied to 

existing unmanned systems today, increasing mission effectiveness, enabling capacity for 

workforce reduction and decreasing reliance on operator interaction. 
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II. Literature Search 

Chapter Overview 

The following chapter merges the literature from a wide base of topics to provide 

background and scope for a relevant UAS flocking simulation.  The topics of autonomy and 

collective behavior are discussed in tandem with natural flocking behaviors and their 

corresponding evolutionary rationale.  Flocking UAS mission sets and autonomous behavioral 

building blocks are all proposed.  Alternate methodologies for behavioral implementation are 

enumerated, to include existing aircraft formations vice the use of three basic simulation “rules” 

to enable flocking.  Examples of how to engender coverage behavior are examined, ranging from 

aircraft search patterns and flight planning methodologies/optimization techniques to random or 

pseudorandom coverage algorithms.   

Autonomy 

Understanding the definition of autonomy, with its associated advantages, drawbacks, 

and Rules of Engagement, is essential for maximizing its use in future military systems while 

finding a balance between desirable and undesirable emergent traits. 

There are a myriad of definitions describing autonomy.  Webster’s Collegiate Dictionary 

defines the word autonomous as “functioning or existing independently” (Landau, 2002).  A 

more insightful definition is offered by the National Institute of Standards and Technology: 

“Autonomous: Operations of an UMS wherein the UMS receives its mission from the human 

and accomplishes that mission with or without further human-robot interaction (HRI).  The 

level of HRI, along with other factors such as mission complexity, and environmental 

difficulty determine the level of autonomy for the UMS (National Institute of Standards and 

Technology, 2004).”   

The advantages of autonomy are multi-fold.  Autonomous systems are described as 

“evolvable, resilient… (and) novel,” (Kelly, 1994) due to robust levels of control that must be 

programmed into the system to allow minimal human interaction.  In addition to reducing 

manpower, autonomous systems demonstrate emergent behaviors, quickly reacting to changing 



 

7 

environments and relying less on centralized communications compared to RPA, allowing them 

to be operated in areas that would normally be denied.   

The same emergent tendencies that make autonomous systems so desirable also create 

limitations.  Low levels of human interaction cause systems to be “non-controllable, non-

predictable (and) non-understandable” (Kelly, 1994).  As a result of these traits, current US 

military policy dictates that UAS are only permitted to deploy lethal force when a human is in 

the decision-making loop, placing limits on the full potential and mission sets of these systems.  

In sum, when building or simulating autonomous systems, developers “must be mindful of 

affordability, operational utilities, technological developments, policy, public opinion, and their 

associated constraints” (Department of Defense, 2011) throughout the stages ranging from 

system design through employment. 

Flocking Behavior  

Study of the biological patterns of flocks form the basis for en mass employment of 

autonomous UAS systems.  Avian flocks are of particular interest because of their relevance and 

applicability to UAS.  By incorporating real-life behavioral patterns into autonomous systems, 

one can take advantage of lessons from nature.  

Flocks can be two-dimensional (2D) or three-dimensional (3D), highly organized in 

formations or clustered in a disorganized fashion, tightly or loosely packed.  The following 

diagram (Figure 1) depicts differing types of avian flocks.  Different bird species favor different 

behaviors, for reasons not clearly understood.  For example, many bird species may exhibit a 3D 

globular cluster flock while landing or taking off, but smaller birds in flight tend to favor 

front/extended cluster behaviors, while larger migrating birds tend to exhibit linear, “V” or “J” 

flocks (Heppner, 1997).  
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Figure 1. Avian Cluster (Left) and Linear Flocks (Right) (Heppner, 1974). 

 

Various hypotheses for flocking behavior abound.  According to E. Shaw, collective 

behavior results from evolutionary motivations to: increase an overall search pattern for food, 

increase mating and social opportunities; provide protection from predation and statistically 

improve the survival of the collective as a whole (Shaw E., 1970).  Linear formations are 

believed to optimize the neighboring birds’ aerodynamic energy savings, information collection, 

communication and field of vision, taking into account avian optical capabilities.  

This thesis is focused on simulating groups of UAS that demonstrate both autonomy and 

flocking behaviors in a relevant military mission.   

Considerations for Formation Sorties Versus Flocks 

While biological flocks demonstrate emergent qualities, such as gradually shifting from 

one flocking pattern to another or having the lead bird fall back to be replaced, multiple manned 

military aircraft are usually flown in rigid formations with a set leader directing changes to other 

pilots.  A military deployment of one or more aircraft is known as a sortie. 

According to R. L. Shaw, sorties are typically limited to only two or four aircraft to 

mitigate perceived problems using greater numbers.  Such issues include (Shaw R. L., 1985): 

1. Increased probability of detection (larger radar cross-section) 

2. Limited ability of pilot to maintain situational awareness of wingmen 
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3. Decreased aircraft performance to maintain formation 

4. Larger communication volume both increases probability of detection and causes 

bandwidth problems 

Careful design choices for platforms and capabilities can bypass most of these limitations 

for autonomous UAS flocks.  Risk of detection can be reduced by choosing a small-sized UAS 

platform (i.e., choosing a Raven vs. a Predator) and using a widely-dispersed flock in non-

permissive airspace.  UAS with robust on-board sensors, data processing (to provide 

collision/obstacle avoidance, threat recognition, etc.) and inter-flock communication minimize 

the issue of limited situational awareness. A recent study disproves R. L. Shaw’s argument that 

formation flight is inefficient, showing that fuel savings can be obtained from UAS flocks 

(Lambach, 2014).  Lastly, since autonomous UAS flocks depend on individual decision-making, 

the majority of communication should happen in a decentralized fashion between aircraft, 

reducing reliance and burden on external links such as communication relays or satellite links.   

Another point of difference between autonomous UAS flocks and a manned-aircraft 

sortie is the tolerance to losses.  Individual members could be sacrificed for mission success or 

the greater good of the whole, and in fact this is proposed as an operating concept when small, 

affordable UAS are used.  Numerous UAS could act as chaff or decoys to “statistically improve 

survival” (Shaw E., 1970) of nearby UAS or manned aircraft, and could surround other high-

value aircraft or even sacrifice themselves to protect such assets.  A. Shaw and Mohseni 

recommend, “cheap and dispensable [flocking UAS could be] used in harsh conditions, such as a 

hurricane, where loss or damage to the UAVs cannot be avoided (2011)” to provide greater 

chance of mission success where the corresponding risk to a manned mission would be 

unacceptable.   

Prioritized Missions for Flocking 

From E. Shaw’s conclusions about the biological advantages of collective behavior, one 

can infer feasible, complementary military mission sets for a flock of UAS.  ISR, Combat Search 

and Rescue (CSAR) and Chemical, Biological, Radiological and Nuclear (CBRN) detection 

missions would all benefit from a greater combined search area.  UAS networks could deliver 
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“increased social opportunities” by serving as relay hubs, providing communications support for 

geographically-separated ground units.  “Protection from predation” (Shaw E., 1970) could be 

analogous to attacking hostile ground forces, neutralizing Surface-to-Air Missile sites or 

unmanned aircraft defending one another against dogfighting aircraft.   

These and a multitude of other mission sets have been proposed for single, autonomous 

or flocking UAS.  Such missions include: Counter-Swarm (Munoz, 2011), Search and Destroy 

(Khare et al., 2008), distributed wireless sensor networks (Chung et al., 2011); Airdrop (John 

Peters, 2011) (Ferrell, 2011), Wilderness SAR (Adams et al., 2009); environmental sensing, 

battlespace awareness, counter-improvised explosive device (C-IED) and port security 

(Department of Defense, 2011).   

In 2002, the now-disbanded US Joint Forces Command/J9 (USJFCOM/J9) prioritized 

among possible UMS mission sets to establish the missions best suited for collaborative 

behavior.  Mission sets were ranked based on cost-effectiveness and operational/technical 

viability.  The USJFCOM/J9 proposed mission sets answer the investigative question: “What are 

appropriate and optimal mission sets for flocking UAS?”  The top eight missions, listed in order 

of importance (US Joint Forces Command Joint Experimentation (J9), 2002), are: 

1. Area ISR and Intel  

2. Point Target ISR 

3. Communication/Navigation/Mapping 

4. Swarming Attacks 

5. Defense/Protection 

6. Delay/Fix/Block 

7. Deception Operations 

8. SAR & CSAR 
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A UAS performing any one of these missions utilizes a set of behaviors to accomplish its 

goals.  Many of these missions incorporate the same behaviors used toward different means.  

Feddema et al. evaluated the UMS mission set posed by USJFCOM/J9 and determined nine 

essential cooperative behaviors that were required by some or all of the top missions (see Table 

1).  

 

Table 1. Feddema Behavior Set (Feddema et al., 2004).  

 

Consideration of the nine proposed Feddema behaviors lends insight into the challenges 

of developing autonomous UAS.  Looking across the rows, missions requiring more behaviors 

would likely be more complicated, costly, and time consuming to develop than mission sets with 

fewer behaviors.  Reviewing the table columns, the best return on investment for research and 

development dollars would likely be to develop behaviors that are used for many missions due to 

the large amount of reuse.   

Based on analysis and observation, modifications to the Feddema behavior set are 

proposed in Table 2. Feddema’s first behavior column, Formation, is changed to Flocking as it 

lends itself more readily to a battlefield environment.  The differences between Formation and 

Flocking are described in more detail in the next section.   For all missions, UAS spend time in 

transit to and from the launch area during which individual UAS could benefit from safety in 

numbers by flying in a flock.   From a flock, UAS must Diverge to perform a mission and 
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Converge to return to the landing area; therefore all missions in Table 2 have been updated to 

include Flocking and Converging/Diverging behaviors.  Area ISR is similar enough to the 

Navigation/Mapping mission that it would benefit from Mapping/Survey behavior, while 

Swarming Attacks do not.  These changes from Table 1 are flowed into Table 2.  There seems to 

be little reason for a Communication mission to require Detection/Tracking behaviors, so this 

behavior is omitted from Table 2.  Loiter and Attack behaviors are added, since certain missions 

require such functionality and they are absent from Table 1.  Lastly, UAS with the 

Defense/Protection mission could benefit from Pursuit, Attack and Evasion behaviors, since 

UAS would be ill-equipped to defend a ground unit or location from an aerial attack without 

them, so these changes are also incorporated.  In sum, Table 2 addresses the investigative 

question: “What behaviors are required to realize autonomous flocking in UAS military 

missions?” 

For scoping, the Feddema behaviors are used to down-select a single mission set of 

military utility and modest complexity for the simulation portion of this thesis.  Down-select 

rationale will be discussed in Chapter III. 

Table 2. Adjusted Feddema Behaviors 
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Area ISR X X X X X X           

Point ISR X X   X X X   X       

Communication X X    X       X       

Navigation/Mapping X X X X   X           

Swarming Attacks X X   X X  X X   X X X 

Defense/Protection X X   X   X X X X X X 

Delay/Fix/Block X X   X   X X X   X   

Deception Operations X X        X       X X 

(Combat) Search & Rescue X X    X X X         X 
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In his paper, Feddema did not define his behaviors, perhaps believing them to be self-

explanatory.  However, an understanding of these behaviors is critical for incorporating them 

into flock simulations, so definitions for each are included in the sections below. Since most of 

the missions use the Formation and Coverage behaviors, relevant research on those particular 

topics is additionally examined.  All missions use Converging/Diverging behaviors, but due to 

the relative simplicity of these behaviors, research on Converging/Diverging is not extensively 

covered in the literature and will not be discussed at great length. 

Formation/Flocking 

 Coordinated flight (formations or flocking) is a key behavior used by all Feddema 

mission sets.  With this behavior, flightmates operate in a geographically-close, coordinated 

group. Two radically different implementations to coordinated flight, namely formations and 

flocking, are commonly used in the literature for autonomous UAS collectives, each with 

advantages and disadvantages.   

A formation is an organization of individuals with specific positions.  This construct 

often uses a leader vehicle for command and control (C2) of others within the formation. In 

manned-aircraft as well as in nature (e.g., “V” formation of waterfowl), formations provide 

excellent situational awareness of near-neighbors to aid in collision avoidance.  Additionally, 

formations potentially simplify the task of single pilot controlling a group of UAS.   

In their work supporting the Army Unmanned Systems as Wingmen project, Garcia, et al. 

study formations of autonomous helicopters.  In their simulation, a leader vehicle determines a 

set formation (see Figure 2) and target location.  Specific positions are allocated depending on 

when a vehicle joined the formation. A fuzzy logic decision table assigns UAS formation flight 

characteristics, such as roll and pitch, based on current velocity, angle of desired change in flight 

path and angular rate. A drawback to their model is that UAS require persistent communication 

with the leader to maintain a stable formation (Garcia et al., 2010).   
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In the Army-funded Micro Autonomous Systems and Technology Collaborative 

Technology Alliance (MAST-CTA) project involving Chung et al., the researchers propose using 

preplanned helicopter route trajectories using a priori knowledge of the surrounding area, as well 

as heavily- and dynamically-weighted obstacle avoidance algorithms supplemented with laser 

rangefinders. Their model is based around Ft Benning, GA using MATLAB®, Simulink®, and 

CMEX to simulate flock behavior in a dense urban environment.  The flocks are programmed to 

operate in formation, then break off into subgroups at a chosen waypoint (Chung et al., 2011). 

