105,364 research outputs found

    Fast algorithms for histogram matching: Application to texture synthesis

    Get PDF
    Texture synthesis is the ability to create ensembles of images of similar structures from sample textures that have been photographed. The method we employ for texture synthesis is based on histogram matching of images at multiple scales and orientations. This paper reports two fast and in one case simple algorithms for histogram matching We show that the sort-matching and the optimal cumulative distribution function (CDF)-matching (OCM) algorithms provide high computational speed compared to that provided by the conventional approach. The sort-matching algorithm also provides exact histogram matching. Results of texture synthesis using either method show no subjective perceptual differences. The sort-matching algorithm is attractive because of its simplicity and speed, however as the size of the image increases, the OCM algorithm may be preferred for optimal computational speed

    Identifying person re-occurrences for personal photo management applications

    Get PDF
    Automatic identification of "who" is present in individual digital images within a photo management system using only content-based analysis is an extremely difficult problem. The authors present a system which enables identification of person reoccurrences within a personal photo management application by combining image content-based analysis tools with context data from image capture. This combined system employs automatic face detection and body-patch matching techniques, which collectively facilitate identifying person re-occurrences within images grouped into events based on context data. The authors introduce a face detection approach combining a histogram-based skin detection model and a modified BDF face detection method to detect multiple frontal faces in colour images. Corresponding body patches are then automatically segmented relative to the size, location and orientation of the detected faces in the image. The authors investigate the suitability of using different colour descriptors, including MPEG-7 colour descriptors, color coherent vectors (CCV) and color correlograms for effective body-patch matching. The system has been successfully integrated into the MediAssist platform, a prototype Web-based system for personal photo management, and runs on over 13000 personal photos

    Source counting in real-time sound source localization using a circular microphone array

    Get PDF
    International audienceRecently, we proposed an approach inspired by Sparse Component Analysis for real-time localization of multiple sound sources using a circular microphone array. The method was based on identifying time-frequency zones where only one source is active, reducing the problem to single-source localization for these zones. A histogram of estimated Directions of Arrival (DOAs) was formed and then processed to obtain improved DOAestimates, assuming that the number of sources was known. In this paper, we extend our previous work by proposing three different methods for counting the number of sources by looking for prominent peaks in the derived histogram based on: (a) performing a peak search, (b) processing an LPC-smoothed version of the histogram, (c) employing a matching pursuit-based approach. The third approach is shown to perform very accurately in simulated reverberant conditions and additive noise, and its computational requirements are very small

    White-matter microstructural changes in episodic menstrual migraine compared with hormonal controls

    Get PDF
    Question: Do patients with episodic menstrual migraine exhibit white-matter microstructural changes? Methods: 14 women with episodic menstrual migraine (35Ā±8yrs) were assessed during interictal phase together with 11 healthy women (29Ā±10yrs) during a matching phase of their menstrual cycle (post-ovulation). 2D-EPI multi-shell DWI data were acquired on a 3T Siemens Vida (64-ch coil) and preprocessed using DESIGNER [1]. Diffusion tensor / kurtosis imaging (DTI/DKI) parameter maps were estimated and skeletonised [2] and histogram-metrics were computed for each subject: median, peak height, width, and value. Results: Voxelwise statistical analysis [3] revealed multiple whitematter regions with lower MD and AD in patients, with no differences in FA and RD. Interestingly, migraineurs showed increased MK, AK and RK. Moreover, significant groups differences (Mann- Whitney test with Bonferroni correction) were found in histogram-metrics MD peak value, AD median and peak height and AK median. Median AK was positively associated (Spearman correlation) with disease duration but not with attack frequency and pain intensity. Conclusion: Our findings extended previous reports of whitematter microstructural changes in migraineurs across multiple brain regions [4, 5]. DKI histogram-metrics showed potential as disease biomarkers.info:eu-repo/semantics/publishedVersio

    Reducing finite-size effects with reweighted renormalization group transformations

    Full text link
    We combine histogram reweighting techniques with the two-lattice matching Monte Carlo renormalization group method to conduct computationally efficient calculations of critical exponents on systems with moderately small lattice sizes. The approach, which relies on the construction of renormalization group mappings between two systems of identical lattice size to partially eliminate finite-size effects, and the use of histogram reweighting to obtain computationally efficient results in extended regions of parameter space, is utilized to explicitly determine the renormalized coupling parameters of the two-dimensional Ļ•4\phi^{4} scalar field theory and to extract multiple critical exponents. We conclude by quantifying the computational benefits of the approach and discuss how reweighting opens up the opportunity to extend Monte Carlo renormalization group methods to systems with complex-valued actions

    Rethinking the sGLOH descriptor

    Get PDF
    sGLOH (shifting GLOH) is a histogram-based keypoint descriptor that can be associated to multiple quantized rotations of the keypoint patch without any recomputation. This property can be exploited to define the best distance between two descriptor vectors, thus avoiding computing the dominant orientation. In addition, sGLOH can reject incongruous correspondences by adding a global constraint on the rotations either as an a priori knowledge or based on the data. This paper thoroughly reconsiders sGLOH and improves it in terms of robustness, speed and descriptor dimension. The revised sGLOH embeds more quantized rotations, thus yielding more correct matches. A novel fast matching scheme is also designed, which significantly reduces both computation time and memory usage. In addition, a new binarization technique based on comparisons inside each descriptor histogram is defined, yielding a more compact, faster, yet robust alternative. Results on an exhaustive comparative experimental evaluation show that the revised sGLOH descriptor incorporating the above ideas and combining them according to task requirements, improves in most cases the state of the art in both image matching and object recognition

    Enhanced spatial pyramid matching using log-polar-based image subdivision and representation

    Get PDF
    This paper presents a new model for capturing spatial information for object categorization with bag-of-words (BOW). BOW models have recently become popular for the task of object recognition, owing to their good performance and simplicity. Much work has been proposed over the years to improve the BOW model, where the Spatial Pyramid Matching (SPM) technique is the most notable. We propose a new method to exploit spatial relationships between image features, based on binned log-polar grids. Our model works by partitioning the image into grids of different scales and orientations and computing histogram of local features within each grid. Experimental results show that our approach improves the results on three diverse datasets over the SPM technique

    Robust Mobile Object Tracking Based on Multiple Feature Similarity and Trajectory Filtering

    Get PDF
    This paper presents a new algorithm to track mobile objects in different scene conditions. The main idea of the proposed tracker includes estimation, multi-features similarity measures and trajectory filtering. A feature set (distance, area, shape ratio, color histogram) is defined for each tracked object to search for the best matching object. Its best matching object and its state estimated by the Kalman filter are combined to update position and size of the tracked object. However, the mobile object trajectories are usually fragmented because of occlusions and misdetections. Therefore, we also propose a trajectory filtering, named global tracker, aims at removing the noisy trajectories and fusing the fragmented trajectories belonging to a same mobile object. The method has been tested with five videos of different scene conditions. Three of them are provided by the ETISEO benchmarking project (http://www-sop.inria.fr/orion/ETISEO) in which the proposed tracker performance has been compared with other seven tracking algorithms. The advantages of our approach over the existing state of the art ones are: (i) no prior knowledge information is required (e.g. no calibration and no contextual models are needed), (ii) the tracker is more reliable by combining multiple feature similarities, (iii) the tracker can perform in different scene conditions: single/several mobile objects, weak/strong illumination, indoor/outdoor scenes, (iv) a trajectory filtering is defined and applied to improve the tracker performance, (v) the tracker performance outperforms many algorithms of the state of the art
    • ā€¦
    corecore