Perhaps the most impressive public demonstration of formation UAS is offered by the 

University of Pennsylvania General Robotics, Automation, Sensing and Perception (GRASP) 

Lab.  The GRASP Lab UAS platform is called a nano quadrotor, which has four small rotors 

connected as one radio controlled helicopter.  One of their videos, entitled “Towards a Swarm of 

Nano Quadrators,” (University of Pennsylvania, 2012) is featured on YouTube. 

The GRASP lab’s control algorithm establishes a leader vehicle and assigns vehicles to a 

spanning tree documented in matrix form.  Presumably upon operator (or preprogrammed) 

command, the leader modifies its state while communicating changes to its branches, aka “near-

neighbors.” Its near-neighbors then follow behavioral rules to change configuration, with 

changes rippled to the next near-neighbor on the branch down to the leaves.  Sundaram and 

 

Figure 2. Standard Helicopter Formations (Garcia et al., 2010). 
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Hadjicostis offer a proof that any formation can be created and controlled in this manner, using 

one or more leaders (Sundaram & Hadjicostis, 2010). Upon direction, the flock can split into 

multiple sub-flocks to pass obstacles, and then reconverge into one.  GRASP members also 

showcase flocks carrying small objects with pincers, two quadrotor juggling and multiple 

quadrotors flying in a figure-eight avoidance racetrack.   

Using this paradigm for programming autonomous UAS provides some challenges, 

however.  Set formations, even if they can responsively switch from one formation to another, 

may have limited flexibility to adapt with unexpected real-time problems (i.e., attrition, moving 

and stationary obstacles and loss of communication with the “leader” vehicle).   

The second, more autonomous approach is flocking.  Each UAS within a flock 

determines its behavior independently, reacting on external stimuli and the behavior of 

surrounding individuals while governed by a set of biologically-observed rules.  Craig Reynolds, 

a computer graphics designer who studied animal collective behavior to increase realism in 

animation, is credited as the innovator to this approach.  Rather than being centrally controlled as 

through a leader vehicle, he concludes “all evidence indicates that flock motion must be merely 

the aggregate result of the actions of individual animals, each acting solely on the basis of its 

own local perception of the world” (Reynolds C. W., 1987).   

Heppner and Reynolds independently postulated that biological collective behavior (such 

as coordinated timing of takeoff and landing, turning, spacing, and individual flight speed and 

direction (Heppner, 1974) was an emergent effect resulting from individuals following simple 

rules of attraction and repulsion (Heppner, 1997) (Reynolds C. W., 1987).  Reynolds posited that 

three main rules form the basis of all flocking behavior: collision avoidance (repulsion), velocity 

matching and flock centering (attraction).   

In Reynolds’ experience, he notes this approach induces emergent behavior, which 

creates simulated flocks that closely mimic real-world bird flocks.  In the UAS case, the 

emergent ability to quickly adapt to situational changes makes individual aircraft less reliant on 

inter-flock and operator communication.  This reduces the burden on the surrounding C2 

architecture in a permissive environment and makes this construct ideal for operations in a jam 
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or denied location.   On the downside, this method causes behavior that is less predictable and 

may induce “friendly fire.”  A real-world example is that crowds fleeing a burning building may 

accidentally trample an unfortunate person underfoot.  In a UAS case, one aircraft avoiding an 

obstacle could have the unintended consequence of repelling nearby aircraft to such an extent 

that it induces collisions between them.  Application of multiplicative rule weights and 

prioritization between rules could help avoid unintended consequences such as this.   

Converging/Diverging 

The Feddema Converging behavior denotes transitioning between a geographically 

dispersed collective into a formation or flock.  The Diverging behavior does the exact opposite; it 

splits a formation or flock into smaller teams or individuals.  Converge and Diverge are widely 

used by all mission sets, and implementation is comparatively simple to employ, having only 

software requirements.   

Mapping/Survey and Search 

The Mapping and Survey Feddema behaviors consist of collecting large amounts of 

sensor data over a geographically-dispersed area, perhaps at less-than-maximum resolution, and 

returning the end data to the user.  Data may be transmitted in real-time or using a store-and-

dump methodology.  In contrast, the Search behavior uses on-board sensors to hunt for a 

particular target of interest.  Transmission of sensor data is optional.  Upon “seeing” the target, 

Search transitions into the Detect/Track behavior.  Both Mapping/Survey and Search rely heavily 

on the Coverage behavior to provide the UAS with a pattern or algorithm to optimally reach 

everywhere within the region of interest.   

Coverage 

Coverage is the last Feddema behavior widely utilized throughout many USJFCOM/J9 

flocking missions.  This behavior may be accomplished in several different manners, ranging 

from simple applications through pre-planned and computationally-expensive ones.  Research in 

this area evaluates standard search flight patterns, flight planning optimization methods and 

random or pseudorandom adaptive algorithms.  
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The first method that provides full coverage over an area (useful in an Area ISR or 

Navigation/Mapping mission, e.g.) is the simplest.  It divides the area of interest into a grid, with 

grid size based on the number of aircraft in the flock, and then each aircraft uses a standard 

search pattern to comprehensively cover the grid.  The International Aeronautical and Maritime 

Search and Rescue Manuals (U.S. Coast Guard, 1998) provide a description of recommended 

patterns, shown pictorially by Feddema et al., in Figure 3. 

 

 

  

   

 
 

 

Figure 3. Aircraft Search Patterns (Feddema et al., 2004). 

 

While effective, typical aircraft search patterns are not ideal for military UAS use.  Wei 

and Wei cite various drawbacks.  One UAS can only cover one portion of a path at a time, 

creating problems with detection of time-critical moving targets.  Traditional flight paths also 

lessen UAS effectiveness by making movements predictable.  Enemies observing a familiar 
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flight pattern can determine where and when an aircraft will overfly a target and intelligently 

move assets to avoid detection.  Predictability also makes UAS more vulnerable to enemy attack 

(Wei & Wei, 2009).   

Search patterns are lacking from an efficiency and feasibility standpoint as well.  When 

designing search patterns in standard autopilot software, the resultant paths are not always 

flyable.  Even when they are, routes must be limited by the software to fly within the operational 

speeds and turning radius of the aircraft, possibly creating gaps in the area under surveillance.  

Preplanned patterns often dictate hard turns, which are inefficient and bad for fuel consumption.  

Finally, when unanticipated changes must be made to avoid obstacles during flight, altering the 

programmed search pattern may reduce efficiency or induce unanticipated holes in the total 

coverage map (Wei & Wei, 2009).  

An alternate method for providing Coverage is to use a flight planning optimization suite.  

These tools compromise between flying the shortest or most efficient path between two 

waypoints (referred to as mission route planning or motion planning) and selecting the overall 

best path among multiple waypoints to reach all objectives (optimization). Wei and Wei argue 

compellingly that a flock of autonomous UAS flying an optimized path will provide better ISR 

coverage in a shorter period of time, increase the probability of detection by surveilling a target 

from multiple angles (Wei & Wei, 2009) and ensure prompt change detection for moving targets.   

According to Sun et al.: “motion planning can be classified into 3 main categories: 

skeleton methods, cell decomposition methods, and potential field methods” (Sun et al., 2011).  

For simple missions with few waypoints, a fourth solution can be realized by using a series of 

straight lines and arcs to find the best paths between points (Tezcaner & Koksalan, 2011).   

Skeleton methods split a terrain map into branch points, curve points and path segments.  

An automated method selects UAS waypoints along these components and creates a flyable 

route (Sun et al, 2011).   

Cell decomposition splits a grid into cells, with targets contained inside certain cells.  

Flight between waypoints can then be accomplished by following cell boundaries until reaching 

the cell containing a target.  Cells can be 2D or 3D; square, hexagonal or a composite of different 

shapes and sizes.  Application and tool availability often dictates cell shape:  for modeling 
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simplicity and ease of human interpretation, squares are commonly chosen; hex shapes have 

larger applicability to radar signature (Olsan, 1993), and modeling tools can use composite 

shapes most efficiency.  Voronoi diagrams, which are calculated by creating polygonal cells with 

connecting line segments equidistant between the nearest 2 waypoints, have also been used in the 

literature for cell decomposition (Peng et al., 2007).   

Potential field methods, such as Dubins methodology, have an initial position and 

heading as well as waypoints with the same (Zollars, 2007). Obstacles and forces (such as wind) 

can be translated into scalar fields, the gradient of which creates attractive and repulsive forces 

on the UAS that must be nullified to end up at the desired waypoint (Sun et al., 2011).   

Once a motion planning method is selected, there are any variety of optimization 

functions that can be used.  A survey was conducted of the various common methods of flight 

plan optimization, and yielded such  techniques as: parallel A* (Gudaitis, 1994), Multi-Objective 

Traveling Salesman algorithms (Tezcaner & Koksalan, 2011), ant colony algorithms (Jevtic, 

Andina, Jaimes, & Jamshidi, 2010) (Wei & Wei, 2009), particle swarm optimization (PSO) 

(Duan & Liu, 2010) (Yavuz, 2002), PSO and Voronoi diagrams (Peng et al., 2007), genetic 

algorithms (Olsan, 1993), gene regulatory networks (Guo et al., 2009) (Sun et al., 2011) and 

customized methods (Waldock & Corne, 2010).   

Optimization methods utilize cost functions to calculate probable paths and determine the 

lowest cost solution using any number of variables.  Gudaitis posed that radar cross section and 

distance traveled may be optimal variables, with possible additions of waypoints, number of 

planes, SAM sites, weather, and targets, to name a few.   

Differing techniques have unique but often similar implementations.  For example, in 

Particle Swarm Optimization (PSO), a large number of particles is simulated, with a few 

travelling along each possible simulation path.  The swarm converges on the “best” local and 

global solutions by calculating cost functions, which can be optimized using factors such as path 

length or least number of curves (Sun et al., 2011).  Ant colony algorithms use a biological 

analogy to similar ends. When foraging, ants create paths to food sources by leaving trails of 

pheromones.  If a path is popular (more payback in terms of food, i.e., more efficient), more ants 

take the path, resulting in strong pheromone trails.  The less optimal paths get reduced traffic and 

the pheromones evaporate.  In simulation, the food is termed a “node” and is analogous to 
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waypoints or targets.  In the work of Jevtic et al., Monte Carlo simulations are initialized by 

depositing virtual ants on random nodes.  The ants probabilistically move to nearby nodes, and 

through a costing function determining the “pheromone” concentration the most efficient route is 

determined.  Best results are determined locally by iteration, which are then compared to find the 

global best path (Jevtic et al., 2010).   

In genetic algorithms, another biological analogy is used in a competitive rather than 

cooperative fashion.  Using a natural selection methodology, a number of random possible 

solutions are created and then mated.  The good resultant solutions from that generation are 

allowed to reproduce and weak solutions forced to die out.  Each subsequent generation has 

stronger results, and after a set number of generations the technique approaches the optimal 

solution (Olsan, 1993). 

There are many drawbacks to the operational suitability of the aforementioned methods.  

Most are computationally expensive and require a priori knowledge of the terrain and obstacles, 

as well as the target locations.  Others require persistent connection between aircraft, a leader or 

a centralized controller. With advances in modern computing, there is increasing likelihood of 

being able to conduct such methods in flight.  However, near-term applications would involve 

performing one of the aforementioned optimization methods offline, loading the computed 

optimized flight paths for each UAS prior to the mission, and ensuring that in flight, the correct 

weights are given to the autonomy software to adjust the flight path based on real time 

information (e.g., collision avoidance).   

The last method is pseudorandom or random adaptive route planning.  The iRobot 

Roomba® robotic vacuum cleaner is one such example of this behavior.  It operates from a pre-

programmed algorithm that uses a set of rules to dictate motion.  These rules allow the 

Roomba® to effectively clean floors, incorporate sensor data to avoid collisions and mishaps like 

stairs, and interpret input from external stimuli such as artificial walls and room designators.  

While the optimal nature of its motion is questionable, it provides adequate coverage and decent 

real-time obstacle avoidance using components with small size, weight and power factors for a 

price affordable by public consumers.  According to HowStuffWorks.com, the Roomba® uses a 

sensor to determine room size and thus allocate a certain amount of time for cleaning.  It starts its 

cleaning pattern in an outward seeking spiral and then sets out in a straight line.  When it detects 
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an obstacle such as a couch, it travels around the outer edge until it hits another obstacle or 

continues in a straight line until it detects the perimeter of the room.  It then repeats this motion 

until it (ideally) finishes cleaning the room (Layton, 2005).   

Loiter 

The Loiter behavior describes remaining in a holding pattern over a geographical location 

or target.  This behavior is extremely simple to create and exists in most UAS with autopilot 

software today. 

Detect/Track 

The Detect/Track Feddema behavior relies on sensors able to discern that a particular 

signal meets the criteria to be its target.  This can be implemented simply through use of an 

infrared sensor detecting a heat signature or a sensor detecting electronic emissions from a GPS 

jammer, for instance.  Alternatively, it could be extremely complicated, having the Search sensor 

query a library of possible target signatures in an onboard database prior to target identification.  

Once the target is Detected, the Track behavior maintains sensor coverage of the target while 

flying, notifies the user of target detection and alerts neighboring aircraft to aid in target custody 

and confirmation of target detection. 

Attack 

The Attack behavior is likely the most challenging Feddema behavior to implement.   A 

significantly complex hardware and software suite (consisting of a targeting system, weapon, and 

payload) is inherent to behavioral application. This behavior also directly contradicts current 

Rules of Engagement (ROEs) that prohibit autonomous vehicles to project lethal force on a 

target.  Current doctrine dictates that a person must be in the loop to confirm the target is valid 

before the vehicle is authorized to use deadly force, and this is not expected to change.   

Containment, Pursuit, & Evasion 

The remaining three behaviors require an extremely agile platform, as well as an 

autonomous Identification Friend or Foe capability.  All support the Attack behavior.   
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With the Containment behavior, the UAS flock surrounds an enemy target or maintains a 

solid front and does not permit the enemy to leave those boundaries.  An escalation of force is 

used on any enemy unit attempting to violate the boundaries, starting with a warning shot and 

ending with disabling or lethal force (Attack behavior).   

Pursuit behavior allows an individual UAS to follow a moving and evasive target of 

interest.  Depending on circumstance, the Pursuit behavior likely feeds into Containment when 

the target is unaggressive and Attack when the target is aggressive.   

The Evasion behavior allows an individual UAS to flee an attacker.  The aggressor could 

be a ground-based threat giving small arms fire, a Surface-to- Air Missile (SAM) or another 

aircraft.  Evading UAS could use this behavior as a tactic to lure the enemy aircraft into a flock 

or otherwise friendly territory, increasing chances of defeating the attacker.  Even without 

backup, if the Evading UAS gets in a position of dominance, it could foreseeably transition to the 

Attack behavior. 

Summary 

This chapter summarized a literature search of flocking behaviors, applicable military 

missions and possible implementations.  Definitions of autonomy were provided in conjunction 

with the advantages and pratfalls to implementing autonomous systems.  Avian flocking 

behavior was studied to conclude parallel applications with autonomous UAS.  The former 

USJFCOM/J9 priorities for autonomous UAS mission sets were enumerated to set the stage for 

future scoping efforts.  Lastly, Feddema’s key behaviors for autonomous systems were examined 

in detail to provide the rationale and methodology for their inclusion or exclusion in the 

simulation.     
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III. Methodology 

Chapter Overview 

In this chapter, an in depth look is presented on simulation and testing efforts.  Options 

for behavioral implementation from Chapter II are chosen; rationale is provided for the 

simulation mission selection. An overview of the MATLAB® code flow is offered along with 

state descriptions, inputs and outputs.  Mathematical and practical descriptions of the logical 

rules are produced.  Emergent effects are mentioned and explained.  Lastly, an iterative testing 

approach is presented to find the model configuration providing best performance. 

Behavioral Implementation 

Chapter II presented multiple methods of engendering autonomous behaviors, 

specifically for Formation/Flocking and Coverage.  The simulation environment used within this 

thesis implements Flocking as opposed to Formations and utilizes Reynolds’ three rules as the 

backbone of the MATLAB® code.  As shown by the Roomba® example, random adaptive route 

planning is least computationally expensive and feasible for small electronic (e.g., Raven) 

applications.  Of all the aforementioned methods, it is the most compatible with and results 

naturally from the Reynolds rules, thus random adaptive route planning is the Coverage method 

used for the thesis simulation.  

Mission Selection  

One of the primary goals of this study was to demonstrate that mission functionality 

could be built using the Adjusted Feddema behaviors.  However, due to the variety of missions, 

project time-constraints and technical complexity, there was a need to scope simulation efforts to 

a single viable mission set.   

The Adjusted Feddema behaviors (Table 2) were heavily referenced in performing the 

mission down select.  It was desirable to choose a mission that demonstrated all three widely-

shared behaviors of Flocking, Converging/Diverging and Coverage, thus eliminating the 

Deception Operations mission.  Due to the difficulties of technical and policy implementation, 
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missions with the Attack behavior were avoided, eliminating Swarming Attacks, 

Defense/Protection and Delay/Fix/Block.  Combat Search and Rescue was discarded due to the 

anticipated inability to adequately simulate mission effectiveness in a MATLAB® environment.  

Additionally, there was a desire to create a scenario more challenging than an Area ISR or 

Navigation/Mapping mission could provide. 

Table 2. Adjusted Feddema Behaviors 
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Area ISR X X X X X X           

Point ISR X X   X X X   X       

Communication X X    X       X       

Navigation/Mapping X X X X   X           

Swarming Attacks X X   X X  X X   X X X 

Defense/Protection X X   X   X X X X X X 

Delay/Fix/Block X X   X   X X X   X   

Deception Operations X X        X       X X 

(Combat) Search & Rescue X X    X X X         X 
 

 

Finally, after careful evaluation, flocking UAS did not appear to provide significant 

benefit in the Communication mission.  Communication was deemed to be useful within a flock 

whereby an individual, dedicated Communications relay UAS would route data between its 

neighboring aircraft and the user.  However, the benefits of using a distributed communication 

network of small UAS were outweighed by limitations in range (~6 miles) and loiter time (~1 

hour).  All in all, distributed small communications UAS appeared to be significantly less 

beneficial than a single large high-flying communications relay UAS or satellite communications 

capability.  Therefore, by process of elimination, the Point ISR mission was chosen.  
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Point ISR Flock Applicability 

As interpreted from the Adjusted Feddema behaviors chart, the Point ISR mission utilizes 

six of the eleven autonomous behaviors.  The following operating concept was envisioned using 

all six behaviors (capitalized for emphasis):  In the start of the scenario, individual UAS are 

launched sequentially and Loiter around a waypoint close to the point of origin until all flock 

mates reached operational altitude.  At that point, the flock concludes the holding pattern and 

travels as a Flock for safety to the search area.  After arrival, the flock then Diverges throughout 

the area to provide maximum Coverage over the grid.  Each flock member initiates its own 

Search algorithm, and upon one individual’s Detection of the target, it calls all neighboring 

aircraft within communications range to Converge upon the target and enter into a Loiter and 

imaging pattern.  At a pre-designated time during flight, the flock stops Loitering over the target, 

Converges and returns as a Flock to the original waypoint.  There the UAS Loiter in a holding 

pattern until each lands.   

MATLAB® Simulation Overview 

The MATLAB® code used within this thesis was originally developed by Colombi.  The 

simulation’s main script creates a flock of UAS in an area grid and uses a set of rules to govern 

the in-flight flock behavior.  The code incorporates a target, waypoint and obstacle to test the 

ability of behaviors to loiter around a point of interest and perform collision avoidance.  A 

visualization option exists to see the UAS flock perform the simulation and monitor real-time 

flock statistics.  If disabled for speed and/or batch file operation, the code can also be run without 

visualization, saving flock statistics and coverage graphs to file automatically.   

This code was previously used to test formation flight efficiency, communication relay 

viability, and other UAS motion and rule interactions, which deviated significantly from the 

goals of this study.  Previously, waypoints and targets were universally known at all times by all 

flock members.  The code underwent major changes in order to simulate a Point ISR mission that 

allowed individual UAS to mimic target Search and Detection behaviors.  To simulate an ISR 

platform, previously developed UAS sensor footprint code was integrated.  This added real-time 

visualization capability for the sensor footprints of each UAS.  In conjunction with creating a 
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matrix to monitor total sensor coverage, the sensor footprint code also provided a means to 

simulate Detecting a target or waypoint.     

Autonomous Rules/ Behaviors Description 

As previously explained in Chapter II, the simulation is based upon Reynolds’ three rules 

of separation, flock centering, and velocity matching.  Seven other rules were added prior to this 

study to provide other mission-agnostic and communication relay capabilities.   Two new rules 

were developed and integrated to provide behavior enhancements specific to this thesis.   

In keeping with Reynolds’ philosophy, each UAS acts on its own worldview and 

determines trajectory changes based on current flight characteristics and external stimuli.  Thus 

in the simulation, the velocity vector  ⃗     of each rule is calculated individually for one UAS at a 

given time.  Within a given rule r, calculations may result in x and y velocity components or 

speeds and angles.  Conversions are performed readily between the two vector formats to ensure 

rule vectors are consistently output as x and y velocity components.   Typical values of  ⃗     range 

from 0 to 15, but mathematically can exceed these values.  Each value is multiplied by an 

individual, user-defined weight   , and then accumulated to determine the net motion change 

 ⃗         of UAS j during that simulation time step.  Using similar notation as Colombi (2014), the 

resultant contribution of all rules for the j
th

 UAS in the flock is the summation of the individual 

rule weights wr for rules 1 through r multiplied by the control from the individual rules,  ⃗    .  

 ⃗         ∑     ⃗    

       

   

   

 Equation 1 

 (1) 

where  

 wt is the weight of the r
th 

rule 

  ⃗      is the change of velocity vector control from the r
th 

rule on the j
th 

UAS, and 

|rules| equals the total number of rules, currently equal to 12. 

Note that the simulation employs the Equation 1 accumulator with additional decision 

logic, which will be discussed in more detail later in this section.  This accumulation of rules is 
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conducted for each UAS.  Time is incremented and the steps are repeated until the simulation 

time reaches 1 hour (the Raven UAS battery life), ending the run.  

Utilizing typical dynamics notation, during each simulation new time step t+1, the UAS 

movement is calculated by taking the old position of UAS j and adding the new velocity, 

multiplied by the size of the time step.   

 

   (   )     ( )     (   )   

where 

 Equation 2 

(2) 

   ( ) is the old position of UAS j, and 

   (   ) is the new velocity of UAS j 

 

Equation 3 shows the alternative method to calculate Equation 2, which is implemented within 

the simulation: 

 

   (   )     ( )  (   ( )   ⃗  (   ))   

where 

 Equation 3 

(3) 

       

    is the old velocity of UAS i, and 

 ⃗  (   ) is the accumulated change in velocity for 1 time step 

Thus,  ⃗   is a change in velocity, represented as a magnitude (constrained between a minimum 

and maximum) and a direction; or equivalently, the two-dimensional y and y contribution of this 

vector. 

A brief description of each rule and its implementation follows.  Note that a summary of 

key parameters and their default values is listed in Appendix A. 
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Rule 1—Separation   

This rule creates the mechanism for collision avoidance by providing a repelling force 

directed away from other members of the flock. Rule 1 creates a vector  ⃗     ⃗   pointing away 

from a near neighbor   within a neighborhood size    defined by radius d1. This vector is scaled 

by the penalty function ∅, which exponentially weights the vector depending on how close the 

two UAS are.  This process is repeated for all near neighbors of UAS j, and the scaled vectors 

are summed.  A constant     valid for all UAS in the neighborhood converts vector from a 

position to a velocity.  The control vector  ⃗    is the numeric output of Rule 1 with respect to 

UAS j. (Colombi, 2014).   

 ⃗      
   

|  (  ) 
∑ ∅ 

 

    (  ) 

( ⃗     ⃗  )     

where 

∅( )  {
    (   

    

  
 )

 

     (  ) 

                          
          

 

 

Equation 4 

 (4) 

 

and  

 ⃗     is the output control vector of Rule 1 

    is the first constant for Rule 1 

d1  is the Rule 1 parameter separation_size = 250 ft 

di,j is the distance between two UAS i and j, and 

c1b is the second Rule 1 constant, currently set to 5280. 

Since the simulation location is measured in miles, the largest difference in position for 

(         ) is d1 = 250 ft or 0.0473 miles. To scale this to a meaningful number that allows the 

rule to adequately perform collision avoidance, a scaling factor of 5280 was selected for the Rule 

1 constant for penalty function ∅( ).  This number could just have easily been 100 or 1000 to 

scale to meaningful values; however in practice, the 5280 factor provided better compensation to 

prevent collisions early on and consequently to keep the penalty function ∅( ) from growing too 

large.   
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Rule 2—Velocity Matching 

This rule allows for UAS alignment within the flock, inducing aircraft to fly in a similar 

direction and speed as their neighbors.  Similar to Rule 1, Rule 2 takes into account another 

neighborhood size d2 around UAS j.  To calculate the control vector, each UAS within the flock 

averages the velocities    of the entire flock including itself.  Rule 2 creates a correction vector 

based on the difference between the UAS current velocity   j and the neighborhood flock 

average.  Note that if UAS are geographically-separated, several mini-flocks can form and then 

merge into a larger flock, as is expected from this rule. 

 ⃗     ( ∑      

 

      (  ) 

)      

 Equation 5 

(5) 

where 

d2 is the Rule 2 parameter velmatching_size, currently set to 0.6 miles. 

Rule 3—Flock Centering 

Flock centering, also known as cohesion, is the final Reynolds rule that forms the 

minimum set of behaviors to create flocks.  This rule likewise incorporates a neighborhood size 

d3, and is attractive in nature.  Each UAS j calculates the local neighborhood flock average 

location (flock center) based on the current location qi of neighbors.  The control vector  ⃗     is 

created by subtracting the current UAS location  𝑗 from the flock center.  A scaling factor is also 

multiplied to Rule 3 to ensure consistency of units.  Enabling both Rules 2 and 3 (i.e., setting 

them to a non-zero weight in the accumulator, more details to follow) creates the Feddema 

Convergence behavior.  

 ⃗     
   

|  (  ) 
  ( ∑      

 

    (  ) 

)        

 Equation 6 

(6) 

where 

     is a constant, and 

d3 is the Rule 3 parameter flockcentering_size = 1.5 miles. 
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Rule 4—Communications Range 

This rule was added to the original simulation suite to provide C2 persistence and realism 

in modeling.  When a UAS approaches the maximum range of its transceiver, it is repelled back 

from the communications boundary towards its home base.  In this study, the grid area is roughly 

equal to the advertised communications range of the Raven platform under examination.  As it 

was not necessary to employ this rule for realistic implementation of this study, Rule 4 was 

disabled for the entirety of this simulation effort.  Subsequently, the mathematical definition of 

Rule 4 will not be examined. 

Rule 6—Target/Waypoint Attraction 

Since Rule 5 is not implemented until the target or waypoint is reached using Rule 6,    

the description orders are reversed.  Rule 6 is key to implementing UAS waypoint navigation as 

well as the Detection behavior used by several of the USJFCOM/J9 mission sets.  If a UAS has a 

waypoint or target location in memory and is directed to go there, Rule 6 applies an exponential 

function to provide an attractive force.  

 ⃗     ( (            )                Equatio(7)n 7 

where  

 dwj  is the overall distance between waypoint or target and UAS j 

  wj is the point coordinate calculated from the distance between waypoint or target and 

UAS j 

c6a is a constant, currently equal to -12.09, and 

c6b is a second constant, currently equal to 4. 

Both constants were obtained using a potential force function: 

                   

where 

 Equati  o(8) 

r is the sensor range, set to 400/5280 mi at the time of function development, 
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    is the minimum velocity setting, equal to 40 at the time of function development, 

scaled by a factor of 10 for this equation, and 

S is equal to 100, scaled down by a factor of 10 for this equation. 

Solving for c6a using F equals 0 at r equal to the sensor range, c6a equals -12.09. 

Rule 5–Target / Waypoint Repulsion 

Once a UAS reaches a waypoint or target, Rule 5 works in conjunction with Rule 6 to 

induce the UAS to loiter around the point of interest.   Rule 5 defines a desired flight band 

around the point of interest based on distance between the point location and UAS j location. 

                          {

                 
                 
                     
                     

  

 Equation 8 

(9) 

where  

    is the Rule 5 parameter loiter_range, set to 500 feet 

    is the Rule 5 parameter sensor_range, set to 250 feet, and 

    is the distance between UAS j and the target or waypoint. 

If    is within the desired band, Rule 5 defines a repelling angle around the target or waypoint.  

This angle      induces the UAS to fly in either a counter-clockwise (default) or clockwise (if 

more optimal) direction.  It then uses this angle and the minimum UAS velocity setting to define 

a repellent force.  The resultant control vector is the current UAS velocity subtracted from this 

force. 

     {
   (    (      

 

 
)    )                   

   (    (      
 

 
)    )                

    

 ⃗                                 

 Equation 9 

(10) 

where 

 pmin is the UAS minimum velocity setting, currently set to 30 mph, and 
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     is the current UAS velocity. 

 

Rule 7—Stay within Boundaries  

When enabled, this rule attempts to keep the flock within the boundaries of a user-

defined box to attain goals such as maximizing search time and staying within communications 

range.  UAS will be repelled back toward the target box center if one of two criteria is met:  if a 

UAS is currently close (within the offsides parameter) to the borders of the simulation grid; or if 

the UAS calculates that, at its current trajectory, it will exceed the boundaries within 50 

simulation time steps.   

 ⃗     {
   (       ) {

|      |          

|   |       

                                               

 

 Equation 10 

(11) 

 

where  

dp is the predicted distance UAS j would cover in 50 time steps 

 dmax is the maximum distance UAS j could travel in 50 time steps = 0.833 miles 

c7 is a constant scaling factor, currently equal to 1 

   c is the location of the target box center 

   j is the UAS j location 

  b is the location of the target box boundaries, and 

 d7 is the Rule 7 parameter offsides  = 6 * sensor_range = 1500 feet (default). 

Application of this rule has a drastic effect on coverage rate and thus the ability to find a 

target.  The offsides parameter defines how early the rule is applied.  If the rule is applied too late 

and too close to the boundary, the flock has an observed tendency to fly along the edges, with a 

detrimental effect to coverage.  Initial values for the offsides parameter were determined 

observationally, but also were evaluated during the course of simulation.  
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Rule 8—Communication Relay 

This rule enables a UAS to act as a communication relay for the rest of the flock, orbiting 

a set waypoint during the simulation and effectively extending the flock’s overall range.  This 

functionality was disabled during the thesis. 

 

Rule 9—Obstacle Avoidance  

Similar in purpose to Rule 1, Rule 9 prevents flock members from collisions with a 

circular obstacle.  Implementation is similar to Rules 5 and 7 in that UAS j projects its location 

50 time steps in the future.  If the UAS is on a collision course with the obstacle, then it 

calculates a repelling angle to tangentially push its trajectory away.  This rule has a scaling factor 

of 5 for consistency with other rules and observational effectiveness. 
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 Equation 11 

(12) 

where  

  cj is the difference between the obstacle center and the projection of the UAS j position 

after 50 time steps  

c9 is a scaling constant equal to 5 

  p is the projected location of UAS j after 50 time steps, and 

   o is the obstacle perimeter location. 

Rule 10—Moving Target 

This rule allows for a UAS to match velocities with a moving target.  This was not a 

tested feature of the simulation, thus further definition is considered out of scope. 
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Rule 11—Divergence 

Rule 11 was created specifically for this thesis and provides the capability for the 

Feddema Divergence behavior.  Similar to Rules 1 through 3, it defines a neighborhood radius 

d11 around UAS j in which both UAS will diverge according to a calculated repelling angle.  

Several special cases emerge in which the UAS will attempt to diverge in the same direction, or 

begin to follow each other.  Projected position algorithms developed for other rules were utilized 

to minimize this behavior. 
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 Equation 12 

(13) 

where 

g is the multiplicative factor to avoid collision 

     is the projected position of UAS j after 50 time steps 

     is the projected position of UAS i after 50 time steps 

       is the Rule 11 repelling angle for UAS j 

   is the current angle of travel for UAS j 

   is the current angle of travel for UAS i 

c11a  is a dispersion constant, set to 6 

c11b  is a constant scaling factor, set to 5 
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   p is the predicted location of UAS j 50 time steps in the future 

Nj is the number of UAS within the neighborhood 

d11 is the Rule 11 parameter divergence_size, and 

dcj is the distance between the UAS j  and its closest neighbor c. 

Rule 12—Wander 

Rule 12 was transformed into MATLAB® for this simulation from the open source C++ 

library OpenSteer (Reynolds C. , 2004) as a model.  This rule induces a random wander into 

UAS motion with the goal of increasing total sensor coverage.  The wander (or serpentine) 

motion is generated by a small random displacement to the current direction, using Equation 14. 
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Eqati(14)on13 

 

where 

 c12a is a scaling constant, currently equal to 1.0, 

   is the current angle of travel for UAS j, 

Nrn is a random number between -1 and 1,  

-1   wander   , and 

c12b is a constant equal to Rule 12 parameter wander_ability, default is 0.5. 

During Rule descriptions, mention was made of several parameters used within the simulation.   

Flock Movement and Accumulation 

In practice, simply summing all the rule weights without applying limitations and 

prioritization permits undesirable behavior.  Limitations provide a realistic cap on the turning 

radius, velocity and acceleration of the UAS so that platform capabilities and typical operating 

conditions are correctly mimicked.  Since rules have an additive effect on UAS velocity, 
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limitations also ensure that rules do not force a continual velocity increase that pushes the UAS 

outside the simulation boundary and prohibits return, an emergent condition that was observed 

during code development.  Within the simulation, limitations are applied by the functions 

boid_limit_move.m and velocity_limiter.m.  A summary of all the simulation functions and their 

descriptions is listed in Appendix B. 

Prioritization ensures more important rules (e.g., collision avoidance) out-prioritize less 

important rules (e.g., motion optimization).  In the simulation, this is accomplished using an 

accumulator function accumulator.m, similar to one of Woolley’s implementations used to 

model reactive robotic control systems (Woolley, 2007). If a higher priority rule induces a 

change that consumes the entire turn capacity or velocity change of a UAS, then lower priority 

rules will be ignored.  However, if the conditions for high priority rules are not met or they do 

not expend all of the turn/velocity margin, then the contributions from lower priority rules will 

be implemented.   Within the simulation, the rules are prioritized and applied in the following 

manner.  Health and safety of the UAS is seen as most critical, so collision avoidance Rules 1—

Separation and 9—Obstacle Avoidance take priority over all other rules.  If the turn capability is 

not maxed out, then Mission Rules 5—Target/Waypoint Repulsion, 6—Target/Waypoint 

Attraction, 8—Communications Relay (disabled) and 10—Moving Target (disabled) are added.  

Again, a check is done to ensure that the turn capacity is not maxed out.  If not, Basic Flocking 

Rules 2—Velocity Matching and 3—Flock Centering are summed.  The next check is 

performed, and if successful, Area Constraints Rules 4—Communication Range and 7—Stay 

within Boundaries are then applied.  Constraints are checked, then Optimization Rule 11—

Divergence is added.  After a final successful check, the last Optimization Rule 12—Wander is 

applied.   

Rules generally are not constantly producing outputs, so low priority rules often 

contribute to total UAS motion except when occasionally overruled.  There are several 

exceptions, however. When enabled and UAS are flocking, Rules 1 through 3 are typically in 

use.  When travelling to or loitering around a target or waypoint, Rules 5 and 6 are constantly 

employed.  Lastly, when enabled, Rule 12 is almost constantly on unless overruled.  To further 

deconflict between rules, when the flock is in a state that employs a specific rule set, other 

competing rules are often disabled.  For example, Rules 2 and 3 and Rules 5 and 6 are typically 
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implemented in sets.  While orbiting a target, these two sets compete and cause undesirable flight 

jitter and excessive change in direction, so Rules 2 and 3 proscribing flocking are disabled while 

actively loitering.   

Creating Rule-Based Behaviors 

To transition between behaviors, each UAS is assigned a state that varies throughout the 

simulation.  Transition between states is based on accomplishment of key events (e.g., finding a 

target) or time-based (e.g., returning home after battery life reaches 75%).  Each state is assigned 

a different array of rule weights in the initialization file flock_init.m  or batch file loop_runtest.m.  

By default, rule weights are set to 1 or 0, enabling or disabling their associated rules as 

appropriate to that stage of the mission.  Single rules or multiple complementary rules induce 

UAS behaviors directly corresponding to the Adjusted Feddema behaviors in Table 2. 

UAS waypoint and target behavior is controlled through a set of global (simulation-wide) 

and local (assigned to individual UAS) flags that change based on state.  Flags operate 

synergistically with rule weights to define flock behavior in the following manner: waypoints 

and targets are assigned globally within the simulation.  The initial waypoint is pushed locally to 

all UAS during flock initialization, however the target location is not locally known until a UAS 

finds it. Depending on state, flags determine if each UAS should be attracted to a target or 

waypoint, and over which target or waypoint it should be loitering.  

The simulation incorporates six rule-weighted states, the majority of which are 

implemented in the function runtest_launch2.m.  An additional State 0 occurs during launch 

while the flock becomes initialized, but no rules are assigned at that point.  In all States 1 through 

6, Rule 1--Separation, Rule 7--Stay within Boundaries and Rule 9--Obstacle Avoidance are 

continuously enabled to maintain vehicle safety and maximize the time spent in the search area.  

Figure 4 depicts the simulation state transition logic, as described in detail below. 
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Figure 4. State Transition Diagram for Point ISR Simulation 

Immediately after launch, a UAS transitions to State 1, converges to a pre-defined 

waypoint near home base and begins to loiter.  This is accomplished by enabling Rules 2-- 

Velocity Matching and 3--Flock Centering to induce flocking; as well as Rule 6-- 

Target/Waypoint Attraction and Rule 5--Target/Waypoint Repulsion for waypoint attraction and 

loitering.  As previously mentioned, Rules 1, 9 and 7 are also enabled for safety and boundary 

constraints.   

As soon as an individual UAS finds the waypoint (i.e., the waypoint falls within the UAS 

sensor field of view) in State 1, it transitions to State 2.  In State 2, the UAS continues loitering 

until all UAS are launched and are within communications range; this is the signal for mission to 

start.  Similar to State 1, Rules 1, 5, 6, 7 and 9 are all enabled.  As previously mentioned, during 

active loitering, Rules 2 and 3 are disabled so as not to compete with Rules 5 and 6. A simulation 
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screenshot of States 1 and 2 is depicted in the Figure 5 left subfigure.  In this figure, the top UAS 

(a triangle with two sensor footprint trapezoids) in State 2 is shown loitering at a waypoint (blue 

concentric circles).  The bottom UAS is newly launched and in State 1.  

 

States 1 & 2: Converge & Loiter around Waypoint 

 

State 3: Diverge & Search 

Figure 5. MATLAB® Screenshot of States 1 through 3. 

When all expected UAS are detected within communications range, State 3 initiates.   

The UAS diverge throughout the simulation grid and commence searching for the target.  The 

target is detected whenever a UAS sensor footprint flies over the target location.  Diverging 

behavior is accomplished through enabling Rule 11--Divergence.  Rule 12--Wander also serves 

to split apart the flock and optimize coverage, so it may be substituted for Rule 11, but Rule 11 is 

the default for State 3.  The Figure 5 right subfigure illustrates State 3 behavior.  In the figure, 

four UAS within communications range are shown diverging to begin their search for the target, 

depicted as red concentric circles. 

Of note, State 3 is the only state that is not executed out of runtest_launch2.m, but rather 

out of the function trianglebirdEO2.m. TrianglebirdEO2.m calculates and displays sensor 

footprints in addition to tallying the current sensor coverage into a global coverage map.  This 

coverage map stores the number of times a cell in the simulation grid is imaged during active 

searching and detection (States 3 and 4), and is a key source simulation of metrics data.   
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Once an individual UAS detects the target, it transitions to State 4.  From that state, it 

calls to other UAS within communications range and sends them into State 4 as well.  The target 

location is pushed by the finder to the rest of the flock within range, and State 4 directs flock 

members to fly to the designated location and begin loitering to image the target.  Since UAS 

travel to the target from disparate areas of the search grid, converging behavior is unnecessary 

and consequently unused.  This state is characterized by enabling Rules 1, 5, 6, 7 and 9. (Left) In 

Figure 6, the left picture shows one UAS finding the target and rallying neighboring aircraft 

within comm range. After some time has elapsed, the right picture shows all four UAS loitering 

the target. 

 

State 4: Find Target 

 

State 4: Move to Target & Loiter 

Figure 6.  MATLAB® Screenshots of State 4.   

 

When the UAS have expended 75% of their battery life at 2700 s of simulation time, they 

autonomously switch to State 5.  This state directs UAS to converge for safe travel in numbers, 

return to the original waypoint near the launch location (as depicted in Figure 7, left), and begin 

to loiter.  State 5 is identical to State 1, thus the same rules are implemented to induce these 

behaviors: Rules 1, 2, 3, 5, 6, 7 and 9.  
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State 5: Return to Waypoint & Loiter 

 

State 6: Loiter & Land 

Figure 7.  MATLAB® Screenshot of States 5 and 6.   

 

As the UAS find the waypoint, they transition into State 6, which continues waypoint 

loitering in preparation for landing.  This final state is illustrated in Figure 7 (right).  State 6 is 

the same as State 2, and both use Rules 1, 5, 6, 7 and 9 to implement this behavior.   

This approach answers the investigative question: “How can (the Feddema) behaviors 

and missions be built?”  Hypothesis 1, stating “Behaviors can be built in software simulation 

through mission-dependent, time-varying application of Reynolds-derived flocking rules and a 

rule accumulator/adjudicator,” was demonstrated and validated in the course of simulation 

efforts.  A summary of all the default Rules and States can be found in Table 3.   
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Table 3. States and Default Rule Weights to Create Point ISR Behaviors 

States & Rules 

1: 

Separa

-tion 

2:  

Velocity 

Matching 

3:  

Flock 

Center

-ing 

4: 

Comm 

Range 

5: 

Target 

Repell-

ing 

6:  

Target 

Attrac-

tion 

7:  

Stay within 

Boundaries 

8: 

Comm 

Relay 

9: 

Obstacle 

Avoid-

ance 

10: 

Moving 

Target 

11: 

Diverg-

ence 

12: 

Wander 

1: Converge, 

Loiter at 

Waypoint 

1 1 1 0 1 1 1 0 1 0 0 0 

2: Loiter & Detect 

all UAS in Comm 

Range 

1 0 0 0 1 1 1 0 1 0 0 0 

3: Diverge & 

Search / Detect 

Target 

1 0 0 0 0 0 1 0 1 0 1 0 

4: Move to Target 

& Loiter 
1 0 0 0 1 1 1 0 1 0 0 0 

5: Converge, 

Return to 

Waypoint & 

Loiter 

1 1 1 0 1 1 1 0 1 0 0 0 

6: Loiter (& Land) 1 0 0 0 1 1 1 0 1 0 0 0 
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Test Methodology 

The second half of this thesis focuses on simulation improvements through rule and 

parameter changes.  From Chapter I, the following research question was posited:  

 “Can mission performance be improved through iterative changes to simulation 

parameters while minimizing undesired effects such as crashes?”   

Additionally, the question was asked,  

 “What are appropriate Measures of Effectiveness (MOEs)/Measures of Performance 

(MOPs) to evaluate mission success?”  

 Attempts to answer these questions drove testing methodology choices. 

The Point ISR mission has two overarching mission performance concerns: find the 

target of interest and provide good coverage over a search area.  An MOE developed for the first 

concern was to improve efficiency of locating the target from the baseline.  Two MOPs used to 

evaluate this criterion were the average time the target was found and percent of time the target 

was found.  The MOE used for coverage was to improve coverage effectiveness over the search 

area from the baseline value.  One associated MOP was the average sensor coverage of the 

search grid.  A second MOP was created to address the effectiveness piece.  This MOP 

calculated the average time spent out of the target box, using the understanding that the UAS was 

ineffective if located outside the search area.  These MOPs were all statistics measured within 

the context of the simulation. 

Another mission-agnostic objective important to any flocking mission is collision 

avoidance.  The associated MOE is to improve upon or maintain baseline collision avoidance.   

In the simulation, two statistics are measured: the number of hits (both UAS vs. UAS and UAS 

vs. obstacle) and the number of near misses.  The MATLAB® code defines a hit as approaching 

another UAS or obstacle within 3 wingspans (13.5 feet), and a near miss is within 5 wingspans 

(22.5 feet).  This number naturally increases with the number of UAS in a simulation.  To 

eliminate the metrics’ flock size dependency, associated MOPs are the average percent attrition 
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of total flock size and the average percent of near misses of the total flock size.  A summary of 

the aforementioned MOEs/MOPs and any associated thresholds appears below. 

Mission Performance Criteria: 

MOE 1—Improve efficiency (timeliness) in locating the target from the baseline 

MOP 1—Average Time Target Found (≤2700s) 

MOP 2—% Time Target Found 

MOE 2—Improve coverage effectiveness over the search area from the baseline  

 MOP 3—Average Coverage % 

 MOP 4—Average Time out of Box (≤180s, equivalent to 5% of simulation time) 

Collision Avoidance Criteria: 

MOE 3—Improve upon or maintain baseline collision avoidance 

 MOP 5—Average % Attrition (≤10%) 

MOP 6—Average % Near Misses (≤10%) 

The MOEs/MOPs were prioritized, weighted and compiled into a Fundamental Objectives 

Hierarchy, as illustrated in Figure 8.   
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Figure 8.  Fundamental Objectives Hierarchy (Utility Function) for Point ISR Effectiveness  

The hierarchy can be described by the following utility function: 

f = 0.3 (0.75 AvgAttrition + 0.25 AvgNearmisses) +  

      0.7 (0.1 AvgTmTgtFound + 0.3 PercentTmTgtFound +  

             0.1 AvgTmOutBox + 0.5 AvgCoverage) 

 Equation 14 

(15) 

where 

max(f) = 1 

After conducting each set of simulations, the utility function was calculated for each trial and 

used to evaluate if performance improvements were achieved. 

To improve the overall performance of the utility function, any number of changes to rule 

parameters or weights could have been selected.  Rather than conducting an exhaustive full 

factorial analysis, the problem was scoped to variables with the greatest anticipated effect on 
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coverage.  Rules 11 and 12 were specifically created to spread out the flock and enhance 

coverage, so these rules were key to testing.   

A final choice was made to test Rule 7--Stay within Boundaries.  Rule 7 was universally 

used during all states, and therefore changes to this rule had a high chance for impact.  In 

addition, countless simulation runs during code development indicated that emergent issues with 

Rule 7 had catastrophic effects on coverage and mission success.  One such example was 

encountered while using an old version of Rule 7 and an improperly coded velocity_limiter.m 

function.  A newly-launched UAS would fly in a straight line from its home base.  With no 

perturbations, it flew perpendicular to a boundary wall, exited the simulation, and increased 

velocity to infinity, never to return.  During Rule 11 and accumulator construction, multiple UAS 

were observed forcing each other out of the target box for a large percentage of the simulation, 

reducing the time spent searching the area of interest and plummeting the chances of the flock 

finding the target.  Code development efforts drastically reduced the occurrence of such bugs, 

but Rule 7 optimization clearly had potential for marked improvements in mission satisfaction. 

Two notable changes were made between the simulation setups for behavioral 

demonstration and testing.  The testing setup disabled Rules 5 and 6 during State 4 and enabled 

Rules 11 and/or 12 for State 4.  The end result is that, while UAS could find the target, they did 

not flock to it.  This removed coverage variability caused by orbiting the target and improved the 

ability to compare results between runs.  In addition, random variables were seeded consistently 

throughout the test simulations.  Random numbers were used in multiple places in the 

simulation: from establishing the random target location and setting the initial UAS velocities to 

adding random noise to velocity to simulate wind.  For each Run X, the random seed was also set 

to X, allowing 10 different results over 10 runs. The exact same random seeds were applied 

during the next trial, so that the only difference between Trial N, Run X and Trial N+1, Run X 

was the parameter being tested.  Seeding the random numbers enabled better comparison of 

results after changing a parameter, since without the random seed most results and trends were 

indistinguishable from the noisiness naturally occurring within the data.   

An iterative testing approach was formulated to systematically improve and verify 

simulation effectiveness for the Point ISR mission. In a given trial, a single parameter or rule was 
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varied and 10 simulation runs were conducted for each trial; multiple trials were conducted and 

analysis was performed on the data set to define the best parameter value.  This result was 

applied as the modified simulation baseline, and a new iteration of testing on a different 

parameter or rule was conducted.  First, the number of UAS was varied to decide which flock 

size would be used in subsequent tests.  Next, Rule 7 testing commenced to find the best value 

for the Rule 7 offsides parameter, and the Rule 7 weight was similarly tested.  Afterward, the 

Rule 11 parameter divergence_size parameter was assessed, and then Rule 11 weights were 

tested.   Next, the Rule 12 wander_ability parameter was evaluated, after which the Rule 12 

weight was varied.  These tests established the best individual settings for Rules 7, 11 and 12.  

The ultimate test compared the performance of each solitary rule against the others, and then 

combined rules to determine the best overall configuration for Point ISR sensor performance.  

This approach is summarized in the Table 4 test matrix. 

In Chapter I, a test hypothesis was postulated: For the selected mission, optimizing and 

enabling Rule 7 (Stay Within Boundary), Rule 11 (Divergence) and Rule 12 (Wander) 

parameters and weights will provide significant improvements to model performance. 

Chapter IV provides the test data, analysis and results that will be used to validate or refute this 

claim. 

Summary 

Chapter III provided an explanation of the MATLAB® simulation used within the thesis 

and delineated the testing approach.  Rationale was provided for the selection of the Point ISR 

mission.  Functionality of key building blocks within the code was elucidated, to include a 

mathematical definition of the rules.  When used in conjunction with the rules, it was explained 

how the various simulation states and flags combined to produce Feddema mission behaviors. 

An overview of the test matrix was conducted, and the hypothesis presented once more to clarify 

the test approach.   
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Table 4. UAS Rules and Parameters Test Matrix 

# Test Description Values Goal 

Number of 

Iterations Control Parameters Action 

1 Vary # of UAS 2 : 10 

Determine best # for grid 

size 10 per # 

All weights = 1 or 0, States 3-4: 

Rule 11 on, Rules 5, 6 & 12 off Change default # UAS 

2 

Vary Rule 7 offsides 

parameter 1 : 10 Determine best parameter 10 per value 

All weights = 1 or 0, States 3-4: 

Rule 11 on, Rules 5, 6 & 12 off 

Change default Rule 7 

parameter 

3 Vary Rule 7 weight 1 : 5 Determine best weight 

10 per 

weight 

States 3-4: Rule 11 on, Rules 5. 

6 & 12 off 

Change default Rule 7 

weight 

4 

Vary Rule 11 

divergence_size parameter 0.25 : 0.25 : 1.5 Determine best parameter 10 per value 

States 3-4: Rule 11 on, Rules 5. 

6 & 12 off 

Change default Rule 11 

parameter 

5 Vary Rule 11 weight 1 : 5 

Determine best weight(s) 

for optimizing coverage 

10 per 

weight States 3-4: Rules 5, 6 & 12 off 

Change default Rule 11 

& 12 weights 

6 

Vary Rule 12 

wander_ability parameter 0 : 0.1 : 1 Determine best parameter 10 per value 

States 3-4: Rule 11 on, Rules 5. 

6 & 12 off 

Change default Rule 12 

parameter 

7 Vary Rule 12 weight 1 : 5 

Determine best weight(s) 

for optimizing coverage 

10 per 

weight States 3-4: Rules 5, 6 & 11 off 

Change default Rule 11 

& 12 weights 

8a Vary Rules Rule 7 only 

Determine best rule(s) 

for optimizing coverage 10 per config 

States 3-4: Rules 5, 6, 11 & 12 

off 

Change States 3 & 4 to 

reflect best rules 

8b 

 

Rules 7 & 11 

  

States 3-4: Rules 5, 6 & 12 off 

 
8c 

 

Rules 7 & 12 

  

States 3-4: Rules 5, 6 & 11 off 

 

8d 

 

Rules 7, 11 & 

12 

  

States 3-4: Rules 5 & 6 off 
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IV. Analysis and Results 

Chapter Overview 

This chapter will cover the results of the test events described in the Chapter III.  

Analysis will be presented to explain the data, and the hypothesis will be compared to the final 

results.  Finally, a summary of all the research questions and their respective answers will be 

provided. 

Results of Simulation Scenarios 

Flock Size Test 

The first test was conducted to determine the best flock size for the 36 square mile 

simulation grid.  The results of this test were essential for establishing a flock size baseline from 

which to conduct all future tests.  Ninety simulation runs total were performed for this test, with 

10 runs performed on each flock size ranging from two UAS (the minimum specified in the 

code) to ten. 

In the subsequent data tables, green cells indicate a local best value for that metric, while 

yellow highlights all other values within one standard deviation of the local best.  The blue cell 

indicates the parameter or weight that was selected as the best.  

The graphs of metric Average Time Target Found were universally noisy across all tests 

performed.  The standard deviations were as large, or larger, than the average value of the data.  

Consequently, it was not used as a primary driver in the utility function; it was only worth a 

maximum of 7% of the total. Grid coverage was universally a more reliable statistic, which is 

why it was weighted much more heavily in the utility function at 35%.  The overall utility 

function also indicated low standard deviations across each trial, and as such was validated as a 

feasible measurement from which to base decisions.   Figure 9 provides for an example of these 

trends.  
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Figure 9.  Metrics Examples with High Standard Deviation (Above) and Low Standard Deviation (Below). 

 

From the utility function results in Table 5, the best flock size consists of 4 UAS.  The 

utility function indicates that flock sizes of 4 through 8 are all viable.  Four UAS in particular 

had 60% of runs where the target was found (as a rule of thumb, a minimum acceptable value for 

this metric), a low average amount of time spent outside the target box (13s), an acceptable 

coverage percentage (56%), and very low attrition and near misses (0% for both).   Eight UAS 

may seem like a better choice due to very low average time target found (1079.40s), and very 

high percentage of both runs where the target was found and average coverage (90% and 

79.97%, respectively).  However, this flock size also exhibits a high average attrition (5%).  

Furthermore, these trends can be seen in graphs of each metric, compiled in Appendix B.   

A flock size of 4 UAS has an additional benefit – reduced simulation time.  A run 

consisting of two UAS flying for 1 hour of simulated time takes approximately 38s to complete, 
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and each subsequent UAS adds roughly 10s.  When completing tests of 40 runs or more, 40s 

extra per run (the difference between four UAS and eight UAS) becomes extremely significant.   

Table 5.  Flock Size Test.    

Green Denotes Local Best Value, Yellow Denotes Values w/in 1 Standard Deviation of Best. 

# UAS 

Avg Time 

Target 

Found (s) 

% Runs 

Target 

Found 

Avg Time 

Out of Box 

(s) 

Avg 

Coverage 

% 

Avg 

Attrition 

% 

Avg Near 

Misses % 
Utility 

Function 
Value  

2 2535.900 40.000 16.100 34.821 0.000 0.000 0.635 

3 2584.900 40.000 0.000 42.882 0.000 0.000 0.671 

4 2307.700 60.000 13.000 56.888 0.000 0.000 0.750 

5 2260.800 50.000 28.300 63.511 0.000 4.000 0.715 

6 2051.800 60.000 39.900 68.755 3.333 0.000 0.699 

7 2500.100 40.000 18.500 67.325 0.000 0.000 0.747 

8 1079.400 90.000 59.700 79.968 5.000 0.000 0.731 

9 2148.200 60.000 37.100 76.507 4.444 5.556 0.663 

10 2387.500 60.000 63.700 77.201 8.000 4.000 0.593 

Std Dev 458.466 15.899 21.445 15.653 2.998 2.303 0.053 
 

 

Rule 7 Parameter (Offsides) Test 

This was the first of 2 tests seeking to improve Rule 7 operation.  One hundred ten runs 

were conducted with 10 runs performed per trial, varying the Rule 7 offsides parameter from 0.0 

to 10.0.   

In this test, the utility function recommends an offsides value of 7.0.  Additional 

observation of the Table 6 and associated graphs shows that an offsides value of  4.0 may also be 

a good choice.  However, 4 of 6 performance objectives for offsides equals 7.0 are local bests, 

and an additional value is within 1 standard deviation of the best.  Consequently, 7.0 was chosen 

as the value for offsides and set as the default in flock_init.m.  
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Table 6.  Rule 7 Parameter Test (Offsides). 

Green Denotes Local Best Value, Yellow Denotes Values w/in 1 Standard Deviation of Best. 

Value 

Avg Time 

Target 

Found (s) 

% Runs 

Target 

Found 

Avg Time 

Out of 

Box (s) 

Avg 

Coverage 

% 

Avg 

Attrition 

% 

Avg Near 

Misses % 
Utility 

Function 

Value  
0.0 2004.200 50.000 0.800 41.695 0.000 0.000 0.673 
1.0 2306.800 40.000 0.000 45.738 0.000 0.000 0.674 

2.0 1860.800 60.000 0.000 53.506 0.000 0.000 0.732 

3.0 2012.100 60.000 10.000 57.657 0.000 0.000 0.746 

4.0 1079.200 90.000 10.800 60.953 0.000 0.000 0.796 

5.0 1410.000 80.000 26.800 61.902 2.000 1.000 0.728 

6.0 1154.300 90.000 29.500 63.157 0.000 3.000 0.776 

7.0 1248.000 90.000 21.800 65.169 0.000 0.000 0.811 

8.0 1405.000 80.000 42.600 64.681 2.000 1.000 0.732 

9.0 1992.500 60.000 20.500 64.046 0.000 1.000 0.756 

10.0 1719.200 70.000 13.700 64.305 0.000 0.000 0.781 

Std Dev 412.927 17.321 13.681 8.107 0.809 0.934 0.040 
 

Rule 7 Weight Test 

After changing the Rule 7 offsides value, the next test was to determine the best Rule 7 

weight, to be used as the baseline for Rule 11 and 12 tests.  Fifty runs total were completed, with 

10 per trial for each Rule 7 weight varying from 1.0 to 5.0.   

 From the utility function value, a weight equal to unity appeared to be the best choice. 

This weight resulted in 5 of 6 local best metric values, thus the default weight of 1.0 was kept for 

future tests. 

Table 7.  Rule 7 Weight Test.  

Green Denotes Local Best Value, Yellow Denotes Values w/in 1 Standard Deviation of Best. 

Weight 

Avg Time 

Target 

Found (s) 

% Runs 

Target 

Found 

Avg Time 

Out of 

Box (s) 

Avg 

Coverage 

% 

Avg 

Attrition 

% 

Avg Near 

Misses % 
Utility 

Function 

Value  

1.0 1248.000 90.000 21.800 65.169 0.000 0.000 0.811 

2.0 1730.300 70.000 21.800 64.757 0.000 0.000 0.780 

3.0 1415.200 80.000 12.800 61.634 0.000 0.000 0.785 

4.0 1698.100 70.000 15.700 63.498 0.000 1.000 0.770 

5.0 1541.000 80.000 13.100 64.211 0.000 0.000 0.798 

Std Dev 200.712 8.367 4.489 1.390 0.000 0.447 0.016 
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Rule 11 Parameter (Divergence_size) Test  

This test was 1 of 2 tests that sought to find best values for Rule 11 implementation.  This 

particular evaluation varied the Rule 11 parameter divergence_size from a value of 0.25 to 1.5, 

stepping by increments of 0.25.  The utility function indicated that the value 0.75 is the best 

overall solution.  Examination of the data confirms that 0.75 is a good choice, as that value is 

also associated with 4 local best statistics for the time the target was found, percent of runs where 

the target was found, attrition and near misses.  The other 2 statistics were in family with the 

local bests, so the divergence_size value of 0.75 was set as the new default in the initialization 

file. 

Table 8.  Rule 11 Parameter (Divergence_size) Test.  

Green Denotes Local Best Value, Yellow Denotes Values w/in 1 Standard Deviation of Best. 

Value 

Avg Time 

Target 

Found (s) 

% Runs 

Target 

Found 

Avg Time 

Out of 

Box (s) 

Avg 

Coverage 

% 

Avg 

Attrition 

% 

Avg Near 

Misses % 
Utility 

Function 

Value  
0.25 1457.800 70.000 24.700 59.929 0.000 0.000 0.755 
0.50 1258.700 90.000 7.500 63.335 1.000 0.000 0.788 
0.75 1248.000 90.000 21.800 65.169 0.000 0.000 0.811 
1.00 1362.200 80.000 15.100 65.873 2.000 1.000 0.745 
1.25 1884.700 70.000 32.100 66.012 0.000 0.000 0.784 
1.50 1538.900 90.000 64.300 65.785 0.000 0.000 0.804 

Std Dev 233.070 9.910 20.463 2.137 0.744 0.354 0.027 
 

 

Rule 11 Weight Test 

The next test conducted was to vary the weights of Rule 11.  Fifty total runs were 

performed, at 10 runs per trial for each weight ranging from 1.0 to 5.0.  As shown in Table 9, the 

utility function value was highest for a weight of unity, which was the default from the beginning 

of the simulations.  The next closest utility function value was for a weight of 5.0, but since that 

value yields worse performance for the time spent out of the box, coverage and near misses, the 

decision was made to select a weight of 1.0 going forward.   

 



 

54 

Table 9.  Rule 11 Weight Test.  

Green Denotes Local Best Value, Yellow Denotes Values w/in 1 Standard Deviation of Best. 

Weight 

Avg Time 

Target 

Found (s) 

% Runs 

Target 

Found 

Avg Time 

Out of 

Box (s) 

Avg 

Coverage 

% 

Avg 

Attrition 

% 

Avg Near 

Misses % 
Utility 

Function 

Value  

1.0 1248.000 90.000 21.800 65.169 0.000 0.000 0.811 

2.0 1360.300 80.000 27.100 64.028 0.000 1.000 0.779 

3.0 1650.700 70.000 58.900 63.336 2.000 0.000 0.714 

4.0 1229.200 90.000 45.000 64.233 2.000 0.000 0.753 

5.0 1097.800 90.000 33.400 65.156 0.000 1.000 0.795 
 

 

Rule 12 Parameter (Wander_ability) Test 

This test is 1 of 2 tests designed to find best values for Rule 12.  One hundred ten runs 

were conducted, and the Rule 12 parameter for wander_ability was varied between 0 and 1.0 by 

increments of 0.10, with 10 runs for each parameter value.  

Rule 12 tests utilized a different setup:  all previous tests enabled Rules 7 and 11 and 

disabled Rule 12, while these tests enabled Rules 7 and 12 and disabled Rule 11.  This was done 

out of a desire to eliminate Rule 11 contributions to the metrics and any operational conflicts 

between the two coverage optimization rules.   

While most utility function values for wander_ability were statistically similar (i.e., 

within one standard deviation of the local best), Table 10 indicated that a weight of 0.8 was the 

best. Indeed, this value demonstrated best local performance for 3 of 6 metrics, and values within 

one standard deviation of the best for 2 of the remaining 3 metrics.  As such, a value of 0.8 was 

selected for the new wander_ability default. 
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Table 10.  Rule 12 Parameter (Wander_ability) Test. 

Green Denotes Local Best Value, Yellow Denotes Values w/in 1 Standard Deviation of Best. 

Value 

Avg Time 

Target 

Found (s) 

% Runs 

Target 

Found 

Avg Time 

Out of 

Box (s) 

Avg 

Coverage 

% 

Avg 

Attrition 

% 

Avg Near 

Misses % 
Utility 

Function 

Value  

0 2633.200 30.000 23.700 22.629 0.000 2.000 0.556 

0.10 1946.200 80.000 33.800 47.491 0.000 1.000 0.734 

0.20 1381.300 100.000 50.900 50.182 2.000 0.000 0.727 

0.30 1983.500 60.000 43.200 59.035 0.000 0.000 0.737 

0.40 1560.000 80.000 65.200 63.288 1.000 0.000 0.752 

0.50 1890.900 60.000 61.900 62.718 0.000 0.000 0.740 

0.60 1611.900 80.000 44.200 65.849 0.000 0.000 0.793 

0.70 1435.100 90.000 77.300 65.929 2.000 0.000 0.752 

0.80 1195.800 90.000 55.600 66.762 0.000 0.000 0.802 

0.90 1885.900 70.000 55.500 66.777 0.000 0.000 0.778 

1.0 1583.200 80.000 43.900 66.835 1.000 0.000 0.773 

Std Dev 391.759 19.164 14.997 13.529 0.820 0.647 0.066 
 

 

Rule 12 Weight Test 

This was the second evaluation conducted for Rule 12.  Fifty runs were conducted at ten 

per trial, varying Rule 12 weights between 1.0 and 5.0.  The resulting utility function values, 

shown in Table 11 below, indicated that a weight of 2.0 is the best.  All metrics for this weight 

were either the local best or within one standard deviation of the local best, so a Rule 12 weight 

of 2.0 was chosen as the new default. 

Table 11.  Rule 12 Weight Test. 

Green Denotes Local Best Value, Yellow Denotes Values w/in 1 Standard Deviation of Best. 

Weight 

Avg Time 

Target 

Found (s) 

% Runs 

Target 

Found 

Avg Time 

Out of Box 

(s) 

Avg 

Coverage 

% 

Avg 

Attrition 

% 

Avg Near 

Misses % 
Utility 

Function 

Value  

1.0 1195.800 90.000 55.600 66.762 0.000 0.000 0.802 

2.0 1350.500 100.000 34.400 66.381 0.000 0.000 0.834 

3.0 1425.000 90.000 41.800 64.343 0.000 0.000 0.805 

4.0 1600.100 90.000 36.700 60.868 2.000 0.000 0.754 

5.0 1797.000 70.000 47.400 62.578 0.000 1.000 0.757 

Std Dev 231.990 10.954 8.559 2.504 0.894 0.447 0.034 
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Ideal Rules Test  

The Ideal Rules Test was the final test of the evaluation.  Rules were enabled and 

disabled to find the overall configuration that demonstrated the best utility.  As a baseline, Rule 7 

was enabled for all tests.  For the first trial, both Rules 11 and 12 were disabled; the second trial 

enabled Rule 11; a third trial enabled Rule 12 and disabled Rule 11, and the final trial enabled all 

three rules.  Each configuration was run 10 times for a total of 40 runs, and the results are shown 

in Table 12 below. 

Table 12.  Ideal Rules Test. 

Green Denotes Local Best Value, Yellow Denotes Values w/in 1 Standard Deviation of Best. 

Rules 

Avg Time 

Target 

Found (s) 

% Runs 

Target 

Found 

Avg Time 

Out of 

Box (s) 

Avg 

Coverage 

% 

Avg 

Attrition 

% 

Avg Near 

Misses % 
Utility 

Function 

Value  

Rule 7 only 2034.600 50.000 15.300 56.325 0.000 0.000 0.719 
Rule 7 & 11 1248.000 90.000 21.800 65.169 0.000 0.000 0.811 
Rule 7 & 12 1350.500 100.000 34.400 66.381 0.000 0.000 0.834 
Rules 7, 11 

& 12 2060.700 70.000 37.300 68.549 0.000 0.000 0.796 

Std Dev 434.241 22.174 10.402 5.373 0.000 0.000 0.050 
 

 

 The utility function presented a surprising conclusion.  While all three combinations 

using Rules 11 and 12 showed improvements over the baseline, the combination with the largest 

utility function value was with Rules 7 and 12 enabled.  This configuration enabled the flock to 

find the target 100% of the time. The combination using all three rules had 3.38% higher 

coverage, but significantly worse performance (only 70%) in actually finding the target.   

 To better understand the results, an investigation was conducted to determine how a 

configuration with better coverage could have worse overall performance.  The three simulations 

where the target was missed by Rules 7, 11 and 12 were examined capturing screenshots of the 

target locations.  The first simulation with a missed target, depicted in Figure 10, used a random 

seed of 2.0.   
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Figure 10.  Target Location = (-2.70, 2.40) for Random Seed = 2.0. 

In this run, the flock missed the target due to poor coverage in the upper left corner, as 

seen in Figure 11.  The blue markings on the left subfigure indicate whether a UAS sensor 

covered a particular portion of the map.  The right subfigure shows how many seconds a 

particular point was within a sensor field of view.  Note the random wandering behavior 

produced when Rule 12 is active. 

 

2D Sensor Coverage Map 

 

3D Sensor Coverage Map 

Figure 11.  Depictions of Sensor Coverage for Rules 7, 11 & 12 Enabled  

with Random Seed=2.0; Target Missed. 

In the second and third instances where the target was missed (using random seeds of 6.0 

and 8.0 respectively), a random target was also generated in the upper left quadrant as per Figure 

12.  Similar to the previous results, for a seed of 6.0 the target was missed as a result of 
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inadequate corner coverage (see the top 2 graphs).    For the seed equal to 8.0, the flock did have 

coverage within the vicinity of the target; however the target was still missed (reference the 

bottom 2 graphs). 

  

  

Figure 12.  Target Locations and 2D Coverage Maps for Remaining Missed Targets. 

 

Although the utility function indicated that a combination of Rules 7 and 12 was best, this 

section demonstrated that results were highly dependent upon the target location. The flock using 

Rules 7 and 12 had better coverage over the portions of the map where the random targets fell, 
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As a result, all 3 combinations utilizing Rules 11 and 12 showed improved performance 

over the case where no coverage optimization algorithm was used, and all 3 had utility function 

values within 1 standard deviation of each other.  Thus, any combination using Rules 11 and 12 

appears to be viable.   

Overall Performance Change 

As a result of iterative testing and feedback into the simulation, many of the default 

weights and parameters changed.  See Table 13 for details.   

 

Table 13. Original vs. Final Values of Parameters and Weights. 

Orange Denotes No Change From Original Value. 

Original vs. 

Final: 

Values 

# 

UAS 

Rule 7 

(Offsides) 

Parameter 

Rule 7 

Weight 

Rule 11 

(Divergence

_size) 

Parameter 

Rule 11 

Weight 

Rule 12 

(Wander_ 

ability) 

Parameter 

Rule 12 

Weight 

Rule 

Configur-

ation 

Original 

Parameters 

& Weights 

5 6.0 1.0 0.75 1.0 0.5 1.0 Rule 11 

Best 

Parameters 

& Weights 

4 7.0 1.0 0.75 1.0 0.8 2.0 

Any 

combo of 

Rules 11 

& 12 
 

 

Using a final configuration with Rule 12 enabled, Table 14 demonstrates that, with the 

exception of the Average Time Out of the Box metric, significant improvements were made to 

mission performance while minimizing negative effects.   The overall utility was improved by 

11.9%.  If the final configuration using both Rules 11 and 12 was used, a utility improvement of 

8.10% would be realized.   
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Table 14.  Original vs. Final Metrics. 

Green Denotes the Best Value for Each Metric. 

Original 

vs. Final: 

Metrics 

Avg Time 

Target 

Found (s) 

% Runs 

Target 

Found 

Avg Time 

Out of 

Box (s) 

Avg 

Coverage 

% 

Avg 

Attrition 

% 

Avg 

Near 

Misses 

% 

Utility 

Function 

Value 

Original 

Parameters 

& Weights 

2260.800 50.000 28.300 63.510 0.000 4.000 0.715 

Best 

Parameters 

& Weights 

1350.500 100.000 34.400 66.380 0.000 0.000 0.834 

 

Summary 

This chapter provided the results of the test events proposed in the Table 4 Test Matrix at 

the end of Chapter III.  For each series of tests, the data for 6 MOPs was collected and graphed, 

and a resulting utility function calculated to assist in interpreting the results. Best parameter 

values and weights were fed back into the simulation in an iterative fashion.  The end result was 

not 1 but 3 viable configurations that served to optimize the effectiveness of the Point ISR 

mission set.   
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V.  Conclusions and Recommendations 

Chapter Overview 

This chapter provides a summary of the Research Questions and Hypotheses addressed 

within this thesis, and reveals the answers and conclusions for each.  The overall significance of 

this work is elucidated, and recommendations are made for future action and work.    

Conclusions of Research 

The Research Question remaining to be answered is: 

 Can mission performance be improved through iterative changes to simulation 

parameters while minimizing undesired effects such as crashes? 

In Chapter I, the following hypothesis was proposed: 

 For the selected mission, optimizing and enabling Rule 7 (Stay Within Boundary), Rule 

11 (Divergence) and Rule 12 (Wander) parameters and weights will provide significant 

improvements to model performance. 

The results from Chapter IV established that iterative changes to Rule 7, 11 and 12 

parameters and weights yielded a utility function improvement between 8.10% and 11.9%, 

indicating that the answer to the final Investigative Question is affirmative.  Furthermore, the test 

results experimentally demonstrated the validity of the above hypothesis.  

The research performed within this thesis connected numerous areas of study, to include 

the history of military UAS employment, autonomy, UAS strategic planning, animal behavior, 

flocking simulation theory; motion planning, optimization methods, military aircraft formations 

and searching techniques.  All these topics were addressed to provide the basis for a relevant 

flocking simulation and to formulate the answers for a series of Research Questions posed within 

Chapter I.   

For the question: “What are appropriate and optimal mission sets for flocking UAS?” 
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USJFCOM/J9 proposed nine optimal missions for flocking UMS.  In order of priority, they were: 

Area ISR and Intel, Point Target ISR, Communication / Navigation / Mapping, Swarming 

Attacks, Defense / Protection, Delay / Fix / Block, Deception Operations, and SAR & CSAR 

(US Joint Forces Command Joint Experimentation (J9), 2002). 

To answer the question: “What behaviors are required for autonomous flocking UAS 

military missions?” Feddema’s behaviors were researched, his original set expanded and the 

resulting 11 behaviors explained.  The Adjusted Feddema behaviors list included: Flocking, 

Converging/Diverging, Mapping/Survey, Search, Detect/Track, Containment, Loiter, Pursuit, 

Attack, and Evasion (Feddema et al., 2004). 

Addressing this question: “How can these behaviors and missions be built?” involved 

demonstrating Hypothesis 1 through MATLAB® simulation.  Hypothesis 1 was indeed shown to 

be true: “Behaviors can be built in software simulation through mission-dependent, time-varying 

application of Reynolds-derived flocking rules and a rule accumulator/adjudicator” as well as 

through the use of different UAS states and target/waypoint flags.  

Finally, after choosing the Point ISR mission set, the question was asked: “What are 

appropriate Measures of Effectiveness (MOEs)/Measures of Performance (MOPs) to evaluate 

mission success?”  To measure flock survivability and effectiveness conducting the Point ISR 

mission, both Mission Performance and Collision Avoidance were identified as important factors 

to evaluate.  The following MOEs and MOPs were used within the thesis to evaluate 

performance improvements resulting from changes to the simulation baseline: 

Mission Performance Criteria: 

MOE 1—Improve efficiency in locating the target from the baseline 

MOP 1—Average Time Target Found (≤2700s) 

MOP 2—% Time Target Found 

MOE 2—Improve coverage effectiveness over the search area from the baseline  

 MOP 3—Average Coverage % 

 MOP 4—Average Time out of Box (≤180s, equivalent to 5% of simulation time) 
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Collision Avoidance Criteria: 

MOE 3—Improve upon or maintain baseline collision avoidance 

 MOP 5—Average % Attrition (≤10%) 

MOP 6—Average % Near Misses (≤10%) 

Significance of Research 

Autonomous flocking UAS have the potential to change the way wars are waged, with 

the possibility of inducing a paradigm shift as large as the initial introduction of UAS onto the 

battlefield.  Investigation and MATLAB® simulation showed that autonomous flocking in small 

UAS is not only feasible, but practical to incorporate into current platforms.  It was demonstrated 

that adaptive flocking behaviors could be applied in a relatively simple yet robust manner to 

carry out a mission of military utility.  A literature search also provided reasonable scoping for 

future research and development efforts within the field.  Policymakers and acquisition experts 

may not currently be aware of these recommendations or follow them, to the taxpayers’ 

detriment.   

Recommendations for Action 

Rather than spending hundreds of millions of dollars on large autonomous UAS with 

“gold-plated requirements,” the military should pool together and invest its development efforts 

into “low hanging fruit” missions recommended by USJFCOM/J9.  An inexpensive, well scoped 

technology demonstration should be accomplished in the near-term for a small UAS, 

autonomous flocking mission of military utility, governed by Feddema behaviors and Reynolds’ 

flocking rules.  Such a demonstration would be a responsible use of government funds and pave 

the way for near-term, large scale employment of this technology in the field.  A single-year 

demonstration would avoid multi-year budget fluctuations that affect schedule and long term cost 

of large multi-year programs.  Implementing autonomous flocking technology operationally in 

this manner, especially with a non-lethal mission, would set a precedence that could help to 

break policy barriers to the technology’s full implementation in the future.   
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 There is another compelling argument to support a near-term inexpensive technology 

development effort.  The literature has shown that organizations world-wide, from universities 

and corporations to foreign militaries, are extremely interested in autonomous UAS technology.  

Most entities do not have the resources of the U.S. military, and are likely pursuing affordable 

(i.e., small UAS/robotics) means of implementation.  Many U.S. policy papers have postulated 

that the wars of the future will not be fought with a conventional mindset, like the conventional-

sized autonomous UAS currently under demonstration by the Navy.  The nation is at risk of 

facing a foe unprepared if it continues to focus on large, expensive autonomous systems with 

planned Initial Operational Capability years in the future, while ignoring the near-term potential 

of small UAS capabilities that both allies and adversaries are working hard to produce.   

Recommendations for Future Research 

Multiple simulation topics were identified during this thesis that merit further research.   

Pending on availability of statistical software and more sophisticated computing resources, a 

Pareto analysis could be conducted to conclusively determine which variables have the greatest 

effect on Mission Performance and Collision Avoidance.  Different USJFCOM/J9 missions 

could be simulated using the same Feddema behaviors, rules and states paradigms.  The 

simulation could be expanded to include 3D flight characteristics to model UAS roll and pitch, 

landing and takeoff as well as 3D cluster flocking and obstacle avoidance.  Changes could be 

made to the utility function, both in terms of weights and MOPs used; in conjunction, a 

sensitivity analysis could be performed to determine which factors drive the equation.  The 

simulation could also update the UAS search algorithm to accommodate multiple targets, 

incorporate additional targets to pop up at random times within the simulation and reevaluate 

mission performance. 

Two known issues exist with rule scaling factors that could be addressed.  The current 

simulation has several rules (Rule 1, e.g.) that operate via positional differences rather than 

velocity changes.  These rules have a scaling factor meant to address this issue, but the scaling 

factor is currently equal to 1.  While the simulation works, this is a troubling units issue.  Scaling 

factors (other than unity) could be developed to correct this problem.  Similarly, individual rules 

have scaling factors that, in use, keep rules within the same order of magnitude.  However, a few 
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rules (again, Rule 1, e.g.) have the mathematical capacity to reach a magnitude much larger than 

other rules.  Ideally, future work could scale the rules consistently so they have similar possible 

values. Additionally, this issue could be mitigated by a simulation-wide change of units.  Instead 

of having distance units in terms of fractions of a mile, which was problematic in some rule 

implementations, the simulation distance units could be changed to feet or preferably meters.   

Another area of improvement could focus on adding heuristic search algorithms to the 

simulation.  Currently, flocks operate in a random search pattern; inclusion of additional 

algorithms would convert this into a pseudorandom search pattern more in family with the 

Roomba®.  These could be used in conjunction with Rules 11 and 12 or in a standalone fashion.  

This approach has the potential to further improve search algorithm coverage over the area of 

interest. 

A last area of concern was the fact that both location (simulated GPS) and targeting were 

assumed to be completely accurate.  Follow-on research could focus on adding realism by 

determining how to simulate and determine appropriate behaviors considering Type I and II 

(false positives and false negatives) errors in targeting, and reevaluating the flocking CONOPS 

and initialization parameters using realistic GPS tolerances.    

Summary 

In conclusion, this thesis presented a military-relevant software demonstration of an 

autonomous, flocking, small UAS mission.  This was accomplished first by down-selecting an 

appropriate mission from a set proscribed by military policymakers.  Behaviors necessary for 

accomplishing the mission were built through Reynolds-derived rules and state changes.  New 

rules were incorporated to maximize the effectiveness of the selected mission.  MOEs and MOPs 

were formulated to assist in the selection of best parameter values that were propagated forward 

in the simulation.  Rules effecting sensor coverage and safety were iteratively changed to 

converge on a best configuration, and desired performance improvements were achieved.   

Testing results were interpreted in the context of research objectives, and the remaining 

hypothesis was validated.   Finally, follow-on research topics were suggested to relax known 

constraints and assumptions.    
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Appendix A 

Table 15. MATLAB® Simulation Parameters. 

Parameter Name Description  Initial Value Defined In: Notes 

N number of UAS  5 UAS flock_init 
tested 

parameter 

gridsize size of sim area (-3,-3) to (3,3) flock_init  

home_base launch location (0,-3) flock_init  

waypoint  pre-launch and pre-landing (0,-2) flock_init  

target point ISR target 
Between (-2.85,-2.85) 

& (2.85,2.85) 
runtest_launch2 

assigned 

randomly 

obstacle  obstacle location (1,1) flock_init  

obstacle_radius obstacle size 750 feet flock_init  

battery_life 
equivalent to flight 

duration 
60 minutes flock_init   

wing_span UAS size parameter 4.5 feet flock_init  

a_hit distance for collision calc 3 wingspans flock_init  

a_nearmiss distance for nearmiss calc 5 wingspans flock_init  

max_range comm range  5 miles flock_init   

velocity_max Raven actual limit 60 mph flock_init   

velocity_min Raven actual limit 30 mph flock_init   

max_throttle artificial limitation 48 mph velocity_limiter 
80% throttle, 

computation 

acceleration_max guestimated limit 2 mph flock_init   

altitude flight altitude 500 feet flock_init   

sensor_fov horizontal and vertical fov 
48 degrees and 40 

degrees, respectively 
flock_init   

sensor_op Raven capability 
b' = both front facing 

and left facing sensors 
flock_init   

separation_size Rule 1 parameter 300 feet flock_init   

velmatching_size Rule 2 parameter 0.6 miles flock_init   

flockcentering_size Rule 3 parameter 1.5 miles flock_init   

loiter_range Rule 5 parameter 500 feet flock_init   

sensor_range Rule 5 parameter 250 feet flock_init  

offsides Rule 7 parameter 6 * sensor_range flock_init 
tested 

parameter 

obstacle_separation Rule 9 parameter 5 flock_init  

divergence_size Rule 11 parameter 0.75 miles flock_init 
tested 

parameter 

wander_ability Rule 12 parameter 0.5 flock_init 
tested 

parameter 

nu randomness 0.25 flock_init   
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Appendix B 

Table 16.  Function Description Summary. 

Function Name Description Called By Calls 

accumulator Prioritizes and sums rules flock_moveXY boid_limit_move2 

boid_limit_move2 Limits rules by angle, velocity and 

accel change 

accumulator velocity_limiter 

display_flock_stats Prints display of UAS stats when 

visualization is on 

runtest_launch2   

drawrules When vis on, draws individual rule 

vectors 

flock_moveXY   

flock_draw_boidsXY When vis on, draws UAS, target box, 

target, waypoint and obstacle 

runtest_launch2 trianglebirdEO2 

flock_get_stats Calculates updated statistics runtest_launch2 polygeom 

flock_init Initializes flock parameters and rule 

weights 

runtest_launch2   

flock_launch_loiter Creates UAS one by one, initializes, 

draws and moves them 

runtest_launch2 flock_draw_boidsXY 

flock_moveXY 

flock_moveXY Calculates rule contributions and sums 

them, determines new velocity and 

moves UAS  

runtest_launch2 rule1_separationXY, 

rule2_alignmentXY, 

rule3_cohesionXY,  

rule4_flock_rangeXY,  

rule56_flock_targetXY6,  

rule7_flock_targetarea, 

rule8_flock_relay,  

rule9_flock_obstacleXY,  

rule10_flock_targetmoving 

rule11_divergence,  

rule12_wander, 

accumulator, draw_rules 

footprint4 Wellborn generated code to determine 

Raven sensor footprint 

trianglebirdEO2   

graph_coverage_matrix Prints 2 graphs of 2D and 3D sensor 

coverage 

runtest_launch2   

loop_runtest Batch file to perform multiple trials, 

saves summary statistics to Excel 

  runtest_launch2, xlsappend 

move_target Moves target in sinusoidal pattern, 

disabled 

rule10_flock_ta

rgetmoving 

  

pathdef Autogenerated file to determine 

MATLAB® file path 

    

polygeom Sommer generated code to return area, 

centroid and perimeter of a polygon 

trianglebirdEO2   

rule1_separationXY Calculates flock separation rule flock_moveXY   

rule2_alignmentXY Calculates velocity matching rule flock_moveXY   

rule3_cohesionXY Calculates flock centering rule flock_moveXY   

rule4_flock_rangeXY Calculates comm range limit rule, 

disabled 

flock_moveXY   

rule7_flock_targetarea Calculates target box rule flock_moveXY   
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Function Name Description Called By Calls 

rule8_flock_relay Calculates comm relay rule, 

disabled 

flock_moveXY   

rule9_flock_obstacleXY Calculates obstacle avoidance rule flock_moveXY   

rule10_flock_targetmoving Calculates moving target rule, 

disabled 

flock_moveXY   

rule11_divergence Calculates divergence rule flock_moveXY   

rule12_wander Calculates wander rule flock_moveXY   

rule56_flock_targetXY6 Calculates flock attraction and 

repulsion rules 

flock_moveXY   

runtest_launch2 Main program of simulation, gets 

& saves stats to Excel, defines 

random target, launches UAS, 

changes UAS states, draws 

simulation items & graphs, moves 

UAS  

loop_runtest flock_init, 

flock_launch_loiter, 

flock_get_stats, 

flock_draw_boids, 

display_flock_stats, 

flock_moveXY, 

graph_coverage_matrix  

trianglebirdEO2 Calculates UAS and sensor 

footprints, determines if UAS 

finds target/waypoint and 

transitions state, prints UAS & 

sensor footprints if vis on  

flock_draw_boids   

velocity_limiter Limits change in velocity for 

rules 

boid_limit_move2   

xlsappend Publicly available code adds a 

line to an existing Excel file 

loop_runtest   
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Appendix C 

 

  

  

  

Figure 13. Flock Size Test, Best Value = 4 UAS. 

Best Results on Left Graphs are Minimized; Best Results on Right Graphs are Maximized. 
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Figure 14. Rule 7 Parameter (Offsides) Test, Best Value = 7. 

Best Results on Left Graphs are Minimized; Best Results on Right Graphs are Maximized. 
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Figure 15. Rule 7 Weight Test, Best Value = 1. 

Best Results on Left Graphs are Minimized; Best Results on Right Graphs are Maximized. 
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Figure 16.  Rule 11 Parameter (Divergence_size) Test, Best Value = 0/75. 

Best Results on Left Graphs are Minimized; Best Results on Right Graphs are Maximized.
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Figure 17.  Rule 12 Parameter (Wander_ability) Test, Best Value = 0.8. 

Best Results on Left Graphs are Minimized; Best Results on Right Graphs are Maximized. 
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Figure 18.  Rules 11 & 12 Weight Test, Best Values = 1 & 2 Respectively. 

Best Results on Left Graphs are Minimized; Best Results on Right Graphs are Maximized. 
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Figure 19.  Rules 7, 11 & 12 Rule Test, Best Results Inconclusive.  

Best Results on Left Graphs are Minimized; Best Results on Right Graphs are Maximized. 
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